
TWENTY-SIXTH ANNUAL

PACIFIC NORTHWEST

SOFTWARE QUALITY

CONFERENCE

October 14-15, 2008

Oregon Convention Center

Portland, Oregon

Permission to copy without fee all or part of this material, except copyrighted

material as noted, is granted provided that the copies are not made or distributed

for commercial use.

i

TABLE OF CONTENTS

Welcome v

Board Members, Officers, and Committee Chairs ... vii

Contributing Volunteers ... viii

Keynote Address – October 14

 The Art of Building Consensus .. 1

 Sam Kaner

Keynote Address – October 15

Quality Dynamics of Agile SW Development ... 3

 Ron Jeffries & Chet Hendrickson

Collaboration Track I – October 14

Expanding Trust and Collaboration with Agile Earned Value Management 5

 Tamara Sulaiman

Collaboration! Guerilla Techniques .. 17

 Jeff Fiebrich, Celeste Yeakley

Trust: The Key to Project Team Collaboration .. 33

 Diana Larsen

Playing Nice in the Sandbox ... 41

 Janet Gregory

Collaboration Track II – October 14

Actually, It IS ALL About You! .. 43

 Jim Brosseau

The 2008 State of Requirements Management Report ... 55

 John Simpson, Eric Winquist

Collaborative Quality: One Company’s Recipe for Software Success .. 75

 Alan Ark

Tails in the Boardroom: Canine Lessons for Business Teams ... 83

Shannon MacFarlane

Testing Track – October 14

Testing for the User Experience: User Workflow Testing .. 97

 Lanette Creamer

ii

Software Testing as a Service (STaaS) ... 113

 Leo Van der Aalst

Is Your Testing Effective and Efficient? .. 127

 Bhushan B. Gupta

Acceptance Testing: A Love Story in Two Acts ... 137

 Jon Bach, Grigori Melnik

Building a Software Testing Strategy ... 163

 Karen N. Johnson

Test Automation Design Pattern .. 169

 Lian Yang

Assortment Track – October 14

Management of Outsourced Projects ... 183

 Ying Ki Kwong

Building a Successful Multi-Site Team Using Chocolate ... 215

 Doug Whitney, Srinidhi Krishnan

Distributed Agile: An Experience Report .. 221

 Joy Shafer

Case Study: Fostering Meaningful Change with the Large Format

Printer Division at HP ...235

 Jim Brosseau, Carolina Altafulla

Collaboration Among Software Components ... 247

 Dick Hamlet

Selecting Software Estimating Techniques That Fit the Software Process 263

 Kal Toth

Collaboration Track – October 15

Collaborative Techniques for the Determination of a Best Alternative in a Software

Quality Environment.. 281

 James McCaffrey

Quality Software Engineering: Collaboration Makes the Experience 289

 Diana Dukart, Brian Lininger

Collaborative Change .. 303

 Debra Lavell

Agile Retrospectives: Collaboration for Continuous Improvement ... 311

Diana Larsen

Collaboration Between Theorists – Analyze This! ... 317

 Ian Savage

IT Collaboration at Stanford University: Beyond Quality .. 327

 Claudia Dencker

iii

Management Track – October 15

It’s Not Just an Update: Using Status Reporting to Expand Collaboration 337

 Mike Kelly

Getting and Keeping Talent: Women in Software Development .. 345

 Sharon Buckmaster, Diana Larsen

Storytelling Techniques: Reporting Product Status in a Meaningful Way 349

 Karen N. Johnson

Selling Your Idea to Upper Management ... 357

 Steven M. Smith

Testing Track – October 15

Non-Regression Test Automation .. 361

 Douglas Hoffman

Web UI Automation – A Browser Agnostic Harness for Web UI Testing 371

 Manuel Tellez, Jagannathan Venkatesan, Craig Merchant

The Tao of Software Defect Testing and Estimation .. 397

 James Eisenhauer, Scott Martin

Dealing with the Most Influential Factors that Cause Customer Dissatisfaction 409

 Duvan Luong

Ensuring Software Quality for Large Maintenance Releases .. 421

 Jean Hartmann

Assortment Track – October 15

Outnumbered: Ensuring Quality with a Low Test-to-Dev Ratio ... 431

 Brian Rogers

Virtual Lab Automation: Best Practices and Common Pitfalls ... 441

 Ian Knox

Proceedings Order Form .. last page

iv

Welcome to the Pacific Northwest

Software Quality Conference!

So…why did the 2008 PNSQC board and volunteers select “collaborative quality”

as our theme this year? Because we felt collaboration provides a key competitive

advantage as it relates to software quality and we want to bring topics to you

that are relevant and provide you with skills you can take back and use right

away.

This year we are pleased to have Sam Kaner kick-off the technical conference.

He is one of the world’s leading experts in multi-party collaboration. As our first

keynote speaker, he will be sharing with us what it takes to build a collaborative

team in a diverse working atmosphere. Also, we have Ron Jeffries and Chet

Hendrickson here on Wednesday collaborating as keynote speakers to explore

the dynamic behavior of a team working on a software project.

If you have been to our conference in the past, we have kept the format of

multiple tracks, giving you plenty of choices throughout the two day conference.

We have also maintained the 45-minute presentation format, and this year

added 10 minutes between sessions to ensure presenters and attendees have

plenty of time to get settled and ready for the next topic.

Tuesday night we have a reception in the exhibit hall and directly afterwards we

have the pleasure of collaborating with the Rose City Software Process

Improvement Network (SPIN) and with Tamara Sulaiman where she will share

her Agile Planning Framework with us.

As we have done in the past, during lunch on Tuesday we have Birds of a

Feather table discussions and on Wednesday, we have a distinguished panel

gathering to discuss “Collaborative Quality: Does it Help?”

To close the conference, we are asking our attendees to vote for the best paper,

we hope you will join us to share your impressions and mark your ballot. Every

year we strive to put together the best software conference on the West Coast.

We believe we have done that this year, let us know what you think.

Debra Lavell

President, PNSQC

v

vi

BOARD MEMBERS, OFFICERS, and COMMITTEE CHAIRS

Debra Lavell– Board Member & President

Intel Corporation

Keith Stobie – Board Member & Vice President

Microsoft

David Butt – Board Member & Secretary

Doug Reynolds – Board Member & Treasurer

Tektronix, Inc.

Ian Savage – Board Member, Conference Chair & Program Chair

McAfee, Inc.

Bill Gilmore – Board Member & Operations and Infrastructure Chair

Marilyn Pelerine – Board Member & Audit Chair

Symetra Financial

Chris Blain – Exhibits Chair

David Chandler – Publicity Chair

Nationwide Insurance

Esther Derby – Keynote, Invited Speaker & Workshop Chair

Esther Derby Associates

Ellen Ghiselli – Volunteer Chair

McAfee, Inc.

Shauna Gonzales – Luncheon Program Chair

Nike, Inc.

Patt Thomasson – Communications Chair

McAfee, Inc.

Claire Williams – Networking Chair

Tektronix, Inc.

vii

CONTRIBUTING VOLUNTEERS

Darrel Bonner

Apcon, Inc.

Kris Bugbee

McAfee, Inc.

Robert Cohn

Paul Dittman

McAfee, Inc.

Moss Drake

Daisy Dental

Joshua Eisenberg

McAfee, Inc.

Cynthia Gens

Sabrix, Inc.

Sara Gorsuch

Symetra Financial

Frank Goovaerts

Tektronix, Inc.

Les Grove

Tektronix, Inc.

Brian Hansen

Radar Engineers, Inc.

Kathleen Iberle

Hewlett Packard

Dave Liesse

SS&C Technologies, Inc.

Roslyn Lindquist

Windriver

Launi Mead

Symetra Financial

Jonathan Morris

Kronos, Inc.

Debra Paynter

Web Trends

Ganesh Prabhala

Intel Corporation

Rob Ranslam

Windriver

Mike Roe

Symyx

Rhea Stadick

Intel Corporation

Wolfgang Strigel

Strigel Consulting

Richard Vireday

Intel Corporation

Doug Whitney

McAfee, Inc.

viii

The Art of Building Consensus

Sam Kaner

Making high-quality, high-stake decisions in groups is not easy. And making

them in cross-functional groups is even tougher. The diversity in the room

breeds misunderstanding, confusion, and frustration. All too often these

meetings end with predictably mediocre results – people either accept

lowest-common-denominator compromises, or they punt the tough issues to a

senior person, so s/he can make the real decisions later. In both cases, one is

left wondering, “why call such meetings in the first place?”

This morning’s keynote is a fascinating tour de force description of what it

takes to build consensus in real-world cross-functional environments. Sam

Kaner, one of the world’s leading experts in multi-party collaboration, will

share models and methods that have been used successfully at HP, Symantec,

Electronic Arts, VISA, and hundreds of other organizations. You’ll walk away

with powerful new insights and a set of tools you can use right away.

Sam Kaner, Ph.D., has been named as "one of the world's leading experts in

collaboration" (Sandor Schuman, Ph.D., founding editor of Journal of Group

Facilitation, and co-founder of International Association of

Facilitators.) Sam’s classic bestseller, “Facilitator's Guide to Participatory

Decision-Making” (Jossey Bass), has gone through 16 printings and is now in

its 2nd edition. Sam has been a featured speaker at more than 40

professional conferences, and he has delivered keynote addresses on

collaboration and group decision-making at the annual World Congress of

Quality, the annual Asia Facilitators' Conference, the annual world

conference of the International Facilitators' Association, The Association of

Quality & Participation, and the annual Best in the West conference of the

Organization Development Network. In 2005, AmericaWest Airlines named

Sam as one of America's Best Consultants. Since 1987 he has been Executive

Director of Community At Work, a San Francisco-based consulting firm that

specializes in designing and facilitating collaborative approaches to complex

system change.

1

2

Quality Dynamics of Agile SW Development

Ron Jeffries & Chet Hendrickson

As Agile software proponents, we have spent much of our time explaining XP and

Agile practices and why they make sense. Generally we talk about these things

from a “supply side” viewpoint. We think about software development and how it

works best, from the trenches.

Let’s focus on the “demand” side. Let’s look at the needs of those who pay for our

software development. They need benefits, profit, information, and flexibility. It

turns out that in order to provide what the business side needs, Agile and XP

practices are not just helpful - they are almost essential.

Starting from a few simple and commonly held assumptions, we will explore the

dynamic behavior of a software project, and will derive both management

practices, and technical practices, as the inevitable consequences of setting out to

do with what our business-side people need and want.

This keynote is a start at creating a unified theory of team-based software

development, deriving the practices that are necessary in order to do software

profitably and well. Our presentation will be based around a growing series of

graphs and pictures illustrating what happens on a software project.

Relationships between practices - what we do -and what happens - will be shown

with both static and dynamic charts.

3

Ron Jeffries is author of Extreme Programming Adventures in C#, the senior

author of Extreme Programming Installed, and was the on-site XP coach for the

original Extreme Programming project. Ron has been involved with Extreme

Programming for over five years, presenting numerous talks and publishing

papers on the topic. He is the proprietor of www.XProgramming.com, a well-

known source of XP information. Ron was one of the creators, and a featured

instructor in Object Mentor’s popular XP Immersion course. He is a well-known

independent consultant in XP and Agile methods.

Ron has advanced degrees in mathematics and computer science, and has been

a systems developer for more years than most of you have been alive. His teams

have built operating systems, compilers, relational database systems, and a

large range of applications. Ron’s software products have produced revenue of

over half a billion dollars, and he wonders why he didn’t get any of it.

Chet Hendrickson was at the ground zero of Extreme Programming, the

Chrysler Comprehensive Compensation (C3) system. As a developer on the pre-

XP C3, Chet saw how poor communication, inadequate testing, and an overly

complex design can doom a development effort. He helped make the decision to

throw away 14 months of work and begin again under the guidance of Kent

Beck, Martin Fowler, and Ron Jeffries. Chet, along with Jim Haungs and Rich

Garzaniti, in a talk at OOPSLA’97, was the first to report on the “Chrysler

Methodology” as the term Extreme Programming had not yet been coined. Chet

is an independent consultant, helping software teams improve the software

development process by the application of XP’s core values of simplicity,

communication, feedback, and courage. His clients have ranged from federally

charted quasi-public financial institutions to the developers of real-time

petroleum exploration equipment. He is an author of Extreme Programming

Installed. The book, the second in the Extreme Programming series, consists of a

connected collection of essays, presented in the order the practices would

actually be implemented during a project. He and Ron Jeffries are the

proprietors of agilesoftwaredevelopment.org.

4

Expanding Trust and Collaboration with AgileEVM

Confidential and Proprietary

Expanding Trust and

Collaboration with Agile

Earned Value Management

2

Confidential and Proprietary

©2008- Creative Commons

Presenter — Tamara Sulaiman

•20 years in in business and software development

management

•Agile Coach & Mentor for Applied Scrum

•Certified Project Management Professional (PMP)

•Certified ScrumTrainer (CST)

•Co-Author of “AgileEVM – Earned Value Management

in Scrum Projects” and “Measuring Integrated Progress

on Agile Software Development Projects”

•Contributing author for Gantthead.com on

Xtreme Project Management topics.

tamara@appliedscrum.com

5

3

Confidential and Proprietary

©2008- Creative Commons

We will discuss:

4

Confidential and Proprietary

©2008- Creative Commons

Business Drivers for Adopting Agile Software

Development Methods

Amr Elssamadisy – Patterns of Agile Practice Adoption – The Technical Cluster

6

5

Confidential and Proprietary

©2008- Creative Commons

The Scrum Project Management Framework

daily

Backlog tasks

expanded

by team

Potentially Shippable

Product Increment

Daily Scrum Meeting

• Done since last meeting

• Plan for today

• Obstacles?

Sprint Planning Meeting

• Review Product Backlog

• Estimate Sprint Backlog

• Commit to 2-4 weeks of work

Sprint Backlog

Features assigned to Sprint

Estimated by team

Vision

2-4 weeks Sprint Review Meeting

• Demo features to all

• Retrospective on the Sprint

Product Backlog:

Prioritized Features

desired by Customer

6

Confidential and Proprietary

©2008- Creative Commons

Why Use Earned Value Management?

7

7

Confidential and Proprietary

©2008- Creative Commons

Enhancing ROI

•Agile can be faster, better, cheaper

•AgileEVM brings cost control to Agile for effective

decision- making

$ Time
Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5

Go Live

ROI

Scrum Brings ROI Back

8

Confidential and Proprietary

©2008- Creative Commons

Agile Performance Tracking?

“The challenge is to create Agile...

…implementations of the EVM

principle…”

http://en.wikipedia.org/wiki/Earned_value_management

AgileEVM = Traditional EVM & Scrum

8

9

Confidential and Proprietary

©2008- Creative Commons

Why Use AgileEVM?

10

Confidential and Proprietary

©2008- Creative Commons

A Couple of Notes:

•Earned Value Metrics track progress against plan; they

do not track earned business value.

•AgileEVM does not replace Agile Burn-down, Burn-up

charts, or any other metric you are currently using.

9

11

Confidential and Proprietary

©2008- Creative Commons

“AgileEVM Is Like Death By Acronym”

T. Perry, SolutionsIQ

12

Confidential and Proprietary

©2008- Creative Commons

AgileEVM – Basic Equations

10

13

Confidential and Proprietary

©2008- Creative Commons

The Importance of the Percent Complete

14

Confidential and Proprietary

©2008- Creative Commons

Defining the initial Release Baseline

11

15

Confidential and Proprietary

©2008- Creative Commons

Measuring Progress

16

Confidential and Proprietary

©2008- Creative Commons

Interpreting Basic Metrics – EV and Actual Cost

12

17

Confidential and Proprietary

©2008- Creative Commons

Interpreting Basic Metrics – EV and PV

18

Confidential and Proprietary

©2008- Creative Commons

Measuring Relative Performance

If:

(CPI = EV/AC)

CPI > 1 CPI = 1 CPI < 1

That Means: Under

Budget

On Budget Over Budget

If:

(SPI = EV/PV)

SPI > 1 SPI = 1 SPI < 1

That Means Ahead

Schedule

On

Schedule

Behind

Schedule

13

19

Confidential and Proprietary

©2008- Creative Commons

Predicting Absolute Performance

20

Confidential and Proprietary

©2008- Creative Commons

Predicting EAC

14

21

Confidential and Proprietary

©2008- Creative Commons

Where Does AgileEVM Add Value?

22

Confidential and Proprietary

©2008- Creative Commons

When Should AgileEVM Be Applied?

15

16

COLLABORATION!

Guerilla Techniques

By Celeste Yeakley of Education Finance Partners

Cyeakley@educationfinancepartners.com

and

Jeff Fiebrich of Freescale Semiconductor

j.fiebrich@freescale.com

17

Biographies

Celeste Yeakley is an organizational leader with more than twenty years of experience in

software/systems engineering and process improvement. She is a broad-based team lead and

participant, with proven skills that focus teams by applying creative and innovative business

planning processes. She’s accomplished in business strategy, business planning, team/project

management (certificate in Software Project Management), software capability enhancements,

and organizational leadership. As an internal assessor, she either participated or led software

process evaluations for organizations in the United States, Brazil and Russia. A University of

Texas at Austin graduate with a Master’s degree in Science & Technology Commercialization,

Celeste has collaborated at small start up companies as well as corporate giants such as Dell and

Motorola. She has contributed to her profession by serving on the UT Software Quality Institute

board from 1993-2003 as well as in community quality assessments. Her passion is for helping

people understand how to work together using established frameworks like CMMI and ISO to

their best advantage. She encourages lateral thinking and uses every day examples to drive

people to understand the big picture and how it fits into their software worlds.

Jeff Fiebrich is a Software Quality Manager for Freescale Semiconductor. He is a member of

the American Society for Quality (ASQ) and has received ASQ certification in Quality Auditing

and Software Quality Engineering. He is also an RABQSA International Certified Lead Auditor

and has achieved CMMI-Dev Intermediate certification. He has previously worked as a Quality

Manager for Tracor Aerospace in the Countermeasures Division. A graduate of Texas State

University with a degree in Computer Science and Mathematics, he served on the University of

Texas, Software Quality Institute subcommittee in 2003 - 2004. He has addressed national and

international audiences on topics from software development to process modeling. Jeff has over

twenty years of Quality experience as an engineer, project manager, software process

improvement leader, and consultant. As both an internal and external consultant, he has played

significant roles in helping organizations achieve ISO certification and Software Engineering

Institute (SEI) Maturity Levels. He has led numerous process improvement initiatives in many

areas of software engineering including project management, employee empowerment, software

product engineering, quantitative management, training program management, and group

problem solving. Jeff has worked extensively on efforts in the United States, Israel, Europe,

India, and Asia.

Celeste and Jeff are the authors of the recently released book, ‘Collaborative Process

Improvement’, Wiley-IEEE Press, 2007.

18

I N T R O D U C T I O N

Today’s economic climate makes it more important to work smarter. Dedicated Quality

personnel are stretched to the limit, and time constraints force greater emphasis on effective

process improvements. Yet Quality and building Quality departments seem to be the lowest

priority in many companies. With overwhelming amounts of work to do and no resources—at

least any incremental resources—what is the Quality worker to do? The battle cry to “do more

with less” has become “work hard, work smart.”

This paper discusses the framework we used for developing Software Quality Engineering

(SQE) Advocates on each of its projects using existing personnel. This paper also addresses the

use of process Champions to perform activities at the organizational level. We found that by

using Advocates and Champions, a Quality department can extend its reach. In fact, engaging

non-Quality personnel in process watching can be rewarding not only to the quality of the end

product but also to the overall development process.

In order for a Quality manager to be effective, he (or she) must be prepared to:

• Train non-Quality personnel

• Devise pertinent checklists

• Communicate goals effectively

• Manage by influence and

• Analyze and promote process improvements using metrics, evaluations and rewards

A Quality manager must engage the entire organization in process improvements. This can

be done with no incremental increases in resources. The result is improved overall quality in

both products and processes.

T R A I N I N G N O N - Q U A L I T Y P E R S O N N E L

Training non-Quality personnel is easier than it sounds. First you need to realize that you

have to instruct members of the organization in the defined process anyway. By recruiting select

personnel—those doing the development and supporting services work—you can build a team

that understands the mechanisms of change and the need to engage the organization. We call

these individuals Champions. Using Champions is discussed in greater detail later in this paper,

but basically Champions are the main points of contact in key process areas such as

Configuration Management and Requirements Management.

The other group of people we identified as being necessary to designate a specific role were

what we called the Advocates. An Advocate is the day-to-day person who lives with projects

and forms the very fabric of project teams. This person’s duties directly relate to tracking and

19

reporting on project progress from a process quality perspective. Both the Champions and the

Advocates must be trained.

Our help was requested in improving its quality and process improvement activities. We

leveraged the required training by engaging the organization early in process definition and by

using pilots. This allowed staff to begin to understand the processes they needed in order to be

able to perform process assessments in the future.

We recruited individuals from all levels. We looked for persons with seniority and superior

technical talent and human relations skills. Those who were on probation, were mediocre

performers, or were not respected within the business were not recruited or accepted. Testers,

developers, and program managers all entered the arena of Quality at the same level. Although

the individuals remained in their current reporting structure in the business, they also reported to

the Software Quality Engineer, as shown by the dotted lines in Figure 1.

This dotted-line reporting was acknowledged and accepted by both the business and the

Quality department. Our SQE position was staffed with an experienced individual with an

engineering degree and 10 years of SQE experience.

Figure 1. SQE Advocate Reporting Structure

Once the Advocates and Champions were recruited, they had to be trained to perform their new

tasks. The 12 to 20 hours of training illustrated in Figure 2 was accomplished over a two month

period and largely occurred during luncheons. Although few of them had ever participated in

Quality activities, they soon would be performing these tasks.

Business VP Quality VP

Program Mngr

Project Mngr

Developer

Tester

Software Quality Engineer

SQE Advocates

20

Not knowing what future industry standards we might be asked to follow, we chose to use the

Carnegie Mellon’s Software Engineering Institute (SEI) models. Other development

methodologies supported by SEI and ISO were considered when we developed our processes and

were mentioned to the group, but we chose to stay focused on the SEI guidelines.

For SQE Advocate training, our first proposal was to subcontract all training to an outside

source. We investigated hiring a subcontractor from two local training houses to assist with SEI

training classes. The classes would be conducted in person domestically and via net-meeting at

all the off-shore sites. This fee would literally double if the classes were to be specific to our

group. To train all our Advocates, we required six classes at two domestic locations and at three

remote locations: Romania, India, and China.

Fortunately, we discovered that we had the talent in-house to establish our own curriculum and

delivered the six classes noted in Figure 2 at each site. The training curriculum for each class

was coordinated with and received approval from our company’s university.

Class Title Audience Class

Length

SQE Advocate Roles & Responsibility SQE Advocates 2 hours

Performing Assessments SQE Advocates 2 hours

Software Configuration Management Plan SQE Advocates 2 hours

Software Quality Assurance Plan SQE Advocates 2 hours

SEI Overview All 4 hours

SEI Key Process Areas SQE Advocates &

Champions

8 hours

Figure 2. Training Classes

All class materials and attendance was routed back to Human Resources for historical purposes.

This resulted in the curriculum accepted by Human Resources as accredited training for

individuals.

In order to ensure that this training effort would be utilized during the next several years, we also

investigated hiring a local firm to record the training for future use.

Instead, we developed customized PowerPoint curricula for each site, and the local Champions

provided voice-overs. These classes were recorded on CD, and featured our Champions’ names

and voices. We also customized the training to include supporting tools and processes. The

result was a training program digitally captured for future use.

Once our group of Advocates had been established and technical training had been

accomplished, we discovered that their skill set still lacked traits necessary to effectively perform

the SQE tasks required:

• Quality background

• Public relations, professionalism, communication skills

21

• Organizational skills

• Assessment background

• Vision of overall process

QUALITY BACKGROUND

One of the first things that we noticed when working with non-Quality personnel was that

they feared they would be seen as the bad guys of the project if they took on a Quality role. Most

non-Quality personnel with this background are very hesitant to take on a role of this sort. In

fact, in our own organization, the test group had an overly heavy burden of being the initial SQE

Advocates.

We mitigated the police problems this way.

• We hosted weekly training and process forums. In order to recruit future SQE

Advocates, we had to train all personnel on the basics of the SEI models.

• We educated management. Convincing management that Advocates are management

material was one of the first steps we undertook in order to raise awareness of the

Advocates’ critical role. After a bit of training, management bought in to the idea and

realized that Advocate personnel understood the overall process better than most.

PUBLIC RELATIONS, PROFESSIONALISM, COMMUNICATION SKILLS

Of course, it is easy to train on the specifics of a particular methodology and guideline—

compared to trying to train behaviors! SQE Advocates’ personalities and communication skills

are certainly as diverse as those found in the engineering populations with whom they work. Not

every person is adept at tactfulness, professionalism, or managing the project team. These are

the very skills essential to communicating process issues and getting results.

You can mitigate these gaps with coaching and training. By role playing discussions with

Advocates, you can teach them how to communicate both good and bad news. It is important to

be able to deliver constructive criticism concerning process adherence. Several good books offer

excellent information on communication and accountability. We are currently using The Oz

Principle by C. Hickman for training.

ORGANIZATIONAL SKILLS

Lack of organizational skills can create more chaos than the process chaos you were trying to

avoid in the first place! Signs of organizational issues include not being able to find process

assessment information easily, not informing the team of results in a timely manner, and

conducting assessments only sporadically.

22

Particularly valuable organizational helpers are checklists and adding the SQE Advocates

activities into your project management schedules.

• By providing appropriate checklists (refer to the Devising Pertinent Checklists section),

you make the work easy and help in the organization of information. You don’t have to

rely on individuals setting up their own reporting scheme.

• By building SQE Advocate activities directly into your project management scheduling

tool, both you and the Advocate can track when to do an assessment and what processes

need to be assessed.

THE AUDITING MINDSET

Your chosen SQE Advocates might demonstrate more auditing personalities than you really

want! Evidence of a problem might be demonstrated by an Advocate writing up projects on non-

issues or being dogmatic about your organization’s chosen processes. Alternatively, an

Advocate can try to be the good cop by forgiving blatant non-compliance. Other symptoms of

the lack of an appropriate assessment mindset are that your Advocate is simply lost about what to

do. This can be followed by a general reluctance to accept a process role.

We addressed these problems in the following ways.

• We provided extensive checklists and activity description.

• We held monthly SQE Advocate meetings. In this meeting all Advocates joined Quality

personnel in a general discussion. This forum provided a free-flowing question and

answer session as well as training opportunities.

VISION OF OVERALL PROCESS

By having a cross-functional group of personnel populate your Advocate Program, the vision

of the overall process can easily be realized. When personnel from Sales, Marketing, Test,

Development, and Program Management sit down at a table and discuss how to perform SQE

activities, it quickly becomes evident what the overall objective is. The negative repercussions of

omitting certain activities are also quickly and effectively communicated.

D E V I S E P E R T I N E N T C H E C K L I S T S

As soon as you are certain you have the most effective process, someone will find a way to

improve it. This continuous improvement is a good thing—although change is usually

uncomfortable. Every aspect of ensuring Software Quality is an evolutionary process. Methods

to help your group cope with the evolution include the following:

23

• Using diverse user groups

• Piloting and refining checklists

• Executing continuous process improvements

• Migrating activities into an automated management tool

USING DIVERSE USER GROUPS

The key to the SQE Advocate Program is diversification. To have marketing, engineering,

and test conduct a round robin concerning configuration management, is an eye-opening

experience. When developers, testers, and managers brainstorm a new process for requirement

management, you can feel the electricity in the air. Before the meeting is over, each individual is

able to think about the issue in a completely new way. Cross-pollination of ideas is an

invigorating experience. We noticed that individuals wanted to continue discussions long after

the meeting was over and always arrived fully prepared for the next meeting.

PILOTING AND REFINING CHECKLISTS

Of course, the only way to really validate a new checklist is by applying it to a pilot project.

Typically, the pilot project is an effort that is well staffed and on schedule. Picking a project

such as this ensures that the checklists are well received and executed.

However, the biggest return on effort is achieved if the new checklists are applied to a

problematic project. Use the buy-in of a problematic project to quickly, easily, and constantly

display improvements. Project staff will be revitalized when witnessing the improvements on

their own efforts.

Transforming a problematic project into a model project is what everyone wants to do. The

bottom line is that no one enjoys being part of a losing team.

Checklists are the key to smooth, consistent execution. Having a standardized checklist

removed most of the human personality from the assessment equation. While our checklists

were initially developed by the Quality group, they were quickly updated by the Advocates.

During the first six months of the Advocate Program, each checklist was updated three times on

average. Continuous Improvement! Each time a checklist was updated; the update was

reviewed and approved by the entire SQE Advocate team.

EXECUTING CONTINUOUS PROCESS IMPROVEMENTS

When questions are raised like “When will this process be done? How much more work on

this process is needed?” your role, as an Advocate or Champion is to say, “We will be

constantly improving all of our processes.” At a time when our projects are heavily driven by

24

milestones and schedules, it is difficult to keep individuals motivated when you never plan for

the effort to be finalized.

When establishing and maintaining processes, we have found that the effort is never

finalized. Just as we strive to improve our products every day, we must strive to improve the

processes that create them every day. We aggressively recruited individuals to participate in the

Six Sigma effort. The principles used in this Define Measure Analyze Improve Control

(DMAIC) method not only aided SQE Advocates in active, measurable process improvement

activities, they also supported SEI measurement activities.

MIGRATING ACTIVITIES INTO AN AUTOMATED TOOL

Coordinating and orchestrating SQE Advocate activities is a full-time job. While

spreadsheets can be used to schedule tasks, document compliance, and initiate reports, this is

probably the most difficult tool for accomplishing this task. Using a powerful automated

program management tool enables you to remove all of the personality from the equation.

Assessments and reviews are conducted systematically. SQE activities are standardized for all

projects. Progress reports are generated on a daily, weekly, or monthly basis without the project

team feeling like a renegade Advocate has figured how to take control away from the team.

C O M M U N I C A T E Q U A L I T Y G O A L S E F F E C T I V E L Y

In order to communicate quality goals effectively, you must get the correct information

disseminated as quickly as possible—and to the right people. The information often moves

slowly or not at all between the improvement groups and the guys in the trenches. One effort

may not know another effort even exists. Some groups see things changing, but others say,

“These improvement efforts haven’t reached ME.” This problem was the driving force behind

establishing a Software Quality Assurance Plan. Both the SEI and ISO models require

supporting the establishment and maintenance of this plan. This document contains the schedule

and provides a means of activity coordination. This plan discusses the authority of SQE and the

SQE Advocates. To ensure that this is understood by all members of the team, the Program

Manager, Project Manager, and Functional Managers are required to review and approve this

plan.

Other methods to remedy communication shortfalls—

• Weekly forums

• Project team meetings

• Reporting

WEEKLY FORUMS

Meeting with all members of the Advocate Program on a regular basis is essential. Initially,

this should probably be on a weekly basis. It takes several meetings to brief/train the group on

the roles and responsibilities; documenting process areas; and performing assessments, surveys,

25

and reviews. A set day and hour each week helps solidify the stability of the Program. As

individuals become more involved with the Advocate Program and its effect on their program,

the level of questions and requests for future forum topics will surprise you.

We added a little extra incentive each week by providing homemade hot lunches. This was

surprisingly well received. No boxed lunches for us! Many team members confessed that they

would not have come if it were not for the lunches. The investment in making these weekly

forums enjoyable and fun paid off in process improvement results after only one year.

PROJECT TEAM MEETINGS

One of the Advocate’s largest responsibilities is to communicate their activities at their

project’s team meetings. This meeting is the conduit for flowing information from the Advocate

to the project. Advocates typically discussed upcoming assessments and reviews and also

highlighted any accomplishments. Team meetings are also the most effective forum for briefing

the project about its non-compliance with their processes goals.

REPORTING

The Advocate should communicate good and bad news to the project at weekly project

meetings. If there is an issue that cannot be resolved with project personnel, the Advocate may

discuss the item with the Quality Manager. It is important that the SQE Advocate be empowered

by Executive Management to stop a project that is in non-compliance. For this reason, it is better

to share Advocates. In other words, an Advocate would ideally be assigned to report on a project

to which he or she does not directly report. In the case of two or more projects, the projects

would trade an Advocate’s time on an independent project. In this way the Advocate can be

spared the fear of a backlash from his or her own manager for reporting process non-compliance.

M A N A G I N G B Y I N F L U E N C E

The Quality Manager must put on his or her best consultant hat and step out of the limelight

to encourage a non-Quality person to step up and be an example for the group. As Malcolm

Gladwell points out in the book Tipping Point, you need to recruit a thought leader—someone

who is known and respected among the non-Quality community to help speak those Quality

words for you and manage by influence. If you cannot locate someone within the project group

who is willing to dedicate time to this effort, a new independent-eye may be recruited from

outside the project group. But, without question, it is essential to have someone well known and

highly respected play this important influential role and lead this activity

Managing by influence involves the following.

• Using Champions

26

• Engaging upper management

• Ensuring annual goal commitments

• Obtaining executive team participation

USING CHAMPIONS

Having a Champion for SQE activities is an absolute for communication. This person is

responsible for recruiting more members to the Advocate Program and for their training.

Curriculum should be documented, briefed, evaluated, and improved on an annual basis.

Members should be recruited year round. Having a Champion as the point of contact for all

activities is even more helpful. The Champion is often the liaison between the Advocates and

management. The Champion is also the key source for problem resolution.

The Champion often helps to define new and improved processes that are quickly adopted.

Champions for each key process area are also responsible for process documentation,

improvement, and training.

During the first 12 months of the Advocate Program, we saw the enrollment increase from 3

to 30, as shown in Figure 3. That is a 1000 percent increase in participation. This growth was

directly attributed to the communicated importance from upper management and the positive

project impacts of the program that were the subject of many Operational Review meetings.

SQE Advocate Population Growth During First Year

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12

Months

H
e
a
d
c
o
u
n
t

Figure 3. SQE Advocate Population Growth

ENGAGING UPPER MANAGEMENT

The Advocates and Champions must engage upper management. We strongly recommend

that Advocates and Champions initiate this action. Upper management has many

responsibilities; Advocate and Champion interfaces are one of many that they must address.

When communicating improvement plans to members of upper management, management will

27

likely voice their support and then assume that during the next months, the plan is successfully

executed. It is up to the Advocates and Champions to go back to upper management regularly

and report the status. Upper management should be briefed on successes as well as setbacks. If

not approached again, management may believe that all is well and successful.

One key tip for the Quality Manager: never assume that upper management Gets It just

because you’ve explained it to them. Advocates and Champions should plan on monthly status

updates and formal reports.

ENSURING ANNUAL GOAL COMMITMENTS

By using a vehicle such as a Balanced Scorecard to communicate annual goals, you can

ensure that testers, engineers, and managers are aware and supportive of the Advocate effort. It

is wise to make the goals of the Advocate program as visible as the engineering goals. The

rewards associated with engineering goals should map to the rewards associated with Advocate

goals. It should be communicated that the achievement of Advocate goals are essential to the

success of the company.

OBTAINING EXECUTIVE TEAM PARTICIPATION

Having executive team members participate in activities is essential—even if executive team

members only attend team briefings. Having the executive team meet with the Advocates and

repeatedly reassure the Advocate that they are empowered to stop the project if the project is

found to be non-compliant is important to the success of this effort. It is also important for

Advocates and Champions to attend the Upper Level Management Briefings on at least a

monthly basis.

Making Advocates and Champions visible in the executive environment is as important as

having executives visible in the Advocate environment. Better yet, if you have the ability to fast

track an Advocate or Champion to more responsibility, their peers will take notice, and this will

cause individuals to actively pursue one of those positions as it will be seen as highly regarded

by management and a way to career success.

E S T A B L I S I N G M E A N I N G F U L M E T R I C S , E VA L U A T I O N S ,

A N D R E W A R D S

Because our effort revolved around the SEI guidelines, we measured our progress according

to that scale. We set up SEI assessment polls on our internal web site and posted

green/yellow/red status charts, as shown in Figure 4. The entire population could view these

results. Before we knew it, projects were vying for the top spot. We measured compliance by

percentage and tallied the results. Many organizations share this information only with the team.

We found that the culture thrived on competition. First, they were excited to get all green. Then

28

they competed to have the highest percentage for compliance. It added a lot of fun to the metrics

experience to announce weekly status.

 REQ PP PMC SUB QA CM

Project A Y G G G Y Y 83%

Project B Y G G R R Y 70%

Project C Y G G G R Y 76%

Project D Y Y Y Y R R 68%

Figure 4. Stoplight Chart (Red, Green, Yellow)

Evaluations were key to getting every person’s attention. Because of our need to keep

management informed and because we had specific and measurable goals to obtain, it was

relatively easy to get all supervisors to add process improvement activities to yearly goals.

People who were active in the process improvements efforts were rewarded for their alignment

with and support of the group’s goals. In addition, it was obvious that teams that engaged in

Quality activities performed better. Comparisons of project team performance revealed that

teams that had an active SQE Advocate performed better by delivering better products closer to

the time they said they’d deliver them.

Each SQE Advocate was engaged in giving constant feedback to the team by reporting on

compliance to specific activities. Teams could benchmark themselves against others as well as

compare their own performance to that in the months prior to the improvements.

We used intrinsic and extrinsic rewards and recognition throughout the year. Intrinsic

rewards and recognition included public recognition, trophies, plaques, certificates, special

parking spaces, pictures on bulletin boards, and names on a list. Extrinsic rewards and

recognition included cash, vacation time, bonuses, and major gifts. When initially planning the

types of rewards for the Advocates and Champions, 80 percent of the Advocates said they would

prefer extrinsic rewards: “Money is what pays my bills!” Much to our surprise, as illustrated in

Figure 5, twelve months after program initiation, simply receiving a certificate during a staff

meeting was everyone’s desire. As a matter of fact, at least once a week, we had individuals

approach us and state “I do not care about a cash bonus; “I want to know what I have to do to

have the Director discuss my accomplishments for 10 minutes at the next Operations meeting.”

And of course, this reward cost the business nothing.

Team rewards, which are intrinsic or extrinsic items given to the team, should be the same

for all members of the team.

The ultimate reason that rewards and recognition are given is to provide positive

reinforcement for correct behavior, with the expectation that the correct behavior will be

repeated in the future. Rewards and recognition are best received when they are personal to the

individual receiving them.

29

Management recognition of an individual who has successfully completed an objective can

be very positive and can encourage other individuals to strive for excellence.

Reward Preference Program Initiation One year later

Extrinsic Reward

Cash, stock, gift certificates, movie

tickets

80% 5%

Intrinsic Reward

Certificates, pins, plaques,

t-shirts

20% 95%

Figure 5. Extrinsic vs. Intrinsic Rewards

Probably one of the best rewards is “Thank you” when it is sincerely meant. Employees who

are aware that their efforts are appreciated are often willing to do more than if they were to

receive a large financial reward.

D I V I S I O N O F W O R K L O A D

At the initiation of the Advocate program, the first question asked by all parties involved was

“How much of my time will this require?” Initially, we had no idea, but we stated a target of 10

to 20 percent. A year into the program, we totaled the hours being spent by the Advocates. At

first glance, it appeared that 40 percent of the individual’s time was being spent away from his

normal tasks. This was alarming. After a deeper dive into the data, we determined that the

Advocates were spending 60 percent of their time doing engineering and 20 percent of their time

performing code and documentation review for which they were responsible anyway. Only 20

percent of their time was being spent specifically on Advocate activities—Configuration

Management, Quality Assurance, and process assessments—as shown in Figure 6.

0%

10%

20%

30%

40%

50%

60%

Eng'ring Code

Reviews

Doc

Review

CM Audits QA Audits Process

Audits

Division of Work Hours per Quarter

Figure 6. Division of Work Hours per Quarter

30

C O N C L U S I O N S

Quality processes seem to pay off in quality products. What organizations miss sometimes is

something that Ford Motor Company (and others) discovered long ago; “Quality is Job 1”. It

should be woven into all activities of any company but particularly in a software company

because there are many ways that software can fail. It can fail during requirements, design,

implementation, and test—literally anywhere in its lifecycle—but most of all, it can fail with the

customer. It just makes sense to insert Quality processes in along the way when building

software. An important part of this Quality approach should be in training the organization—the

whole organization—about what quality is for your products. Relying solely on an

organizational Quality group for overall quality is difficult and can fail if you do not engage the

individuals creating the product in the process. Quality should be the thread by which the fabric

of software is built. In order to accomplish this, you need to engage people actively in all stages.

In this way, you weave quality in rather than coating the threads after the fabric is woven.

That makes quality easier to attain and sustain. If you are fortunate enough to have a Quality

group, this approach will only serve to strengthen it.

We found that engaging everyone in the organization in Quality work resulted in quality

results. By training the entire organization and enlisting our techniques, we were able to not only

do more with less but work harder and smarter. The payoff was in the bottom-line benefit to the

company.

A C K N O W L E D G E M E N T S

We would like to thank the reviewers who provided useful suggestions for improving this paper

and also to gratefully acknowledge Cinda Cyrus for her editorial assistance in preparing this

manuscript.

31

R E F E R E N C E S A N D R E S O U R C E S

The following sources were either used in the preparation of this paper or will serve as

resources to the practitioner.

Fiebrich, J., C. Yeakley, (2004). “The Quality KISS—Keeping Quality Simple in a Complex

World,” in Proceedings, International Conference on Practical Software Quality Techniques

East, March 2004, Washington, D.C.

Fiebrich, J., C. Yeakley, (2004). “Guerilla Quality—Innovative Ways to Engage Personnel in

Process Improvement.” in Proceedings, International Conference on Software Process

Improvement, June 2004, Washington, D.C.

Fiebrich, J., C. Yeakley, (2004). “Strategic Quality—Planned Empowerment.” in

Proceedings, International Conference on Practical Software Test Techniques North, October

2004, Minneapolis, Minnesota.

Fiebrich, J., C. Yeakley, (2005). “The Q-Files—What Is Your Customer’s Definition of

Quality?” in Proceedings, Software Develop & Expo West 2005, March 2005, Santa Clara,

California.

Fiebrich, J., C. Yeakley, (2005). “Guerilla Quality—It’s Time to Deploy!” in Proceedings,

Software Develop & Expo West 2005, March 2005, Santa Clara, California.

Fiebrich, J., C. Yeakley, (2005). “Development Lifecycles—Plunging Over the Waterfall!”

in Proceedings, International Conference on Practical Software Quality Techniques West, May

2005, Las Vegas, Nevada.

Fiebrich, J., C. Yeakley, (2005). “Customer Facing—It’s Time for an Extreme Makeover!” in

Proceedings, International Conference on Practical Software Quality Techniques West, May

2005, Las Vegas, Nevada.

Fiebrich, J., C. Yeakley, (2005). “Configuration Management—A Matter of Survival!” in

Proceedings, UML & Design World 2005 – Architecture, Design, Modeling, and Beyond, June

2005, Austin, Texas.

Gladwell, Malcolm. Tipping Point: How Little Things Can Make a Big Difference. Little,

Brown, and Company. 2000 – 2002.

Hickman, C., Connors, R., Smith, T. The OZ Principle. Muze Inc, 1995 – 2005.

32

Trust: The Key to Project Team Collaboration

Diana Larsen, FutureWorks Consulting LLC

Trust forms the bedrock of effective software teams. Trust allows teams to

communicate quickly and to respond rapidly to changes in the project. Without

sufficient trust, team members waste effort and energy hoarding information,

forming cliques, dodging blame, and covering their tracks. A climate of trust

provides a foundation for effective team processes, adaptability, and high

performance. How can we shatter the deep-seated cycle of distrust in many

organizations and help this essential trust emerge? Team leaders can stimulate

and accelerate trustworthiness and trusting among team members, and between

the team and its stakeholders by paying attention to membership, interactions,

credibility, respect, and behaviors. In this session we’ll investigate ways to

accelerate trust-building within teams, including a definition of professional

trust, a model for team interactions that leverages trust, ways to recognize when a

team has “trust issues,” and skills that help teams develop greater trust.

Diana Larsen is known in the software industry for conducting project

retrospectives and transitioning groups to Agile processes. She currently chairs

the board of the Agile Alliance. Her publications include Agile Retrospectives,

Making Good Teams Great, coauthored with Esther Derby. She consults and

speaks internationally.

33

© 2008 Diana Larsen & FutureWorks

Consulting, LLC

Trust
The Key to Project Team Collaboration

2

We work as a Team
when we have…

Common purpose & performance goals

Complementary skills for interdependent work

Shared approach to work

Joint accountability

Small number of people

Mutual History

3

Characteristics of Highly
Collaborative Teams

Group of peers

Ownership & control close to core of the work

Whole team chooses and manages own work

Responsible for problem-solving & continuous improvement

Prepared to deal with complexity

4

The Five Persistent Feelings of Superior Work Teams: inclusion,
commitment, loyalty, pride, trust.

Kinlaw, Developing Superior Work Teams

“…[R]eal teams do not emerge unless the individuals on them
take risks involving conflict, trust, interdependence, and hard
work. Of the risks required, the most formidable involve
building the trust and interdependence necessary to move
from individual accountability to mutual accountability.”
“Trust must be earned and demonstrated repeatedly if it is to
change behavior.”

 Katzenback and Smith, The Wisdom of Teams

34

© 2008 Diana Larsen & FutureWorks

Consulting, LLC

5

Trust is a significant factor in project success. Trust in leaders and
other team members relates to higher organizational performance.
The level of trust positively correlates to:

• job performance
• organizational citizenship behavior
• turnover intentions
• job satisfaction
• organizational commitment
• commitment to decisions

 summarized from
 Dirks & Ferrin, 2002

“The key, we believe, is trust. When members of a group trust one
another’s motives, their competence, and their concern for the task,
the work of any becomes the work of all. Group dynamicists know
that. It’s one reason they try to build interpersonal trust from the
very start.”

Lipman-Blumen and Leavitt.
Hot Groups

6

Collaborative Team Communication Model

7

Three Aspects of
Professional Trust

8

Credibility

competence, believability, integrity

35

© 2008 Diana Larsen & FutureWorks

Consulting, LLC

9

Build credibility:

Share information openly and broadly

Stay accessible and visible to each other

Engage hard questions and answer them where possible

Offer objective, candid insights about the organization or team

10

Support

respect, civility, interest, self-disclosure

11

Show support:

Recognize and appreciate each other

Exhibit sincere personal concern for each other’s well-being

Maintain civil discourse and courteous interactions

12

Consistency

reliability, dependability, accountability

36

© 2008 Diana Larsen & FutureWorks

Consulting, LLC

13

Demonstrate consistency:

Follow through on promises and commitments

Preserve working agreements

Seek and offer feedback

14

Signs of Professional Trust

1) Team members report confident expectations about each

other’s behavior and intentions.

2) Team members extend trust when others offer basic support.

3) Team members value and show appreciation for everyone’s

contributions to team’s effectiveness.

4) Team members talk as openly with one another about work-

related failures, weaknesses and fears as about competencies,

strengths, and achievements.

15

The Enemies of Organizational Trust

Inconsistent messages

Inconsistent standards or policies/Inequitable treatment

Misplaced kindness

Elephants in the Room (a.k.a. Dead fish on the table)

Rumors in a vacuum

adapted from Galford and Drapeau,
The Enemies of Trust, HBR, 2003

16

Suspect Distrust
When You See or Hear These Symptoms

Payback or retaliation
Venting frustration on people
Misunderstandings construed as
betrayals
Over-personalized criticism
Hiding mistakes or poor performance
Wordy, defensive communication
Insincerity

Rule-bound and rigid
Bullying
Insensitivity to the impact of
behavior on others
Focus on self-interest
Apathy and low energy
Ignoring feelings
Resentments

37

© 2008 Diana Larsen & FutureWorks

Consulting, LLC

17

Team Members Decide When to Trust:
The Ten Factors that Tip the Balance

Communication
Predictability/Integrity

Capability

Benevolent Concern

Interest Alignment

Similarity

Security

Relative Power

Adjustment
Risk Tolerance

Factor

adapted from: Robert F. Hurley,

The Decision to Trust, HBR, 2006

High or Low?

Self

Other

18

Trusting – Team members assume each other’s
competence, commitment, and positive intentions.
Perceptions of mutuality, dependency, and
confidence.

Trustworthiness – Team members’ actions are
consistent, reliable, supportive, known, competent,
and credible. Perceptions of respect, obligation,
and responsibility.

Trust is Growing
When You Notice

Two Kinds of Trust on Teams

19

Twenty-One Tips
for Growing Trust within a Team

Team Leaders

1. Trust first—To get trust, give trust and act
trustworthy

2. Set a tone for interaction and collaboration

3. Identify clear, consistent purpose and
performance goals

4. Expect and allow emotional release, find (or
provide) safe space to vent

5. Establish strong business ethics

20

As a Team

6. Communicate openly, freely, and honestly

7. Listen carefully and seek fairness

8. Develop comfort with discussing mistakes, concerns,
and limitations

9. Respect each other’s opinions

10. Learn about each other’s perspectives

11. Decide how the team will decide

12. Create social time for the team

13. Empower team members to take risks and act

38

© 2008 Diana Larsen & FutureWorks

Consulting, LLC

21

As an individual Team Member

14. Interact with the team consistently and predictably

15. Take responsibility for team action

16. Give credit to team members

17. Make yourself available, accessible, and responsive

18. Show awareness, sensitivity, and support for the needs
of other team members

19. Maintain confidences

20. Watch your language

21. Visibly do what you say you’ll do

adapted from K. and M. Fisher, The Distance Manager

and Robbins and Finley, The New Why Teams Don’t Work

22

Develop Team Interaction Skills

Self-disclose

Empathize

Generously interpret puzzling behavior

Share information

Ask for help

Admit mistakes

Accept responsibility

Give and seek feedback

23

1. Sponsor a Project Jump Start

2. Make and Discuss Personal Shields/Posters

3. Develop Working Agreements

4. Hold Frequent Retrospectives

5. Plan Team Social Events

6. Explore Cultures and/or Individual Styles

7. Celebrate Small Successes

Seven team activities to
cultivate trust

24

Working Agreements for Trust

We agree to assume positive intent and give generous

interpretations to actions or words we don’t understand, then

we seek clarity from one another.

We keep our agreements or, if we can’t, we advise teammates

of problems as soon as possible.

We cast no “silent vetos”. We speak up if we disagree.

We seek and offer feedback on the impact of our actions,

inactions, and interactions.

39

© 2008 Diana Larsen & FutureWorks

Consulting, LLC

25

Bibliography

Samuel A. Culbert and John J. McDonough. Radical Management: Power Politics and the Pursuit of Trust.
The Free Press. 1985.

Tom DeMarco and Timothy Lister, Peopleware: Productive Projects and Teams. 2nd edition. Dorset House.
1999.

Esther Derby and Diana Larsen. Agile Retrospectives: Making Good Teams Great! Pragmatic Programmers.
2006.

K. T. Dirks and D. L Ferrin, “Trust in Leadership: Meta-analytic Findings and Implications for Organizational
Research.” Journal of Applied Psychology 87(4) 2002: 611-628.

Kimball Fisher and Maureen D. Fisher. The Distance Manager: A Hands-on Guide to Managing Off-site
Employees and Virtual Teams. McGraw Hill. 2001.

Robert F. Hurley, R. Galford, A. S. Drapeau, W.C. Kim, and R. Mauborgne. “Winning Your Employees’
Trust” compilation. Harvard Business Review On Point Collection. Harvard Business Review. 2006.

Jon R. Katzenbach and Douglas K. Smith. The Wisdom of Teams: Creating the High Performance
Organization. Harvard Business School Press. 1993.

Dennis C. Kinlaw. Developing Superior Work Teams: Building Quality and the Competitive Edge. Lexington
Books. 1991.

Patrick Lencioni. Overcoming the Five Dysfunctions of a Team. Jossey-Bass. 2005.

Jean Lipman-Blumen and Harold J. Leavit. Hot Groups; Seeding Them, Feeding Them and Using Them to
Ignite Your Organization. Oxford University Press. 1999.

Joyce S. Osland, David A. Kolb, Irwin M. Rubin and Marlene E. Turner. Organizational Behavior: An
Experiential Approach. Pearson Prentice Hall. 2007.

Harvey Robbins and Michael Finley. The New Why Teams Don’t Work: What Goes Wrong and How to Make
it Right. Berrett-Koehler. 2000.

Diana Whitney, Amanda Trosten-Bloom, Jay Cherney and Ron Fry. Appreciative Team Building. iUniverse
Inc. 2004.

26

Biography

Diana Larsen consults with leaders and teams to improve project
performance, support innovation, and establish satisfying, results-
oriented workplaces.

With more than fifteen years of experience working with technical
professionals, Diana brings focus to the human side of software
development. Her clients value her collaboration in building their
capability to interact, self-organize, and shape an environment for
productive teams.

Current chair of the Agile Alliance board, Diana co-authored Agile
Retrospectives: Making Good Teams Great.

She writes an occasional blog post at “Partnerships & Possibilities”
http://www.futureworksconsulting.com/blog/ . Find more information
about FutureWorks Consulting, Diana Larsen, and additional
resources at the website, http://www.futureworksconsulting.com .

40

Playing Nice in the Sandbox

Janet Gregory

In the beginning of the agile discussions, developers and customers reigned over

the world. Over the years, testers have raised their heads and said, “We want to

be involved. We think we have a place in this agile world!” Well, testers have

found a place in many agile teams, but not in the same way as the testers of old.

Instead of being the “quality police,” they have become a conduit for providing

feedback to the team. Collaboration is the key to a healthy working relationship.

Teams that are moving from a traditional phased approach where developers and

testers are separated and have a throw it over the wall mentality may struggle

with the concept. Janet will share tips for collaboration between developers and

testers, how they can learn from each other, and how together, they contribute to

make a successful team.

Janet Gregory is a Calgary-based consultant specializing building quality

systems and her passion is promoting agile quality processes. She has helped to

introduce development agile practices into companies as tester or coach, and

has successfully transitioned traditional test teams into the agile world. Her

focus is working the business users and testers to understand their role in agile

projects.

She is currently writing a book on agile testing with Lisa Crispin due out early

2009. Janet has presented at the Agile and StarWest conference several times

and is active in the Agile Testing community.

41

42

Actually, It IS All About You!

Jim Brosseau

Biography

Jim Brosseau
Jim has been in the software industry since 1980, in a variety of roles and

responsibilities. He has worked in the QA role, and has acted as team lead, project

manager, and director. Jim has wide experience project management, software

estimation, quality assurance and testing, peer reviews, and requirements

management. He has provided training and mentoring in all these areas, both

publicly and onsite, with clients on three continents.

He has published numerous technical articles, and has presented at major

conferences and local professional associations. His first book, Software Teamwork:

Taking Ownership for Success, was published in 2007 by Addison-Wesley

Professional. Jim lives with his wife and two children in Vancouver.

43

Actually, It IS All About You!

Jim Brosseau

August 11, 2008
Most branded approaches for software development are pitched with little active

consideration for the team that will be dealing with that new approach. One could

cynically suggest this is because these approaches are hailed as silver bullets that are

independent of the target team, but it goes deeper than that.

If we really want to improve the way we develop software, we need to start by

understanding the team itself: what each participant brings to the table. We need to

bring all this out into the open, discuss our shared goals, reflect on our cultural

distinctions, and leverage our combined strengths. The better we understand each

other on the team, the stronger our trust will be. Our relationships will be more

genuine, and our interactions will be more effective. With a consciously managed

inventory of our skills, experiences and attitudes, we are better equipped to select

which approach will be most effective and how to deploy this refined approach with

the team.

This all takes time, to be sure. Consider, though, the cost of miscommunication,

disappointments, broken trust and other forms of interpersonal dysfunction on most

projects. In that light, the effort to better appreciate everyone involved on the project

starts to look much more like an investment than a cost.

Relationships are hidden behind tools and techniques

There are several reasons for neglecting details about the human element, but deeper

challenges in failing to do so.

First, the complexity of dealing with the human element when we are dealing with

teams and processes can be daunting. Teams come in all shapes and sizes. There are

at least as many different motivating factors for participating on projects as there are

people. There are many complex emotions that come into play, and this entire mix is

constantly changing. It is impossible to codify this complexity and provide a

generalized solution as we often do with practices and methodologies. It would need

to be simple enough to be easily communicated without losing the audience’s

attention, but there are too many variables here.

Secondly, most of these branded approaches got their start with a handful of people

who had success on a handful of projects. While there may be some discussion of

elements such as trust and fearlessness, these are generally dealt with through hand

waving and generalities, such as “get along with your teammates” or “have fun”. For

the most part, concrete emphasis is on the practices themselves. In almost any

retrospective I have been a part of, discussions about what worked and what needs to

change focus almost exclusively on ‘best practices’ such as defining scope and

44

planning, design practices, implementation and validation approaches. Even if

symptoms of dysfunction such as the team not getting along are raised, the solution

space usually consists of practices we see as within our control – those same practices

described above.

Implicit in most successful teams is the relationships that have developed among the

team members. Indeed, when you are asked to think back and describe the approach

used on a project that you would have considered successful, there is a good chance

that you would describe elements like a change management process, or nightly

builds, or test-first development, or tactical access to a customer. If you look deeper,

though, and consider how the team worked together, you will find other, more

important elements. The team surely cooperated well with one another,

demonstrated a level of trust and shared a common goal. Everyone felt like they

belonged, and actively participated in working toward that project's success.

In working with teams, I explicitly asked them to identify the characteristics of their

best project memories, carefully avoiding biases towards approaches or relationships.

The one common element that everyone has identified as part of their successful

project experience was that they had fun.

There are rarely any characteristics raised about tools or technology, and nothing

about lifecycles or methodologies. These are necessary, but insufficient. Success is

primarily dependent on the relationship between the team members. This does not

simply go without saying. It is absolutely critical, and needs to be consciously

managed. As a team member, it IS all about you.

There will be relationships between team members whether or not these are

consciously observed or managed. Regardless of our selected approach for

developing software, people will have to interact with one another. Each of these

interactions will be successful or not based on the trust, respect and shared vision of

the participants. If all of this is left to chance, how much of a consistent impact can

one selected approach have over another?

We need to understand OUR roles

It is all too predictable. Whenever my son and daughter are playing together, it is

only a matter of time before I hear raised voices. One of them, if not both, will come

to me complaining about something the other one did. I've settled into a response

that usually works quite well: to ask them to consider their contribution to the

situation. What is most fascinating about this is how often a similar dance occurs on

project teams.

Whenever a relationship goes sour, even a little bit, there are two sides of the story. It

is human nature to pay most attention to the details as they are seen from our

perspective. This often exists to the point where we are blind to the idea that there

even can be another perspective at all. From our perspective, we usually see that we

have been wronged, that our actions were innocuous. Unfortunately, that is rarely

45

the case. Here are a couple of interesting examples, based on working with clients

using our diagnostic product over the years.

The first case comes from a group that performs better than most of the teams I have

worked with. While not always performing to that high level, they have dramatically

improved over the years. They are at the point where they are a strong example of

the effectiveness of conscious focus on practical implementation of reasonable

practices and continuous improvement. They are also one of the few companies that

has been successful at leveraging outsourced resources, by carefully managing

subcontractor performance. Indeed, they are able to do so only because they are one

of the few companies that has a quantified handle on their own performance.

Running the diagnostic with this group, we split the responses so that we could

compare the development team to the test team, and both to the outsourced team

offshore. The question we always start out with is to get people to identify, from a

list, their major sources of pain. In this case, the strongest response from the

development and test teams was that their subcontractors were causing the most

pain. Interestingly, for the group offshore, it was the customer that caused the

greatest spike in responses. For a group with one of the strongest outsourcing

relationships around, there were certainly some remaining challenges to deal with:

both sides perceived that it was the other side that was the challenge.

The second case is with another company located only a short distance away from

the first group physically, but almost diametrically opposed to them in terms of

performance. This group had been struggling for some time to deliver quality

product, and had literally been spending the lion's share of their time dealing with

client-reported issues. Here, when asked about their greatest issues, the interesting

responses came from a selection called 'other', where respondents could answer in

freeform text. While the technical people indicated there were issues that they could

deal with, such as a need to do more testing or a lack of understanding of the user's

needs, management responses fell into a different category. All their responses

indicated that the problem was outside of their sphere of influence: the war in the

Middle East, the weakening economy, the weakening US dollar (this, mind you, was

several years ago). With that attitude, all they thought they could do was throw up

their arms in despair.

This was unfortunate as there really was quite a bit they could have done to better

manage their circumstances.

We could be refining our already strong performance and dealing with minor tweaks,

or battling stronger demons in a fight for survival. In either case, it is in our best

interests to be able to step back when we look at issues to include our own

contributions as part of the mix. If we look at all the respondents to the diagnostic to

date, 38% have indicated that their customers or contractors were a significant issue

they had to deal with. In how many of these could they have stepped back and

considered that there were things they could do to better manage that relationship?

46

In any challenged relationship, there is always something that we could have done

differently. The fact that we are in the midst of such a struggle should give us pause

to consider our own behaviors. Indeed, one of the most powerful tools I can bring to

work with clients is an objective mirror.

We need complete, open communication
Failure to communicate is at the root of almost all challenges we face in software

development. Process and procedures are a means of ensuring that we do the right

things at the right time. Analysis models help us communicate different aspects of

our product in more precise forms than the English language can convey.

Beyond these engineering solutions to communication issues, we also have to deal

with the nuances of relationships and teamwork for a complete solution.

Understanding individual motives and honing our skills in active listening and

conflict resolution make it still easier to communicate, but there is still more: we

need to engage others with candor.

Communicating with candor is more than merely telling the truth. Candor involves

full disclosure of all information that you are aware of (and indeed, disclosure of the

areas where you don’t have all the information), both positive and negative. In order

to do this, everyone on the team needs to feel safe in their environment. If there is

any lack of trust among the team, or any issues that have not been completely dealt

with in the past, it can become too easy to hold back. Candor and hidden agendas

are like water and chocolate (if not in that order).

Some people have the self-confidence to be able to walk into almost any situation

and speak with complete candor, but it is a very rare team where everyone exhibits

this trait. In the stages of team development (forming, storming, norming and

performing), it is only when a team has achieved the performing stage that we have

built the infrastructure of trust, of openness and caring that supports candor. For

teams that have been there, most know that it is all too easy to backslide. It takes

effort to get to the performing stage, and effort to stay there.

Why is this important? It is at this stage where the team is firing on all cylinders,

working together effectively as a group, and having a good time in the process. With

complete candor, the shared memory of the team is more complete, and more

consistent. Fewer balls are dropped. Improved efficiency opens the door for the team

to be more creative.

Agile principles suggest the most efficient and effective method of communication

for a development team is face-to-face conversation, where candor is a must. If you

are not consciously maturing your team dynamics to the point where candor is

possible, even your agile projects will be at risk.

47

We are a core part of a larger machine

As our team size grows, we compartmentalize ourselves into specific roles: project

manager, scrum master, developer, tester, and a wide range of others. With this often

comes the assumption that each role has the responsibility to produce specific

products or artifacts: a project schedule, a specification, some code, or something

similar. Problems arise when we take this to mean that we are the sole proprietors of

the products of our roles: that we have the responsibility of doing it ourselves.

The experience of producing one component of a larger system can range from

harrowing to extremely rewarding, or anywhere in between. If we have good

information about what that component should be, supported by previous

experience, it can be deceptively easy to get the job done. Work breakdown

structures help us remember everything we need to consider when building out a

project schedule. Document templates give us an outline that allows us to simply fill

in the blanks. Even the defined structure of a daily scrum meeting gives us guidance

on who needs to participate (everyone) and what needs to be covered.

Unfortunately, when we are doing these things on our own, it is easy to fall into the

trap of following the letter rather than the intent. For collaborative events such as

scrums, we can still think of this as a DIY activity if only the scrum master considers

whether this collaboration was achieved. With one person thinking about whether

something is done, it is easy to satisfy our own preconceived notions of completion.

When working to some deadline, the task often becomes an exercise of making sure

that all the fields are filled in with something within the time constraints. There

might be time for polishing if you are lucky enough and there aren’t any other

pressing tasks to deal with.

We then check off the completion box for that task, but are we really done? As others

are in the same boat, review is often superficial. Deep issues only arise much further

downstream. For most tasks on a project, if you were to hand them out to be

completed independently by different people, you would find that most would

complete the task and believe they had done a good job, but provide wildly different

solutions. A great example of this is a vision statement: a simple expression of who

the key client is and what problem is being solved, along with an identification of the

key competitor and the primary differentiation. Ask each person on the team to

develop one independently, and you are guaranteed to get very different results, each

one being complete. Which is the correct one?

This is a problem.

If done in a collaborative fashion, the dynamics are completely reversed. The

differences of perspective are exposed early, highlighting the need for further

discussion and clarification. The team works together to come to a common

understanding, rather than the team inheriting one viewpoint and having to live with

it, as usually happens. Done this way, these discussions occur with the right people

at the table, at the right time in the project. Compare this to the late-in-the-project

discovery that there was no alignment in vision, that most of us have experienced.

48

As we split into more detailed roles on a project then, we need to think of our tasks

as things we are responsible for ensuring they are done, rather than things we need to

do ourselves. In this way, we make sure that different perspectives are appropriately

balanced. With broader participation, everyone has a stake in the production of the

artifact. With that stake comes a stronger feeling of ownership: it becomes 'our plan'

rather than 'his plan', or 'our tests' rather than 'his tests'. Big difference. It helps break

down the silos between departments, the handing-over-the-wall of artifacts, and the

carrying down from the mount of the stone tablets that drive our work.

The whole group becomes responsible for a successful project. If one person has the

lead in ensuring something gets done, that person should never be alone in that

activity. Nobody likes to be told what they should be doing, or what they have to do.

It is far better to be part of the decision-making process, to have the opportunity to

see what is needed and step up and volunteer for the task. The stake and ownership

itself will tend to provide success far more often.

The counter-argument of not having enough time to collaborate on these things just

doesn’t fly. I’m not suggesting that everyone participate together for every

component of every task, but anyone affected by a decision should be involved in the

decision-making process. If we do things on our own, the collisions downstream

because we haven’t involved others will cost us far more in the long run. It is these

costs that we never account for in our original planning.

Regardless of your role, don’t get caught in the trap of thinking that you are solely

responsible for the products of that role. A better approach is to be sure that the

decisions you are responsible for actually get done, but get done and agreed upon

taking different perspectives into account. The perspectives of others can only be

clearly understood if they participate: don’t do things yourself.

We need to respect the effort behind change

We all deal with change in our lives, generally doing so by avoiding it at all costs.

Change is not trivial topic to deal with, which is likely one of the reasons it is so

intimidating to all of us. While I often discuss change in the context of the learning

curve for training, I find it more appropriate to think of change outside the context of

software development. I have been struck by the applicability of the Satir Change

Model to software teams.

Virginia Satir (a family therapist, but the analogy is apt, yes?) suggested “Familiarity

is more powerful than comfort”. That seems to be the case for the software industry

as well. There is some overwhelming inertia holding the industry back from realizing

its potential, despite our not being in the comfort zone.

One of the best introductions to the Satir model comes from Steven Smith (1), one of

the keynotes at this year’s conference. The model is simple and clear, but most

importantly makes sense because we can instantly see ourselves in the model. We

naturally have an affinity for the status quo. For myriad reasons, change is

something we detest. Quitting smoking, traveling to exotic places, developing

49

software in a way that differs from the past (in some places, that 'past' can span

decades). There’s the unknown, the anticipated chaos, the displacement from our

current way of doing things. It is easier to just stay where we are, even if we can

envision a better place at the end. As a physicist I know how to express the strength

of inertia through formulae. From the perspective of change, we all feel the inertia

keeps us in our place of familiarity, whether or not it is comfortable.

Change is far more than simply deciding to do things in a different way. The greater

we appreciate and understand all the complexities and nuances, the more effective

we can be at fostering effective change at home and in the workplace.

Most critical of these issues is the recognition that change is embodied in a clear

sequence of stages. For meaningful change to stick, you can expect to go through all

these stages in turn. Deep change will drop us out of our comfort zone, our status

quo, and carry us through a stage of disruption and chaos. Quite often we will see

this as bad, and leap back to our old ways, back to that soothing place of familiarity.

It takes significant effort to continue on our path, to find some mechanism or

transforming idea that allows us to recognize the value of seeing the change through.

If we have done well, we will reach a point where we have been successful in

changing. This can be a tough journey, and at each stage of change there are new

reasons to fall back to where we started.

Often, though, we attack change in ways that make the journey tougher than it needs

to be. At one conference, it was interesting to note that several people saw their role

as one of a change 'inflictor', and indeed this is the way many people foster change as

consultants. "You guys need to adopt Scrum...” or "I can help you get to CMMI

Level 3...". Recognizing the sequential nature of change is important for accepting

that it’s not as trivial pointing someone in a certain direction. There are other ways to

simplify things, to make change easier to swallow.

A critical element of driving successful change is controlling the magnitude of

change. Often, in software development or in life, we take on ludicrously large

elements to change. We’ll go from a totally chaotic ad-hoc development style (often

in the form of every participant using their own preferred approaches from previous

jobs), to a complete single way of developing software. While great in theory, this is

extremely disruptive in its implementation. Whether agile or not, this complete

system is made up of a collection of individual elements, each with their own change

profile. Some of these may have little chaos and huge return, while others may be

extremely chaotic, and actually have a net negative impact. Throw them all together,

and you will have washed out much of the value of the best elements, and imposed

an overall change that can be quite daunting. The team can easily find the status quo

quite attractive in comparison, and slip back into old habits.

We need to find those atomic elements that will provide us the most value with the

least disruption. If we select them correctly, we will find far less pushback, and faster

adoption. We also benefit from demonstrating to the team that this change stuff

doesn’t have to be so painful after all.

50

The other side of simplifying or making change more attractive is cranking up the

engagement from the participants. We have to be careful to present the potential

change in a way that is clearly understood in terms that people understand. In

addition to this, we need to avoid simply handing this change over as a task for them

to do. While we may not see these elements as disruptive, this is because we have

already made the required journey. We have already internalized the value and

overcome the disruption.

Any change will be easier if the participant is carefully supported, given the time to

acclimatize to the different way of doing things, reminded of the value of the change

in making their life easier. Participants need to understand how the change brings

them more closely into alignment with their own value system. They need to see

what is in it for them, and this attraction will vary dramatically across the team.

In the minds of most people, change is frightening and diametrically opposed to

remaining in the status quo. If we are careful in how we present change, selecting the

low-hanging fruit and fostering the change through our teams, we can dramatically

reduce the barriers we often face. Indeed, we can get to the point where change

becomes an attractive ongoing way of doing business. We can become a true

learning organization, and remove the apparent dichotomy between change and the

status quo.

We all need to see the value from our perspectives

Some things sell themselves. Tell an eleven year old that Apple has a new iPod on

the market, and she’ll save her allowance money for months. The same goes for

seven-year-old boys and Pokémon cards. If you have kids around that age, you will

certainly understand where I am coming from.

The same principle holds true in the software industry. Tell a young group of

developers that you are going to give Scrum a try, and you are not likely to see a

great deal of resistance. They are all over it like...well, pick your favorite attraction

metaphor here. Get a bigger group of more established (read: older) practitioners and

wave the CMMI in front of them, you will often see a similar response. Give almost

anyone in the industry a software tool as a means of solving a problem they are

dealing with, and…you get the picture.

The problem is that it is not quite as easy to sell these things to everyone on the team.

Simply waving the brand around is insufficient to capture the entire audience. You

need to engage that whole audience in order for many practices to truly work. There

is still hope for bringing good practices into your project, but you need to step away

from the hype.

Senior management and many marketing people aren’t interested in agile

approaches. In fact, from what they have heard they are probably afraid they will

have less control and visibility into what is being built than before. Unfortunately,

these rumors are likely to have come from weak implementations of good practices

in the past. On the other hand, if you talk about giving them a continuous stream of

51

new features, keeping the product running so there is no big-bang integration, and

giving them a voice in the prioritization of these new features, you will hook them

quickly.

Talk to an end user about a use case workshop, and their eyes will likely glaze over.

Ask them (without jargon) about the different kinds of users for the product, and

what each of these users will want to achieve, and you will have an engaged crowd.

Dive into discussions about the steps that make the most sense for them to interact

with the system to achieve their goals, rather than the normal flow. You can even

discuss alternative ways they might achieve their goals, what they might expect when

for some reason they can’t get to where they want to be, and what state the system

should be in before you get started and when you are done, and you have pretty

much covered the breadth of use case issues. More importantly, you haven’t scared

them off with the terminology.

Tell a development team you are seeking a CMMI rating or ISO certification, and

you will have a bunch of disillusioned people expecting to waste much of their

precious time building needless documents. Again, perceptions based on experience

can be strong. Talk about getting together to agree on an approach that will improve

predictability on your projects, simplify planning, ease maintenance grief and shorten

schedules to boot, and you might get them to sit up and take notice.

If you have a conflict with a co-worker and suggest that the two of you step through

a five-step approach for conflict resolution, and their opinion of you will likely drop

lower than it already is. Head into the discussion ready to learn something about the

other person’s perspective and get them to acknowledge that you really do see where

they are coming from before proposing solutions to the challenge, and you’ll be

amazed by the connection you make.

Whenever we work with others, we need to sell reasonable approaches to solving

problems first by understanding our audience. There is a strong chance that they are

not motivated in the same ways you are, and it is critical that you know WIIFT –

what’s in it for them.

Once you know that you are well on the way. Pitch to their needs; show them how

these approaches address their needs, and the pushback that often occurs with

change will dissolve. As an added bonus, this approach will help keep you honest

about doing the things that are right for the team as a whole. It will prevent you

from being swept up in the hype surrounding trends that might happen to be in

vogue today. When you are selling, you need to play to the needs of the audience.

It really is all about you

Most change is driven by selection of new tools or techniques, and is offered up as a

point event to the team, with the expectation that there will be immediate

improvement within the group. While some of these efforts can have a positive

impact, we are not controlling all the variables in this equation.

52

We need to take the time to focus on the team dynamics, and manage these

dynamics such that the group interacts more cohesively. With this approach, any of

the usual changes we apply have a much higher likelihood of succeeding and

providing even more value than before. Indeed, with the team working together

effectively, we can find dramatic improvement without the addition or change of

tools or techniques, and we can select changes that are more aligned with the group’s

needs.

References:

(1) http://www.stevenmsmith.com/my-articles/article/the-satir-change-model.html

53

54

THE 2008 STATE OF REQUIREMENTS
MANAGEMENT REPORT.

The results of a recent industry survey shed light on the latest trends, challenges

and solutions in software product development for 2008.

Written by Jama Software co-founders:
Eric Winquist, ewinquist@jamasoftware.com and John Simpson, jsimpson@jamasoftware.com

Publication notice:
Previously published to survey participants and Jama Software customers.
© 2008 Jama Software. All rights reserved.

OVERVIEW

Reality or hype? Discover what product teams are really doing.
Whether your role is Product Manager, Project Manager, Business Analyst, Development Director, QA
Manager or Chief Requirements Guru, if you are involved in the planning and development of products,
software applications or systems at your company, this report applies to you. The goal of this report was
to survey professionals in software product development and to provide a real-world perspective.

Gain insights into:

What are the biggest challenges in innovation that companies face?
Where are companies getting their next great product ideas?
What are the top barriers to success?
Which metrics matter most when measuring success?
Is the Agile process over-hyped?
Which tools top the wish list in 2008?
How does collaboration apply to requirements management?
What frustrates people more – scope creep, unrealistic expectations or lack of testing?
Which genre of music is most popular? OK, that one we threw in just for fun.

Take ten minutes to read the full report and learn more about the latest trends, challenges and solutions
that other organizations are focused on this year. Some survey results you might expect, others might
surprise you. Either way, it’s time to cut through the hype and uncover what teams are really doing to
successfully plan and develop new products in a customer-driven economy.

55

ABOUT THE SURVEY

This survey was conducted by Jama Software in partnership with Ravenflow. The report includes data
collected from 203 survey participants from April 15 to May 9, 2008. Professionals were invited to
complete the online survey in return for a copy of this published report. For privacy, all survey
participants, responses and comments remain anonymous in this report. Ninety percent of participants
completed the entire survey. Survey participants represented a world-wide audience and a diverse
sampling. Thanks to everyone who participated. Here are the breakdowns by role, company size,
industry and average project team size.

Role in the Organization:
40% Business/Requirements Analyst
19% Project Management
10% Product / Program Management
 9% Product Development / Engineering
 8% Outside Consultant
 5% Executive Management
 3% Research / Usability / Design
 7% Other

Company Size (Annual Revenue):
26% Greater than $1 billion
14% $500 million - $1 billion
17% $100 - $500 million
14% $25 - $100 million
29% Less than $25 million

Industry:
28% Technology / Software
17% Financial Services / Insurance
17% Aerospace / Defense / Government
11% Healthcare / Medical Devices
 8% Telecommunications / Media
 3% Automotive / Consumer Products
 3% Energy / Chemical / Utilities
12% Other

Team Size (Project Team & Stakeholders):
61% Less than 25 people
28% 25 50
 6% 50 100
 3% 100 250
 2% More than 250

56

QUESTION

In your opinion, what are your company’s biggest challenges when it comes to

innovation? (Mark all that apply)

SURVEY RESULTS

Three fundamentals of requirements management top the list.
The buzz around “innovation” is everywhere – in the news, at events, on the Web. A Google search will
deliver up over 150 million pages related to innovation. For context, that’s more than Britney Spears.
Despite all the enthusiastic chatter, innovation is easier said than done.

What are the real challenges that teams face when
developing products their customers really want?

One thing is clear – in order to innovate successfully, you
must manage requirements successfully.

As the data shows, the top challenges map to three
fundamentals of requirements management – gaining a clear
understanding of what customers want, documenting all the
requirements and then ensuring what’s being built is what
was planned. There’s no substitute for the fundamentals.

0% 10% 20% 30% 40% 50% 60% 70%

Other

Prioritizing requirements to decide what to build next

Communicating the requirements to the team

Ensuring what's being built is what was planned

Documenting all the requirements

Gaining a clear understanding of customers needs

11%

43%

49%

61%

65%

65%

“Managing the rapid
change of requirements and
traceability is our toughest
challenge.”

– Survey participant

57

QUESTION

How would you characterize your company’s approach to innovation?

Risk Taker – We seek to be first to market with
breakthrough ideas.

Market Reader – We try to be a fast follower,
and focus on incremental improvements.

Low Cost Provider – We focus on operational
efficiencies by delivering similar products at lower
costs.

Cash Cow – We try to milk as much revenue as
possible from existing products.

SURVEY RESULTS

When it comes to product innovation – speed does matter.
A recent McKinsey Research study 1 shows that over 70% of senior executives say that innovation will be
at least one of the top three drivers of growth over the next three to five years. So, what approaches to
innovation are companies taking?

Be first to market with a breakthrough product or be fast to follow with a better one – that’s how the
majority of those we surveyed characterize their company’s
approach to innovation.

Did different industries answer differently? What about the
size of a company? Surprisingly, neither size nor industry had
a significant variance when we filtered the survey results.
The common theme represented by the responses and
comments provided is that whether a risk taker or a market
reader, the majority of those surveyed viewed rapid product
development as a key driver to their ability to innovate.

Other, 9%
Cash Cow, 11%

Low Cost
Provider, 13%

Market
Reader, 34%

Risk Taker, 32%

“We’re a fast follower.
We watch the competition
closely and then make it
better.”

– Survey participant

58

QUESTION

What are your sources of new product ideas and requirements?

(Mark all that apply)

SURVEY RESULTS

Think R&D studies hold your next great idea? Ask your customers.
A similar “a-ha” is occurring at companies everywhere – they are embracing the fact that customers are
willing to openly share their ideas and participate in the product planning and development process. It’s
less expensive, real-time, and as unfiltered and pure as a
good Hefeweizen.

In the world of customer-driven product development, it’s a
trend that’s been underway for several years, but it’s recently
hit another gear with the explosion of online customer
communities and Web-based collaboration tools.

As this data illustrates, the #1 source for new product ideas
and requirements is feedback from customers and partners.

Does this mean traditional R&D goes away? Does it mean
your visionary executive takes a back seat? Not necessarily. It simply means that companies that
achieve greater alignment with their customers achieve greater results. Your customers are leading the
conversation. Are you listening?

0% 10% 20% 30% 40% 50% 60% 70% 80%

External consultants

Other employees

R&D studies

Visionary executive

Internal product teams

Feedback from customers & partners

27%

28%

32%

46%

59%

71%

“Lavish R&D budgets don’t
deliver better performance.
Customer focus does.”

– Booz Allen Hamilton,
Global Innovation 1000 Report 2

59

QUESTION

What are the goals of the projects your team works on?

(Mark all that apply)

SURVEY RESULTS

Enhancing existing products outweighs developing brand new ones.
Is this surprising? Maybe not. New products tend to grab the spotlight, but they also tend to be slower to
develop, more expensive and higher risk. Companies are finding success through smaller, more focused
releases with incremental enhancements over time.

These survey results support the trend toward more and more
product development teams adopting the philosophy of
“release early and release often”.

What we found surprising was that only 28% answered that
“reducing costs” was a goal. You read and hear a lot about
efficiency being a top initiative especially during tougher
economic times, but these survey responses didn’t reflect
that.

0%

10%

20%

30%

40%

50%

60%

70%

80%

Other Reducing the costs
of manufacturing
existing products

Enhancing existing
products

Bringing new
products to market

8%

28%

77%

64%

“Our goal is to deliver quality
software in a reduced
timeframe using an iterative
approach to development and
systematic testing.”

– Survey participant

60

QUESTION

Let’s talk about complexity – on average, how many requirements does a typical

project or product contain?

SURVEY RESULTS

No one ever said this job was easy. I hope you like requirements.
Maybe we should run a contest for the largest requirements specification document – 800 pages, a
thousand pages? For the 5% whose projects on average have over 5,000 requirements each, there’s a
Guinness World Record just begging to be set. Yes, we checked and there isn’t one yet.

This question provided some interesting segmentation.

As you might anticipate, the more complex the projects (meaning we filtered on those with 500 or more
requirements per project), the lower the average success rates, the greater the time spent managing
changes to requirements, and the greater the interest in using requirements collaboration and
management software.

Does the size of the team have any correlation to the size of projects? Yes, the bigger the team, the
bigger the projects. Whereas overall 72% of those surveyed averaged at least 100 requirements per
project; for those teams with 25 or more people, 90% averaged 100 or more requirements per project.

I have no idea, 6%

< 100, 22%

100 - 500, 34%

500 - 1000, 19%

1000 - 5000, 14%

5000+, 5%

61

QUESTION

What percentage of your time is spent each week dealing with changes to

requirements?

SURVEY RESULTS

The vast majority spend at least 10% of their week managing changes.
Oh man, you’ve got to really feel for the 8% that spend over half of their time just managing changes to
requirements. It’s a reality of product development though, customer needs change.

So, how can you best manage the change and keep everyone in sync without killing yourself?

As Forrester Research 3 defines it, that’s where requirements
management solutions help by:
1) Storing requirements in a central location
2) Tracking relationships among requirements and artifacts
3) Controlling changes to individual requirements and groups of
requirements

This was another interesting question to segment the results on.
When we look at those that spend at least 25% of their time or
more managing changes, success rates were lower, the #1
challenge shifted to “ensuring what’s being built is what was
planned” and the interest in requirements collaboration and management software increased to 80%.

Less than 10% of
time, 24%

10 - 25% of
time, 37%

25 - 50% of
time, 23%

Greater than 50%
of time, 8%

It's not my job, 7%

“Managing the rapid
change of requirements and
traceability is our toughest
challenge.”

– Survey participant

62

QUESTION

How do you measure the success of your delivered projects/products?

(Mark all that apply)

SURVEY RESULTS

Customer satisfaction outshines revenue and other success metrics.
Surprised by this answer? Why isn’t revenue higher?

This is a question where role plays a factor. For business analysts and project managers, which
represent 59% of those surveyed, customer satisfaction reigned supreme. For product managers and
executives, revenue was the top metric they cared about, with ROI being a popular write-in theme for
“other”.

These results speak to the interesting dynamic that exists
between project management and product management.

As Jeff Lash 4, the author of the blog, How To Be A Good
Product Manager, writes, “To avoid conflicts between project
management and product management, product managers,
project managers, and project teams should all agree on
shared goals and metrics as much as possible.”

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Other

Buzz (awards, news, reviews)

Speed to market vs. competition

Cost savings

Revenue

Quality assurance / safety ratings

Customer satisfaction

13%

8%

24%

39%

39%

44%

83%

“Success for us is measured
by the return. What is the ROI
back to the business?”

– Survey participant

63

QUESTION

How often are the projects or product launches that you’re involved with

delivered on time and on budget? Let’s be honest now…

SURVEY RESULTS

For the large majority, success rates are 60% or lower.
It’s like Shaquille O’Neil shooting free throws – you expect better, but the reality is you’re lucky if just 60%
of the attempts are successful.

Why are these success rates what they are? Are we all just numb by the same old story about project
failure? Billions are lost each year on bad software. Got it. Delays in product development can bankrupt
companies. Yep.

In the IEEE Spectrum article 5, Why Software Fails, it
suggests, “The biggest tragedy is that software failure is for
the most part predictable and avoidable. Unfortunately, most
organizations don’t see preventing failure as an urgent
matter…”

That may be true, however something tells us it isn’t just
organizational complacency, but that there’s much more to it
than that. In the next question, we explore the leading causes
for failure.

0%

5%

10%

15%

20%

25%

30%

35%

Less than 20%
(Ouch!)

20 - 40% 40 - 60% 60 - 80% Greater than
80% (Jealous?)

22%

31%

24%

17%

6%

“It’s all about an on-time
delivery. Did we meet the
target date?”

– Survey participant

64

QUESTION

When a project/product is NOT viewed as successful, what typically are the

causes? (Mark all that apply)

SURVEY RESULTS

Beware of the dreaded “scope creep”.
It lurks by the water cooler, on customer status calls and in team meetings – it’s the dreaded scope creep
and it wreaks havoc on projects. It’s not alone though, tied for a close second are its nasty cousins
“missed or poorly defined requirements” and “unrealistic schedules or expectations”.

How do you avoid these? Tools can help, process is critical, but more than anything else it takes really
skilled people to keep these issues in check. Otherwise, these issues will continue to creep up (no pun
intended) and create unnecessary frustration, delays and costly rework for organizations – all of which
lead to failure.

0% 10% 20% 30% 40% 50% 60% 70%

Other

Team didn't buy into the project

Lack of testing

Lack of executive support

Issues with change management

Misunderstanding of what customers want

Team communication and collaboration issues

Unrealistic schedules or expectations

Missed or poorly defined requirements

Scope creep

9%

12%

22%

25%

37%

43%

49%

66%

66%

70%

65

QUESTION

Of these barriers to success, which ones do you PERSONALLY find the most

frustrating? (Mark all that apply)

SURVEY RESULTS

“Unrealistic schedules or expectations” drive people crazy.
Even though scope creep was the top cause for failure,
“unrealistic schedules or expectations” takes the top prize in
what professionals personally find most frustrating.

Some barriers you can overcome mid-project, but when
unrealistic expectations or schedules get set and approved, it’s
difficult later to hit the reset button with stakeholders and
customers. It’s a lesson even the most experienced product
development teams have experienced.

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

Other

Team didn't buy into the project

Lack of testing

Lack of executive support

Issues with change management

Misunderstanding of what customers want

Team communication and collaboration issues

Unrealistic schedules or expectations

Missed or poorly defined requirements

Scope creep

4%

7%

12%

23%

16%

28%

21%

43%

40%

31%

“Some of the biggest overall
problems come from pursuing
what the customer says they
want, without determining
what they really need.”

– Survey participant

66

QUESTION

“Collaboration” is a word being talked about a lot. In your opinion, how does

collaboration apply to requirements management?

SURVEY RESULTS

Well, actually collaboration applies to all of the above.
Next to innovation, “collaboration” might be the second biggest buzzword in business right now. So, what
does collaboration really mean as it applies to requirements management? We were curious too, so we
asked the question.

As the survey results show, no one clear answer stands out.
Essentially, collaboration embodies all three of these things –
team-wide access, centralized place of all assets, and continuous
alignment to the latest version of the requirements.

Some experts view collaboration as one of the key ingredients to
being more successful with requirements management. And,
based on our own personal experience, we agree. A collaborative
approach is a faster, more successful way to stay in sync
throughout the planning and development cycles – both internally
(with your team) and externally (with your customers and partners).

0%

10%

20%

30%

40%

50%

60%

70%

80%

Everyone on the team has
access to the
requirements

Requirements, related
items and discussion

threads are all captured in
a centralized place

Everyone on the team is in
sync on the latest version

of the requirements

63%
70%

78%

“Requirements management is
a communication process.
Collaboration happens when
everyone has the same
understanding of the
requirements.”

– Survey participant

67

QUESTION

Which process does your team use?

SURVEY RESULTS

Surprised? Only 6% are pure Agile shops. Many use a mix.
There’s no denying the momentum that Agile has in the product development world, but is it overhyped?
At Jama, we use a modified Agile process ourselves and have used various processes before, so we
were curious to learn what other teams are really doing.

As the data illustrates, the largest segment is actually using a mix
of processes. A quarter of survey respondents are using a
traditional or modified Waterfall method exclusively, but few beyond
that are purists of any one process.

So, as one survey participant pointed out, “It’s important for the
tools to be flexible to adapt to whatever processes your team or
company uses, because inevitably they will change.”

These survey results and our own experiences confirm that no
single process is a silver bullet. Different projects, different
products, different teams – they require different processes. Adapt
and survive.

0% 5% 10% 15% 20% 25% 30% 35% 40%

Other

We actually don't believe in process

We aren't purists, we use a mix of processes

RUP (or some flavor of it)

Agile (or some flavor of it like XP)

Iterative / Spiral

Waterfall / Modified Waterfall

6%

4%

37%

12%

6%

9%

25%

“It depends highly on the
project characteristics, so it
varies from Waterfall to Agile.”

– Survey participant

68

QUESTION

How does your team currently document and communicate requirements? (Mark

all that apply)

SURVEY RESULTS

Help! We’re stuck in the land of documents and spreadsheets.
It’s pretty amazing when you think about it – the tools (e.g. Excel spreadsheets and Word documents)
that your kids might use to do their next homework assignment are the same ones professionals use to
manage massive software development projects.

Sure, these tools are ubiquitous and we all know how to use them, but are they really the best way to
capture and communicate thousands of requirements for complex projects with distributed teams?

As this survey data supports, more often than not, business analysts and project managers rely on
manual effort and Microsoft Office to accomplish the documentation and communication of requirements.

But, as Forrester points out in their recent Wave Report 3 for application development professionals,
“Purpose-built requirements management tools dramatically increase the efficiency of proper
requirements management practices.”

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Other

Blog / wiki

Whiteboard / sticky notes / task cards

Requirements modeling / visualization software

Intranet

Requirements collaboration & management
software

Meetings (daily stand-up)

Email

Spreadsheets & documents (e.g. Word & Excel)

4%

10%

21%

29%

30%

32%

37%

40%

83%

69

QUESTION

What’s on the list of software tools your team will use or would like to use in

2008? (Mark all that apply)

SURVEY RESULTS

“Requirements collaboration & management” tops the wish list of tools.
Why do you need specialized tools – can’t you just manage everything in documents? It’s a common
question, and one often asked by senior management when presented with a budget request to buy a
specialized tool.

As Forrester Research 3 defines it, “The purpose of
requirements management tools is to maximize the likelihood
that a development initiative will deliver applications that
function as desired.”

This survey shows that two thirds of organizations are
interested in using requirements collaboration and
management software in 2008. What’s on your list?

0% 10% 20% 30% 40% 50% 60% 70%

Other

Portfolio management

Idea management

Application lifecycle management (ALM)

Product lifecycle management (PLM)

Project management

Requirements modeling & visualization

Requirements collaboration & management

5%

17%

18%

20%

24%

53%

55%

67%

“Tools improve the efficiency
of mature requirements
management practices.”

– The Forrester Wave ™: Requirements
Management, 2008 3

70

JUST FOR FUN

What is your favorite genre of music?

SURVEY RESULTS

Work hard. Play music. A shared mantra for product development.
You know what they say, “All work and no play, makes product development a dull job”, or something like
that.

We admit, there’s no real business value to this question being a part of this report other than to remind
us that despite the challenges and never-ending demands of product development, this profession still
rocks. Would you rather be a lawyer? Forget about it.

There are definitely times when managing requirements can feel
like a thankless and unglamorous gig. But, as this report
illustrates requirements management plays an important role in
the bigger picture of being able to successfully develop products
on time, on budget and within scope. And, a little music to keep
us sane during the process never hurts, right?

Rock, 44%

Hip Hop, 2%

R & B, 7%Jazz, 8%

Classical, 11%

Country, 6%
Alternative, 4%

I'm not a fan of
music, 5%

Other, 14%

“I like a bit of everything. Who
can choose only one style?”

– Survey participant

71

CONCLUSION

2008 is the year of requirements collaboration and management.

The goal of this survey was to identify what product development teams are really doing this year to be
more successful and to hopefully cut through some of the hype .

So, what have we learned from this survey?

1) In order to innovate successfully, you must manage
requirements successfully. The top 3 challenges to innovation were: gaining a clear
understand
built is what was planned.

2) Customer-driven product development. R&D studies and visionary executives are helpful, but
your customers hold the keys to your next product ideas and requirements. The Web has
ushered in faster and more efficient ways to elicit feedback from customers to help you build the
products they really want.

3) Customer satisfaction rules. Revenue? Buzz? Time to market? Which success metric is most
important to product development teams? Customer satisfaction is #1.

4) Beware of scope creep. Scope creep tops the list for the #1 cause to projects that fail.
Followed closely by missed or poorly defined requirements and unrealistic schedules and
expectations.

5) A popular buzzword, collaboration means different things to
different people. As it applies to requirements management, it embodies three things: everyone
on the team has access to the requirements, everyone is in sync on the latest version and all
requirements, related artifacts and discussion threads are captured in a secure and centralized
place.

6) .
processes, but few organizations have shifted to being a pure Agile shop in fact only 6% of
those surveyed. Most organizations are using a mix of processes, so tools must be flexibile and
adapt to your processes.

7) Documents still dominate, but RM tools top the wish list. Not surprisingly, over 80% of
professionals manually use MS Office to capture and communicate requirements using
documents and spreadsheets. However, when asked which tools they plan to use or would like
to use this year, requirements collaboration and management tools top the list.

REFERENCES
1) How companies approach innovation: A McKinsey Global Survey . The McKinsey Quarterly,

October 2007. www.mckinseyquarterly.com
2) Barry Jaruzelski and Kevin Dehoff. The Customer Connection: The Global Innovation 1000 .

Booz Allen Hamilton, December 2007. www.boozallen.com
3) Carey Schwaber and Mary Gerush. The Forrester Wave : Requirements Management, Q2

2008 . Forrester Research, May 2008. www.forrester.com
4) Jeff Lash. Product management vs. Project management . How To Be A Good Product

Manager Blog, September 2007. www.goodproductmanager.com
5) Robert N. Charette. Why Software Projects Fail . IEEE Spectrum, September 2005.

www.spectrum.ieee.org

72

ABOUT JAMA SOFTWARE

Jama Software is a team of experienced project management, product development professionals who
believe in taking a collaborative approach to requirements management. Jama s mission is to build
professional-grade, Web-based applications that help companies ensure their product development
projects succeed delivered on time, on budget and meet customer needs. Its product, Jama Contour, is
the leading Web-based requirements management application and is used by enterprise teams at
companies worldwide including Intel, Volvo, Wiley, Smart Technologies, Fluid, Optimedica and others.

503.922.1058 | info@jamasoftware.com | www.jamasoftware.com

ABOUT THE AUTHORS

Eric Winquist
In March 2006, Eric created Jama Software with the vision of providing customers a more collaborative
way to develop software products and eliminate the common frustrations with traditional approaches to
requirements management. Eric is an accomplished entrepreneur and project manager with over 14
years experience working with a wide range of enterprise organizations, teams and technologies. In 2001,
Eric founded Redside Solutions, a software development consulting firm. At Redside, Eric saw first-hand
the need companies had for a more collaborative approach to requirements management which led to the
creation of Jama Software and the development of Contour. Eric is a graduate of Oregon State
University and lives with his wife and two kids in Portland.

John Simpson
John is a co-founder of Jama Software and is responsible for capturing the needs of its customers. He
leads the product marketing efforts and customer communications for Jama. Prior to Jama, John was
Director of Marketing at Omniture and brings 12 years of experience developing brands and managing
customer-focused marketing programs for web technology companies such as Microsoft, WebTrends and
ZAAZ. He has contributed to several books, whitepapers and speaking engagements. As an ambassador
for Susan G. Komen for the Cure and a delegate for the Lance Armstrong Foundation, John is an active
fundraiser for cancer research. He is a graduate of Oregon State University and lives with his wife and
three kids in Portland.

Let us know your thoughts.

Did this report confirm what you already knew? Did some of the findings surprise you? What other things
would you like to see in future surveys feedback. Email us:

Eric Winquist, ewinquist@jamasoftware.com
John Simpson, jsimpson@jamasoftware.com

73

74

Collaborative Quality:

One company’s recipe for software success

Alan Ark

QA Manager

Compli

arkie@compli.com

http://www.linkedin.com/in/arkie

Author Bio:

Alan Ark is currently the QA Manager at Compli, in Portland, Oregon. Alan has gained tremendous experience

working for Unircu (now Kronos – Talent Management Division), Switchboard.com, and Thomson Financial – First

Call. While at Thomson, Mr. Ark presented “Euro: An Automated Solution to Currency Conversion” at Quality

Week ’99 (http://www.soft.com/QualWeek/QW99/) detailing how an automated test suite written in perl was used

to save the company great embarrassment. Currently, Alan is teaching his staff how using Ruby can help speed up

the testing process. Alan holds both a BS and MS in Electrical Engineering from Northeastern University in Boston,

Massachusetts. Interests outside of work include playing golf and listening to Jimmy Buffett songs.

Abstract:

Building software is not an easy process. There are many obstacles that can get in the way of delivering a great

product in a timely manner. The intent of this paper is to share one company’s experiences with getting better

software out the door. This paper does not give you the silver bullet, but hopefully will present some ideas that you

can take away for your shop. We don’t formally subscribe to any one methodology, but we endeavor to use Agile

processes, and are tweaking our process as we learn from each subsequent release that we work on.

While we’ve had some great results, the focus of this paper is on the little things that gets us those results. The ideas

in the paper are presented in more of a cookbook style where the final results are more about the preparation and

ingredients, rather than sticking to any pre-determined step by step process. The execution of the process is an

important step, but without good ingredients, sometimes you get less than stellar results. We are always adapting to

lessons learned with each release, but our base recipe is fully cooked. Think of this presentation as family favorite

recipe that you can add your own flair to.

Background:

Compli was founded in 1999 to create the market's first comprehensive web-based compliance management system.

In late 2004, a consultant was brought in to evaluate the technology used by the company and assess the product as

it was. As a direct result of the analysis, a whole new engineering team was brought in to take Compli to the next

level. What that meant was that the current engineering team inherited outdated .ASP code that was not scalable,

not maintainable, but according to the previous CTO, contained ONLY one bug. Previously, releases to production

usually entailed an all-hands-on-deck approach for handling customer calls for the next several days. There were no

formal software processes being followed. It was a QA nightmare. There were no acceptance tests defined. There

were no test plans in existence. There was no real documentation in existence besides an outdated user manual.

This was life in 2006. Let the fun begin.

75

different companies. Common job functions, common responsibilities, yet each team is distinct in

what it wants to achieve, each company in what product to deliver. People can be found just about

anywhere, but it is upon each team to know what kind of person that they are looking for.

Trust

Trust can be defined as being a person on whom one relies. If you have trust between team

members, it will be easier to work together. Without trust, it will be nearly impossible to make

progress. Unfortunately, trust is not something that can be bought from a store. You must grow

this on your own.

How do you earn trust?

Respect

Respect is esteem for or a sense of the worth or excellence of a person, a personal quality or

ability. Like trust, one cannot buy respect at the store. It is another item that you must grow on

your own. Luckily, if you find trust, then respect is usually lying right next to it.

How do you earn respect?

 Communications

Communications is a generic term used to describe how one thing interacts with other things. In

the context of communications as an ingredient, it benefits everyone to find the crispest

communication possible. Each communication that you make or create is a direct reflection on

you.

Focus on what you are trying to convey.

 What’s the goal that you are trying to accomplish?

 A cluttered message usually leads to confusion.

Infrastructure

Infrastructure is one base ingredient that you can buy in a store. These items are more examples

of things that are usually common across companies in different fields, yet how infrastructure is

implemented will vary widely based on a number of individual factors – each which is unique to

your specific company. Some of the major pieces in use at Compli include the following.

Development Environments

QA Test Clients

Project Documentation Repository

Code repository

Bug Repository

Continuous Integration (CI) system

Automated Testing

Base Ingredients:

The base ingredients are just the most basic things used at Compli to build software. It is very likely that

you’ll need to use these very same ingredients as well.

People

 When it comes down to it, a business is only as strong as its people. Each company will have

different needs and wants from the people that work within its walls, but without the people, the

business is nothing. Teams come in different sizes and shapes, but there are commonalities across

76

Even if you had the best, most expensive, magical tools that solved all of your problems, they

would be useless unless you could access them. Some of the items that we have access to at

Compli include.

 Engineering tools

 People

 Project Status

Development Status

QA Status

Bug Status

External Teams Status

Progress against the schedule.

 Nurture Communication

Communication must be nurtured to ensure that the right message is being sent. It must be used

correctly or the risk for misunderstanding – a miscommunication – will increase. We talked

briefly about what makes for strong communication. Some examples of how we facilitate

communication between team members are listed below.

 We sit in the same area.

 Single repository for core information about the project – salesforce.com

 Minimize having important communication go out thru only email

 Wiki and Blogs used to supplement

 Let people know ahead of time what is going on.

Story collaboration

At Compli, we take the following general steps to develop stories.

Discuss general themes to implement.

Use Portfolio Management techniques to decide what to execute on.

Create and review stories

Estimates on the body of work

Establish acceptance criteria on stories

One topic that might be new for readers of this paper is Portfolio Management. This was

introduced to Compli by Mark Lawler. Portfolio management can help articulate what the real

priorities are. It takes into account the business needs, perceived risks and product expectations

and presents the information in a visual format that brings out the most important things to tackle

first. Visual examples of the portfolio management output graphs can be found as Figures 1 and 2.

For a copy of an Excel spreadsheet where you can try portfolio management for yourself, please

email me at arkie@compli.com. Thanks to Mark Lawler who approved distribution of his

spreadsheet.

Execution:

 With the base ingredients in place, these are the steps that we take to start baking our software projects.

Access

77

Figure 1 – Risk/Reward graph from the portfolio management strategy

Figure 2 – Strategy/Priority graph from the portfolio management strategy

78

Metrics

Metrics allow us to measure our progress on the project. What matters is that we tried a bunch of

things that we thought might prove useful. The ones that we kept are discussed here. Figure 3

shows a bug trend report that displays all accumulated bugs against a project over time. We have

also tried other metrics that we’ve since discarded because they didn’t prove as useful as much as

we had hoped.

Metrics we kept include:

Work estimate times

Work actual times.

Bug Statuses

Bug Trends

Some of the discarded metrics included the following.

 Bugs by Origin

 Bugs per story

 Bugs per feature

Figure 3 – Bugs accumulated on a project over time

79

Iterations

Our work slices are called iterations. Each iteration provides a timebox where we try to

accomplish specific development/testing goals. Our iterations generally work as described below.

Continuous Integration of code.

nUnit tests executed.

2-3 week iterations depending on the list of stories to be delivered.

Daily morning stand-up

Story demos to the entire product development team

Coordinated drops into the QA environment at the end of each iteration

Watir based acceptance tests

Quick turn around on any bugs blocking the testing of stories.

Bug Triages as needed.

Scheduled demos with people outside of engineering to gather feedback on ideas

Comparison on page load response times.

Iterations at the tail end of the project also include the following features

 Usually run 1 week in length

 Normally bug fixes as opposed to implementation of new features.

 Practice of what would happen on a release night.

 Full deployment to QA

 Full DB migration

 Web side rollout (web and middleware code)

 Watir based regression tests

 Manual regression tests

 General Availability to fellow employees

Release to production

While the class of hardware in the QA environment is different than what is used on production,

each production machine has a QA counterpart. Each rollout into QA can be considered a practice

run of a rollout to production. As the project becomes more mature, we execute on full rollouts of

database migrations and all build code on the QA hardware. We have a high confidence level that

the behavior on the QA systems is very similar as the production system. This makes the actual

release to production go smoothly.

DB migration

Web side rollout

Watir based acceptance tests

Manual verification of “hot-spots” identified in testing of iterations.

Results:

Overall, the results have been outstanding, especially when compared to the experiences of the company

pre 2006.

 Project duration

 1 month – 9 months depending on the severity/complexity of the work involved

 Major release rollout average 2 hours once ready for QA verification.

 Tried this on 10 major releases and 30 hotfix releases in the past 2+ years.

 Only 4 hotfixes in the past 10 months

 We have not had a rollback of any release.

 The day after a release is a non-event for the company.

 Happy customers

 Happy bosses

 Proud employees

80

Conclusions:

By using a mix of project management and software development techniques, learning from others at

conferences such as PNSQC, and experimentation at home, we have a living process that has helped us

deliver high quality software to our customers. We view processes as guidelines to follow, but not rigid

rules that must be followed to the letter. Take away bits from others to see what would work within your

company. Keep those things that are working, and see what can be improved on those items that are not

working so well. Figure out what your specific needs are, and use these ideas to address them.

Don’t get boxed into a process

Be flexible. If a change is working, incorporate it in your main process.

If things didn’t work out as well as hoped

- How would you mitigate those issues in the future?

- Try things out

- Don’t be afraid

- Recognize when things are going well or not so well

If things didn’t work, what else could you try to make it work better in the future?

Further reading:

Cooper, Robert G, Scott J. Edgett and Elko J. Kleinschmidt. Portfolio Management for New Products.

Cambridge, MA: Perseus Publishing, 2001.

NUnit. http://www.nunit.org/

Watir. http://wtr.rubyforge.org/

Ruby. http://www.ruby-lang.org/en/

CruiseControl. http://cruisecontrol.sourceforge.net/

Salesforce. http://www.salesforce.com/

Thanks to Launi Mead and Jonathan Morris for their review of this paper.

81

82

TAILS IN THE BOARDROOM

CANINE LESSONS FOR BUSINESS TEAMS

Shannon MacFarlane

Quality Specialist

500 E. Alexander Ave.

Tacoma, WA

(253) 238-8542

shannon.macfarlane@totemocean.com

Biography:

Shannon is the Quality Specialist at Totem Ocean Trailer Express, Inc., in Tacoma, Washington,

and is responsible for the health and wellness of the quality management system's document

control, internal audit, corrective and preventive action, best practice program, and lots of other

important and misunderstood stuff. She is currently serves as a Mentor on the Panel of Examiner

and Process Development with the Washington State Quality Award after three years of service

as a Senior Lead Examiner and is a first-year Baldrige Examiner. When she's not at work

managing teams she manages her pack of great Danes.

Abstract:

Dogs know the secrets to productivity and harmony within their packs; humans are often blind to

these simple truths. Pack theory and canine behaviorism can be successfully applied to manage

and improve human relationships. This study is an examination of how common canine

behaviors within packs (e.g., conflict management, leadership, and communication) are equally

effective when employed by members of business teams. Canine and human examples from

current literature and observation illustrate the potential for improving efficiency, productivity,

and collaboration among teams without raising hackles.

83

INTRODUCTION

Dogs know the secrets to productivity and harmony within their packs; humans are often blind to

these simple truths. Pack theory and canine behaviorism can be successfully applied to manage

and improve human relationships. This study is an examination of how common canine

behaviors within packs of conflict management, leadership, and communication are equally

effective when employed by members of business teams. Canine and human examples from

current literature and observation illustrate the potential for improving efficiency, productivity,

and collaboration among teams without raising hackles.

Most wild dogs live in social groups comprised of several families called clans. The social

hierarchy is based on the alpha pair, who provide leadership for the group and hold the highest

social status.

Within each clan may be one or more packs, which are usually groups of five to seven dogs who

hunt together. While the primary relationship between pack members is functional (i.e., to hunt

and kill prey for the clan), they enhance their relationships with play. Through play wild dogs

and wolves learn about their packmates as they mimic the behavioral sequence that occurs during

a hunt. This experience increases the bond between pack members and enables them to better

predict each other’s behavior, an essential skill when coordinating efforts to take down big prey

with other dogs who may be out of sight. As Rogers and Kaplan (2003) proposed, this ability to

confidently predict behavior may be a requirement for pack members before setting out together

on a hunt.

Canine groups have strict rules of communication that reflect their social hierarchy and each

member is responsible for obeying and reinforcing the rules at all times. This constant

application creates a highly cohesive group. There are no occasions when pack members can

walk past another without some form of interaction, whether it is a full investigation or a casual

greeting. Wild dogs work diligently on their relationships and on maintaining the cohesion of

the group. It is not surprising that long-lasting groups such as those of wolves invest

considerable time in group etiquette.

Dogs and wolves have strong instincts for conflict solving, communication, and cooperation and

are therefore convenient models of the same behaviors for work teams.

84

Table 1 - Canine Principles Applied to Work Teams

CANINE PRINCIPLE HUMAN EXAMPLE

Master body language Pay attention to signals beyond words when others

speak

Give undivided attention Respect the other party enough to really listen when

asked

Offer and receive honest feedback Provide feedback to help others progress and

graciously and professionally accept the same

C
o

m
m

u
n

i
c
a

t
i
o

n

Define boundaries Establish and explain the policies and procedures that

govern the work

Focus on progress, not form Be willing to accept progress even if it isn’t picture

perfect

Capitalize on natural talent Recognize that individuals have unique talents and

skills and put those to work

Enforce rules Impose consequences fairly and as necessary to

protect the agreed upon boundaries and build trust

Demonstrate commitment Live the policy statement

L
e
a
d
e
r
s
h

i
p

Share knowledge Tear down business silos and share information to

increase the strength of the team

Apologize well Sincerely and willingly admit fault

Practice forgiveness Support those who make the effort to apologize by

accepting the apology and move forward

Bite as a last resort Respond to threats calmly, methodically, and

rationally – the consequence must be appropriate to

the action

Use calming signals Understand and recognize distress, frustration, and

anger in others and work towards appeasement before

negotiating the situation

C
o

n
f
l
i
c
t

M

a
n

a
g

e
m

e
n

t

Part with emotion Realize that emotion and logic aren’t the best

combination and rely more on reason when making

business decisions

COMMUNICATION

Master the Art of Body Language

Dogs rely on body language, vocalization, and odor to communicate messages to other dogs.

This vocabulary is universally understood by both domestic and wild dogs across the globe.

Humans are not equipped to send detailed messages via scent, but we can, and do, readily

communicate with one another without saying a word. Young (2007) referred to this

communication as “micromessaging.” Micromessages are nuanced behaviors people blindly use

and react to in dealings with others. Dogs are masters at micromessaging and most canine

behaviorists attribute the dog’s success in cohabiting with humans to his careful and continuous

study of human body language.

85

The dhole is an African wild dog known as the “whistling hunter.” They typically hunt prey in

the bush and cannot see other pack members, so they have a network of whistles they use to

communicate with each other while surrounding their prey and coordinating the strike (Alderton,

1998). Wolves, who hunt large prey in packs, have well developed, long tails in comparison to

other wild dogs. These tails enable wolves to turn rapidly at high speeds but also help to signal

to other pack members during the hunt (Rogers and Kaplan, 2003).

Albert Mehrabian began experimenting with what he termed “silent messages” in the 1970s and

discovered that although consciously unaware of the signals, people were able to make accurate

inferences about a person’s feelings based on physical cues. Mehrabian’s (1971) studies

evidenced that human communication about personal feelings and attitudes consists of messages

from three sources, known as the 3 Vs (verbal, vocal, and visual). Of the three sources, body

language is the most powerful communicator (55%), followed by tone of voice (38%) and the

message itself (7%). The words people speak, therefore, have the least effect on an audience –

people rely on how the message is delivered more than the content of the message to understand

what is meant.

To hunt together in a pack, each dog must be comfortable with the others and able to accurately

predict their behavior. They accomplish this by bonding outside of their functional relationships

through play. When coworkers establish a close relationship, they come to understand each

other’s micromessages better than other peers due in part to the amount of exposure gained

through time, but also because they are sincerely interested in the emotional state of the other –

they become “tuned in.” (Young, 2007)

Give Undivided Attention

Domestic dogs are terrific listeners in spite of the fact they are not native speakers of the human

tongue. A dog who is listening will offer every ounce of focus he can muster, at least until he

spots a squirrel. If he is especially interested, he will tilt his head to one side. Whether he

understands the message is another matter, but we can be certain that our best friends will

happily set aside their priorities to be present and listen without judging.

Nodding, eye contact (without staring), leaning forward, and slightly tilting the head are all

signals to the speaker that what he is saying is being heard and processed (Pease & Pease, 2004).

None of these signals is effective, however, if the speaker is interrupted – allow him time to

finish his thoughts before contributing. Effective groups allow each member dedicated time to

speak.

Give and Receive Honest Feedback

Dogs, both domestic and wild, accept criticism as a tool for improvement. If a wolf does not

engage in the customary greeting rituals when a pack member passes, she will be immediately

corrected for the transgression. Likewise, if she witnesses behavior that violates the pack’s rules,

she is expected to provide feedback to the offending party (Steinhart, 1995). This constant

exchange of feedback allows for members to freely communicate to each other regarding how

well expectations are met without inciting violence. The pack relies on this kind of

communication to maintain cooperation, which ultimately defines its health and longevity.

86

The ground rules for a forming group should include the commitments to give and receive

feedback. Members who do not live up to the group’s expectations will be confronted and it is

the responsibility of each individual to see that undesirable behavior is immediately addressed.

This approach depends on trust in and respect for fellow group members. To let small problems

fester is to drive a wedge in the productivity and cooperation of a group.

Define Boundaries

Odor defines canine boundaries, which dogs indicate through “marking territory” with feces,

urine, or paw scratches. The scent glands on each paw pad and below the tail ensure each dog

has a distinct calling card. These odiferous boundaries politely communicate to other clans of

dogs that “this space is taken” and consequences are readily dealt to those who choose to

encroach (Rogers & Kaplan, 2003).

Office doors and cubical walls serve a similar purpose in the business environment. Employees

are most comfortable in an environment where they have some claim to physical space (Evans,

Johansson, & Carrere, 1994). People also wish to protect their emotional space, that is, they

want others to respect their personal boundaries regarding what they define as offensive. These

boundaries provide a safe haven, whether the threat is physical or emotional. It is necessary to

define expectations, or boundaries, when working with others so all parties understand where

they can tread without raising hackles.

LEADERSHIP

Concentrate on Progress, Not Form

A dog who recognizes the smell of bacon left unattended on the kitchen counter has one goal: eat

the bacon. If reaching the bacon requires breaking several dishes, bloodying a paw on the

rubble, and stepping on the cat for extra height, so be it. The important thing for her is to

achieve the goal, regardless of how the bacon gets in her tummy. It’s hard to fight instinct.

A leader who demands style in addition to success may reduce the group’s ability to achieve by

limiting their options for action. Had the bacon-stealing dog been concerned with minimizing

the damage to the other items on the counter, she may have missed her opportunity for bacon

because it would have taken her longer to focus on her form. When solving problems or

planning to achieve goals, employees need a bit of freedom to comfortably consider all options.

Imposing a requirement of method, while sometimes necessary, may constrict the group’s ability

to deliver. Additionally, if a group exceeds their defined goals but are chastised for how they got

there, they will be less motivated to achieve the target and more motivated to look good while

falling short of the goal.

Capitalize on Natural Talent

The biggest and strongest dog is not necessarily the one who leads the hunt. Dogs in alpha

positions are not only physically capable but (at the risk of anthropomorphizing) have qualities

people associate with ideal, natural leaders. As Meech suggested (Steinhart, 2005), alpha wolves

are those who are best able to bring harmony to the pack, not those who are the meanest and

most aggressive. The natural leader assumes responsibility for the pack and the remaining pack

members accept responsibilities in their areas of strength. The fastest runners serve as the

perimeter for encircled prey; the strongest take turns inflicting wounds.

87

Responsibilities within a group should go to those who can most readily perform them. Taking a

talent inventory during the forming stage or at the onset of a new group project allows the group

to capitalize on the talents its individual members possess that might otherwise go unnoticed.

Not only will the group learn more about its members, but the inventory will help place

assignments in the right hands. To ask the linear thinking accountant to design eye-catching

flyers for the upcoming holiday party is to invite frustration – she will be frustrated with her lack

of ideas and the group will be disappointed with her output. The lively office manager who

eagerly decorates for holidays and birthdays will likely plow through the flyer design with ease.

The accountant may be better employed creating a database of the employees and spouses who

plan to attend, along with their dinner choices. Recognize the talents within the group and make

use of them.

Enforce the Rules

The leader of any group must provide the behavioral example to be followed, and dog groups are

no exception to this rule. The alpha pair are responsible not only for demonstrating appropriate

behavior, but also for being the primary enforcers of the pack rules. As mentioned in Give and

Receive Honest Feedback, however, each member carries the responsibility of enforcing the

rules, regardless of station.

Group leaders must accept the responsibility of being the model of a contributing, effective

member, and with that comes the unpopular position of policing behavior. In a well-formed

group that has set clear expectations and ground rules, this effort should be minimal, especially if

teammates subscribed to the commitment to provide and receive honest feedback. Other

standard ground rules include bans on hogging (talking too much), bogging (discussing an issue

that’s already been addressed), fogging (avoiding, ignoring, ambiguity, or defensiveness),

frogging (hopping between subjects without finishing), flogging (personal attacks), and mad

dogging (interrupting or otherwise preventing people from speaking) (Lynch & Werner, 1992).

Demonstrate Commitment to the Cause

Wild dogs depend on their social groups for food, protection, shelter, socialization, and help in

caring for young and old family members. Wolves reaffirm their commitment to the clan each

time they engage in social behavior – it is required that all members routinely evidence their

commitment to the group and its members through adherence to the rules. Each member is

committed to the cause because the cause is survival; without this commitment the relationships

within the group would eventually deteriorate, leaving each dog to himself.

Forming a committee is hardly a matter of life and death but requires the same care and

commitment from its members in order to be successful. The members need to understand why

they were brought together and what they need to accomplish. A team charter can help to define

the group’s mission, products and/or services, and essential processes. The group’s leader must

see that every member of the team understands the purpose and direction of the group.

Share Knowledge

In order to ensure long-term stability and survival of the pack, wild dogs act on succession plans.

Puppies are reared with the utmost patience and are allowed ample opportunity to make

88

mistakes. They have the benefit of mentoring from the elders and ready access to the pack’s

leaders. When they are ready to apply their knowledge they participate in their first hunt. Those

who have knowledge share it freely with those who are learning.

When silo keepers participate in group work, they are reluctant to impart information specific to

their work areas. This silent barrier naturally impedes the progress of the group because not only

are the members operating at different levels of knowledge, but the persistent silos are at odds

with the team effort. Leaders who freely share knowledge set the example and expectation that

others within the group must do the same, whether through incorporating best practices or

communicating relevant data.

CONFLICT MANAGEMENT

Learn to Apologize

The canine language of appeasement and supplication is extensive. A dog who makes a mistake

may avoid eye contact, flatten her ears, flick her tongue, lower her head, or lie down. These

behaviors seek to make her visually smaller and puppy-like so she can communicate that she

understands her error and has no intention of causing additional trouble (Aloff, 2005). If she did

not offer these behaviors she would be immediately corrected in a manner appropriate to the

severity of the situation. When the apology is complete, the dogs carry on normal activity.

Humans, especially those in leadership positions, often resist apologies because they feel they

need to maintain a strong presence by denying fault (Dimitrius & Mazzarella, 1998).

Unfortunately this refusal to admit wrongdoing serves to weaken their image in the eyes of

others. The One Minute Apology by Kenneth Blanchard offers several compelling reasons to

apologize and outlines a simple program for making amends while building integrity. The

ability to acknowledge mistakes, especially those that affect others, is an essential component of

teamwork.

Practice Forgiveness

If a group is going to thrive in the long-term, for every apology there must be forgiveness. When

a dog offers an apology to another dog, they exchange signals that indicate the message was

received, understood, and accepted in the form of posture and lack of eye contact (Aloff, 2005).

The incident is not necessarily forgotten but is certainly forgiven, allowing both to move forward

without a second thought. As with apologies, the failure to forgive in a pack conflicts with the

rule of harmony and will be corrected appropriately.

Forgiveness is tied to Live in the Present – in order to forgive and put the past behind it is

necessary to live in the present. Team members who get hung up on who botched the lunch

order first need to reevaluate the priorities of the group (it’s likely that lunch will not be high on

the list) and then commit to achieving the group’s defined goals. Group in-fighting depletes the

amount of time and energy directed toward productivity. When a apology is offered, it must be

accepted in good faith and forgiven for the health of the group.

Bite Only as a Last Resort

When a dog is irritated with another dog’s behavior and asks for it to cease, he will first snarl,

lifting his lip to expose a few teeth. The other dog continues to invade his space, so the

89

frustrated dog escalates his warning with a wider snarl and begins growling. The inconsiderate

dog still does not acknowledge the message, leaving the warning bite as the last defense. The

defensive dog bites in the direction of the aggressor and may make contact, which communicates

the threat that will be realized without retreat. Should the other dog continue to encroach on the

first dog’s boundaries, a physical fight will ensue. Fights are typically bloodless but may

become more serious if the issue is especially sensitive (e.g., a mother protecting her puppies

from a canine predator is more likely to inflict and suffer injury than an older dog guarding his

bed from a pushy youngster). Considering that the canine mouth is built to break bones and tear

flesh, bloodless encounters are a remarkable demonstration of restraint.

Groups where members are at odds with each other are prone to ardent disagreements over small

details. A heated argument about using Arial versus Times New Roman in the group charter is

unnecessary biting and should be downgraded to a small snarl – the disagreement does not

advance the goals of the group and should be treated with attention relative to its importance.

Appointing a peacekeeper for group interactions can help teammates identify when the snarl-

growl-bite sequence happens too quickly and redirect the focus to productivity.

It is important to consider the perceived consequences of escalated warnings. If a group member

repeatedly snarls at a recurrent problem and fails to escalate to a growl, his snarls will become

meaningless and his coworkers will take advantage of his unwillingness to enforce his

boundaries. In order for people to respect the sequence of escalation, there must be an eventual

consequence if the problem persists. This practice may be difficult for exceptionally shy group

members and teammates should abide by their commitment to enforce the rules to assist the shy

person in defending his boundaries, if necessary.

Use Calming Signals

Calming signals are the canine toolbox for avoiding and resolving conflict. Rugaas (2006)

illustrated and explained about 30 known calming signals, such as sitting down, freezing,

yawning, head turning, and tail wagging. Offering one or a cluster of these behaviors is the

direct and polite way for a dog to express her uncertainty, discomfort, or nervousness or to

reassure a dog who may be feeling uneasy in her presence. These signals are subtle but well

understood and are usually mirrored to show that the message was received.

Appeasement behaviors in humans are similar to canine calming signals and include widening

eyes, exposing palms, and moving slowly (Pease and Pease, 2004). Widening the eyes to expose

the whites makes the eyes appear larger and more infantile, which elicits caring behavior.

Showing the palms of the hands and moving slowly demonstrate to the opposition that the hands

are free of weapons and there is no intention to sneak a physical attack, both measures that were

important signals when people dressed to anticipate combat at a moment’s notice. When a

coworker is on his way through the snarl-growl-bite sequence, trying experimenting with

calming signals to mitigate the threat he feels. Sit down, speak in a level tone, and use small

gestures (like open palms) when speaking. As the aggressor relaxes and feels less physically

intimidated, he will calm himself.

90

Part with Emotion

By and large, dogs get along with one another. When an socially ignorant dog takes liberties

with a “get to know you” sniff or approaches directly rather than curving his path slightly, he is

briefly corrected, apologizes, and is granted the opportunity to start with a clean slate. This ritual

occurs matter-of-factly and mature dogs are able to completely avoid or quickly resolve conflict

without escalation. Each follows the unwritten rules of canine etiquette and is not emotionally

tied to the situation by fear or anxiety because of his confidence in the system of communication.

Parting with emotion is closely tied to Learn to Apologize and Practice Forgiveness –

apologizing and forgiving are much easier if emotion can become secondary to reason.

Histrionics in the office are distracting, unproductive, and the hallmark of attention-seekers.

When dogs seek to eliminate unwanted behavior that does not directly violate a dog rule (and

hence warrant a correction), they ignore the behavior (Pryor, 1999). Puppies that repeatedly

jump and climb on an older dog to incite play will eventually give up and move on when they

realize they are not getting the desired reaction. This technique is quite effective in

extinguishing behavior, but in the case of a group meeting, a respectful correction may be

required when the antics violate a ground rule or otherwise interfere with the group’s progress.

To maximize the value of the correction, it is important that it be appropriate to the offense and

not emotionally charged.

WORK LIKE A DOG

Celebrate

The rapidly wiggling, wagging, licking, and barking frenzy that greets weary workers at the end

of a day is an elaborate greeting that celebrates the return of a pack member to the pack. The

length of the departure does not matter to the dog, who celebrates the return after a three-minute

absence with the same fervor as a three-week absence. As far as the dog is concerned, the

celebration is the same.

In recent years an email forward has made the rounds through cyberspace that describes a day in

the life of an average dog: “Breakfast! Oh boy! My favorite thing! A walk! Goody! My

favorite thing! Time for a nap! My favorite thing!” Not only do dogs celebrate the events in their

lives, however small, they do not skimp on joy. A puppy who masters a command in her first

obedience class wiggles in celebration when her person coos “Good girl!”; she does not postpone

her joy until she passes the end-of-class evaluation.

A project manager whose team has just completed the first of four phases of a software

implementation may postpone his joy and celebration to avoid later disappointment or jinxing

the project. He and his team therefore miss a valuable opportunity to celebrate their success and

build the motivation and momentum to achieve the targets for the remaining three phases of

implementation.

Live in the Present

If the bacon-snatching dog from Concentrate on Progress, Not Form is scolded for her crime,

she will apologize and attempt to appease. It is impossible to say with certainty, but she will

probably not dwell on the incident. While dogs do have memory of the past and the ability to

91

anticipate the future, they appear to leave the past behind them and plan to deal with tomorrow

when tomorrow comes.

In business it is necessary to take into account past events as well as make plans for the future,

and within a group this happens multiply because of the varied experience and perspectives each

member brings to the process. With so many considerations it is easy to become distracted by

last week or next year, but now is the time when the work gets done. Getting stuck in “we’ve

always done it that way” or procrastinating a vital action item until the next progress meeting

stand in the way of progress. Today is for making history, not reliving it, and if it is worth doing,

it is worth doing today.

Recognize that Even Buttholes Have Good Information

As mentioned in Define Boundaries, dogs use anal scent glands to communicate messages to

other dogs. Upon meeting new dogs or reuniting with old friends, dogs slowly circle each other

and sniff under the tails. This canine handshake and small talk exchanges information about age,

sex, and health, and for familiar dogs serves as verification of identity. Sniffing is the socially

acceptable, polite way to greet another dog. An approaching dog has a social responsibility to

acknowledge and greet each dog he comes across and learns things not obvious from

appearances. Because dogs rely so heavily on their olfactory sense for gathering information,

this nosey practice typically extends to other species, including people (crotch-sniffing) and cats

(butt-sniffing). They seek valuable information and do not appear to be picky about the source.

The butt-sniffing behavioral sequence serves as a lesson (not a literal one, of course) to avoid

judgment before reviewing the facts but also that unexpected sources can provide useful

information. Dogs are constantly receptive to information acquired through sniffing and treat

new situations as opportunities to learn. Members of a team may make unfounded judgments

about one another based on office gossip or general appearance and effectively close themselves

off from learning from each other. Everyone has unique experiences and recognizing the worth

those differences can increase the collective wisdom of the group. Teammates need to be open

to the potential of each member to contribute to the team’s success rather than automatically

discounting those who do not appear to fit in.

Ask for Help

Requests for help from dogs are most often observed in the canine-human relationship,

presumably because people have opposable thumbs. The “help me” gaze happens frequently

when a favorite toy rolls beneath the sofa, just out of paw’s reach. After staring at the toy,

attempting to cram her nose under the sofa, frantically checking other sides of the sofa to see if

the toy has appeared elsewhere, and returning to crouch in front of the sofa to make sure the toy

hasn’t moved, the dog will put on her best wide eyes and perhaps whimper a bit while she lifts a

paw. This cluster of behaviors is a clear cry for help and she does her best to appear puppyish to

incite caring behavior from another (human) pack member. In this case the caring behavior is

retrieval of the slobbery, squeaky fleece toy, which is received with celebration and great

appreciation. The dog was quick to recognize her limitation in this situation and asked for

assistance, which she rewarded with sincere gratitude. It does not appear that dogs keep track of

who owes whom a favor or the number of times a fellow canine asks for a helping paw.

92

In stark contrast, people are reluctant to admit they need help, even when it is painfully obvious,

to avoid earning a reputation as incompetent or weak. Employees tend to keep score of how

often others ask for a hand in completing tasks. They expect eventual reciprocity for services

rendered and keep a mental tally of “help debts” owed to them. These grudging behaviors

virtually eliminate altruism and divide groups by compromising trust and respect. Team

members are individuals and will therefore have different skills and challenges; as a team the

other members should eagerly provide support without judgment for those who need it for the

benefit of the team. Moreover, those who ask for help must also express their appreciation.

Learn About Teammates

The role of play in developing and maintaining relationships between packmates is integral in the

pack’s functional success (i.e., their ability to hunt large prey). All dogs mimic hunting through

play, from the great Dane who springs from side to side to disorient imaginary wild boars to the

Papillion who pounces on substitute mice. In the canine world play provides the practice

necessary to improve productivity and efficiency in work, and much of this is done through

teamwork. As mentioned in the introduction, dogs play together in part to learn about each

other’s reactions to different situations. Play increases the bond between pack members and

tighter bonds decrease dysfunction within the group (Rogers & Kaplan, 2003).

Starting meetings with a short play period may help the group develop an identity and build trust

and respect for each other. Members can share stories about their hobbies or the group can

participate in brief team building games. The camaraderie that comes with recognizing

teammates as distinct individuals will provide greater cohesion within the group as well as the

opportunity to have a bit of fun.

Shake Off Stress

Canines have the innate ability to recognize when the stress becomes too much them and they

then take the time to shake it off. They stop what they are doing and physically shake off their

stress from head to tail (Scholz & von Reinhardt, 2007). This motion provides a physical break

as well as a mental one – it signals to other dogs that “I’ve recognized my limitations and

understand I can’t do much else here. It’s time for me to move on.”

People are reluctant to signal their peers that they need to take a break – it’s commonly seen as a

weakness and self-indulgent, especially in the midst of a looming deadline. Taking time to

recover from stress is essential for continued productivity and health. Getting away from the

desk for a brief walk, a crossword puzzle, or even staying in the office to stretch can significantly

reduce stress and provide a boost of energy. There is no shame in recognizing limits, and groups

who push themselves through manic four-hour planning sessions also need to schedule time to

regularly shake off their stress.

CAVEATS

While dogs do have a knack for teamwork, they also exhibit behavior humans should avoid at all

costs. When dogs enforce rules, for example, they provide verbal (growling and barking) and

physical (bristling and snarling) warnings before striking. The notion of defining boundaries and

cautioning those who threaten to cross them is worthy of emulation, as is dealing consequences

when the boundaries are disregarded. Strict adherence to the canine method in this instance,

93

however, may cause injury and lead to incarceration – a physical response to a team problem is

simply not appropriate or acceptable.

A dog’s livelihood, whether domestic or wild, depends on his ability to get along with others,

which includes respecting authority, managing conflict, and communicating effectively. For

animals that live in groups and rely on others for safety and productivity, these skills are

essential and are selected for by breeding or nature. Although dogs naturally take to teamwork,

their abilities to solve complex problems through logic and innovation are inferior to those of

humans. As the more cognizant species, it is vital that the ideas presented in this paper be

evaluated for fitness of use before application – while the teamwork principles discussed are

neither new nor ingenious, they may not be appropriate in all situations.

CONCLUSION

The practice of cooperative and productive teamwork is essential in the business environment

that makes use of cross functional teams, self-directed teams, and special project committees.

While ample references and workshops exist for team building and group facilitation, their

analytical presentation style may be difficult for team members to recall, especially when they

need to apply the information.

Many of the reasons people include dogs in their lives are due to the behaviors and principles

describe here. They listen raptly when we need to talk about the problems we encountered at

work in spite of the fact they do not speak the language. They seek harmony in their

relationships and are willing to leave the past in the past. They liberally provide feedback and

clearly express their esteem (or lack thereof) of others.

Business people who have experience with canines can easily relate to the commonly used pack

behaviors for communication, conflict management, and leadership. With slight modifications

these behavior patters are transferable to work teams; the highly structured social lives of dogs

serve as models of successful teamwork. While the value of timeless group theories, such as

Tuckman’s (1965) stages of group development, are irreplaceable, the average dog-friendly

person may elicit more personal insight to group dynamics by asking “What would my dog do?”

94

REFERENCES

Alderton, D. (1998). Foxes, Wolves, and Wild Dogs of the World. New York: Facts on File.

Aloff, B. (2005). Canine Body Language: Interpreting the Native Language of the Domestic

Dog. Wenatchee, Washington: Dogwise Publishing.

Dimitrius, J., & Mazzarella, M. (1998). Reading People: How to Understand People and Predict

Their Behavior – Anytime, Anyplace. New York: Random House.

Evans, G. W., Johansson, G., & Carrere, S. (1994). “Psychosocial Factors and the Physical

Environment: Inter-relations in the Workplace.” International Review of Industrial and

Organizational Psychology, 9. 1-29.

Mehrabian, A. (1971). Silent Messages. Belmont, California: Wadsworth Publishing Company.

Lynch, R. & Werner, T. (1992). Continuous Improvement: Teams and Tools. Littleton,

Colorado: Qualteam, Inc.

Pease, A., & Pease, B. (2004). The Definitive Book of Body Language. New York: Bantam

Books.

Pryor, K. (1999). Don’t Shoot the Dog! The New Art of Teaching and Training. New York:

Bantam Books.

Rogers, L., & Kaplan, G. (2003). Spirit of the Wild Dog: The World of Wolves, Coyotes, Foxes,

Jackals and Dingos. Crows Nest NSW, Australia: Allen & Unwin.

Rugaas, T. (2006). On Talking Terms with Dogs: Calming Signals. Wentachee, Washington:

Dogwise Publishing.

Scholz, M., & von Reinhardt, C. (2007). Stress in Dogs: Learn How Dogs Show Stress and What

You Can Do to Help. Wentachee, Washington: Dogwise Publishing.

Smith, P. (1998). Rules and Tools for Leaders. Garden City Park, New York: Avery Publishing

Group.

Steinhart, P. (1995). The Company of Wolves. New York: Alfred A. Knopf.

Tuckman, B. W. (1965). “Developmental Sequences in Small Groups.” Psychological Bulletin,

63, 384-399.

Young, S. (2007). Micro Messaging: Why Great Leadership is Beyond Words. New York:

McGraw-Hill.

95

96

Testing for the User Experience

User Workflow Testing

By Lanette Creamer

lanette.creamer@gmail.com

Quality Lead-Creative Suites Business Unit

Adobe Systems, Inc

A
2008

97

Abstract
Customers who are delighted with a product or service are a magnificent asset which every
company wishes to retain and attract. Why? Because these customers will promote that product
to others. While we have many ways to test for code stability, features and functionality, there
aren't as many test methodologies that explore reporting on the overall user experience. The
way a user perceives quality is based on their personal experience and their ability to complete
the tasks they wish to accomplish, not based on how much of the code is working as expected.

In the majority of Quality Engineering groups the mission is to do an excellent job at reporting
bugs in assigned areas based on technical expertise and familiarity with that particular code.
Code coverage is becoming a more common measurement of testing excellence as is efficiently
completing a large number of test cases, or running tests based on models and use cases.
While these all can be useful ways to measure quality, if we fail to test the user experience we
risk shipping a product or service that causes a negative reaction from the very customers we
intend to delight. Testing collaboratively is one way to get a feel for what customers will
experience when performing a series of tasks which span more than one area or product.

This presentation discusses the practical approach that we've applied to testing collaboratively
for the user experience, which we call Workflow testing. Workflow testing methodology scales
from a use case all the way to testing across the Adobe Master Collection for CS3. Adobe has
used Workflow testing in a point product since early versions of Adobe InDesign and has been
testing features across the Adobe Creative Suites using Workflow exercises since the first
version. We’ll discuss how to get started with workflow testing and adapt the methodology to
suit your needs as well as how to generate excitement and participation from other people to
broaden your team's collaboration. Real examples of the results reported, features and
interactions covered, as well as some examples of output generated by CS3 testing will be
shared.

Having an efficient way to holistically report the user experience is an effective way to improve
overall product quality. This is especially true in multi-user scenarios which span many features,
different applications, and a myriad of operating systems. Workflow testing is fun, relevant,
educational, and can make the rest of your testing better as you take a new big picture
perspective back to testing a specific area or component.

Biography
Lanette Creamer has been with Adobe Systems since 2000 testing products such as Adobe
InDesign versions 1.5 through CS, Adobe InCopy 1.0, Shared Technologies across applications
like XMP, XML, WebDav, and has been working as the Quality Lead for the Adobe Creative
Suites Workflow Team since 2006. Lanette studied Graphic Design at Western Washington
University, but her true love was for Photoshop, Illustrator, and Pagemaker. After attending an
inspiring seminar at the CAST conference in 2007, she started a testing blog at
http://blog.testyredhead.com/ hoping to find other people who are passionate about
collaborative testing.

98

Introduction
Workflow testing is a collaborative exploratory test methodology intended to
uncover defects which may be missed by testing components and functionality in
isolation. It results in an overview of issues a user is likely to encounter when
producing output from software as well as information about the user experience
when performing a series of tasks to accomplish an end goal. Past data, careful
sampling of candidates representative of a larger user base, and informed
prediction of how future features will be used can help improve the accuracy and
usefulness of workflow testing. Workflow testing is intended to supplement
excellent test methodology already in place.

Some believe that coding is a requirement for being in Quality Engineering. We
believe that the ability to effectively represent users is a required skill for all
testers. Regardless of the tools we use to test, we still are ultimately responsible
for reporting problems with the software, and this includes reporting a bad
experience before our customers suffer the impact. Workflow testing exercises
are a chance to be creative, do exploratory testing, and learn more about users
and the products your company creates. When teams are siloed and only see the
next deadline, the big picture seems irrelevant. It is worth taking the time to see
the overall picture of how your product or area fits in to the work a customer
needs to accomplish as one piece of their day.

1.0 What is Workflow Testing?
1.0.1 Planned
A workflow is a set of connected steps to achieve an end result. As long as there
is more than one step, technically, most test cases could be referred to as a
workflow. In the context of workflow testing, we most often refer to the entire
series of steps to generate output of some form from beginning to end. End-to-
end workflow testing can give you a broad sense of the functionality, areas of
strength and weakness, and user experience of a feature, product, or set of
products. While many of us run elaborate scenario tests on our own, to
collaboratively test requires some planning. With test resources generally limited,
end-to-end user workflow testing which is based on real customer data is used at
Adobe to find bugs which may be missed by other forms of testing. The intent of
workflow testing is not to be exhaustive or provide maximum depth of code
coverage. It is intended to provide broad coverage in the areas which are most
vital to users.

99

being written as they are executed. [2] The workflow is a collaborative time
constrained effort. The workflow exercise ends, and wrap up and reporting tasks
begin when the allocated time is up even if some members have not completed
their tasks. Participants in workflow exercises follow a loosely defined task list
and complete the task with their own data in most cases, and often are choosing
between multiple paths to accomplish a task. The task completion is tracked so
that we can include those features in a future workflow to get the coverage we
need.

There are some competing priorities while participating in a workflow exercise.
The tasklist encourages testing variety and helps the software under test remain
the top priority as assigned tasks must be signed off with results when the
workflow exercise time is up. There is real output generated, but it is made clear
to all participants that the highest priority is important bugs and higher quality for
software rather than the output being generated. If we are unable to complete our
project due to data loss or performance problems the workflow exercise is still a
success in the goal to find serious user workflow bugs. The scorecard will then
highlight defects and design decisions which may seem less severe when not
considered in a user context. Likewise, the successfully created output can show
a tangible example of completed functionality. During CS3, we were able to
publish our entire newsletter across products in a pre-beta build. This was a
great stability increase from the previous version of the Creative Suite at the
same stage in the project.

Some tasks are assigned to everyone, while others are assigned to just a small
percentage of the overall representative user group participating in the workflow.
Depending on the workflow being represented, the output created may be a
scaled down model of what happens in the real world, or it could be true to size.

1.0.3 Documented Collaboration
An end-to-end Suite workflow exercise at Adobe starts with a schedule which
takes into account the testability status of the features and products under test so
that we can provide timely feedback for teams. Timing the workflow exercise is
helpful in providing new and useful information, as well as preventing needless
fire drills.

1.0.2 Exploratory
By its nature, although planned and based on as much user data as possible,
end-to-end user workflow testing is exploratory testing because test cases are

100

Figure 1. An example workflow schedule

Before the workflow kickoff meeting, the workflow leader generates a tasklist
which explains the roles, test environments, and products/features to be covered
as well as the output to be generated for the project. It does not include any test
cases, just tasks for a user to do. The tasklist will be completed at the kickoff
meeting with assignments, build information, and bug tracking data for that
workflow included. The builds and platforms are locked down as well as the
assigned tasks each participant will attempt to cover in the given workflow
exercise. Some flexibility is built in and all participants can add tasks at any time
to the list, but may not remove tasks as often we rely on deliverables from one
tester for the next tester to use while we are working together. We need to be on
the same build with stable deliverables to replicate most real world multi-user
scenarios. We do include legacy products in some workflows if customer
research shows it is commonly used.

Having tried multiple ways to track bugs through a workflow, it has been helpful
for us to take a collaborative approach with each product team so that they are
not surprised to get extra bugs from the workflow exercise. We invite each team
to contribute participants and let them know our plans in advance. Being
considerate of the team culture, and bug writing style can enable teams to take
over bugs that happen in just one product and verify and close them without help
from the workflow exercise participants.

101

The final piece of documentation generated is the “scorecard”. A scorecard is a
snapshot of what the represented user segment would experience trying to
accomplish the assigned task if they picked up that build (In our case, of the
Adobe Creative Suite, in other cases it could be of a product, a component, or
even an operating system). The rating system in the diagram is scientific and
based only on data.

The rating choices are as follows:

!. The area is in need of improvement. This means we found significant
problems.

!!. The area had a major problem, but a workaround exists. This means
we had to work around missing functionality, a crash, or data loss. In
cases it means we worked around an entire product not functioning.

!!!. The workflow was blocked. This means we could not continue with any
workarounds. If this status is showing up late in the project, because it is
based on real customer data and bugs found, it is taken very seriously by
everyone interested in quality, including project managers and upper
management. To avoid false alarms, we communicate with product and
component teams who are called out in the scorecard before we ever
publish them and we also have a column for notes indicating if the issue
is fixed in an upcoming build, and any status updates, as well as who to
contact regarding each serious issue.

Figure 2. An example workflow scorecard diagram

102

The subjective data included is generally a short paragraph about the experience
and is generally backed up by usability bugs. We keep the subjective data as
scientific as possible by including concrete evidence, such as percentage
faster/slower or time which could be gained by this customer segment per day for
performance bugs. Customer segment impact for usability problems, and
percentage of users likely to be impacted based on sales data if a problem is
specific to one test environment, platform, or application can also be helpful
information to help convey the severity of a bug. Because the scorecard is a
collaborative effort, agreement on the subjective data between multiple testers is
an important aspect of giving credibility to usability bugs.

1.0.4 Real World Results
A workflow exercise should result in content that the tester cares about that
makes sense for a user to generate. Even if the end-to-end workflow you are
testing is for a developer tool, it should result in a real application which is
debugged, compiled, and runs with a purpose far beyond “Hello World!”
Whenever possible it should be an application that you can personally use to do
something.

Working on something real helps you experience the user pain and delight.
When you are very close to your deadline and hit the error that makes you miss
it, the error becomes more significant; however, when you had a redraw problem
that did not seriously impact your work, it may seem less important than it did
when you were running tests in a different context.

Using content with a purpose helps you find throughput errors which could be
missed otherwise. For example, when your test photo came out a bit too blue in
printing, it was easy to overlook. Now your boss looks like a blueberry in the
company newsletter, and that printing problem has more impact. You can easily
imagine the reaction of a Sunday Newspaper with elected officials showing up
with blue skin. It saves the company money and the end user pain if we find
these bugs as early as possible. [1]

103

2.0 How is the Testing Done at Adobe?
The leader of the workflow exercise should be experienced in the products used and
familiar with the existing data in the areas being tested. Workflow participants should be
clear how much time they have to dedicate to the project and the commitment from their
manager that they can see the Workflow Exercise to completion of their role, including

Figure 3. Bugs

Here are few examples of the types of Suite level bugs found and fixed during CS3 workflow
test exercises.

a. Bugs in one product cause issues in multiple products.

Example: Product _________ crashes when opening from Application A, Application B,
and Application D.

b. Bugs occur when files from one application are imported into another. With the variety
possible with workflow testing, it is more likely to encounter a backwards compatibility
issue as some users move forward, while some stay on the old Suite to represent the
user who has not yet upgraded.

Example: Product E crashes when importing legacy files from Application A.

c. Bugs that result from using the products in a heterogeneous multi-user environment are
found when different operating systems are used and multiple users are accessing the
same files.

Example: Versioned publication does not update to new version when a remote user
steals the lock.

providing scorecard data. The most successful workflows that have happened at Adobe
involved tight collaboration, a strong leader, a well researched task list, and passionate
participation by all members. The members share the common goal of creating an
accurate scorecard with realistic output that is a model of work being published by our
customers, or that we anticipate they may make in the future given improved or new
features that we are developing.

2.1 Role of Workflow Leader
2.1.1 Research
Before a tasklist is started, the leader of the workflow exercise uses past data as
guidance. The leader will look for any information on customers currently working
in our product. This could be in the form of studies, user surveys, and customer
visits. Who is this group of users? What is important to them? What are they
creating? Who are the stakeholders they are responsible to?

104

2.1.2 Predictive Workflows
It is more difficult with new features, but as testers we often have use cases as
well as past data and can piece together logical combinations of how new
features may best fit into an existing workflow. Predicting entirely new workflows
which could be generated is worth the risk of testing inaccurately if it results in
preventing bad press, disappointed users, or brings to light other factors which
may impact the overall success of the product in the market.

When a product ships, it can be helpful to verify which workflows were accurately
predicted and compare that with workflows that customers did not use. It can
take several releases for new features to “catch on” enough that it is possible to
compare your predicted workflows with the feature in use.

2.1.3 Considering Risk
Some may wonder, with the inaccuracy of predicting workflows, why not run
known workflows only? We have customer feedback on existing workflows, but
very limited feedback on features not yet released and how they interact with the
current user experience.

Finding bugs that interrupt existing workflows due to feature creation or
modification can save your company costly mistake and dot releases. [1]

Example of risks found and addressed during CS3 workflow exercises ranged
from loss of an entire server directory by introducing corrupt file information from
one user that would download to multiple user accounts causing eventual server
failure and loss of ability to restore, to performance issues which happened only
when using multiple products with new shared technologies.

2.1.4 Publish Tasklist
Once the initial tasklist is created, it should be shared with all participants in the
workflow exercise. The workflow leader creates the tasklist, but all participants
have input.

2.1.5 Collaborate
When you receive feedback from participants and stakeholders, incorporate it
with the goal of the overall workflow in mind. While the process is collaborative,
the workflow leader has the final say in what remains in the tasklist. After all, they
have the most knowledge of the customer need and past usage in this area.

2.1.6 Hold Kickoff Meeting
The kickoff meeting is where the common vision of the task, full schedule, and
roles are assigned. The workflow leader will schedule and hold this meeting. In
most cases this takes about 30 minutes, but it could take longer at first. By the
end of the kickoff meeting, everyone knows their role in the workflow, what they
should deliver, and what build to install and which platform. The tasklist is then
published in its final form for everyone to refer to as needed.

105

Figure 4. A tasklist example from a workflow exercise (Continued on the next page)

106

107

2.1.7 Leader Participates
The leader is responsible for creating the scorecard, the tasklist, and doing the
upfront research, as well as staying in touch with other teams which may be
impacted, but they also act as participants during the workflow.

2.1.8 Help Isolate Bugs
Most of the information needed for participants is included in the tasklist, or is
communicated at the kickoff meeting, but if participants need help during the
workflow, the workflow leader is the first source of information and help.

2.1.9 Wrap-up
Driving the schedule and checking with participants is one duty of the workflow
leader. On the last day of the workflow, part of the day should be dedicated to
finalizing all bugs to be entered so that the scorecard can be created. The tasks
assigned to each participant will be signed off in the tasklist. Ask for subjective
data from the participants to include in your scorecard as far as “how was the
experience”. Part of the purpose of having a wrap-up time set aside is so that
participants can go over their notes and investigate any areas they felt compelled
to explore and perform some exploratory testing to flesh out any remaining bugs.
We use this wrap-up time as a way to keep the user first in our mind without
undermining the value of exploratory testing. Adobe consistently values
exploratory testing, and I believe it shows in the quality and success of the
released products. [3]

2.1.10 Creating a Scorecard
The scorecard is an overview that includes a diagram with simple ratings of 0-4
depending on what happened during that part of the workflow as explained in
section 1.0.3. The common themes in the subjective data are then compiled to
give an overview. Generally bugs are included only if they impact the overall
workflow. If it a bug is found in a product while testing that didn’t impact the
workflow progress overall, a bug is written to that product team and left out of the
scorecard to keep the overview as simple and direct as possible. It is aimed at a
large audience, and they tend to not read in depth information considering the
limited time.

The workflow scorecard should be equivalent to an “elevator speech” and it
should be readable at a glance. The first review for a scorecard is participants.
Send the scorecard first draft out for review and ask for feedback on typos, or
subjective data taken out of context. Once those changes are incorporated, look
for any products or bugs called out in the scorecard, and ask the QE Manager
and Project manager for a review. At Adobe, we have a “notes” section and ask
them to directly edit the scorecard with any notes they have. Generally the notes
specify if the bug is already fixed, or is under investigation to avoid false alarms.

108

2.1.11 Gaining support
Gaining support for workflow testing can be difficult with blackbox teams already
stretched to the maximum and a lack of knowledge on how to use the product
from whitebox testers. To gain support for workflow testing, we share the
scorecard, and invite people to join us in workflow testing exercises taking their
expertise into consideration, but also giving them some tasks which will take
them into unfamiliar areas or products for learning opportunities. For example, if
it is primarily a whitebox tester, we may provide them designs to modify and then
code into an application. If it is primarily a blackbox tester, we may give them a
code sample to modify but primarily design tasks.

It is often easier to build a coalition of the willing and avoid including
unenthusiastic participants in workflow testing. When we show what bugs were
found, and explain how little time it takes to participate and the advantages in
learning and networking, some people will respond and some will not. It isn’t
necessary for everyone to participate to have a very productive workflow
exercise. Ultimately, support from quality management is vital. If stakeholders do
not allow the time to plan, run, and then consider the results of workflow testing,
it will fail at the company.

I suggest running it on a “trial” basis, and then doing a survey. It is important to
find out if your workflow testing is spreading product knowledge, testing ideas,
and awareness of how changes in other products may impact users of testers
assigned to another product.

Was it fun? Did it wake up your brain? Did you leave with a big picture view you
hadn’t considered before? Did you get a chance to be creative?

2.1.12 Sharing the results
Who is interested in the state of the project? We share our workflow results with
all of those who make decisions on the Creative Suites, upper management,
engineering, and all of QE. We also publically post scorecards, tasklists, output,
and our schedule of upcoming collaborative workflows. All of the scorecards are
available and linked to the corresponding task lists online.

It helps to welcome comments and questions on the scorecards. It’s also fun to
share the output by posting printed items in public areas and sharing the URL of
web content created. Whenever possible, we create something that has dual
purpose, such as our quality newsletter or a web based testing tool of some sort.
This often gives us the chance to explain how it was created and share the idea
of workflow testing with others.

109

2.2 Role of Other Participants
2.2.1 Complete assigned tasks
Tasks assigned to individuals in the scorecard are signed off (initialed) as a sign
that they completed them at the end of the workflow as part of the wrap up
phase. If a user is unable to complete a task, a bug number is noted in the notes
section.

2.2.2 Test with a user mindset
The single most important responsibility of a workflow participant is to think, act,
and feel like the user. This is real content with a real deadline. It will not be
extended. If we cannot complete it, we failed to output our content. That is real
money lost. The user role is in the front of your mind as you test, not just finding
bugs. In this way, the testing varies from exploratory testing where your intuition
may take you down a different path. You are thinking like a user, not like a tester.
When you get that intuition, you take a note, and move on like a user trying to
meet a deadline would. Does this result in missed bugs? Possibly, but the
purpose of workflow testing is not to find the maximum number of bugs. It is the
find the bugs most likely to negatively impact user workflows. Those are different
goals. While the process is exploratory in nature, the user and content trump
finding the maximum bugs. We are going for high impact, high visibility, difficult to
find bugs, not edge cases and forced error conditions. Test creatively and with
care for noting bugs, but in workflow testing, the customer and the customer
content is the top priority.

2.2.3 Switch to tester mode
When a bug is found, use as much factual data as possible to properly isolate the
bug and communicate the user impact. It is important that workflow bugs are
properly reported and isolated so that they can be fixed and convey credibility.
Words like “feels slow” should be replaced with “Takes 10 times longer than the
last version” with the facts to back it up. The goal is a high quality bug report that
is clear, actionable, and delivered to the correct person for consideration. In
addition to getting bugs fixed, workflow serves the function of alerting technical
support when a tech doc may be needed. There may be workflow exercises that
happen after code freeze or even GM, but costs can still be mitigated by being
prepared with a response and workaround.

2.2.4 Report subjective data to the workflow leader
When the workflow leader asks for your comments, they want to know how it felt
as a user to experience your product.

110

Which parts worked well? What was difficult? Why? What would have made the
experience better? This information should be conveyed in a professional and
non-accusatory tone. It is helpful to include both good and bad experiences.

3.0 Conclusion
Workflow testing is a fun and educational way to collaborate with testers working on
various teams as well as a chance to learn what has been important to users in the past,
and what changes happening elsewhere may have impact elsewhere. While not
primarily a bug finding activity, it is intended to find bugs which will hamper existing user
workflows as well as predicted future workflows. As all of the products under test have
already been tested, it is possible that there would be a workflow where no bugs are
found during workflow testing. However, despite over 6 years of workflow testing, we
have not had even one workflow result in no bugs. In addition to finding bugs, it also
provides an opportunity to network and share knowledge across teams. The workflow
exercise results in a user focused overview showing working and blocked functionality at
a glance, which can be used to improve both feature and product integration. Subjective
usability data is also shared across teams before the product ships. Not only can
workflow testing be enjoyable, but the big picture thinking can inspire testers to create
new test cases and be more open to collaborating with other testers to get coverage
between areas and products. Workflow testing is a part of the success Adobe has had in
increasing sales and favorable reviews since the Creative Suite first shipped. [3]

4.0 References
[1] Software Defect Reduction Top 10 List By Barry Boehm and Victor R. Basili, January
2001 (Vol. 34, No. 1) pp. 135-137 from
http://csdl.computer.org/dl/mags/co/2001/01/r1135.htm.

[2] Definition of Exploratory Testing by James Bach from
http://www.satisfice.com/articles/what_is_et.shtml.

[3] http://www.adobe.com/aboutadobe/history/timeline/ October 2003, CS Ships. April
2005, CS2 Ships, March-July 2007, CS3 ships. Each Creative Suite generating more
sales than the previous version from CS to CS3 taken from public data including
http://news.cnet.com/8301-10784_3-9804379-7.html and
http://premium.hoovers.com/subscribe/co/factsheet.xhtml?ID=12518.

111

112

Software Testing as a Service (STaaS)

Author: Leo van der Aalst
1

Solution and Innovation manager at Sogeti Netherlands B.V.

1 Introduction

The importance of IT testing is growing. Some important drivers for this are:

• Higher business demands and expectations on ‘first time right’ software

launches.

• Legislation and regulations (e.g. SOX, SAS70, Basel II act and Clinger Cohen

act) put stronger demands on quality assurance and test processes.

• Mergers, chain integrations, globalization and technological developments lead

to more complex IT chains.

• Business demands swift, high quality and cost effective IT services that

contribute to business processes.

IT becomes a utility. The business departments’ demand guarantees from IT

services that IT implementations will not threaten business continuity. The business

department demands a test process which clearly demonstrates that requirements

have been sufficiently met, and that risks for deployment are acceptable. Testing

will become a utility also.

Test service providers who can offer the test process as demanded by the business

departments will be very successful, especially if these providers always: make the

client’s objectives highest priority and commit to focusing primarily on the success

of the client’s business. A robust and successful collaboration with the customer is

founded on the skills of the providers’ test professionals, highly industrialized test

processes, open communication and full transparency regarding objectives,

measurable results, responsibility, operation procedures and costs. The model to

support this all is called: Software Testing as a Service.

2 STaaS definition

Software Testing as a Service (STaaS) is a model of software testing used to test

an application as a service provided to customers across the Internet. By

eliminating the need to test the application on the customer's own computer with

testers on site, STaaS alleviates the customer's burden of installing and maintaining

test environments, sourcing and (test) support. Using STaaS can also reduce the

costs of testing, through less costly, on-demand pricing.

From the STaaS provider's standpoint, STaaS has the attraction of providing

stronger protection of its test approach and establishing an ongoing revenue

1

 Mike Roe, Brian Hansen, Rob Kuijt and Dirkjan Kaper; thank you for your input.

You were a great help!

113

stream. The STaaS provider may test the application on its own server or even use

a third-party application service provider. This way, the customer may reduce their

investment on server hardware too.

3 Drivers for STaaS adoption

The traditional rationale for test outsourcing is that by applying economies of scale

to the testing of applications, a test service provider can test better, cheaper and

faster than companies can themselves. STaaS could be the next step in test

outsourcing. Several important changes made to the way we work could make a

rapid acceptance of STaaS possible:

Everyone has a computer: Most testers have access to a computer and are familiar

with conventions from mouse usage to web interfaces. Therefore, the learning

curve for new applications is lower, requiring less handholding by the customer.

The testing industry has matured into a standard practice: In the past, executives

viewed corporate test centers as strategic investments. Today, people consider

testing to be a cost center and, as such, it is suitable for cost reduction and

outsourcing. IT is commodity � testing is a commodity!

Testing by companies themselves is expensive: In-source testing activities require

expensive overhead including salaries, health care, liability and physical building

space.

Standard test approaches are available: With some exceptions, testers can use a

standard test approach to test any application. Refer to TMap Next [Koomen,

2006].

A specialized testing provider can target global markets: A testing provider

specialized in testing widespread applications (packages) can more easily reach the

entire user base.

Security is sufficiently well trusted and transparent: With the broad adoption of

SSL, VPN and Citrix, testing providers have a secure way of reaching the

applications under test. This still allows the environments to remain isolated from

each other.

Wide Area Network's bandwidth has grown drastically: Added to network quality of

service improvement, this makes it possible for testing providers to trustfully

access remote locations and applications with low latencies and acceptable speeds.

IT as a utility ensures the customer that test environments are no longer scarce

and mysterious environments that must be carefully managed. Therefore, test

environment capacity can be quickly increased and decreased without upfront

investments.

114

4 STaaS process

As said: Software Testing as a Service (STaaS) is a model of software testing where

an application is tested as a service provided to customers across the Internet.

The customer has a test demand. The demand is

sent through the internet to a STaaS provider.

After a certain time the STaaS provider sends the

customer a test report (figure 1).

What happened in between? How did the provider

deal with the test demand? For instance did the

provider use a ‘real-time STaaS’ or a ‘real-enough-

time STaaS’? In addition, how did the provider

deal with other challenges like test infrastructure,

24/7 availability and the communication between

customer and himself?

Web interface

In a real-time STaaS (figure 2) the test demand is implemented without human

intervention by the provider. In the ultimate form of the real-time STaaS a test

object (e.g. application software), including test bases (e.g. requirements, use

cases, set of heuristics), design and architecture model, is offered to the STaaS

provider. Without human intervention this is implemented in a test environment.

The entire amount of testing is performed by human simulators against the model

and a neural network forecasting. A test report is sent to the customer. Is the

above-described real-time STaaS science fiction? Yes, for this moment anyway.

Perhaps in the future?

Figure 2: Real-time STaaS.

115

Examples of today’s existing real-time STaaS are:

• Regression subscription to periodically checking the external and internal links

on a web site. Are the links for instance still working correctly and not broken?

• Regression subscription for application interfaces in a suite of applications.

Monitoring the health and functionality of the application landscape.

• Periodically, from various locations (worldwide), execution of performance

measurements of a web site.

• Testing of SaaS applications through STaaS (e.g. web services collecting

interest percentages or license plate data).

In a real-enough-time STaaS (figure 3) the test demand often requires human

intervention in the workflow. The demand is carried out, behind the ‘scenes’, by

many humans, through which it appears as if the test demand is carried out by

computers. By its very nature, this introduces a latency and unpredictability to the

STaaS process.

Figure 3: Real-enough-time STaaS.

Examples of existing real-enough-time STaaS:

• Work Package (WoPa) broker. Through a formal test demand mechanism

everything about the assignment is specified in a WoPa. This includes items

such as; what should be tested, how and when, what criteria should be used,

and what knowledge is necessary. The WoPa’s are stored in a kind of virtual

(digital) cupboard. The WoPa can be pushed by the WoPa broker to, or pulled

by, a tester or WoPa team that possesses the sufficient means to carry out the

WoPa. The WoPa serves as the contract between customer and provider.

• Managed Testing Services (MTS) is the structured form of a WoPa broker who

is specialized in a particular client or application. Through MTS the provider

takes full responsibility for test assignments, with clear commitments

expressed in KPI’s on quality, cost level and time to market. MTS is organized

in so-called test lines. A test line is the operational organization to provide test

services to one or more customers. A test line has a fixed team of testers,

infrastructure, test tools and standardized work procedures. Every test line has

a permanent key team of testers that ensure continuity and knowledge

retention. There is also a flex team. When the work available in their test line is

insufficient, the flex team is assigned to other test lines (temporarily). It is a

flexible pool of testers deployed to test lines with the most work pressure.

116

Test infrastructure

With STaaS it should be possible to test an application from all over the world,

regardless of the location of the tester and the customer. This requires special

attention to the test infrastructure. Figure 4 “Test infrastructure” below contains an

existing and operational infrastructure used by a provider.

Figure 4: Test infrastructure.

The tester (either from home or provider office) has a remote connection tool on his

computer with which he or she can establish a VPN connection to the connection

broker of the provider.

Based on a certain classification, the tester is assigned a desktop and the VCMS

prepares this desktop ready for use (e.g. VMWare Test lab manager). These virtual

workstations are hosted on a server farm at the providers’ location.

In case a connection with the customer is needed, a secure tunnel is set up. E.g.

virtual workstations are placed in a DMZ and from the virtual workstation a second

VPN connection is established to the customer.

In this way multiple customers can be connected, each with its own virtual

desktops. Security is guaranteed in this way.

Other possibilities are:

• hosting of the test infrastructure by the STaaS provider

• outsourcing of the test infrastructure to a third party hosting provider.

117

24/7

When it is possible to test an application all over the world through the internet, the

provider and his testers should be available 24/7. In this situation a test demand is

not rejected just because it is night at the location where the provider is situated.

The provider needs a broad network of testers spread all over the different time

zones or needs testers available 24/7 in a specific time zone. Because the demand

for testing services will fluctuate, it is recommended that the provider have a fixed

pool of testers and a pool of flex testers (figure 5). In practice students have

proven to be very suitable as flex testers; they like to work in virtual environments,

are time-independent and location-independent and can be paid per assignment.

Figure 5: Fixed pool and flex testers.

In addition to the fixed pool the flex testers cover the required flexibility to cope

with peaks and variation of required workload. Assignment of the flex testers is

based on the planned test capacity demand and agreed reaction times. Learning

time of flex testers is relatively short due to the provider’s standard working

practices. In principle the flex testers leave the fixed pool at the end of the peak.

Of course, using test tools and test automation could also support the STaaS

providers’ 24/7 availability.

Governance model (test demand test supply)

The STaaS provider has to distinguish various interaction points where the

customer and provider interact and communicate. Figure 6 “Governance of a test

line” gives an overview of the generic governance model used by a STaaS provider.

• Customer contract manager Provider delivery manager.

Agreement on a strategic level regarding contracts and SLA. At this level there is

a responsibility for setting up the contracts and SLA.

• Customer manager test services Provider test line manager.

Set up and maintain the standard procedures and KPI’s. Initiate and start work

packages.

• Customer project manage Provider test manager.

Planning and monitoring progress of test activities. Progress reporting, defect

reporting and management. Delivering the conclusive test report after finishing

the test.

• Customer development teams Provider test coordinator.

Findings after the testability review are reported. If required testers and

118

designers meet in a session to clarify the findings. The result is a clear

unambiguous test basis.

• Customer development teams Provider test coordinator.

Intake of delivered software. The initial test is performed on the basis of agreed

entry criteria. Issues regarding the initial test are reported to project

management and development. If required a meeting is set up to clarify issues.

The result is a system with sufficient quality to start test execution.

• Customer development teams Provider test coordinator / test engineer.

Retest of resolved defects. Through a delivery document the developer lists

which defects are resolved in the new build. This document is the basis of the re-

tests.

Figure 6: Governance of a test line.

119

5 STaaS provider services

A service item is a certain element of the test process offered to the customer for

which the STaaS provider is responsible. These service items can be highly varied.

Moreover, the established service offering can be modified when new services are

proposed or existing ones are eliminated. The STaaS provider must deliver a result

based on the demand. The delivery must occur within the pre-defined timeframe, at

pre-defined costs, and at a pre-defined quality level. The provider is responsible for

guaranteeing continuity in delivering the result.

Some typical service items are (in alphabetical order):

• ‘chain integration’ testing

• creating test scripts

• evaluating test basis

• executing tests

• infrastructure testing

• Installation testing

• localization testing

• management of defects

• performance testing

• reporting

• security testing

• setting up and maintaining test data

• setting up, maintaining and hosting test environments

• test automation

• testability review

• testing of standard packages

• testing of web applications.

120

6 STaaS provider process model

A number of processes have to be set up by the STaaS provider to offer the

services. The STaaS provider process model (figure 7) consists of two parallel

primary processes:

• The process for the actual execution of the service in an assignment.

• The process that supports and monitors the execution.

The processes serve to support the assigned employees’ collaboration needed to

accomplish the contracted services. The processes are described in detail below.

Figure 7: STaaS provider process model.

Initiation

This is the first phase for execution of the assignment. The assignment always

comprises one or more services tailored to the customer’s specific demand. The

initiation phase serves to describe the scope of the assignment accurately. This can

be done by creating a so-called assignment description and optionally asking the

customer to approve it. An assignment description concretely describes:

• the STaaS service asked for, including preconditions and basic assumptions

• clear commitments expressed in KPI’s on quality, cost level and time to market

• the agreements on monitoring by the STaaS provider in relation to

communication lines, progress reporting and consultation

• the deliverables.

Furthermore, the initiation phase is used to identify what is available in the

provider’s organization for (re)use on behalf of the assignment. This may include

templates, standards, existing test scripts or test design patterns from previous

assignments, test environments and tools.

In more detail: Test design pattern

121

A test design pattern is a generic set up test structure and/or test strategy, which solves a specific

common type of test design problem. Test design patterns are generically described, offering the

advantage of a recognizable solution pattern, regardless of the implementation details. Using test

design patterns accelerates the communication of a test assignment because the solution of a common

test design problem has, in fact, been given a “name”.

Execution

In this phase, the assignment is executed in conformance with the agreements with

the customer as described in the assignment description. Furthermore, the parties

communicate via the agreed communication lines on the results, progress, risks

and bottlenecks in the execution of the assignment.

Completion

Reuse of resources is one of the success factors of the provider. In this phase, the

assignment is assessed and a satisfaction measurement made with the customer.

The lessons learned from the assessment are fed back into the provider’s

organization and incorporated into the (new version of the) service. This results in

formal process improvement embedded into the processes of the provider’s

organization.

Support and monitoring

The provider continuously supports and monitors the assignment process as

described above. The progress, risks and bottlenecks involved in the execution of

the assignment are monitored. Where and when necessary, the involved parties

reach new agreements on the assignment.

Delivery management

This process covers activities that aim to acquire assignments for the provider and

manage (long-term) relationships. Examples are maintaining the test environment,

repeated testing of releases, and live monitoring of applications.

A contract is created to govern how both parties will handle the assignment. It

specifies agreements on the service level provided by the provider.

Planning

The planning process ensures that the right tester is deployed to each assignment.

‘Right’ in this context means that the knowledge and competencies of the tester

match the knowledge and competencies required for the assignment. Other

planning aspects are:

• required availability of the tester (during working hours, weekends, 24/7)

• required or available location (office, home, off-shore, near-shore, on-shore)

• technology (bandwidth and processing power availability).

Service management

The range of services provided by the STaaS provider is not set in stone – it may

grow or recede. To this end, it must be determined periodically whether the current

service offering is in line with the requested services. In addition services must be

known (to the customer, assignment management and tester) and the products for

the services must be up-to-date and in line with the latest developments.

122

Human resource management

The process of human resource management aims, among other things, to

continuously develop the skills and career of the provider’s testers. This requires

matters like defined job positions with associated competency, continued training

and remuneration levels.

Financial and operational management

Financial management is a continuous process based on budgeting (what are the

expected costs and benefits) and monitoring (what are the actual costs and

benefits). Operational management can be executed based on many factors.

Examples of these factors are:

• the percentage of assignments completed within the agreed key performance

indicators (KPI’s) on quality, cost level and time to market

• the percentage of test services acquired as compared to test services acquired

by competitors.

7 Achieved results by a STaaS(-like) provider

A STaaS managed test services provider with 300 testers, 20 clients and 18 test

lines achieved the following results in the first year of its existence:

• proven test cost reduction

• demonstrable improvement of quality of testing, test process, test deliverables,

test results and flexibility of test operations.

Optimization of costs was expressed in measurable improvements of test costs,

measured in agreed units. Units could be test costs per function point, per

requirement or could be expressed as a proportion of test costs versus total project

costs. After agreeing on the measurement unit the STaaS provider performed a

zero-measurement to establish the starting situation.

In the experience of a particular provider, managed testing services have been

yielding the following results:

• 10% reduction of test costs per test unit within 6 months

• 15% reduction of test costs per test unit within 12 months

• 25% reduction of test costs per test unit within 24 months (forecast).

The provider committed itself to key performance indicators that were directly

related to customers’ business objectives.

Figure 8 “STaaS MTS results” shows the business objectives related to agreed

(“Target”) and achieved (“Score”) KPI’s.

123

Figure 8: STaaS MTS results.

The test cost reduction was achieved through the following measures:

Measure Short explanation Level of cost reduction

Resource

rationalisation

Assign tasks to employees with matching

seniority level. Focus on healthy ratio for test

management vs. test coordination vs. senior

test engineers vs. junior test engineers.

Sufficiently lean core

team

The size of the key team is adjusted to the

highs and lows of the mid term forecast in

such a way that the average level of

occupation for the key team is > 95%.

Alternatives for idle

time

Within testing dealing with idle time is a

common phenomenon. Idle time for a test

team can rise to 20% of the test effort. By

using the economies of scale of the test line a

very flexible process is set up that allows

prompt re-assignment of testers to other

projects in the case of idle time. In practice

the test line has proven to reduce idle time to

a level below 5%.

Combined these three

measures have led in practice

to cost reductions of 5-15%.

Uniform process Install a uniform test process, with

standardized test products and procedures.

Maintain a key team to use and re-use the

process and test deliverables in multiple

By installing a uniform test

process team cost reductions

up to 5% of original test costs

have been achieved.

124

projects

Test automation Proper use of test automating contributes to

test cost reduction.

Test automation has resulted

in cost reductions up to 5% of

original test costs.

Near shoring and off

shoring

Through off shoring and near shoring testing

activities are transferred to regions with lower

cost rates.

In practice the amount of off/near shoring

depends on certain conditions and varies from

0% to 70% of all testing activities.

Taking into account the

investment cost (translations,

remote connections, extra QA

and communication effort) test

off shoring has resulted in cost

reductions varying from 10%

to 30%.

8 Conclusion

Benefits of STaaS

Thanks to survival of the fittest, STaaS is forced to provide its customers the best

full test service solution because STaaS providers have to compete with other

STaaS providers. Therefore, these providers have to make sure they:

• use the scarce expertise on structured testing, infrastructure and tools

optimally

• improve the test processes continuously

• have international professional test capacity available

• industrialize the test services (‘test factory’)

• produce reliable test product quality

• give advance insight into costs and running time.

The STaaS provider takes full responsibility for test assignments, with clear

commitments expressed in KPI’s on quality, cost level and time to market. A

solution should be available for single applications, full projects, and portfolios.

STaaS leads to cost optimization as well as demonstrable improvement in quality of

testing, test process, test deliverables, test results and flexibility of test operations.

Challenges of STaaS

A STaaS provider must devote continuous attention to a number of challenges.

Managing these challenges is critical for the provider's long-term success:

The provider must determine on a continuous basis whether the services offered

still match the customer’s demand. The customer, not the provider, determines the

required quality level.

The professionalism of the provider is based on the knowledge and competency of

the testers on the one hand, and the stability of the tester population on the other.

If there is a continuous inflow and outflow of people in the ‘pool of testers’, there is

no stability and no solid basis for knowledge building.

Often, an important objective defined for the provider is cost savings. One way to

achieve this is by archiving test ware, test data, and test infrastructure for reuse.

125

Continuous attention to optimizing, organizing, and refining test objects as

intellectual property is critical.

As a provider, it is important to render an objective assessment of the delivered

software or hardware, independently of the customer. On the other hand, the

customer may have other interests (less costs, short time-to-market). This is an

important challenge that may pose contradictions.

The test basis (e.g. requirements, use cases, design specifications, heuristics)

should be available in English or translatable into a language which is understood

by the testers. Preferably in a clear and simple form using tools such as

QualityCenter Requirements or Rational Requisite Pro.

If the quality of the test basis is inadequate, an alternative way to gain domain

knowledge is needed.

And last but not least, test environments should be accessible from various

locations.

Reference

• [Koomen, 2006]

Koomen, T., Aalst, L. van der, Broekman, B., Vroon, M. (2006), TMap Next, for

resultdriven testing, ’s-Hertogenbosch: Tutein Nolthenius Publishers, ISBN 90-

72194-80-2

126

Title: Is your Testing Effective and Efficient?

Author: Bhushan B. Gupta

Affiliation: Hewlett-Packard Company, 18110 SE 34
th

 Avenue, Vancouver, WA 98683

Email: Bhushan.gupta@hp.com

Biographical Sketch:

Bhushan Gupta has 23 years of experience in software engineering, 13 of which have

been in the software industry. Currently a Program Manager/Test Lead in the RPS group,

at Hewlett-Packard, he joined the company as a software quality engineer in 1997. Since

then he has led his groups in product development lifecycles, development methodology

and execution processes, and software metrics for quality and software productivity.

As a change agent, Bhushan Gupta volunteers his time and energy for organizations that

promote software quality. He has been a Vice President, a Program Co-Chair, and a

Board Member of the Pacific Northwest Software Quality Conference. He offers a

workshop titled “Engineering Software Quality” at the Center for Professional

Development, OHSU, for software quality practitioners.

Bhushan Gupta has a MS degree in Computer Science from the New Mexico Institute of

Mining and Technology, Socorro, New Mexico, 1985.

Abstract

Adequate testing is much more difficult when your product involves multiple facets such

as software, hardware, Other Equipment Manufacturer (OEM) components, and industry

compliance including safety and environment. Test coordination is more complex as

there are multiple teams engaged in testing the product. It becomes increasingly difficult

to ensure that all facets of the product are tested and there is no unintended test effort

duplication.

The Retail Photo Solutions (RPS) group at Hewlett-Packard has developed a test

planning method termed “Test Landscape” that assures a high level of test effectiveness

and efficiency and yields a high quality product. It defines testing scope, identifies test

ownership, and tracks test coverage and status across multiple development stages and

quality attributes. The method involves identifying the quality attributes, such as

Functionality, Usability, Reliability, Installation/Deployment, Safety, and Regulatory,

that must be tested. These attributes form the horizontal test vector. To make sure that

the product components are adequately tested before they are integrated, a vertical test

vector representing development stages including Unit, Module, Component, System,

and Solution and Beyond is also established. The two vectors combined yield a test

matrix – the Test Landscape. The method is being used by the RPS group and has made

test management simpler and efficient, while also enabling management to have more

confidence in the testing process.

127

Introduction - Background and Challenges

The Retail Photo Solutions group at Hewlett-Packard develops solutions that enable the

consumer to produce memorabilia such as calendars, posters, and albums from their own

photographic work. The solution is comprised of:

• A software component that assembles images into the desired memorabilia format

using image input devices (scanners, kiosks, memory cards etc.)

• Printing devices both HP and non-HP

• Production equipment such as CD/DVD for archival.

This is a global business so the solution must be localized and internationalized. Being

global, it also has to comply with each country’s regulatory requirements. The solution

includes the OEM software and hardware components that are subject to the same

standards of quality as the in-house components. The software and hardware

development is co-located on multiple HP sites in North America and Europe.

This complex nature of the product makes its testing increasingly difficult. In particular

the group faces the following challenges:

• Avoiding testing an integrated system before its individual components are

sufficiently tested and stable

• Covering both the customer and the international regulatory perspective

• Optimization of overall testing to avoid test duplication

• Conducting the right testing at the right time in the development lifecycle, across the

various stages of integration form component to solution.

Relevant Definitions

The following definitions are relevant for the foundation of this work:

Effective Testing: The test plan and its execution assures a minimal high priority defects

found in the field

Efficient Testing: There is no unintended duplication of testing efforts

There are situations where some test duplication may be unavoidable. For example, a

user interface is included in two different platforms supported by the solution with a

slight variation. Both platforms will need testing, resulting in some duplication. We

came up with the test landscape concept and used it as the primary method for organizing

and communicating our test planning among the multiple involved groups.

Framework for the Test Landscape

The two vectors that define the test landscape are the product quality attributes and the

different levels at which these attributes must be tested during product development. The

quality attributes are the product characteristics in addition to functionality that a product

must posses to provide value to its users. These characteristics include but are not limited

to installation, usability, performance and form a sound basis for the product quality.

Gupta and Beckman [1] have discussed the prominent software quality attributes. The

128

following table lists the important attributes and their definition from the sources

highlighted in the table which the team used for this methodology:

Attribute Definition Source

Functionality The capacity of a solution to provide its

required functions under stated conditions

for a specified period of time

Webster Dictionary

Usability The extent to which a product can be used

by specified users to achieve specified goals

with effectiveness, efficiency and

satisfaction in a specified context of use

ISO 9241-11

Reliability The ability of a solution or component to

perform its required functions under stated

conditions for a specified period of time

IEEE Standard Computer

Dictionary, 1990

Installation The capability of the software product to be

installed in a specified environment

http://www.isi.edu/natural-l

anguage/mteval/html/222.ht

ml

Localization Means of adapting for non-native

environments, especially other nations and

cultures

http://en.wikipedia.org/wiki/I

nternationalization_and_loca

lization

Regulatory Legal restrictions promulgated by

government authority

http://en.wikipedia.org/wiki/I

nternationalization_and_loca

lization

Security Condition of being protected against danger

or loss

http://en.wikipedia.org/wiki/I

nternationalization_and_loca

lization

Compatibility Exist or function in the same system or

environment without mutual interference

http://en.wikipedia.org/wiki/I

nternationalization_and_loca

lization

Table 1. Quality Attributes Used to Define the Landscape for a Photo Kiosk

This work provided the initial framework for the landscape and we also added Safety

since it is relevant to the hardware devices. Generally the set of attributes that should be

included in defining this vector will vary from product to product and business needs and

should be carefully selected to get an optimized set. Wiegers [2] has provided a list of

non-functional software quality attributes with the usage guidelines.

The second vector in the Test Landscape is the time during the product development

when the testing should be conducted. This vector may vary depending upon the type of

product, software vs. hardware, development methodology, iterative vs. sequential, and

the specific shop practices followed by an organization The following diagram describes

the main elements of this vector for a typical waterfall software development lifecycle:

129

In this model integration testing happens at multiple levels as the development proceeds.

The development stages can be customized for a particular environment to make the

qualification more granular if desired. Craig and Jaskiel [3] and Kaner et al. [4] have

discussed various testing stages during software development. The granularity does

come at an added cost of qualification for the extra stages.

The two vectors, when combined together, result into the following Test Landscape:

 Functionality Usability Installation Localization

Components

Subsystem

System

Solution

Table 2. A Simple Test Landscape Showing Horizontal and Vertical Vectors

Our Experience

As discussed earlier, the RPS has a very complex product that includes software,

hardware, and the OEM products. In addition, the development is based in the USA,

Germany, and UK with each location having its own test team. Since the product is

marketed internationally it is important to qualify it against the regulatory requirements.

The development is primarily waterfall with multiple test-fix cycles after the

“functionality complete” milestone has been reached.

The solution components are tested by the individual development teams at different

levels i.e. subcomponent or unit, subsystem or module and system. Printing devices are

also individually qualified for performance, reliability, and regulatory as needed. Since

the teams are globally dispersed the testing is carried out in multiple places. A high level

of coordination is essential for a successful overall solution testing.

Components

Subsystem

System

Solution

Figure 1. Test Types during the Product Development Stages

Time in Development Cycle

130

The Quality and TCE (Total Customer Experience) director organized a taskforce to

develop a test strategy to assure that:

• The testing was effective with no high priority defects found in the field meaning

no test escape

• The testing was efficient to optimize the qualification cost

• The product had the intended quality measured against the release criteria.

The taskforce included stakeholders from development, quality assurance, custom

product engineering, service and support, regulatory, and human factors engineering.

Since the group consisted of development and test managers and leads from multiple test

areas a general discussion started around what attributes should be tested and who should

own what level of testing.

HP has well established test attributes and it was easy to create a basic attribute list that

included Functionality, Localization, Usability, Reliability, and Performance as listed in

Table 1. The subject matter experts from Service and Support and Regulatory brought in

their perspectives which led to the creation of a broader well rounded list of attributes.

An organization can build its own list of attributes that adequately characterizes the

product quality.

The group then started to discuss different stages in the in the development when these

attributes should be tested. Since the solution is made up of hardware, software and

OEM products, the levels had to represent all the stages involved in each development.

The OEM products could only be tested at the system level while the hardware and

software testing could begin as soon as a component development was complete. There

was no clear consensus on the stage names or definitions and the team struggled in

getting alignment on characterization of these stages. Finally an agreement was reached

to use the simple notion of levels (Level 1, Level 2 etc.) to match the development stages.

For example Level 1 represented the Unit/subcomponent, Level 2 the

module/subassemblies and so on and so forth. The equivalent of levels is shown in our

tables to avoid confusion.

The quality attributes and the test stages together provided the framework for the

landscape. We used the landscape table to assign and agree upon ownership of testing for

each attribute at each level. The group developed a landscape for each component

especially hardware and an overall landscape at the product level to provide efficient test

planning at all levels.

Table 3 shows a complete test landscape for a printing device that was a component of

the solution.

Functionality Reliability Serviceability Performance Regulatory Safety Output

Quality

Subcomponents Dev. Team Dev. Team CPE Dev. Team NA Dev.

Team

Dev. Team

Component Dev. Team QA CPE QA + Dev.

Team

QA QA Dev. Team

131

System Dev. Team +

QA

QA CPE Dev. Team +

QA

QA QA Dev. Team

Solution QA UNKNOWN NA CPE NA NA CPE

Alpha CPE CPE CPE NA NA NA NA

Beta Retailer Retailer Supp UNKNOWN NA NA Supp

Acceptance Retailer Retailer Supp Supp NA NA Supp

Table 3. Test Ownership of a Printing Device

The abbreviations used in the table are:

Dev: Product Development

QA: Quality Assurance

Supp: Customer Support

CPE: Custom Product Engineering

NA: Not Applicable

Both Beta and Acceptance test stages are focused on testing on the retailer site for the end

customer use.

Some typical characteristics of the landscape during component development are:

• The Development Team has a heavy role to play in the beginning and their

involvement decreases as the component/product development matures. At the same

time, the involvement of other specialty teams increases as we move towards the final

product. This is often the case as the components are assembled and the solution

starts to exhibit end-product characteristics such as Usability, Performance that

require testing by subject matter experts.

• There may be unresolved areas of testing that still need to be finalized. They are

highlighted as UNKNOWN and can become potentially critical issues if not resolved

early in the program.

The same test landscape can also be used to communicate test status, as shown in Table

4. Once again the component is a printing device (same as in Table 3).

Reliability Performance Regulatory

Subcomponents

Finisher QA – behind schedule Dev. Team + QA – behind schedule QA – on track

Engine QA – on track Dev. Team + QA – behind schedule QA – on track

Component

Printer QA – behind schedule Dev. Team + QA – behind schedule QA – on track

Table 4. Tracking Status for one of the Components of the Photo Kiosk Solution

Table 4 is a snapshot at a milestone in the product development lifecycle where the

component was being evaluated. The information was used as a part of the dashboard to

inform the upper management.

132

Table 5 represents the solution test landscape for the product.

Functionality Reliability Serviceability Performance Regulatory Security Output

Quality

Subcomponents NA NA NA NA NA NA NA

Component NA NA NA NA NA NA NA

System NA NA NA NA NA NA NA

Solution CPE CPE UNKNOWN CPE NA UNKNOWN CPE

Alpha CPE CPE UNKNOWN CPE NA NA CPE

Beta SUPP SUPP SUPP SUPP SUPP SUPP SUPP

Acceptance Retailer Retailer Retailer Retailer Retailer Retailer Retailer

Table 5. Photo Kiosk Solution Test Landscape

The attributes at the levels prior to the solution level have been marked NA since testing

at those levels had already taken place during the component development and system

testing. For example, Table 4 shows that the Printing Device has been tested at all levels

and is now being included in the solution. The Regulatory testing was not shown since

the solution components subject to regulations have been tested at one more levels earlier

in the development.

Once again the Test Landscape revealed that there were some areas with missing test

ownership. The test landscape identified these gaps and raised awareness to the program

management teams. This helped us focus on the critical business needs and achieve the

desired level of quality and test effectiveness. Using the test landscape, we also

discovered that there was a fair amount of overlap between the system and the solution

testing. This was primarily due to the lack of clear definition of the two levels and lack

of clarity of the roles and responsibilities of the two teams involved in qualification. The

test landscape provided a clearly understandable framework which enabled the two

groups to align on what the solution testing must accomplish which is different than the

system testing. This led the solution team to consider typical use case scenarios such as

“Busy Mom” which was portrayed as some one who did not have time to read the

instructions and intuitively proceeded to produce her memorabilia. It resulted in an

effective user scenario testing which was not being performed earlier. Solution reliability

was also another area where testing improved.

Aligning Test Landscape with the Product Development:

To be effective, the test landscape must be designed very early in the development

lifecycle. The quality attributes should be determined immediately after the product use

cases have been established and the software system requirements are complete. This is

equivalent to the requirement definition phase of the waterfall development or the release

planning milestone of the agile development.

As the product development proceeds, the landscape must be reviewed and updated if

necessary at the various checkpoints and milestones. Our experience was less than

perfect with the landscape review. Some component teams proactively reviewed their

test landscape while others had to be reminded to complete this activity. There were

instances where the review was inadequate. By the time product was released, there was

133

a strong emphasis on the methodology and a better understanding of how it should be

utilized.

Benefits of Test Landscape

The Test Landscape has multiple benefits that contribute to a quality product without any

additional cost. The following section discusses these benefits in detail.

Test Effectiveness

The landscape builds the test effectiveness by making sure that each applicable quality

attribute is tested at an appropriate time during product development thereby providing

test coverage from the unit test to the solution test. An example would be to test the

performance at component, subsystem, system, and solution level to achieve the intended

solution performance. Early testing and defect removal leads to a lower development

cost and a superior quality product as the longer a defect stays in the system the more

expensive it becomes to fix it [5, 6].

Test Efficiency

Establishing early ownership and clear definition of each test area eliminates duplication

of testing, establishes clear roles and responsibilities, and provides a mechanism where

testing effort is well understood and is not an afterthought.

Test Coordination

The Test Landscape, after having determined the important critical test areas, can provide

effective test coordination to balance resources, assigning testing tasks to appropriate

teams, and placing mechanisms in place to analyze test progress and test results.

Scalability

The test landscape is scalable from the component to subsystem, to system and all the

way up to the solution level. Depending upon the scope of the product, both the quality

attributes and the testing stages can be altered to achieve effective testing.

Customization

The user of the landscape has the liberty of focusing on what is most important to their

environment. At times, especially when breaking out into new markets, the functionality

is of paramount importance while other quality attributes may not play such an important

role. For RPS product it was important to provide excellent usability so that a novice

user from the street can get his/her memorabilia while high performance was less critical.

Status Reporting

At every checkpoint or milestone during the product development, the landscape provides

a mechanism to track the testing status and thus evaluate the product quality and any

schedule risks. At the beginning of the product the landscape can be used to establish the

ownership and then as the product development moves along, to evaluate if the intended

testing has been performed or not. If, for some reason, the planned testing could not be

achieved, a risk analysis can be carried out and the mitigation plans can be put into place.

Conclusion

It all comes down to product quality within the well known constraints – scope, schedule,

and resources. Our experience shows that use of the Test Landscape in test planning

contributes to the higher product quality, shortens the schedule and optimizes the testing

134

resources. The higher product quality is achieved by testing all the relevant product

attributes based upon business needs at the right time in the product development.

Identifying and removing unintended duplication contributes to both lower cost and

shorter schedule. In most cases testing is the last activity in the product development and

is on a critical path. Establishing the testing gaps early in the lifecycle and along the

product development helps risk mitigation and potential schedule slip especially in the

large organization where each group is focusing on a component or a subsystem.

Acknowledgement

The author would like to recognize the RPS Quality and TCE director, Lee Mason and

the members of the taskforce, Amy Battles, David Boal, Tim Dummer, Bernardo

Gutierrez, Rick Johnson, Shelly Reasoner, Todd Walker, and Wayne Westly for their

enormous contribution in the development of the Test Landscape concept and their

support for its adoption by the RPS Group at Hewlett-Packard.

References:

1. Gupta, Bhushan B. and Beckman, Orhan Ph. D., Quantifying Software Quality –

Making Informed Decisions, Pacific Northwest Software Quality Conference,

Portland, Oregon, 2006

2. Wiegers, Karl E., Software Requirements, 2nd Edition , Ch. 12, Page 216, Microsoft

Press, ISBN 0-7356-1879-8

3. Craig, Rick D. and Jaskiel, Stefan P., Systematic Software Testing, Artech House,

2002, ISBN 1580535089, 9781580535083

4. Kaner, Cem, Falk, Jack and Nguyen, Hung Quoc, Testing Computer Software, 2nd

Edition, ISBN: 0-442-01361-2

5. Boehm, B. and Basili, V., "Software Defect Reduction Top 10 List," IEEE Computer,

IEEE Computer Society, Vol. 34, No. 1, January 2001, pp. 135-137.

6. Cigital, Case Study: Finding Defects Early Yields Enormous Savings,

http://www.cigital.com/solutions/roi-cs2.php

135

136

 Acceptance Testing: A Love Story in

Two Acts

Grigori Melnik , Microsoft Corporation

Jon Bach, Quardev, Inc.

For presentation at the 2008 Pacific Northwest Software Quality Conference in

October 2008

137

Abstract

This report is about the experiences of five software professionals who set out

to produce a book on acceptance testing for other software professionals

around the world. This team, headquartered at Microsoft's Redmond campus in

the patterns & practices group set out to collaborate not only with each other,

but with other Microsoft internal teams and external reviewers. After research,

we discovered two major “acts” or phases in play when preparing software for

acceptance by a customer: the Readiness Assessment and the Acceptance

Decision. This may seem obvious, but we found the existing literature and

guidance in these areas to be sparse. This paper is about what we did to

elucidate activities inherent in each of these phases.

Author Biographies

Dr. Grigori Melnik is a Senior Product Planner in the patterns & practices group

at Microsoft, leading the Process & Engineering Practices focus area. Prior to

that, Grigori was a researcher, software engineer, coach and educator with 15+

years of meaningful industrial and research experience. His areas of expertise

include agile methods, empirical software engineering, software testing and

test automation, and software economics. Grigori is a regular contributor and

speaker to software engineering conferences and workshops around the

world. Grigori was Program Chair of the Agile 2008 conference and a member

of the IEEE Software Advisory Board.

Jon Bach is Manager for Corporate Intellect and lead consultant at Quardev, Inc

– a Seattle outsource test laboratory that also provides technical writing,

training, and consulting services in software development. In his 13 years’

experience in software testing, Jon is most famous as an exploratory testing

expert and frequent speaker about the cognition and management involved in

testing – most notably as co-inventor of Session-Based Test Management. Jon

was also president of the 2007 Conference of the Association for Software

Testing in Seattle and a recent recipient of Best Presentation at the 2008

Software Testing Analysis and Review (STAR East) conference.

138

Rationale

In 2007, the Microsoft patterns & practices team did some research into the

existing body of knowledge on acceptance testing practices. We found a

noticeable lack of consistency and actionable guidance. Furthermore, we

found IEEE’s definition limiting:

“Formal testing conducted to determine whether or not a system satisfies

its acceptance criteria and to enable the customer to determine whether

or not to accept the system.” 1

The main problem with this definition was that it was recursive -- it used the

word “accept” in its own definition without explaining what it means. So after

some brainstorming, we came up with something we felt was more helpful:

“Planned evaluation by a customer (or customer proxy) to assess to what

degree a system meets their expectations.”

With help from a group of 10 Microsoft internal and external experts assembled

into an advisory board, we had carefully crafted each word of the definition

until it made sense to all of us. We took each word and decided to make a

chapter out of it to explain exactly what we meant by our definition.

For example:

• “Planned” -- What does it mean to plan? Who does it? What

considerations are there?

• “Evaluation” -- What’s involved in evaluation? Who does it? What

techniques can be used?

• “By a customer” -- Who is the customer? Are they different than the

user? Should they be an expert in the domain?

139

• “Or customer proxy” -- Who is an acceptable customer substitute? How

might their expectations vary from the customer?

• “To Assess to What degree” -- What are the methods to determine

whether something is acceptable? Under what conditions might it be

more or less acceptable? Is it possible for something to almost meet

acceptance?

• “A system” -- Is it an application or a service? What comprises the

system? What is being delivered? Will it change over time?

• “Meets expectations” -- What’s the difference between implicit and

explicit expectations? Are requirements the same as expectations?

These questions not only framed our vision and scope, they provoked even

more questions. Answering those questions became an anchoring mission for

us because, like software testing, questions often drive the effort. It drove our

planning, writing and research.

Our first bit of research (see Appendix) consisted of an anonymous online

survey and resulted in data from 127 software professionals of varying titles and

responsibilities. It helped us discover the following:

• Acceptance testing was not being addressed as an engineering

discipline.

• There was no coherent story about how to plan and execute

notions of “acceptance”.

• There were no specific “how-to's” centered on how to actually

plan and execute acceptance testing activities.

• There was no guidance for knowing when you’re done with

acceptance testing.

• There was no guidance around how to get a good customer (or

customer proxy) to participate in providing acceptance tests.

• There were minimal testing checklists.

• There were lots of non-actionable items from IEEE standards,

which tend to include recursive definitions.

140

• We found some research on acceptance testing, but results were

not validated by the industry.

• Most engineering teams look at acceptance testing as a

“necessary evil”.

• With existing notions of acceptance, tester and customer roles are

not well-defined, leading us to be confused about who does

what and what Functional Acceptance vs. Customer Acceptance

means.

From this, we decided to create another non-scientific online survey to get

more depth. It contained a mix of multiple choice, multi-select and open–

ended questions like:

• Choose the definition that is most closely aligned with your

understanding of what -acceptance testing is.

• On your current team, who specifies the acceptance criteria for

features/stories?

• On your current team, who specifies the acceptance criteria for

product/service releases?

• How are acceptance criteria communicated to the development

team?

• How would you prefer the acceptance criteria to be communicated to

the development team?

• How do you know that you are done, i.e. the product is ready for

release?

• What do you expect our guide on acceptance testing to have to be

useful to you and your team?

• Which of the following types of testing should not be included in

acceptance testing?

• Please share a typical acceptance test or acceptance criteria.

• In your opinion what is the biggest challenge with acceptance testing

on your project?

141

• What is the level of customer involvement on your project?

• How much do you outsource or offshore part or all of your

development, testing, or acceptance testing?

From this feedback2, we created 3 guiding missions:

1) Inject Acceptance Testing into all phases of a project.

2) Promote it as a discipline (not a series of tasks but a context-driven

concept).

3) Promote the notion or “readiness testing” as well as acceptance.

Furthermore, we wanted to have how-to's and checklists – artifacts around

planning and execution that were actionable and scalable, and we wanted to

ground them to specific examples using a sample application.

Process

We took an Agile development approach, first creating a project wiki for team

members to communicate, post content, and keep track of progress.

Here is a diagram of our process:

142

What kinds of

thumbnails should

we write?

Results of

gap

analysis

Thumbails written

What kinds of

samples should

we create?

What kinds of

models are

helpful?

Research of

acceptance testing

literature

Samples created Models rendered

Product Owner

approves content

yesyes

no

Release

Copy Editing

Product Owner

review

Working session Peer review

Advisory board

feedback?

Figure 1: Dataflow diagram

143

What the diagram doesn’t show very well is that we produced content in

weekly iterations and had daily stand-up meetings where team members

reported their progress for the last 24 hours.

Our story backlog was a list of questions we thought the readers would have

about acceptance testing, which became post-it note tasks on a whiteboard.

When at least 2 pages of content were created to answer each “story” (and

when we could tell a good narrative about that topic), we considered that topic

a “thumbnail sketch” and marked it as done, meaning it was ready for someone

else on the team to review.

Content structure

The following is a list of some of the approximately 50 thumbnail sketches we

produced that we wanted readers to consider in planning and doing their

readiness and acceptance testing activities. They cover test processes,

requirements, and test design practices, test management, test automation,

functional and parafunctional testing, and test oracles:

Test Processes

Exploratory Testing – an approach to testing where testers are in control of the

design and execution of their testing and use of techniques as they learn about

the product. The point is to react to new or emerging information, so the tester

is encouraged to change tactics to follow hunches and discover important

issues.

Acceptance Test-Driven Development – a way to write software, starting with

the customer requirements and the customer's specified acceptance

criteria/tests for those requirements, and using them as the basis for all

development.

Incremental Acceptance Testing – when the development of functionality is

organized so that individual features can be acceptance tested as soon as they

are deemed ready by the supplier team instead of waiting until the end of the

project when all of the features are done.

Regression Testing – testing to ensure that perceived quality is not going down

due to new features implemented or bugs fixed. Regression testing minimizes

risk of new problems by running a standard set of tests on each release

candidate.

144

Script-Driven Testing – preparing tests in written form well ahead of their

execution.

Test-Last Acceptance – when acceptance testing is done at the same time as

the decision -- after all development and readiness assessment activities have

been completed.

Vision-Scope – a way to frame the objectives of the mission by meeting with

stakeholders about the following 5 elements: Customer, Needs, Product, Value,

and Purpose.

Risk Assessment – identifying things that could go wrong on the project and

classify by likelihood and impact to help prioritize the risk mitigation activities

including, but not restricted to, testing.

Requirements Practices

Requirements – explicit, stated expectations of a user or customer – the desires

for functions that solve some kind of problem or set of problems – but they may

also be implicit, assumed and unstated.

Use Case Modeling – a way to describe the functional requirements of a

software-intensive system. It focuses on the goals of what the system’s users

would like to achieve while using the system and what the system needs to do

to help them achieve the goals.

User Stories – a way to manage highly-incremental development by deriving

and documenting user actions and behaviors from requirements and

establishing those as stories that serve as a unit of development work.

Test Design Practices

Regulatory Considerations – sometimes the customer or supplier is bound by

forces that affect the way they approach acceptance testing. Government

agencies have their own criteria, standards and rules that govern the way

software can function.

Scenario Testing – unlike functional tests based on use cases, scenarios typically

incorporate behavior from many use cases into the same test based on actual

or possible usage behaviors. Scenarios are typically expressed in natural,

ubiquitous language.

145

Soap Opera Testing – a test technique that get its name from fictional daytime

television shows that have their roots in the 1950’s and 60’s when sponsors

were often soap companies. An opera is an epic story, either a long series of

events or a short series of very dramatic events happening to fictional

characters.

Test Management

Cycle-Based Test Management – a method for managing testing effort where

the test phases of the project are subdivided into two or more test cycles

separated by periods of time set aside for bug-fixing.

Session-Based Test Management – a method for managing testing effort by

compartmentalizing testing activity into time-boxes called sessions. It is most

commonly used to manage exploratory testing but could be used for

managing any kind of test execution.

Test Automation

Test Automation – an approach to testing that leverages the speed and power

of computers to run tests that benefit from repetition or complex calculation.

Data-Driven Testing – a technique for reusing the same test logic on many sets

of data values. The test is structured to read the input and corresponding

expected output data values from a file or table and runs the same test logic

with each set of data.

Hand-Scripted Test Automation – when automated test scripts are hand-coded

in a scripting or programming language by people with enough technical skills

to do some programming and debugging.

Keyword-Driven Testing – a technique for separating the specification of tests

from the underlying mechanism to execute the tests by structuring test steps as

action keywords followed by action-specific arguments.

Record-Refactoring – a common way to leverage the strengths of recorded

tests without taking on the weaknesses involves refactoring. Refactoring is a

way of re-organizing code script to remove duplication and make the code

script simpler and easier to maintain without effecting affecting what it does.

Testing Functional Requirements

146

Ubiquitous Language – effective communication between business users of

software and the technical builders and testers of software requires a common

language. Since business people are not likely to learn technical jargon, the

technical people must learn to speak “business”. This ubiquitous language

should form the basis of all communication including the acceptance tests that

describe what done looks like.

Workflow Testing – a test technique designed to verify how the system

supports or implements a business process by executing a series of user actions

toward a given task or objective. They often include tasks carried out by

multiple users exercising different part of the system in a business workflow

from a beginning state to an ending state.

Business Unit Testing – verifies the behavior of a business algorithm or business

rule outside the normal context in which the algorithm or rule is utilized.

Combinatorial Testing – putting attributes of test criteria together to see if there

are harmful interactions.

Installation Testing – once a software system is created, you need a way to get

the components of the system deployed. Installation testing is ensuring that the

deployment and removal of the components works.

Testing Parafunctional Requirements

Parafunctional Testing – testing that goes beyond confirming function,

especially if the customer has implicit requirements, or requirements that go

beyond a specific function, or expectations that emerged well after they were

interviewed about requirements.

Usability Testing – a test technique designed to find out whether the product

meets the needs of real users by watching users operate the product while

trying to accomplish a specific task in a (nearly) realistic setting.

Security Testing – testing designed to reveal risks, vulnerabilities, attacks, and

threats that would compromise valuable user or company data.

Performance Testing – a determination of whether or not the system under test

meets the baselines with respect to throughput, bandwidth, or expected

response times for user inputs.

147

Fuzz Testing – a way to test the robustness of an API or program input fields

and entry points by feeding it random or pseudo-random data in many forms,

usually in an automated manner.

Accessibility Testing – the act of preparing your software to be compliant with

principles designed to help by people with varying degrees of capabilities.

Test Oracles

Comparable System Test Oracle – where the pass/fail status of a test is

determined by comparing the actual results from the system under test with the

result produced by a system with comparable functionality.

Hand-Crafted Test Oracle – when pass/fail status of a test is determined by

comparing the actual results from the system under test with an expected result

that was previously hand-crafted by a Human Test Oracle.

Human Test Oracle – when pass/fail status of a test is determined by a human

subject matter expert inspecting the actual results from the system under test

and deciding whether they are acceptable.

Previous Result (Regression) Test Oracle – when the pass/fail status of a test is

determined by comparing the actual results from the system under test with the

result saved when the same test case was run against the same system at some

point in the past.

It’s important to note that not all of these thumbnail ideas were created from

the start. We let the list evolve and expand based on our research and

feedback from the advisory panel; mostly because our best work came from 3-

hour discussions we called “working sessions” – dedicated times when the

team collaborated on something, whether it is a model, a strategy for

production, or a research topic.

Ultimately, all new stories and ideas for content (thumbnails) were presented

and approved by the content owner (Grigori Melnik) and project sponsor.

Table of Contents as project compass

Guiding the working sessions was our table of contents which we kept in an

Excel spreadsheet. It evolved from a live TOC on the wiki page, then to a live

148

document in Microsoft Word, then to a live document on Sharepoint exposed

through an extranet site so that the reviewer committee could see it.

Each row of the sheet was a thumbnail topic on which we tracked progress.

There were 17 levels (columns) of “done-ness”, each level getting us closer to

final release. This was our main vehicle to gauge whether or not we were still in

readiness (ready for a team review) or ready for acceptance (product owner

review and release to the web).

Below is a graphic which shows a snippet of a few thumbnail names and its

level of done-ness.

Figure 1: Table of Contents: our main readiness / acceptance gauge for each artifact

we produced.

Where did the ideas for thumbnail come from? We created a list of 120

questions we knew readers would likely ask, including:

• What are the common reference models?

• What are the kinds of acceptance testing?

• What is the lifecycle of an acceptance test?

• What are the possible phases?

• What is Readiness / Acceptance and how does it help me conceptualize

AT?

• What are the existing standards for AT?

• What is the difference between Agile (incremental) and Waterfall?

• Who is going to do the testing?

• How do you select proxies?

• What are some questions to ask test outsourcers?

• What are the strategies for AT?

• What does an AT plan look like?

• How much detail is needed in the plan?

149

• Does it cover enough risks?

• How are the risks represented?

• How to get buy-in from stakeholders?

• What does a Vision Statement look like?

• What does a Scorecard look like?

• What gets tested?

• What kind of test bed should we build for data?

• What tools should be used?

• How does a maintenance contract affect acceptance?

• What kinds of customers might there be?

• How much testing do we need to (plan) to do?

• Who writes the acceptance tests?

From this, we looked for affinities. For example, was there a test technique or

approach that would answer more than one question? If so, it might be worth

writing a thumbnail about.

Samples

To ground our answers to these questions, we also created samples to illustrate

the topics in our thumbnail sketches. Borrowing from Microsoft’s Visual Studio

Team System’s example, we used a fictional software service called the Global

Bank Identity Theft Protection System (ITPS).

The sample Vision/Scope for the ITPS feature read as follows:

“For current Global Bank premium account holders who need to monitor

their accounts for suspicious activity like identity theft, fraud, and

infiltration the Identity Theft Protection Service (ITPS) will allow customers

to sign up for notification of suspect transactions by email, IM, text, and/or

voice that provide general information and a URL for secure login to

review transaction details unlike that for non-premium account holders

(less than $50,000 in assets) or premium account holders at other

competing banks.”

The samples we produced around this to help ground the content in our

thumbnail sketches included:

• A sample vision-scope

• An all-pairs modeling sample

150

• A bug chart sample

• A risk assessment sample

• An exploratory session report

• A sample performance testing report

• A sample test plan

• A workflow example

• A soap opera test

• A scenario sample

It was our hope that creating samples like this would help readers understand

why a thumbnail sketch of an n approach or a technique could be meaningful,

either during readiness or acceptance.

Models

Other than questions, thumbnail sketches, and samples, we knew we had to

create ways to illustrate our research and ideas to have a strong visual

component to the book. Models served as a way to represent guiding

principles for us in our work, that sometimes framed discussions for specific

topics.

For example, from one working session came the idea for a working model

about how decisions get made:

151

Figure 2: Decision-Making Model

The diamond on the right represents the decision which is made based on the

test results. The test results are based on the testing / assessment activity which

assesses the system-under-test against the expectations. The expectations of

the system-under-test were defined based on the needs / requirements of the

users. While many of our thumbnail sketches describe how to do the

assessment activity, others describe ways to define the expectations based on

the needs. That is one of the reasons our guide has a number of requirements-

related practices; it’s not about testing, it’s about acceptance.

But it was only when expanding on this did in another working session did we

get the biggest epiphany. It had to do with a simple question: How would we

apply this decision-making concept to our own project?

Our answer took the form of what we now call the Gating Model.

(Notice that the figure below is a hand drawn sketch which the authors of this

paper decided to leave as-is to talk about the value of low-fidelity prototyping

we used on this project. That is, sometimes a hand-written model can be just as

effective as one produced with Publisher or Excel when explaining something.)

152

Figure 3: Gating Model

Readiness Assessment Phase

Readiness assessment is done by the supplier of the software before declaring

the system “ready for acceptance testing”. As a result, the gate between

153

Readiness and Acceptance Testing phases is largely staffed by gatekeepers

belonging to the supplier.

For the supplier to feel confident that their product will pass muster with the

customer, it may require that they do a lot more testing than the customer might

do during acceptance testing. As a result, the testing done as part of Readiness

assessment is likely to be much more exhaustive and rigorous, and employ a

much wider array of testing techniques than that done during the actual

acceptance testing.

Acceptance Testing Phase

The acceptance testing phase is when the customer (or their proxy) is actually

executingi tests that will help them make the decision to accept or not accept

the software. The main entry criteria for the acceptance phase are that the

supplier has deemed the software ready for acceptance testing. Secondary

criteria may include whether or not the customer is sufficiently prepared to

conduct the acceptance testing.

Exit criteria are primarily focussed on whether or not the “accept software”

decision has been made. The software is considered in acceptance testing until

either

• The customer has accepted it

Or

• The customer has found it so inadequate as to reject it outright. At this

point, the ball is back in the supplier’s court until they have done further

development and readiness assessment based on their revised

understanding of the customer’s expectations.

Challenges

Like most development projects, our effort to produce a book on acceptance

testing guidance was not without its challenges.

First, not everyone on the team was a dedicated full-time resource. Other

projects competed for our attention and made progress slow at times. The

dedication problem was the same for our advisory board, as most of the

154

people who signed up to be on it had other commitments that kept them from

helping us flush out important errors and omissions in our content.

The presence of the advisory board made it necessary to abandon the wiki

pages we had started at the beginning of the project because it was an internal

resource and reviewers could not get access to it. We adopted SharePoint as a

hosted content management system for our extranet site.

We also could not identify our velocity -- delivery of some unit over a given

time period -- as can be done on most projects that use Agile methods based

on a unit of work like story cards or code production. The classic way of doing

velocity in Agile is to put an estimate on every piece of content that is meant to

pass acceptance and then measure how much of that got done per iteration.

There was a time when we did not have the concept of a thumbnail, so it was

hard to know what “done” looked like. Even when we had the concept of the

thumbnail, they were not equal units of work – some topics took longer to

research and write than others. We consciously decided not to estimate how

long it would take to complete a given thumbnail topic, but in retrospect, we

could have used a first order approximation in the spreadsheet (e.g. squares in

the Table of Contents spreadsheet). We also had a tough time predicting what

would get done in a given time frame because we did not have the notion of a

burn-down chart.

Another challenge was keeping our focus on acceptance testing. The more we

researched and produced artifacts about testing, the more the book started to

feel like a book on general testing techniques and approaches, not just about

how those techniques could be used for acceptance. Creating a template for

the thumbnails helped us stay focused and consistent, even though there were

several content contributors on the project.

Summary

Based on a new definition of acceptance testing after surveying people in the

industry, we used an Agile-style iterative and incremental development

process. We strived for a continuous stream of value that started with a

backlog of questions which served as “stories” about aspects of acceptance

testing we wanted to write about. We used a live table of contents to guide

our thumbnail sketches for content, to serve as project status reporting, and for

155

planning future iterations. In addition, we hosted weekly meetings with an

advisory board consisting of people in software development who served as

our first consumers of our guidance. We used a sample application to produce

grounded artifacts to our thumbnails. We held working sessions, which helped

us create models and new topics to go into the list of artifacts we thought

would be helpful.

We found acceptance testing to be more than just creating a checklist of tests

for the customer to run. The more we realized how thoughtful we were trying

to be while producing a meaningful book on acceptance testing, the more we

saw a parallel between producing software and producing a book – that is,

sometimes you have to use a variety of techniques to anticipate how a

customer will formally sign-off on their acceptance.

We found the relationship between Readiness (supplier-focused development)

and Acceptance (customer-focused testing) to be a reinforcing synergy – a love

story, if you will – which frames many kinds of test approaches and techniques

to increase the likelihood that customers get their requirements, expectations,

and needs met.

References

1 (* Source: SEI/CMU and Institute of Electrical and Electronics Engineers. IEEE Standard

Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries. New York,

NY: 1990.)

2 See Appendix for survey

156

Appendix

This is a public survey we created and posted online at www.codeplex.com at

the beginning of the project to get a sense of how “acceptance” was being

performed on a variety of software projects. The objective was to form a

foundation of acceptance testing and focus on strategies of readiness and

acceptance.

Acceptance Testing

Survey

Jun 16, 2008 11:18 AM PST

157

1. Choose one the following definitions that are most closely aligned with your understanding of

what acceptance testing is

Formal testing conducted to determine whether or

not a system satisfies its acceptance criteria and to

enable the customer to determine whether or not

to accept the system. 52 50%

Planned evaluation of a system by a customer

(and / or customer proxy) to assess to what degree

it satisfies their expectations. 19 18%

Formal test of a system performed after installation

on the customer's premises by an authorized entity

with the participation of the supplier to determine

whether the contractual obligations are met. 12 11%

Evaluation of a system by a technical tester as a

way to transfer ownership of the application from

the developers. 5 5%

Verification that requirements will always be met

and will be acceptable by all users. 13 12%

Other, please specify 4 4%

Total 105 100%

2. On your current team, who specifies the acceptance criteria for individual features/stories?

[Select all that apply]

Customer 52 50%

Customer proxy 36 35%

Business analyst 34 33%

Program/Project manager 42 40%

Test lead/QA manager 29 28%

Tester 28 27%

Developer 18 17%

Development Lead 16 15%

Architect 12 12%

Release manager 4 4%

Compliance manager 5 5%

Usability specialist 8 8%

External consultant 0 0%

End-users 11 11%

CTO 2 2%

CFO 0 0%

CIO 1 1%

COO 0 0%

Legal counselor 1 1%

Other, please specify 5 5%

3. How are acceptance criteria communicated to/documented for the development team? [choose

all that apply]

Requirements Spec 39 38%

Statement of Work (SOW) 10 10%

Acceptance Document 16 15%

Use cases 25 24%

User stories 28 27%

Scenarios 17 16%

Legal contract/SLA 3 3%

Test plan 26 25%

Design documentation 18 17%

Manual test cases 22 21%

Automated test cases 18 17%

Wireframe 3 3%

Storyboard 8 8%

Face-to-face conversations 24 23%

158

Email/IM 13 12%

IEEE/FDA/ISO/DOD/SEI or some other standard

or regulation 2 2%

Not at all 6 6%

Other, please specify 4 4%

4. How would you prefer the acceptance criteria to be communicated/documented? [choose your

top three]

Requirements Spec 43 41%

Statement of Work (SOW) 6 6%

Acceptance Document 33 31%

Use cases 29 28%

User stories 36 34%

Scenarios 26 25%

Legal contract/SLA 2 2%

Test plan 36 34%

Design documentation 13 12%

Manual test cases 14 13%

Automated test cases 29 28%

Wireframe 1 1%

Storyboard 9 9%

Face-to-face conversations 14 13%

Email/IM 1 1%

IEEE/FDA/ISO/DOD/SEI or some other standard

or regulation 2 2%

Not at all 0 0%

Other, please specify 4 4%

5. How do you, in your role, know that you are done, i.e. the product, application, or service is

ready for release? [choose all that apply]

When customers realize enough value 15 15%

When user stories/requirements are complete 40 39%

Development task is completed, tested, demoed to

and approved by customer 60 58%

Scorecard criteria are met 6 6%

Product has no critical problems 33 32%

Product has sufficient benefits 11 11%

The value of the benefits in the product outweigh

the problems 10 10%

Impact of the last code modification is minimum

and does not require full test pass 3 3%

Last test pass resulted in bugs that were relatively

low severity and in low priority features 16 16%

Overall trend of bugs found in test passes

indicates that code is becoming more and more

stable 12 12%

Test coverage of the last successful test pass is

acceptable 23 22%

All functional and non functional quality gates

identified for the release have been met 38 37%

All deferred active bugs have been triaged /

documented as known issues and shared with

customer 28 27%

Regression test pass doesn’t result in reactivation

of fixed bugs 27 26%

Documentation is written/updated and edited 19 18%

Risks have been identified and mitigation

strategies formulated 18 17%

Further time spent testing, designing, building is

deemed more expensive (harmful) than helpful 12 12%

159

When the checklist is completed 16 16%

When there is no more time 17 17%

When there is no remaining budget 8 8%

Other, please specify 4 4%

6. How do you address bugs found during acceptance testing?

Discard the current release candidate and request

a new one with the bugs fixed 57 56%

Defer the bugs and address them as part of the

service level agreement 13 13%

File a change request 19 19%

Other, please specify 13 13%

Total 102 100%

7. How would your acceptance testers define a bug?

Non-conformance to the written specification or

contract (SOW) 8 8%

Does not meet an explicit, written requirement in a

requirements doc 24 24%

Does not meet an expectation (implicit

requirement) 25 25%

Does not adhere to a story card 12 12%

Anything the customer isn’t happy with when they

see the software 27 26%

Other, please specify 6 6%

Total 102 100%

8. At what phase of the project does your acceptance tester get involved?

During project planning 17 17%

During requirements gathering 20 19%

During system design 7 7%

When development starts 15 15%

When development is finished 28 27%

When the customer sees it for the first time 7 7%

Other, please specify 9 9%

Total 103 100%

9. From the perspective of defining requirements and performing acceptance testing, which of the

following applies?

Customer performs both 19 18%

Customer and in house test team perform both 34 33%

Customer defines requirements only, and in house

test team does acceptance testing 26 25%

Customer defines requirements and outsources

acceptance testing to an external vendor 2 2%

Customer defines requirements and end users

perform acceptance testing 16 16%

Other, please specify 6 6%

Total 103 100%

10. What tools do you use for acceptance testing? [Select all that apply]

None 43 43%

160

Commercial tools (Visual Studio Team System,

Rational suite, Seapine products, etc.), please

specify below 42 42%

Open source tools (Fit/Fitnesse/Selenium or

similar), please specify below 17 17%

In house tools 21 21%

Other, please specify ___________________ 1 1%

Specify: 8 8%

11. What do you expect our guide to contain to be useful to your team? [choose three]

Descriptions of the various acceptance testing

practices/techniques? 82 80%

Case studies/stories from the trenches 40 39%

Checklists 50 49%

How-to’s 44 43%

Examples : test case/test strategy/test plan/test

script 70 68%

Sample reports 18 17%

Metrics and how to use them 35 34%

Tips and Tricks / Heuristics 40 39%

Anti-patterns and known mistakes 59 57%

Other, please specify: 6 6%

12. Please share a typical acceptance test or acceptance criteria. [Do not worry about giving the

context, we would like to simply see the style and structure of your acceptance tests]

56 Responses

13. In your opinion what is the biggest challenge with acceptance testing on your current/last

project?

69 Responses

General Questions

14. Which best describes the process your team follows?

Agile (Scrum, Crystal, Lean, Extreme

Programming, and so on) 54 55%

Formal (Tayloristic, waterfall, spiral, and so on) 30 30%

Other, please specify 15 15%

Total 99 100%

15. What is (are) your role(s) on the team? [Choose all that apply]

Customer 1 1%

Customer proxy 9 9%

Business analyst 7 7%

Program/Project manager 24 23%

Test lead/QA manager 18 17%

Tester 19 18%

Developer 32 31%

Development Lead 37 36%

Architect 30 29%

Release manager 9 9%

161

Compliance manager 0 0%

Usability/User experience designer/specialist 6 6%

External consultant 8 8%

Technical writer 5 5%

End-user 1 1%

Executive (CTO, CFO, CIO, COO and so on) 6 6%

Legal counselor 1 1%

Ethnographer 1 1%

Other, please specify 2 2%

16. What is the level of customer involvement/commitment on your project?

Very High (on-site customer) 18 18%

High (near site customer or customer proxy) 28 28%

Moderate (customer present at weekly status

updates) 22 22%

Low (customer gets only involved once a month) 15 15%

Very Low (customer gets only involved at the

beginning of the project and at the final demo) 11 11%

What customer? 4 4%

Other, please specify 3 3%

Total 101 100%

17. How many people are on your team [again, please think of the most recent project]?

98 Responses

18. What percentage of your development and testing effort does your team outsource?

96 Responses

19. If you have a story or a lesson learned about acceptance testing that you'd like to share, feel

free to write it below or provide an email address if you’d like to be contacted and interviewed.

26 Responses

162

B
u
il
d
in

g

a

S

o
f
t
w

a
r
e

T
e
s
t
in

g

S

t
r
a
t
e
g
y

K
a

r
e

n

N

.

J
o

h
n

s
o

n

B
u
il
d
i
n
g

a

T

e
s
t
i
n
g

S

t
r
a
t
e
g
y

1
©

K
a
r
e
n

N

.

J
o
h
n
s
o
n
,

2
0
0
8

W
h
o

a
m

I
?

B
u
il
d
i
n
g

a

T

e
s
t
i
n
g

S

t
r
a
t
e
g
y

©
K

a
r
e
n

N

.

J
o
h
n
s
o
n
,

2
0
0
8

S
l
id

e

2

K
a
r
e
n

N

.

J
o

h
n

s
o

n

I
n
d
e
p
e
n
d
e
n
t

S

o
f
t
w

a
r
e

T

e
s
t

C
o
n
s
u
lt
a
n
t

w
w

w
.
k
a
r
e
n
n
j
o
h
n
s
o
n
.
c
o
m

H
o
s
t
e
d

o
n

T

e
c
h

T

a
r
g
e
t

h
t
t
p
:
/
/
s
e
a
r
c
h
s
o
f
t
w

a
r
e
q
u
a
l
it
y
.
t
e
c
h
t
a
r
g
e
t
.
c

o
m

M
y

b
lo

g
h
t
t
p
:
/
/
w

w
w

.
t
e
s
t
i
n
g
r
e
f
l
e
c
t
i
o
n
s
.
c
o
m

/
b
lo

g
/
3

8
0
4

C
o
-
f
o
u
n
d
e
r

o
f

W

R
E

S
T

w

o
r
k
s
h
o
p

h
t
t
p
:
/
/
w

w
w

.
w

r
e
s
t
w

o
r
k
s
h
o
p
.
c
o
m

/
H

o
m

e
.
h

t
m

l

D
ir
e
c
t
o
r

h
t
t
p

:
/
/
w

w
w

.
a

s
s
o
c
ia

t
io

n
f
o

r
s
o
f
t
w

a
r
e

t
e
s
t
in

g
.
o
r
g
/
d
r
u
p
a
l
/
e
x
e
c
u
t
iv

e
s

A
b
o
u
t

t
h
is

p
r
e
s
e
n
t
a
t
io

n

•
T

h
e
r
e

a
r
e

m

a
n
y

w

a
y
s

t
o

b
u
il
d

a

t
e
s
t

s
t
r
a
t
e
g
y
.

•
T

a
k
e

t
h
e
s
e

id

e
a
s

a
s

id

e
a
s

n
o
t

a
s

a
b
s
o
lu

t
e
s
.

•
A

lo

o
k

a
t

t
h
e

p
r
in

c
ip

le
s

o
f

t
h
e

c
o
n
t
e
x
t
-
d
r
i
v
e
n

s
c
h
o
o
l
o
f

s
o
f
t
w

a
r
e

t
e
s
t
in

g

a
n
d

h
o
w

t
h
e

p
r
in

c
ip

le
s

a
p
p
ly

t
o

b
u
il
d
in

g

a

s
t
r
a
t
e
g
y
.

•
A

li
s
t

o
f

c
o
m

p
o
n
e
n
t
s

y
o
u

m

ig
h
t

in

c
lu

d
e

in

y
o
u
r

s
t
r
a
t
e
g
y
.

B
u
il
d
i
n
g

a

T

e
s
t
i
n
g

S

t
r
a
t
e
g
y

©
K

a
r
e
n

N

.

J
o
h
n
s
o
n
,

2
0
0
8

S
l
id

e

3

T
h

e

S

e
v
e

n

B

a
s
ic

P

r
in

c
ip

le
s

o
f

t
h

e

C
o

n
t
e

x
t
-
D

r
iv

e
n

S

c
h

o
o

l

1
.

T
h
e

v
a
lu

e

o
f

a
n
y

p
r
a
c
t
ic

e

d
e
p
e
n
d
s

o
n

i
t
s

c
o
n
t
e
x
t
.

2
.

T
h
e
r
e

a
r
e

g
o
o
d

p
r
a
c
t
ic

e
s

i
n

c
o
n
t
e
x
t
,

b
u
t

t
h
e
r
e

a
r
e

n
o

b
e
s
t

p
r
a
c
t
ic

e
s
.

3
.

P
e
o
p
l
e
,

w

o
r
k
i
n
g

t
o
g
e
t
h
e
r
,

a
r
e

t
h
e

m

o
s
t

im

p
o
r
t
a
n
t

p
a
r
t

o
f

a
n
y

p
r
o
je

c
t
's

c
o
n
t
e
x
t
.

4
.

P
r
o
je

c
t
s

u
n
f
o
l
d

o
v
e
r

t
i
m

e

i
n

w

a
y
s

t
h
a
t

a
r
e

o
f
t
e
n

n
o
t

p
r
e
d
ic

t
a
b
l
e
.

5
.

T
h
e

p
r
o
d
u
c
t

is

a

s
o
l
u
t
io

n
.

I
f

t
h
e

p
r
o
b
l
e
m

is

n
't

s
o
l
v
e
d
,

t
h
e

p
r
o
d
u
c
t

d
o
e
s
n
't

w
o
r
k
.

6
.

G
o
o
d

s
o
f
t
w

a
r
e

t
e
s
t
i
n
g

i
s

a

c
h
a
ll
e
n
g
in

g

i
n
t
e
l
l
e
c
t
u
a
l

p
r
o
c
e
s
s
.

7
.

O
n
l
y

t
h
r
o
u
g
h

ju

d
g
m

e
n
t

a
n
d

s
k
i
l
l,

e
x
e
r
c
i
s
e
d

c
o
o
p
e
r
a
t
i
v
e
l
y

t
h
r
o
u
g
h
o
u
t

t
h
e

e
n
t
i
r
e

p
r
o
je

c
t
,

a
r
e

w

e

a
b
l
e

t
o

d
o

t
h
e

r
ig

h
t

t
h
i
n
g
s

a
t

t
h
e

r
i
g
h
t

t
i
m

e
s

t
o

e
f
f
e
c
t
iv

e
l
y

t
e
s
t

o
u
r

p
r
o
d
u
c
t
s
.

B
u
il
d
i
n
g

a

T

e
s
t
i
n
g

S

t
r
a
t
e
g
y

©
K

a
r
e
n

N

.

J
o
h
n
s
o
n
,

2
0
0
8

S
l
id

e

4

163

C
h
e
c
k
li
s
t

t
o

C

o
n
s
id

e
r

•
P

r
o
je

c
t

s
t
a
k
e
h
o
ld

e
r
s

•
P

r
o
d
u
c
t

•
C

o
n
t
e
x
t

•
P

r
o
je

c
t

s
c
o
p
e

•
R

is
k

a
n
a
ly

s
is

•
T

y
p
e
s

o
f

t
e
s
t
in

g

•
T

e
s
t

e
n
v
ir
o
n
m

e
n
t

•
T

e
s
t

d
a
t
a

•
R

e
s
o
u
r
c
e
s

•
E

s
t
im

a
t
e
s

•
P

r
o
je

c
t

p
la

n
s

&

m

il
e
s
t
o
n
e
s

•
U

s
e
r
s

B
u
il
d
i
n
g

a

T

e
s
t
i
n
g

S

t
r
a
t
e
g
y

©
K

a
r
e
n

N

.

J
o
h
n
s
o
n
,

2
0
0
8

S
l
id

e

5

P
r
o
je

c
t

S

t
a
k
e
h
o
ld

e
r
s

•
D

e
t
e
r
m

in
e

w

h
o

t
h
e
y

a
r
e

•
C

o
ll
e
c
t

t
h
e
ir

o
p
in

io
n
s

•
U

n
c
o
v
e
r

t
h
e
ir

a
s
s
u
m

p
t
io

n
s

•
E

n
li
s
t

t
h
e
ir

s
u
p
p
o
r
t

•
K

e
e
p

t
h
e
m

in

f
o
r
m

e
d

B
u
il
d
i
n
g

a

T

e
s
t
i
n
g

S

t
r
a
t
e
g
y

©
K

a
r
e
n

N

.

J
o
h
n
s
o
n
,

2
0
0
8

S
l
id

e

6

P
r
o
je

c
t

S

c
o
p
e

•
T

e
s
t
in

g

o
b
je

c
t
iv

e
s

•
T

e
s
t
in

g

in

/
o
u
t

f
o
r

r
e
le

a
s
e

•
F

e
a
t
u
r
e
s

in

/
o
u
t

f
o
r

t
h
e

r
e
le

a
s
e

•
F

u
ll

r
e
le

a
s
e
,

p
a
r
t
ia

l
r
o
ll
o
u
t

•
C

o
m

m
u
n
ic

a
t
in

g

t
h
e

t
e
s
t
in

g

s
c
o
p
e

B
u
il
d
i
n
g

a

T

e
s
t
i
n
g

S

t
r
a
t
e
g
y

©
K

a
r
e
n

N

.

J
o
h
n
s
o
n
,

2
0
0
8

S
l
id

e

7

P
r
o
d
u
c
t

B
u
il
d
i
n
g

a

T

e
s
t
i
n
g

S

t
r
a
t
e
g
y

©
K

a
r
e
n

N

.

J
o
h
n
s
o
n
,

2
0
0
8

S
l
id

e

8

•
F

e
a
t
u
r
e
s

&

F

u
n
c
t
io

n
s

•
C

o
r
e

p
r
o
d
u
c
t

e
le

m
e
n
t
s

f
o
r

r
e
g
r
e
s
s
io

n

•
P

r
o
d
u
c
t

d
o
c
u
m

e
n
t
a
t
io

n

•
I
n
t
e
r
f
a
c
e

w

it
h

o
t
h
e
r

a
p
p
li
c
a
t
io

n
s

•
C

o
m

p
o
n
e
n
t
s

o
u
t
s
id

e

o
f

t
h
e

c
o
r
e

p
r
o
d
u
c
t

164

C
o
n
t
e
x
t

•
T

h
e

p
r
o
d
u
c
t

•
T

h
e

r
e
le

a
s
e

•
C

o
n
s
t
r
a
in

t
s

•
F

o
r
m

a
l
v
s
.

in

f
o
r
m

a
l

•
U

s
e
r
s

•
I
n
it
ia

l
p
r
o
d
u
c
t

r
e
le

a
s
e

o
r

s
u
b
s
e
q
u
e
n
t

r
e
le

a
s
e

B
u
il
d
i
n
g

a

T

e
s
t
i
n
g

S

t
r
a
t
e
g
y

©
K

a
r
e
n

N

.

J
o
h
n
s
o
n
,

2
0
0
8

S
l
id

e

9

R
is

k

A

n
a
ly

s
is

•
F

o
r
m

a
l:

–
F

a
il
u
r
e

m

o
d
e

a
n
d

e
f
f
e
c
t
s

a
n
a
ly

s
is

(
F

M
E

A
)

–
R

e
g
u
la

t
io

n
s

–
C

o
m

p
li
a
n
c
e

•
I
n
f
o
r
m

a
l:

–
P

o
ll
in

g

t
e
a
m

m

e
m

b
e
r
s

–
B

a
s
e
d

o
n

p
r
o
d
u
c
t

h
is

t
o
r
y

–
B

a
s
e
d

o
n

c
u
s
t
o
m

e
r

s
u
p
p
o
r
t

a
n
d

f
ie

ld

t
e
c
h

in

p
u
t

•
T

h
in

k

b
e
y
o
n
d

f
u
n
c
t
io

n
a
l
r
is

k
s
:

c
o
n
t
e
n
t
,

s
e
c
u
r
it
y
,

d
a
t
a
,

m

u
lt
i-
u
s
e
r
,

p
e
r
f
o
r
m

a
n
c
e
,

m

u
lt
il
in

g
u
a
l,

c
r
o
s
s

b
r
o
w

s
e
r
,

c
r
o
s
s

o
p
e
r
a
t
in

g

s
y
s
t
e
m

,

u
p
g
r
a
d
in

g

c
u
s
t
o
m

e
r
s

B
u
il
d
i
n
g

a

T

e
s
t
i
n
g

S

t
r
a
t
e
g
y

©
K

a
r
e
n

N

.

J
o
h
n
s
o
n
,

2
0
0
8

S
l
id

e

1
0

T
y
p
e
s

o
f

T

e
s
t
in

g

1
.

B
la

c
k

b
o
x

2
.

W
h
it
e

b
o
x

3
.

G
r
a
y

b
o
x

4
.

F
u
n
c
t
io

n
a
l

5
.

A
u
t
o
m

a
t
e
d

6
.

R
e
g
r
e
s
s
io

n

7
.

S
e
c
u
r
it
y

8
.

D
a
t
a

9
.

E
x
p
lo

r
a
t
o
r
y

1
0
.

P
e
r
f
o
r
m

a
n
c
e

1
1
.

S
t
r
e
s
s

1
2
.

M
u
lt
i-
u
s
e
r

1
3
.

C
o
o
k
ie

s

1
4
.

C
o
m

p
a
t
ib

il
it
y

1
5
.

I
n
t
e
r
f
a
c
e
s

1
6
.

D
e
v
e
lo

p
e
r

1
7
.

U
n
it

1
8
.

I
n
t
e
g
r
a
t
io

n

1
9
.

S
y
s
t
e
m

2
0
.

U
s
e
r

A

c
c
e
p
t
a
n
c
e

2
1
.

I
n
s
t
a
ll
a
t
io

n

B
u
il
d
i
n
g

a

T

e
s
t
i
n
g

S

t
r
a
t
e
g
y

©
K

a
r
e
n

N

.

J
o
h
n
s
o
n
,

2
0
0
8

S
l
id

e

1
1

T
e
s
t

E

n
v
ir
o
n
m

e
n
t

•
F

o
r

s
o
m

e

p
r
o
je

c
t
s
,

g
e
t
t
in

g

a
n

e
n
v
ir

o
n
m

e
n
t

is

e
a
s
y
.

•
A

n
d

f
o
r

s
o
m

e

p
r
o
je

c
t
s
,

g
e
t
t
in

g

a
n

e
n
v
ir

o
n
m

e
n
t

e
s
t
a
b
li
s
h
e
d

c
a
n

b
e

o
n
e

o
f

t
h
e

m

o
s
t

c
h
a
ll
e
n
g
in

g

a
s
p
e
c
t
s

o
f

t
h
e

p
r
o
je

c
t
.

•
M

a
in

t
a
in

in
g

t
h
e

e
n
v
ir
o
n
m

e
n
t
:

t
h
e

s
o
f
t
w

a
r
e

r
e
le

a
s
e

a
n
d

t
h
e

d
a
t
a
.

B
u
il
d
i
n
g

a

T

e
s
t
i
n
g

S

t
r
a
t
e
g
y

©
K

a
r
e
n

N

.

J
o
h
n
s
o
n
,

2
0
0
8

S
l
id

e

1
2

165

T
e
s
t

D

a
t
a

•
D

e
p
e
n
d
in

g

o
n

t
h
e

p
r
o
d
u
c
t
,

t
e
s
t

d
a
t
a

c
a
n

b
e

a
n

e
s
s
e
n
t
ia

l

f
a
c
t
o
r
.

•
I
n

o
t
h
e
r

c
a
s
e
s
,

g
e
t
t
in

g

a

c
o
p
y

o
f

p
r
o
d
u
c
t
io

n

d
a
t
a

m

ig
h
t

b
e

r
e
s
t
r
ic

t
e
d
.

•
I
f

t
e
s
t

a
u
t
o
m

a
t
io

n

is

a

t
y
p
e

o
f

t
e
s
t
in

g
,

b
u
il
d
in

g

t
e
s
t

d
a
t
a

m

ig
h
t

b
e

n
e
e
d
e
d
.

B
u
il
d
i
n
g

a

T

e
s
t
i
n
g

S

t
r
a
t
e
g
y

©
K

a
r
e
n

N

.

J
o
h
n
s
o
n
,

2
0
0
8

S
l
id

e

1
3

R
e
s
o
u
r
c
e
s

•
E

x
is

t
in

g

s
t
a
f
f

•
C

o
n
t
r
a
c
t

s
t
a
f
f

•
T

e
s
t

la

b

•
T

e
s
t

E

q
u
ip

m
e
n
t

•
T

e
s
t

D

a
t
a

•
T

o
o
ls

•
U

t
il
it
ie

s

B
u
il
d
i
n
g

a

T

e
s
t
i
n
g

S

t
r
a
t
e
g
y

©
K

a
r
e
n

N

.

J
o
h
n
s
o
n
,

2
0
0
8

S
l
id

e

1
4

E
s
t
im

a
t
e
s

•
M

e
t
h
o
d
s

o
f

b
u
il
d
in

g

e
s
t
im

a
t
e
s
.

–
T

o
p

d
o
w

n

–
B

o
t
t
o
m

u
p

–
W

B
S

•
I
n
c
lu

d
e

o
t
h
e
r

p
e
o
p
le

in

e
s
t
im

a
t
in

g
.

•
L
o
o
k

a
t

a

c
a
le

n
d
a
r

t
o

p
la

n

o
u
t

o
f

o
f
f
ic

e

t
im

e
.

B
u
il
d
i
n
g

a

T

e
s
t
i
n
g

S

t
r
a
t
e
g
y

©
K

a
r
e
n

N

.

J
o
h
n
s
o
n
,

2
0
0
8

S
l
id

e

1
5

P
r
o
je

c
t

P

la
n
s

&

M

il
e
s
t
o
n
e
s

•
P

r
o

je
c
t

p

la
n

s

•
D

e
v
e

lo
p

m
e

n
t

m
il
e

s
t
o

n
e

s

•
T

e
s
t
in

g

m

il
e

s
t
o

n
e

s

•
M

il
e

s
t
o

n
e

s

f
o

r

e

le
m

e
n

t
s

o
f

t
h

e

s
t
r
a

t
e

g
y
,

s
u

c
h

a

s

h
ir

in
g

s
t
a
f
f
,

a

c
q

u
ir

in
g

a

n

e
n

v
ir

o
n

m
e

n
t
,

p
u

r
c
h

a
s
in

g

t
e

s
t

t
o

o
ls

B
u
il
d
i
n
g

a

T

e
s
t
i
n
g

S

t
r
a
t
e
g
y

©
K

a
r
e
n

N

.

J
o
h
n
s
o
n
,

2
0
0
8

S
l
id

e

1
6

166

U
s
e
r
s

•
I
n
t
e
n
d
e
d

u
s
e

•
P

o
t
e
n
t
ia

l
m

is
u
s
e

•
H

a
p
p
y

p
a
t
h
s

a
n
d

r
a
in

y

d
a
y
s

•
T

h
in

k
in

g

a
b
o
u
t

u
s
e
r
s

a
n
d

t
h
e
ir

n
e
e
d
s

h
e
lp

d
r
iv

e

u
s

t
o

r
e
c
a
ll
:

W
h
a
t

a
r
e

w

e

b
u
il
d
in

g
?

A

n
d

w
h
y
.

B
u
il
d
i
n
g

a

T

e
s
t
i
n
g

S

t
r
a
t
e
g
y

©
K

a
r
e
n

N

.

J
o
h
n
s
o
n
,

2
0
0
8

S
l
id

e

1
7

A
r
e

w

e

d
o
n
e

y
e
t
?

•
R

e
le

a
s
e

o
r

a
c
c
e
p
t
a
n
c
e

c
r
it
e
r
ia

•
G

o
,

n
o
-
g
o

r
e
le

a
s
e

m

e
e
t
in

g

•
P

o
s
t
-
r
e
le

a
s
e

m

o
n
it
o
r
in

g

•
L
e
a
r
n
i
n
g

f
r
o
m

t
h
e

p
r
o
je

c
t

•
P

la
n
n
in

g

y
o
u
r

n
e
x
t

s
t
r
a
t
e
g
y

B
u
il
d
i
n
g

a

T

e
s
t
i
n
g

S

t
r
a
t
e
g
y

©
K

a
r
e
n

N

.

J
o
h
n
s
o
n
,

2
0
0
8

S
l
id

e

1
8

K
e
e
p
in

g

t
h
e

S

t
r
a
t
e
g
y

A

li
v
e

•
R

e
v
ie

w

t
h
e

s
t
r
a
t
e
g
y

t
h
r
o
u
g
h
o
u
t

t
h
e

p
r
o
je

c
t
.

•
K

e
e
p

s
t
a
k
e
h
o
ld

e
r
s

in

f
o
r
m

e
d

t
h
r
o
u
g
h

s
t
a
t
u
s

u
p
d
a
t
e
s
.

•
R

e
v
is

e

a
n
d

d
is

t
r
ib

u
t
e

t
h
e

s
t
r
a
t
e
g
y

a
t

k
e
y

in

t
e
r
v
a
ls

.

B
u
il
d
i
n
g

a

T

e
s
t
i
n
g

S

t
r
a
t
e
g
y

©
K

a
r
e
n

N

.

J
o
h
n
s
o
n
,

2
0
0
8

S
l
id

e

1
9

R
e
f
e
r
e
n
c
e
s

•
W

e
b
c
a
s
t
:

“
H

o
w

t
o

p
la

n

y
o
u
r

s
o
f
t
w

a
r
e

t
e
s
t

p
r
o
je

c
t
s
”

H
o
s
t
e
d

b
y

T

e
c
h

T

a
r
g
e
t
.

P

r
e
s
e
n
t
e
r
s
:

K

a
r
e
n

N
.

J
o
h
n
s
o
n

a
n
d

M

ic
h
a
e
l
D

.

K

e
ll
y
.

L
in

k
:

h
t
t
p
:
/
/
s
e
a
r
c
h
s
o
f
t
w

a
r
e
q
u
a
li
t
y
.
b
it
p
ip

e
.
c
o
m

/
d
e
t
a
il
/
R

E
S

/
1
1
9
6
4
4
0
5
9
6
_
4
4
1
.
h
t
m

l?
b
u
c
k
e
t
=

W
C

&
t
o
p
ic

=
3
0
6
1
2
1

•
S

a
t
is

f
ic

e
H

e
u
r
is

t
ic

T

e
s
t

P

la
n
n
in

g

C

o
n
t
e
x
t

M

o
d
e
l:

h
t
t
p
:
/
/
w

w
w

.
s
a
t
is

f
ic

e
.
c
o
m

/
t
o
o
ls

/
s
a
t
is

f
ic

e
-

c
m

.
p
d
f

•
S

a
t
is

f
ic

e
T

e
s
t

P

la
n
n
in

g

G

u
id

e
:

B

u
il
d
in

g

t
h
e

P

la
n
:

h
t
t
p
:
/
/
w

w
w

.
s
a
t
is

f
ic

e
.
c
o
m

/
t
o
o
ls

/
b
u
il
d
-
t
h
e
-

p
la

n
.
p
d
f

•
S

a
t
is

f
ic

e
T

e
s
t

P

la
n

E

v
a
lu

a
t
io

n

M

o
d
e
l:

h
t
t
p
:
/
/
w

w
w

.
s
a
t
is

f
ic

e
.
c
o
m

/
t
o
o
ls

/
t
p
e
-
m

o
d
e
l.
p
d
f

•
“
D

e
v
e
lo

p
in

g

a

P

r
o
je

c
t

T

e
s
t

S

t
r
a
t
e
g
y
,
”

M
ic

h
a
e
l
D

.

K

e
ll
y
,

h
t
t
p
:
/
/
w

w
w

.
in

f
o
r
m

it
.
c
o
m

/
a
r
t
ic

le
s
/
a
r
t
ic

le
.
a
s
p
x
?
p
=

3
5
5
8
7
5

•
“
D

o
c
u
m

e
n
t
in

g

y
o
u
r

s
o
f
t
w

a
r
e

t
e
s
t

p
r
o
je

c
t
,
”

K
a
r
e
n

N

.

J
o
h
n
s
o
n

a
n
d

M

ic
h
a
e
l
D

.

K

e
ll
y

h
t
t
p
:
/
/
s
e
a
r
c
h
s
o
f
t
w

a
r
e
q
u
a
li
t
y
.
t
e
c
h
t
a
r
g
e
t
.
c
o
m

/
t
ip

/
0
,
2
8
9
4
8
3
,
s
id

9
2
_
g
c
i1

2
8
4
6
3
2
,
0
0
.
h
t
m

l

•
“
B

u
il
d
in

g

a

S

o
f
t
w

a
r
e

T

e
s
t

S

t
r
a
t
e
g
y
,
”

K
a
r
e
n

N

.

J
o
h
n
s
o
n

h
t
t
p
:
/
/
w

w
w

.
in

f
o
r
m

it
.
c
o
m

/
a
r
t
ic

le
s
/
a
r
t
ic

le
.
a
s
p
x
?
p
=

1
1
4
6
5
0
4

•
B

lo
g

p
o
s
t
,

J
a
m

e
s

B

a
c
h
,

s
e
e
:

h
t
t
p
:
/
/
w

w
w

.
s
a
t
is

f
ic

e
.
c
o
m

/
b
lo

g
/
a
r
c
h
iv

e
s
/
6
3

•
W

e
b
c
a
s
t
:

“
M

a
k
in

g

S

e
n
s
e

o
f

S

o
f
t
w

a
r
e

T

e
s
t
s
,
”

H
o
s
t
e
d

b
y

T

e
c
h

T

a
r
g
e
t
.

P

r
e
s
e
n
t
e
r
:

K

a
r
e
n

N

.

J
o
h
n
s
o
n

h
t
t
p
:
/
/
s
e
a
r
c
h
s
o
f
t
w

a
r
e
q
u
a
li
t
y
.
t
e
c
h
t
a
r
g
e
t
.
c
o
m

/
g
u
id

e
/
a
ll
I
n
O

n
e
/
c
a
t
e
g
o
r
y
/
0
,
2
9
6
2
9
6
,
s
id

9
2
_
t
a
x
3
0
8
0

6
3
,
0
0
.
h
t
m

l

•
R

is
k

A

n
a
ly

s
is

f
o
r

W

e
b

T

e
s
t
in

g
,

K

a
r
e
n

N

.

J
o
h
n
s
o
n

h
t
t
p
:
/
/
w

w
w

.
k
a
r
e
n
n
jo

h
n
s
o
n
.
c
o
m

/
p
d
f
/
R

is
k
_
A

n
a
ly

s
is

.
p
d
f

•
T

h
e

S

e
v
e
n

B

a
s
ic

P

r
in

c
ip

le
s

o
f

t
h
e

C

o
n
t
e
x
t
-
D

r
iv

e
n

S

c
h
o
o
l
s
e
e
:

h
t
t
p
:
/
/
w

w
w

.
c
o
n
t
e
x
t
-
d
r
iv

e
n
-

t
e
s
t
in

g
.
c
o
m

/

B
u
il
d
i
n
g

a

T

e
s
t
i
n
g

S

t
r
a
t
e
g
y

©
K

a
r
e
n

N

.

J
o
h
n
s
o
n
,

2
0
0
8

S
l
id

e

2
0

167

168

Test Automation Design Pattern

A pattern for automatic test case generation

Lian Yang

liany@microsoft.com

Abstract

Test automation itself is a software engineering project and its effectiveness, efficiency, and

maintainability quite often present the same engineering challenges as other software projects.

The development community has been embracing the “design pattern” concepts for 15 years, in

an effort to address software engineering difficulties and formalizing design and coding process.

While mentioned in various papers ([3]), design pattern practice is still not well practiced in the

software test automation community. Ill-planned, and roughly designed test automation projects

are still wide-spread. This paper tries to define a “test case automatic generation” design

pattern, which addresses the most common and fundamental test automation engineering issues

facing most testers today. The concepts presented in this paper has been implemented by the

author and his team in testing several Microsoft© products.

Glossary

Terminology or Acronym English

SUT Software Under Test

SPEC (product) Specification

TTS The test state

TCGEP Test Case Generation and Execution

Pattern

1. Test Automation

1.1. Definition

A Test automation system is a software system that exercises a target software product

(or SUT) in order to detect defects in SUT. Software defects can be any of the following

things:

• Mal-functions that cause the user to be unable to use the software, such as

hanging, Access Violation (in Windows), and system crashing

• Not SPEC compliant

• Bad user experience that may or may not be in conflict with the SPEC.

o Slow response

o Using too much resource

169

o All kind of things that don’t make users job easy

• Unwanted side effects

o Data corruption

o Security issues

Most of software defects (or bugs) fall into the above categories. An ideal test

automation system should be able to catch a fair percentage of the above kind of

bugs. From the above definition, test automation should consist of the following

elements (in red):

The above diagram can be thought as a high-level design pattern, from which other

design patterns can be derived. The most important concepts introduced in the above

generic pattern are:

1) Separation between test logic and SUT driver

This allows the design patterns such as TCGEP to express the design concepts in

abstract terms while leaving all SUT specific details to the SUT Driver

2) Derive test data directly from SPEC in form of data template or using advanced

SPEC to case generation tools (such as Microsoft Research’s SPEC#)

Hard-coded test data is as bad as hard-coded magic numbers or strings in

product code. There is really very little justification for test automation

applications to continue using hard-coded magic data.

Test Automation

Logic

SUT Driver

SPEC rules

and Data

SUT

SUT API or GUI

Test Data

Fig. 1: components for a generic test automation

170

1.2. A sample SUT application

We need to use a sample SUT application to illustrates concepts and points through out

the paper. Our sample application is code named Happy-Fish. Happy-fish is a simple

on-line banking system with the following components:

• A WEB UI Front End

o Customer pages

� A logon page with user name, password fields, and an OK button

� A user page with account names as link buttons, and a logoff

button

� A user account detail page with a data grid control and a logoff

button

o Admin pages with a button “add user”, that leads to a “Add New User

Page”

� Assume that admin pages are only known by the Admin and

privately accessed (without password protection) in order to simply

the demo application

� Add New User Page with user name, password fields, and an Add

button

• A business logic mid-layer behind the front end on the web server

• A SQL DB that stores customer account information and personal data

The following diagram shows the components of the system:

2. Design Pattern

First introduced by the “gang of four” in 1994 [1], Design Pattern Concepts have

received wide acceptance in software development community. In software

engineering, a design pattern is a general reusable solution to a commonly occurring

problem in software design (WIKIPEDIA). In this paper, the essence of Design Pattern

contains the following three elements:

• The intent

Web

UI

SQL

DB

Business

Logic

Fig. 2: components for a sample SUT application code name

171

States the purpose, problem domain, applicability, and limitation of the pattern

(problem)

• Design constraints

States the implementation requirements, adaptability, and extensibility of the

pattern (reusability prerequisites)

• Supporting framework

States the utility, helper functions, and inherited attributes, which helps pattern

user to implement the working system (reusable objects and concepts)

I will use the above elements in describing the “Test Case Generation Pattern”.

3. Test Case Generation and Execution Pattern (TCGEP)

Think of your automation as a baseline test suite to be used in conjunction with manual

testing, rather than as a replacement for it. [2] To make the automation worthwhile, we

need to understand what test cases really are, come up with an abstract and formal

description, and form some basic test case generation design patterns. We will not

cover specific test tool areas such as code coverage data collection.

3.1. Test case definition

3.1.1. Test Case Template

A test case in test automation terms can be defined as the following two elements:

1) Applying a set of actions in form of function calls to SUT. The functions are called

in a given order with their parameters precisely defined.

2) The result of the actions can be clearly predicated and measured by a set of

other function calls to SUT.

In reality, a test case resembles a state transition in a finite state machine. However, in

describing this pattern, we use results from function calls to signal the pass or fail of a

test case, rather than use state machine. This model makes it simple to model a test

case and is also effective when combining with run time “test state”.

Also note that the second element of test case is the “testability” requirement of a test

case. In reality, it can be done as black box or white box depending on the nature of

SUT and its testability level.

For our pattern to work, we have defined the following “test case template” class,

based on which one or more actual test case can be formed:

172

A test case template is a class that contains a set of Action instances, and can be

executed by calling the DoTest method of each action until one of the action signals

failure or state change. The class definition as well as pseudo code for execute is

shown below:

class MyTestCaseTemplate: BaseTestCaseTemplete

{

List<Action> _myActionList;

Void AddAction(Action action) {…}

Virtual GetNextAction() (//default get test case sequentially ….)

….

 Void Execute()

 {

 While (true)

 {

 Action action;

 While (action = GetNextAction())

 {

 Try

 {

 action.PrepareTestData();

 action.Dotest();

 action.Validate();

 }

 Catch(TestStateChange ex)

 {

 // handle the state change

 StateChanged();

 break;

 }

 Catch(TestException ex)

 {

 // handle error

 HandleError(ex);

 // decide to continue or quite

 ……………

 }

 }

 }

……

}

 Table 3.1: pseudo code for test case template

The above class is named as TestCaseTemplate, instead of TestCase for a reason. To

satisfy the 2
nd

 elements of a test case definition, the above function Execute shall be

predictable and can be measured for state change, pass, or failure accurately. This

would not be possible given that each action has to prepare for its data at runtime. At

the same time, GetNextAction may not return the same action as the last time the test

was executed. Hence the “predicable” test case is only available after you play back

the previously generated action/data sequence. This is why in the pseudo code, it’s

extremely important to log every action (LogAction) after running “DoTest”.

The essence of the test case template idea can be summarized by the following points:

173

1) Avoid using hard coded test steps and test data early in test case generation by

randomizing the actual steps and data as much as possible. For example, to

test the user logon page of Happy-fish, your test steps can be either enter user

name, enter password, and click OK, or enter password, enter user name, and

click OK. On the other hand, you should randomly select a legal or illegal user

name, rather than always use the same user name.

2) Separate test steps (actions) from test data and dynamically generate data at

runtime

3) Log (serialize) the test case run and make it possible to replay test cases based

on previously logged step sequence and data

4) Test case is confined by the SPEC (step and data requirement) but by no means

static and inflexible. This makes test automation not only a perfect tool for

regression but also introduces some explorative testing elements to test

automation. For example, Happy-fish “SPEC” dictates that a user name must be

longer than 4 characters and shorter than or equal to 10 charaters. This

information is used to generate both positive and negative cases for “Add New

User Page”.

3.1.2. Action definition

A test action for a test case can be defined as the following three elements:

1) A specific function call made to SUT.

2) A group of parameters, with each parameter a set of values

3) Each parameter defines a template from which real value derives. The template

is derived from the product SPEC.

The following pseudo code describes a test case action:

class TestCaseStep: BaseTestStep

{

 // Will call SUT API f1 with two parameters: an integer and a string

public void DoTest() { ….}

// Log this action

public void LogAction();

// Derive actual test data from data provider

void PrepareTestData();

// Validate the action

void Validate();

// Can the action be run now?

public virtual bool ActionCanRun() {…}

// first parameter needed for calling SUT function

String _param1_template = “integer:0-100”;

// Second parameter needed for calling SUT function

174

String _param2_template=”string:charset:all illegal:~!@#$ length:1-256”

…

}

 Table 3.2: pseudo code for test action

From the above test action pseudo case, we learn that the actual action will be

realized only when we run “PrepareTestData” because the parameter values are not

hard-coded and only their templates are given. Regardless of the result of the test run,

the action is logged and serialized to an XML file, in which the entire test case is

serialized, makes it a concrete step within a concrete test case.

3.2. Test Case Generator

In the pseudo code listed in Table 3.1, GetNextAction as a virtual method, is also a

variant factor in test case generation. It is difficult to predict what factor at run time will

influence the decision of picking an action from a set of predefined actions. But to

make it simple and practical, the pattern provides 3 implementation choices:

• Sequential action

User is responsible to make sure the order of the action is the same as the order

of the action list. This is suitable for simple test cases in which a set of well defined

test steps can be used to simulate a usage scenario and the SUT behavior is

predictable.

• Action/Data combined Permutation

This method uses multiple-dimension permutation algorithm to calculate the

action/data combination for each test case run. This is suitable for small

steps/data value combination and guarantees to hit most if not all test cases

automatically. It is also a great stress, long-haul test case generator.

• Randomly picking an action

This method randomly picks up an action from an existing action list and

randomly generates input data from data template.

No matter what choices you use, the derived class could override the decision making

by calling ActionCanRun function to determine whether an action is relevant at the

moment. This requires us to define the runtime decision making mechanism as a

restriction. “Test State” is a simple interface we define for this purpose. It is a bridge

between the framework and the SUT Test Drivers and helps the test action interact well

with real world usage scenarios.

3.3. Test State

We have used a notion of test context or test state, to capture the SUT state, with

respects to test applications. It is implemented as a simple string-object Hash-table.

The idea is powerful even though it is extremely simple:

175

• The captured SUT states can be serialized to an XML file at any moment, making

it easy to debug the test code as well as SUT code in case of test failure.

• The SUT states serve as an important mechanism for choosing the next test action.

The following pseudo code from one of our test application demonstrates it:

Action GetNextAction()

{

TargetList tgtLst =_testStates.GetNamedValue(“TargetList”) as TargetList;

If (tgtLst.Count > 0)

{

 return new ActionCreateVDS();

}

 return new ActionCreateTarget();

}

 Table 3.3: Pseudo Test Step Generation Code

In the above pseudo-code, we choose “CreateVDS” action if there exists a “TargetList”

object in the test state, while choosing “CreateTarget” action otherwise.

The Test State (TTS) can be viewed as an in-memory object model maintained by test

automation which reflects the real SUT state from test automation’s point of view.

Whenever, there is a conflict between TTS and SUT, it’s either a SUT product bug or a test

bug and if it’s latter we need to improve our test automation.

3.4. Pattern Description

Name

 Test Case Generation and Execution Pattern

Intent

• Reusability

• Standardize Basic Test Automation Components to guarantee the basic test

coverage regardless of SUT’s problem domain

• Maximize the randomness in test case generation thus maximize the opportunity

of finding real SUT bugs as early and as much as possible using the minimum

efforts

• Possibility to auto-generate test program for the upper layer of test automation

logic

• Expedite test automation development process

Constraints

• Data provider interface

• Test action interface

• Runtime state interface

176

Support Framework

• Standard data providers

• Standard error handling mechanism

• Basic permutation and combined permutation algorithm implementation

3.5. Pattern Framework Design

Although this paper mainly presents the concepts and ideas behind TCGEP pattern, we

did provide an implementation and a framework for further expanding it. The following

is the diagram which describes the basic OOP design architecture for TCGEP.

BaseTestStep

Public Methods:

Virtual void DoTest

Virtual void PrepareData

Protected Helpers

Void GetData() {…} (*1)

Protected Data Fields

String expectedErrMsg

Exceptio expectedException (*2)

BaseDataProvider dataProvider; (*3)

BaseTestCaseTemplete

Public Methods:

virtual BaseAction GetNextAction

 void Execute() {…} (*4)

void AddAction(BaseAction){…}

void ExecutFrom() {…} (*5)

Protected Helpers

Protected Data Fields

List<BaseAction> listOfActions

BaseDataProvider

Public Methods:

void object GetObject(

 string DataTemplate,

 bool Negative) {…} (*6)

Protected Helpers

Protected Data Fields

MyTestCase

Public Methods:

virtual MyAction GetNextAction

Protected Helpers

Protected Data Fields

MyDataProvider

Public Methods:

void object GetObject(

 string DataTemplate,

 bool Negative) {…} (*6)

MyAction

Public Methods:

void DoTest() {…}

void PrepareData() {…}

Protected Helpers

Protected Data Fields

string _dataTemplate1;

string _dataTemplete2;

….

string _dataTempleteN;

MyTestState

Public Methods:

Object GetNamedValue(string

Name){}

One to many

One to many

M
a

n
y

t
o

Fig. 3: TCGEP support framework class hierarchy

177

4. Demo Test Cases for Happy-fish Test Application

We will focus on our test efforts on admin page and user logon page. The

following two UI pictures show admin page and logon page:

Admin page:

User logon page:

Although from UI perspective, the above two pages looks very similar, they are

very different web pages in terms of functionality and testability:

• Admin page has much less restriction for name and password fields, as

long as they meet the product SPEC regarding user name format and

password requirement.

• User login page name and password fields can use random data only

for fuzzing and security verification.

• User logon page functionality test data is provided by Admin page test

and the data can only be retrieved from the “test state”.

The following pseudo code illustrates the test steps for admin page:

Class AdminStep_PutName : BaseTestStep

{

 // test data template:

string nameTemplate = “[char: any] [forbit:@%$&*()] [length:4-10]”;

void DoTest()

178

{ // get the name from pattern and put it into the name field:

 String name = _myDataProvider.GetString(nameTemplate);

 // UI call

 SetData(_contrIDName, name);

}

}

Class AdminStep_PutPassword: BaseTestStep

{ // test data template

 string pwTemplate = “[provider: cusPWPriv.dll]”;

 // similar to the above DoTest function

}

Class AdminStep_Add: BaseTestStep

{

 void DoTest()

 {

 // call UI driver tool:

 clickOn(“ctrID_add”);

 }

}

In the above pseudo case implementation, the Admin page has lots of freedom

to randomly generate test data based on a well defined data pattern for user

Name and uses a customer data provider for password. On the user logon page,

the data source is more restricted and can come from the three sources:

1. From previously generated Admin test pages for “good” user credentials

2. From randomly generated data provider for random (mostly bad) data

3. Mixed data sources

The following lists the pseudo code for log on page (with a simplified one step):

class UserLogon: BaseTestStep

{

 void DoTest()

 {

 // get name from two sources

 Name1 = _testState.GetAddedUserName();

 Name2 = _myDataProvider.GetString(“any”);

 // get PW from two sources

 Pw1 = _testState.GetPWForUser(Name1);

 Pw2 = _myDataProvider.GetString(“any”);

 // Randomly choose:

 ChooseNameAndPWCombo(out Name, out PW);

 // call UI driver tool:

 LogOn(Name, PW);

 }

}

In reality, we can have three test step classes form the above code to randomly

choose one method. We mixed the three methods into one function just for demo

purpose.

179

4.1. Test case generation

Some test automation applications only generate the obvious test cases due to lack

of design and time. For example, the following would be the test case steps for

testing the user log on page:

Step1: admin add a new user

Step2: the new user use his name and password to log on and he should be able to

log on to “Account” page

Step3: log off from account page and back to user log on page

We use the default test case generator – “random test case generator”, which form

test cases by randomly picking a test step defined above. On the surface, this is less

efficient than the “basic case”, however, we have covered much more basic

usage scenarios and discovered several Happy-fish bugs. The following user

scenarios are some of the generated cases:

• Enter random user name/password before there is any user added by Admin

user (a crashing bug found for this case).

• Enter a valid user to the DB; then from the user-logon page enter the right

name but invalid password

• On the user logon page enter a invalid user name and a valid password of

another user

• Enter a valid user and password and we succeeded in landing in user

account page

• Add a new user while an old user is trying to log on

• Remove a user and the same user tries to log on again

• Enter invalid user name or password format (for both admin and user logon

pages)

4.2. Conclusion

From the above example and pseudo code, we can observe the following

important principals for using the test case generation design pattern:

• Focus on creating reusable actions with data template

• Use a standard test case generator for simple and effective test case

generation by calling the defined action as test steps

• Use test state manager to keep track of SUT state and help decision

making during runtime

• Log test state as well as test action details for regression

180

The practice has taught us some valuable lessons in implementing the design

pattern. Nevertheless, we found that this design pattern is very effective in test

coverage, stress, and explorative test case generation.

5. References

[1] Gamma, Helm, Johnson, Lissides. 1994. Design Patterns: Elements of Reusable Object-

Oriented Software

[2] Bach, James. 1996. “Test Automation Snake Oil.” Windows Technical Journal , (October):

40-44. http://www.satisfice.com/articles/test_automation_snake_oil.pdf

[3] Robert V. Binder “Testing Object-Oriented Systems: Models, Patterns, and Tools “.

6. About the Author

Lian Yang has been a developer, tester, and test lead at Microsoft for 13 years. He owns two

patterns in test automation areas and helped Microsoft © shipped products such as Windows

Media, Smartphone, Vista, and Windows Storage Server.

181

182

Management

of Outsourced Projects

Ying Ki Kwong, PhD, PMP

IT Investment Oversight Coordinator

Enterprise Information Strategy & Policy Division

Oregon Department of Administrative Services

Pacific Northwest Software Quality Conference

October 2008

This paper is based on a presentation made to the Project Management Forum of the

National Association of State Chief Information Officers (NASCIO) in July 2007.

The Enterprise Information Strategy & Policy Division (EISPD) is the office of the State

Chief Information Officer (CIO), which is a division of the Oregon Department of

Administrative Services. In addition to a variety of enterprise information technology (IT)

programs, EISPD is responsible for oversight of all major IT projects for state agencies in

the executive branch of Oregon state government.

The author of this presentation has been IT Investment Oversight Coordinator for the State

of Oregon for about three years, currently reporting to the Deputy State CIO. In this role, he

is the primary point of contact for lifecycle quality and risk management of major IT

projects.

Before this role, the author was Project Office Manager of the Medicaid Management

Information System Replacement Project — Oregon’s largest IT project to date — during

the Project’s planning & procurement phase. Before joining the State of Oregon, he was

CEO of a Hong Kong based internet B2B portal for online trading of commodities futures

and metals. Prior to that, he was a program manager in the Video & Networking Division of

Tektronix (now part of Thomson), responsible for worldwide applications and channels

marketing for a line of video servers for broadcast television applications. In these roles, he

was involved with the management of quality in software systems/applications, products, or

software-enabled business processes.

In this presentation, the author will use examples from the State of Oregon to illustrate

specific points. This presentation provides a useful perspective for outsourced IT projects in

large enterprises and should be applicable to both the public and the private sectors unless

otherwise stated in the notes of a slide.

183

2

Select Major IT Projects with Significant Outsourced Work

~$4.5 MOregon Educators Benefit Board (benefits management)

~$10 MEducation – KIDS III Project (K-12 students records mgt.)

~$3.6 MOLCC Tech Modernization (licensing, enforcement, sales)

~$3.3 MDAS Oregon Purchasing Information Network

~$2.4 MDHS Electronic Birth Registration System

~$35.2 MDHS OR-Kids (child welfare)

~$30.7 MPERS RIMS Conversion Project (retirement accounts mgt.)

~$2.5 MODOT TransInfo (state highways and related asset mgt)

~$3.6 MODOT Right of Way Data Management System

~$5.2 MODOT Transportation Operations Center – Event Mgt.

~$14.6 MDAS Enterprise Information Security

~$80.7 MDHS Medicaid Management Info System (healthcare)

Est. Cost

($)

Projects as of May 2008

Note: Projects are at different points in their lifecycle. Estimated cost of all major IT

projects in the statewide portfolio (including projects not listed): $210 million.

This is a background slide regarding major IT projects in the State of Oregon…

At any one time over the last three years, the State of Oregon may have between 10 to 20

major IT projects. These projects have various characteristics, including but not limited to

the following:

• They have budgets above US$1 million.

• They are mission critical and/or enable major change in the state agencies where the work

are undertaken, both in terms of their operations, staff, and stakeholders. These stakeholders

usually consist of internal and external stakeholders; both in and out of state government

and other government jurisdictions.

• They affect citizens or the public in important ways.

The State’s major IT projects portfolio has a total value of about $210 million in May 2008,

as seen in this chart. Most major IT projects listed are planned, designed, developed, and

implemented by private contractors working closely with State personnel. As such, most

technical work is outsourced to contractors.

184

3

Oregon IT Investment Management Lifecycle

This is another background slide on major IT projects in the State of Oregon…

The State of Oregon views major IT projects as investments with a lifecycle. This lifecycle

typically begins as an agency concept that leverages IT to improve or re-engineer business

process, increase capacity to meet stakeholder needs, or improve operational efficiency.

Agency concepts drive the development of the budget process, which occurs once every two

years. A project’s budget becomes part of an agency’s budget, which is then incorporated

into the Governor’s recommended budget and become legislatively adopted during a

biennial legislative session. Off session requests are authorized by the Legislature through

the Emergency Board process.

With the legislatively adopted budget in place, a state agency must prepare an Information

Resource Request (IRR). The IRR is the vehicle for State CIO approval of a project and is

supported by a detail business case, which analyzes the relative costs, benefits, and risk of

available solution alternatives. An approved IRR is required before procurement of

hardware, software, and professional services.

Because of the importance of a major IT project to a state agency and its stakeholders,

quality assurance is an important aspect of every major IT project. Statewide quality

processes exist to assure product quality, process quality, and management accountability.

The staff of the State CIO participates in many facets of quality planning and has broad

oversight authority traceable to state statutes, administrative rules, and policies. As will be

discussed, the State use independent QA contractors to provide independent assessment of

major IT projects. The findings of these assessments are periodically shared with decision

makers in both the executive and the legislative branches of Oregon state government.

185

4

Outsourcing of major IT application development

projects

• Reasons for outsourcing

• Outsourcing trends

• Project life cycle – developer and customer agency

views may be different

• Need for a customer-centric planning framework

Customer-centric planning framework

Concluding remarks: key challenges

Presentation Overview

This presentation will begin by discussing why organizations outsource major IT projects.

We will put forth the perspective that the objectives of an acquiring enterprise are not the

same as those of the developer (contractor). As such, the thinking with respect to project

management and quality management are also different, in general.

This presentation describes a “customer-centric” framework to plan and execute outsourced

IT project. In the context of this presentation, “customer” is defined as the enterprise

acquiring the software system or application in question.

186

5

� “Major IT application development projects” means a potentially

risky project involving significant investment (dollars, effort, etc.)

in design, development, and implementation; especially in

tailoring to organization or agency specific business

requirements. Integration or customization of commercial off-the-

shelf (COTS) products may be involved, as is custom software

development.

• “Developer” means supplier of software application systems and

related design, development, and implementation services.

• “Customer” means the acquirer of software application systems

and related design, development, and implementation services. In

this presentation, the customer is the business of a state agency

or one of its operating units.

Presentation Overview - Glossary

This slide defines terms that will be used throughout this presentation. In addition to the

above definitions, please note the following:

1. As this presentation discusses outsourced application development projects, the term

“developer,” “development contractor,” and “contractor” will be used interchangeably.

2. In this presentation, we use the term “customer” to refer to the enterprise acquiring the

software system or application in question, which is the customer of the developer. A

large enterprise may have an IT department that is primarily responsible for applications

development and managing IT contractors. Such an IT department would have internal

stakeholders that may be referred to as its “internal customers,” or simply “customers.”

To avoid confusion in this presentation, we will only use the term “customer” in the

sense defined in the slide above.

187

6

Reason for outsourcing IT application development

IT department’s core functions may not include certain skills.

Other

IT Dept

Core

Functions

Develop

Software

Manage

Projects

Integrate

System

Manage

Technical

Infra-

structure

Support

End-users:

Apps & HW

Capture

new

business

requirement

Secure

Data

Planning

Adopted from [Ref. 1].

� Non-core functions are candidates for outsourcing.

Depending on the enterprise, what is considered “core” functions or core competency may

be different from enterprise to enterprise. As an example, companies such as Nike does not

consider manufacturing to be core functions and use contract manufacturers extensively to

fulfill its manufacturing needs.

For IT, enterprises tend to view support (for hardware, network, applications) and

information security as core. Increasingly, enterprises view project management, software

development, and system integration as non-core. As such, the design, development, and

implementation of major IT projects are increasingly outsourced, with in-house

development by internal IT staff becomes correspondingly less common.

188

7

Outsourcing Trends

IT departments frequently lack skilled professionals to execute

major IT projects, especially in these areas:

• Project management

• Business requirements capture (including analysis and

specification)

• Software development (including applications integration)

• Systems integration

Public vs. Private Sectors

• Public sector organizations and government agencies routinely

outsource all of the above.

• Private-sector organizations, especially those with large IT

departments, may keep some or all of the above functions in

house. For competitiveness or other reasons, business

requirements capture and technical project management tend to

stay in house.

�For major IT projects, public and private sector organizations

may outsource major functions.

Outsourcing of work by the IT department of an enterprise is usually driven by limitation of

internal resources, the desire to focus on core business functions, and the desire to reduce

cost.

The view as to whether requirements definition should be considered core function of an

enterprise varies. Private enterprises usually views this (especially the definition of business

functional requirements) as part of its core competency, because business requirements are

closely related to an enterprise’s competitive differentiation in the marketplace.

Increasingly, in both private and public sector enterprises, even the capture/analysis of

business requirements increasingly involves contract-based personnel. Contract-based

personnel may include domain experts and facilitators in “joint application requirements”

sessions or equivalent activities in iterative or Agile system development lifecycle models.

189

8

Generic Life Cycle for Application Management

Requirements

Design

Build

Deploy

Operate &

Optimize

• Process steps may be overlapping, in

parallel, or iterative.

• May be mapped onto most formal

software development lifecycle (SDLC)

models used by developers.

Adopted from [Ref. 2].

Effective ways to outsource IT projects are related to an organization’s model for

applications management. This generic lifecycle model is based on ITIL and can be mapped

to all common SDLC models, as we will discussed later.

Especially important to the quality of an enterprise’s effort to outsource major IT projects

are:

• the process for capturing, communicating, or documenting requirements. (By necessity,

this needs to include considerations for change control of scope, schedule, and budget.)

• the process for quality and risk management during Design, Build, and Deploy. (By

necessity, this needs to include considerations for status tracking/reporting, customer

reviews at major milestones, acceptance testing of iterations or subsystems, and processes

for acceptance and/or payment for major releases.)

190

9

Customer-centric planning framework needed

For a major project, the following scenario is common:

• Project is strategically important to the acquiring organization.

• Schedule delay, budget overruns, or project failure are unacceptable.

• Senior management takes great interest on project status and risks,

necessitating frequent executive reporting and reviews.

• Based on fairly high level business requirements, contractor(s) must

develop detail design.

• Contractor(s) may be responsible for most testing.

• Only a small internal staff within the acquiring organization is

assigned to manage the project and coordinate its integration with

business operations.

Typical application development life cycles are not customer-centric

• Emphasize development processes (which is good)

• Do not emphasize customer processes (which is problematic)

An outsourced IT project is usually tied to strategic improvements that an enterprise

considers important – sometime critically important. As such, project failure is usually

unacceptable, and senior management takes particular interest in the project’s status,

performance, and management.

For many projects, the requirements available to the contractor at the start of the contract

may be very high level or conceptual. As a result, the contractor frequently plays a

significant role in defining detail requirements, in performing data conversion, and in

testing.

From the perspective of the acquiring enterprise, typically a small staff is responsible for

managing the project, the overall implementation of a system, work products acceptance,

and integration with business operations. This situation is made more challenging by the

fact that many system development lifecycle (SDLC) models emphasize development

processes and do not adequately emphasize the customer’s own project life cycle processes

for requirements, procurement, contract administration, quality and risk, and organizational

change.

This presentation will overview a framework that emphasizes these topics from the

perspective of the enterprise outsourcing major IT projects to development contractors.

191

10

Customer-centric planning considerations

• Project Life Cycle

• Requirements

• Procurement

• Quality

• Organizational Change

The planning framework being presented here is from the point of view of the customer of

the development contractor, i.e. the acquiring enterprise.

We start with reviewing aspect of a project’s lifecycle, followed by the management of

requirements, procurement, quality, and organizational change.

192

11

Customer-centric planning considerations

� Project Life Cycle

• Initialization

• Planning

• Execution and Control

• Closing

Requirements

Procurement

Quality

Organizational Change

We will start with a discussion of the Project Life Cycle.

193

12

Project life cycle

Initialization

• Business needs drive the initiation of a new system project, including the

development of a business case.

• Sponsors create project charter and assign or hire project manager.

Planning

• Business requirements are captured from stakeholders and end-users.

• Different solution approaches and their cost-benefit are considered.

• Decision to fund a specific approach is made.

Execution & Control

• Main contractors are procured.

• Construction begins.

• Project work products and project performance are verified and validated

at specific control points.

• Organization’s business operations prepare for new system and attendant

new business processes (workflow).

Closing

• Project transitions to operation & maintenance mode.

• Lessons learned are documented for future projects.

• Contractor resources leave and internal staff is re-assigned.

A significant degree of formality is typically required in the management of major IT

projects in large enterprises. This is so for two main reasons.

First, a major IT project is typically complex, both in business and technical terms. The

required resources and personnel across various functions of an enterprise must be

coordinated. This is so at different points of the project; notably at times of requirements

definition, user acceptance, implementation, and integration and operationalization of the

production system into actual business operations. Key stakeholders from across the

enterprise must also be involved in on-going project governance, requirements change

control, and quality and risk management. These efforts need to be coordinated, and formal

project management is a useful tool for this coordination and communication.

Second, a major IT project is important to the future of an enterprise. Stakeholders from

both within and outside the enterprise care and need to know about the status of the project.

As such, a formal approach to project management is typically the foundation for

communication with diverse stakeholders (including senior management) on project status

and associated project risks and issues.

Like many large organizations, the project management approach that is the standard for the

State of Oregon is the Project Management Body of Knowledge (PMBOK) Guide, third

edition, as published by the Project Management Institute. In the PMBOK view, a project

consists of distinct phases, as outlined in this slide.

The PMBOK approach emphasizes processes, planning, and performance measurements

against baseline plans; e.g. an integrated project plan that baselines project scope

(requirements), schedule, and budget, as well as supporting plans for the management of

quality, risk, procurement, human resources, and communication. The PMBOK can be

made consistent with iterative and Agile SDLCs, a point that we will return to later.

194

13

Customer-centric planning considerations

Project Life Cycle

� Requirements

• Functional requirements

• Non-functional requirements

Procurement

Quality

Organizational Change

We now discuss Requirements.

195

14

Requirements

Functional

• Overall Business process

• Customer interaction points

• Human processes

• Human - machine processes

• Compliance

• User interface

Nonfunctional

• Operations

• Maintenance

• Audit

• Compliance

• Security

At the highest level, requirements can be described in terms of business and non-business

requirements.

Business requirements are also known as functional requirements. Typically, an enterprise

acquires a system to fulfill specific business functions. The management and the users of an

enterprise system, especially non-technical users, typically do not care about the underlying

technology.

Non-business requirements are also known as non-functional requirements, which include

requirements for technology platforms and for on-going support and maintenance. (In the

public sector, procurement rules may require government agencies to not favor specific

technology platforms, especially for specific brand named products, unless there is a

business need.)

Large enterprises must increasingly pay attention to regulatory compliance. In North

America, HIPAA (for the healthcare industry in both the public and private sectors) and

Sarbane-Oxley (for publicly traded companies in the private sector) have focused the need

of enterprises to build IT systems and associated business processes that are secured,

compliant with applicable regulations, and support internal and external audits. Although

depicted in this slides as non-functional requirements, many enterprises begin to view

information security, regulatory compliance, and auditability as business requirements.

Managing requirements well is both a science and an art. It is central to high quality

software application, but it is also an important factor for high-quality procurement and

contract administration of outsourced IT projects.

196

15

Customer-centric planning considerations

Project Life Cycle

Requirements

� Procurement

• Scope of outsourcing

• Procurement model & contract terms

• Intellectual properties

• Contractor selection criteria

Quality

Organizational change

We now discuss procurement and related contract administration considerations.

Even experienced project managers sometime view procurement as “something for the legal

department or the purchasing departments.” In the author’s opinion, this is incorrect.

197

16

Scope of Outsourcing

Business goals

• Work force augmentation or complete outsourcing?

Core competency

• What skills and functions are currently in-house?

• What skill and functions should be in house for project?

• High value-add vs. low value-add activities

Contractual effectiveness

• Requirements stable and accurate?

• Can Statement of Work be structured to facilitate management

control, internal oversight and risk management?

Management considerations

• Business requirements to be defined by contractor?

• Can knowledge be transferred back when project closes?

• Can intellectual properties be managed with Contractors?

• Can security of business data and code be managed with

Contractors?

• Can payments be justified based on deliverables and acceptance

criteria?

When outsourcing, it is important for an enterprise to keep in mind the business goals and

objectives. Major projects frequently require entire projects to be outsourced for two

reasons. First, the internal organization simply lacks resources. Second, a single point of

responsibilities may enable more effective transfer of risk (technical, schedule, and possibly

even budgetary) from the acquiring enterprise to the developer.

Outsourcing usually involves some sort of contractual arrangement between the developer

and its customer. Key questions that should be discussed among stakeholder of a major IT

project (ideally before the start of the procurement process) are listed in this slide.

198

17

Procurement Model and Contract Terms

Procurement models

• Deliverable based vs. time & materials contracts

• Importance of statement of work

• Balance between contractual terms and project

responsiveness

Ensuring synergy of internal and contractor staff

• Key persons on-site or near-site

• Extent of off-site staff

Penalty clauses

• Performance based

• Schedule based

Contract modifications

• Stability and accuracy of business requirements

• Scope change management

From the perspective of the acquiring enterprise, project success is at least partly tied to the

effectiveness of the contract. In this respect, it is important for the acquiring enterprise to

look at four things: procurement models, the roles & responsibilities of the contractor’s staff

vs. the customer’s staff, penalty clauses, and the degree of contract modifications

anticipated during the project’s lifecycle.

Procurement models primarily refer to whether the contract will be deliverables based or

time-and-materials based. If the requirements are well understood, stable, and can be well

documented, a deliverables based contract is preferred. Many enterprises (especially private

ones) may feel that time-and-materials contracts are more easily administered and requires

less upfront work associated with statement of work (SOW) development. However, this is

so only if the acquiring enterprise is willing to accept the risk associated with contractor

non-performance and potentially flawed hours estimates.

The roles & responsibilities of the contractor staff vs. the staff of the acquiring enterprise

need to well understood by the developer and its customer. Part of this understanding

includes an agreement on the level of on-site staff requirements, especially contractor key

personnel such as project managers and subject matter experts.

Terms and conditions in the contract that awards performance (such as early completion)

could be a useful incentive for the contractor; as are clauses that delay, retain, or otherwise

reduce payment due to non-performance (such as late completion).

A high quality SOW that balances specificity (of tasks and deliverables) with the need for

the contractor/customer to dynamically respond to project unknowns is important. For

requirements that may not be stable due to rapidly changing business conditions or the lack

of thoroughly analyzed requirements, it may be necessary for the customer to budget extra

funds for on-demand work by the contractor (possibly through task orders) or through

contract amendments.

199

18

Intellectual Properties

Flow of business process knowledge

• Business requirements

• Business operations

Flow of data

• Confidential customer / client data

• Proprietary business data

• Source code

• Executables

Third-party IP

• Licenses of third-party proprietary software

• Open Source considerations

• Liabilities

• Escrow

Information Security

• Back doors

• Unwanted / harmful functionalities

The management of intellectual properties (IP) is an especially tricky issue for offshoring

(outsourcing to offshore locations), especially to countries where IP protection may be

weak. However, IP in the context of outsourcing does not refer simply to unauthorized

access, use, or distribution of source codes or executables.

The flow of business process knowledge is a key IP concern for the acquiring enterprise,

especially when the contractor’s subject matter experts (SME) are primarily responsible for

defining To Be (future) business process and associated business rules and requirements.

How to effectively transfer this IP from developer back to the customer is not always clear,

even when the contract SOW makes provision for extensive training and/or warranty.

The potential flow of confidential or proprietary data is also a major concern. Today,

confidentiality agreements are routinely expected. Many acquiring enterprises also require

on-site contractor personnel to be subjected to background checks by law enforcement

authorities. The security of testing or training environments is also important, not only to

secure customer data but also to secure source codes and executables.

Contract language must increasingly cover reuse of third-party codes and to assure proper

pass-through of proprietary software licenses. (With Open Source, the concern may be

safeguards against unintentional pass-through of general licensing agreements that are not

desirable from the customer’s perspective.) The goal for the customer is legal protection

(indemnification) against liabilities associated with third-party IP.

Large enterprises are also concerned with access to source codes in the event the contractor

goes out of business. To mitigate this risk, the contract may include an escrow requirement

for source codes.

200

19

Contractor Selection Criteria

Capabilities

• Domain knowledge and experience (Corporate & Key Persons)

• Vertical industry

• Project Management

• Software engineering

• Demonstrated performance on projects of similar scope and complexity

• Capacity to deal with expanded scope or schedule delay

Established processes

• Project management (especially scope, schedule, and cost performance)

• Software development life cycle (SDLC) management

• Quality management (including QA, i.e. audit of overall mgt processes)

Distance -- physical, time-zone, language, business & national culture

• Key persons

• Development staff

• Testing staff

Working capital and financial stability

All of the above for sub-contractors

Whether a formal or informal procurement process is used, the choice of contractors

ultimately comes down to considerations of the contractors’ capabilities, process maturity,

distance, and its financial stability; and the same for sub-contractors.

Capabilities refer to knowledge and experience in specific vertical industries (like

healthcare, finance, or government), project management, and software engineering. A

developer may be very experienced as a company, but the proposed team of personnel being

proposed by the company may not. Corporate capacity to add staff and resources quickly (in

the event of scope expansion or schedule fast-tracking) is an important consideration in the

evaluation of developer capabilities.

Large projects may involve large teams of personnel. Expertise with project management,

system development lifecycle methodology (such as for RUP or Agile), software

engineering practices, tools for development and testing are especially important. Likewise

for the skill levels and the accessibility (including physical distance) of the assigned

contractor staff. In this sense, accessibility difficulty of contractor personnel may be

geographic, time-zone, language, and cultural in nature.

Lastly, the financial stability of a contractor is important. No customer wants to see its

developer goes out of business during a major project. The State of Oregon routinely require

proposals of major IT projects to be accompanied by financial data for the contractor and

may conduct searches to assure that a contractor is in good financial standing and is not

currently involved in litigations or contract disputes.

201

20

Customer-centric planning considerations

Project Life Cycle

Requirements

Procurement

� Quality

• Management accountability

• Importance of standards & reporting

• Requirements traceability

Organizational Change

We now look at quality management.

202

21

task

input
output

(deliverables)

Control points are opportunities for risk assessment

• verification

• validation

• compliance

Management accountability necessitates controls for

project processes and work products [Ref. 3,12].

…

controls

task

input

controls

Process

output

(deliverables)

Obviously, enterprises outsourcing IT projects desire high quality contractor work. In

quality management paradigm such as ISO 9000, quality usually refer to the quality of work

products and the quality of processes for performing and managing work.

For major IT projects in large enterprises, a project and its management may be “under the

magnifier” at all times. Stakeholders, including senior management, expect to be informed

frequently about project status, quality, and risks. The fact that management accountability

necessitates management oversight means that projects must be managed in a way where

project performance can be transparently assessed or audited at all times, sometime by

independent quality assurance personnel.

The process diagram above depicts a prototypical project plan for which a “task” may

denote a specific iteration in an iterative SDLC, a phase in a spiral SDLC, or a task in a

waterfall-like SLDC. Management control points can be imposed during the execution of a

“task” to review work in progress or work already completed.

From a management standpoint, control points are opportunities for assessing work product

quality usually by means of verification and validation (V&V); usually associated with

testing, code review, and other means to establish that work products are “fit to use” and

compliant with applicable regulations. These management control points are also

opportunities for assessing and reporting project performance, such as percent of completion

for a task and for the overall project and the actual amount of resources (time and budget)

used vs. planned. In formal project management method such as PMBOK, Earned Value

Analysis (EVA) is employed to measure budget and schedule variance relative to a baseline

plan, both at the time of reporting and as estimated (forecasted) at project completion. In

EVA, the percent completion of a task is usually tied to specific, discrete milestones having

been reached.

203

22

Statutory and Policy Framework

Oregon Revised Statutes

• ORS 184.473-184.477 - IT Portfolio Management

• ORS 291.037 - Legislative findings on information resources

• ORS 291.038 - IT planning, acquisition, installation and use

Statewide Policy *

• IT Investment Review and Approval (July 2003, Updated April 2004)

• Technology Strategy Development and Quality Assurance Reviews

(February 2004)

• State IT Asset Inventory and Management (April 2004)

• State IT Governance Policy (June 2005)

* Oregon IT Policies can be found at:

http://www.das.state.or.us/DAS/EISPD/ITIP/pol_index.shtml#Statewide_IT_Policies

Another slide with information specific to the State of Oregon…

In Oregon state agencies, statewide policies traceable to state laws exist to govern quality of

major IT projects.

As already mentioned, projects with value greater than certain dollar thresholds requires a

detailed business case and State CIO approval before project execution.

During execution, the use of professional project management is expected; as are project

status reporting, on-going oversight by the staff of the State CIO, and the use of independent

QA contractor.

204

23

Relevant Industry Standards

Generic project management process

• Project quality – ISO 9001 [Ref. 3] and ISO 90003 [Ref. 4]

• Project management – PMBOK (ANSI 99-001-2004) [Ref. 5]

Standards impacting requirements definition

• Information security – ISO 17799 [Ref. 11]

• On-going Operations & Maintenance – ITIL [Ref. 2]

• On-going audit – CoBit [Ref. 12]

• Compliance

• HIPAA

• Privacy standards (Federal and State)

• Payment Card Industry (PCI) standards

• Sarbanes-Oxley

System development life cycle (SDLC) models

• ITIL Application Management [Ref. 2]

• ISO 12207 [Ref. 6]

• ISO 15288 [Ref. 7]

• CMMI or CMM for software [Ref. 8]

• Unified Process [Ref. 9]

• Waterfall, “V”, and spiral models [Ref. 10]

From a business perspective, the assessment of quality is tied mainly to the functional

requirements. As such, functional requirements should be the main criteria for determining

if work products are “fit to use” and should be accepted and paid for by the customer.

The assessment of process quality is usually not as straightforward. A variety of industry

and regulatory standards are useful here. This slide depicts relevant standards or approaches

that may be valuable to project management, requirements management, and system

development lifecycle (SDLC) models.

Standards associated with HIPAA, PCI, and Sarbane-Oxley may prescribe work product

functionalities and may be useful for assessing quality of the work products.

205

24

Different

reference

models for

software

development

life cycle

(SDLC)

A word on SDLC…

It is often impractical or impossible to impose requirements on a developer’s choice of

SDLC, but the acquiring enterprise would likely have certain preferences. An enterprises

may prefer RUP or Agile when requirements are not stable or captured in detail, or when

formal planning or documentation is not possible. An enterprise that understands its

requirements well and where contracting approaches are very formal (as in government

agencies) may prefer a waterfall like methodology with formal control points or review

milestones that decouple requirements, design/development/testing, implementation, and

support & maintenance.

This slide maps common SDLCs (waterfall, RUP, and ITIL) to three ISO standards for

software engineering:

• ISO 90003 (Software engineering -- Guidelines for the application of ISO 9001:2000 to

computer software)

• ISO 12207 (Systems and software engineering -- Software life cycle processes)

• ISO 15288 (Systems and software engineering -- System life cycle processes)

The main point here is that all useable SDLCs have certain core similarities that are

consistent with formal project management and quality management.

206

25

Status Reporting, Independent QA, and Oversight

Agency Quarterly Project Reports

• Balanced Scorecard

• Project Variance

• Quality & Risk Metrics

• Risk vs. Audit Views

• Written Report

Independent QA Reports

• Balanced Scorecard

• Summary level

• Analysis level

• Detailed findings level

• Written Report

Statewide Quality Oversight

• Quarterly Report

• Portfolio summary

• Project reporting

• State CIO & DAS Director

• Budget & Management staff

Legislative Oversight

• Legislative Fiscal Office staff

• Quarterly Hearings with

Legislative Committees

Another slide with information specific to the State of Oregon…

As mentioned, major IT projects in the State can be thought of as having multiple levels of

oversight. Typically, a project is under the oversight of the following entities:

1. the management of the agency planning and executing the project;

2. independent QA contractor retained to provide independent assessment of project status,

performance, and risks;

3. the staff of the State CIO;

4. legislative oversight (from a budgetary or fiscal perspective).

In addition, all projects are subject to audits by the Secretary of State, which is

constitutionally independent from all executive branch agencies.

With the exception of (2), this is not too different from a large private enterprise in which a

project or program may report into a director or VP of an operating division but is under

the oversight of the various C-level managers, such as the CIO and the CFO. Finally,

there may be external audits by an independent auditor.

The use of independent QA contractors is expected for major IT projects greater than $1

million. The goal of independent QA is to assure the independence of assessment but

also to assure project performance is measured against industry best practice with

recommendations for process improvement. The staff of the State CIO recommends that

4% of the overall budget of a major IT project be reserved for independent QA, based

on a standard QA statement of work.

The experience of the State of Oregon is that independent QA and external oversight can be

very useful tools to assure project quality.

207

26

Requirements

Traceability

• Business process model

• Business needs

• Compliance

• Business entity model

• User Interface model

• Architecture

• Design

• Data Model

• System Integration

• System Tests

• User Acceptance Tests

• Project QA

• Project Reporting

We have already discussed a fair amount about requirements management and its role in

quality management of an outsourced project. This slide emphasizes the importance of

business requirements as the driver for business process modeling, system architecture and

design, acceptance testing, and quality monitoring and reporting.

Historically, large enterprises exhibit a chasm between its IT and business departments.

Many failures of major IT projects can be attributed to the disconnect between the IT view

of the enterprise vs. the business view of the enterprise. In recent years, there are wider

recognition and acceptance that major IT projects need to be driven by business

requirements in order to accomplish desired operational improvement and strategic

objectives. This is a healthy development that helps assure overall quality.

208

27

Customer-centric planning considerations

Project Life Cycle

Requirements

Procurement

Quality

� Organizational Change

• Business Process Transformation

• Assessing impact of new system on the organization

• Effect Organizational Change

• Cultural change management

The final topic of this presentation is Organizational Change.

209

28

Organizational Change

Business process transformation

• “As is” business workflow -- baseline

• “To be” business workflow

• Gap analysis

• Compliance

Assessing impact of new system on the organization

Effect Organizational Change

• Training

• Policy and procedure changes

• Changes to organization structure

Cultural change management

By nature, a major IT project has big impact on the operations of an enterprise. Frequently,

such a projects is the enabler for major business process improvement or re-engineering and

may entail significant change to staff responsibilities and even organizational structure.

Human nature is naturally resistant to change, and human and organizational factors impose

challenges to all phases of a major IT project. A reasonable way to assure quality of the

overall process is to emphasize business requirements and business process. In this regard, a

good starting point of a major IT project is the documentation and analysis of the As Is

business process. The To Be business process is then defined, ideally in a collaborative

manner between contractor staff and customer staff.

The foundation of To Be business processes should be business requirements, regulatory

requirements, and the capabilities (as well as constraints) of new technology. Optimization

of proposed future processes should be done on the basis of balancing potential efficiency

gain and return-on-investment with organizational change. Given two processes with similar

effectiveness or efficiency, the process that results in smaller change, or gap, should be

chosen.

Impact of the new system on the enterprise needs to be evaluated and analyzed across

functional units. Training needs should be an integral part of the project plan and its budget,

as should efforts required to update relevant policies and procedures. Organizational change

and even cultural change may also be necessary in order to assure overall implementation

quality of a major IT project.

Clearly, technical success is necessary but not sufficient for the overall success of a major

IT project and related enterprise business process improvement initiatives.

210

29

Concluding remarks: key challenges

Business requirements

• Accurate and unambiguous specifications.

• Correct translation to technical design based on formal methods.

Estimating

• Weak link between business and system analysis, resulting in

inaccurate detail work breakdown structure.

• Accurate methodology given a correct work breakdown structure.

Project Phasing

• Front-loading risks.

• Control points and milestones well defined for QC, QA, and risk

management.

• Re-planning as probability and impact of risks change.

On-going operations

• Architecture is scalable, extensible, and easily reconfigured &

deployed.

• Design is modular, transparent, and well documented.

• Operational performance can be audited.

• Benefit realization is measurable.

This presentation will conclude with the author’s impression of key challenges for quality

management of major IT projects that are outsourced.

First, it is difficult to define good requirements. Software requirements are frequently not well

understood even by the acquiring enterprise. One reason is that business conditions evolve rapidly.

As such, it may be difficult to have stable, well documented requirements. A second challenge is

the chasm that tends to exist between an enterprise’s IT department and its operational units. As a

result, there is always a risk of miscommunication during requirements definition and their

subsequent management.

Second, even when requirements are stable, the method for estimating resources and time can be a

challenge. Many contractors’ work plans are based on estimates that may not be transparent to the

customer. Frequently, there is inadequate allocation of resource and time for customer reviews, data

conversion, user acceptance testing, and rework.

Third, project phases frequently delay high risk areas, instead of front-loading them (as

recommended in SDLC like RUP). Projects that progresses well (or has high velocity in the sense

of Agile SDLC) may slow down if high risks areas are deferred to later iterations. Management

pressure to see early results sometime drives the tendency in delaying high risk portion of the

project. This presentation advocates the inclusion of ample intermediate milestones to facilitate

project status/performance assessment. These milestones are also potential management control

points for quality and risk assessment. Project managers may consider Earned Value methodology

of the PMBOK, but other ways to facilitate good communication between developer and customers

are also beneficial.

Fourth, a project needs to take into account on-going support and maintenance needs of an

enterprise application early, beginning with the architecture. Designs needs to be robust and

supportable, with tools to support on-going monitoring of operational performance and key

performance indicators, both in business and technical terms. Where possible, architecture and

design need to conform to enterprise stand

211

30

“As a manager, the important thing is

not what happens when you are there,

but what happens when you are not

there.”

Ken Blanchard

One Minute Manager

The author believes that the key to quality is process, and the management of quality is

ultimately about management of process that “designs in” quality.

We end this presentation with this quote. Thank you.

212

31

References

1. D.J. Teece, “Profiting from Technological Innovation: Implications for

Integration, Collaboration, Licensing, and Public Policy,” Research

Policy 15, Elsevier, 1986, pp. 285-305.

2. IT Service Management: an Introduction Based on ITIL, IT Service

Management Forum with Van Haren Publishing, 2004.

3. ISO/IEC 9001:2000, Quality management systems – requirements.

4. ISO/IEC 90003:2004, Software engineering – Guidelines for the

application of ISO 9001:2000 to computer software.

5. PMBOK, Project Management Institute, third edition, 2004.

6. ISO/IEC 12207:1995, Information Technology – Software life cycle

processes; and subsequent amendments.

7. ISO/IEC 15288:2002, Systems engineering – System life cycle processes.

8. CMMI, Software Engineering Institute, Carnegie Mellon University.

9. I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software

Development Process, Addison-Wesley, 1999.

10. R.T. Futrell, D.F. Shafer, and L.I. Shafer, Quality Software Project

Management, Prentice Hall, 2002, Chapter 4.

11. ISO/IEC 17799:2000, Information technology – Code of practice for

information security management.

12. CoBit, Information Systems Audit and Control Association, 4th edition,

2006.

213

214

Building a Successful Multi-Site Team Using Chocolate

Doug Whitney dwhitney@mcafee.com

Doug Whitney manages two QA teams at McAfee. He has presented papers at PNSQC and

Quality Week on various topics. He has 16 years of QA experience and has managed QA teams

at both McAfee and Intel.

Srinidhi Krishnan srinidhi_krishnan@mcafee.com

Srinidhi Krishnan manages two QA teams in Bangalore India for McAfee. He is involved in

several QA initiatives within McAfee’s QA organization. He also managed the corporate

applications group for McAfee in Bangalore, India.

Abstract

Working with remote teams, whether across town, or across the ocean, can have its set of

challenges. Trying to determine how to interact, when to interact, and if to interact can make the

difference between a successful end result and a failure. The teams in both the US and India for

the McAfee product Total Protection Service have created an ongoing successful model that has

resulted in on time delivery and high team moral. There seems to be a common thread that binds

the team together – CHOCOLATE. This paper will describe the initial interactions, planning

methods, travel tips, team building experiences and types of chocolate used to enable our

successful team experience.

215

Introduction

The idea for this paper was an ongoing set of dialogs between me (Doug) and my counterpart in

India (Srinidhi). We wanted to demonstrate that there are two points of view, one from the US

perspective and one from the India perspective. You will see sections that encapsulate the

abstract and are from both points of view. We do not boast to have all of the answers and our

working methodology is a constant work in progress. We have found some success and that is

what we are trying to describe.

Doug:

When I was a kid, I always referred to my father as “sir”. I just got in the habit of referring to other

people, regardless of age, more formally. I was also very polite by saying thank you and holding

the door for people. I had no idea that these actions would prove valuable to me later in life in an

effort to build relationship with people in another country. It seemed to work out that way for me in

my relationship with the QA team working with me in Bangalore, India and it wasn’t from the

perspective that I thought it would be either. The VP of Quality told me prior to my first trip to pay

for team events and lunches. When I arrived the Director of Quality in India and I had a one on

one. In it she told me that the team considers it an honor to have a “visitor” and to allow them to

pay and to set up events. I quickly learned what she meant.

Srinidhi:

Working successfully in a shared mode with a distributed team is a challenge. The common force

that binds us together is the product vision, the cause, the drive to be the best amongst other

teams across the company and off course “Chocolates”.

Initial interactions

Doug:

When I first learned that I would be managing a team that was located in India, I had no idea of

what to expect. I had dealt with multi-site US teams before, while working at Intel, but the

involvement of those teams was not the daily tasks that it is with this team. Initially, my dealings

with the team in Bangalore started out on the phone. There was a weekly meeting that had been

scheduled by the previous manager for 7:00am on Tuesdays. I wondered why so early? On the

initial call I introduced myself and describe my working methodology. One of the items that I

stressed was that I do not expect anyone on the team to do something that I am not willing to do

myself. I really don’t think they understood this at first. They would. I also didn’t understand the

relationship that an Indian employee has with a person of responsibility, especially from another

country. The 7:00am meeting continued since they are twelve and a half hours difference from

the Pacific Time zone and they were all staying late in their day to attend. We worked well

together and since it was relatively late in the project cycle, the tasks they were already doing

provided value in releasing the product. When we shipped, I thanked them for their efforts. It was

the acknowledgement and the appreciation, the holding of the door if you will, that helped to

solidify the working relationship.

Srinidhi:

Having a counterpart in the US really helped in getting the right Information and direction at the

right time. When I was first assigned to the team, quality time was spent in understanding

individuals and teams onsite. During this process we built mutual trust which happened to be the

216

foundation of our mode of working. The beauty of such a cohesive team is that it has a mix of

people from different cultures, different styles, different modes of communication and different

ways of interpreting things. Our weekly telephone conferences did help to mitigate these factors.

It was worth the time even if it meant staying late in the office. Such conversations also helped us

in understanding technical problems with our product and in coming up with solutions. We did

define clear roles and responsibilities across sites and planned tasks in a way that there is no

redundancy across sites. By doing so, we never encountered a conflicting situation. We started to

build a “can do” attitude within the team. Our collective decision making did bring about a level of

belonging among the team members, who would then, open up and start sharing technical ideas.

With the technical skills, the right attitude and effective use of the 24 hour cycle across sites, this

team was on a mission to prove that we can work seamlessly even if the team is distributed. The

first couple of successful releases were a testament to what the team could achieve. After every

release we would go back to the drawing board and do an assessment of what went well and

what did not go well. This helps us to improve and fine-tune not only our processes, but also our

working model.

Travel Tips

Doug:

Shortly after becoming the QA manager for the ToPS team, I was told by the VP of Quality that I

should travel to India and meet the team. He felt it was very important to be able to have a face to

go along with the name. He also mentioned that the teams in India really enjoyed American

chocolate. I had a passport, but needed to have a letter of introduction from the McAfee India

office in order to obtain a visa for travel to India. Once we (including our very helpful Admin,

Marlana) received the visa and ordered the tickets, I thought I was all ready. Not quite. Again,

taking advice from others that had travelled to Bangalore; I was informed that I should go to my

doctor for “shots”. I was given a Hepatitis shot (series actually), a prescription for both a daily

malaria (don’t take the weekly) and Cipro. Cipro is an anti-biotic you take in the event you

developed traveler’s diarrhea. The primary way to get this is to drink the water in India.

I developed a standard rule of thumb while travelling to Bangalore. It is to eat food that is baked,

boiled, or peeled, and to drink only bottled water. The team looks out for me while I am there by

ordering bottled water at each restaurant we visit. There was one time when the restaurant

served ice cream and it looked very good, but the scoop was sitting in a bucket of warm water. I

disappointedly avoided the ice cream. I even use bottled water to brush my teeth.

The flight is long. My flight involves flying for 10 hours to Frankfurt, Germany and then another

9.5 hours to Bangalore, The flight arrives in Bangalore around midnight and after clearing

customs and finding my ride to the hotel (we also utilize a corporate apartment) it is about

2:00am. After sleeping for a short while, it is off to the office by 9:00am. I usually begin to feel

sleepy at 4:00pm my first day there. On the trip to the office on the first day, you are introduced to

traffic in Bangalore. There are lane markings on some roads, but there are ignored. On a road

with two lanes each direction, there are five to seven vehicles. Some are cars, some are

motorcycles and some are three wheeled rickshaws that are taxis. The other thing is that

everyone honks their horn. The rooms at the hotel (the Oberoi) have and outer door and an inner

door to keep out the street noise. One more thing about travel, you are only allowed a certain

weight for your checked bag (it varies for each airline), so plan carefully. I had too many one

pound bags of chocolate and needed to move some to my carry on. ☺

Srinidhi:

Traveling to the US has been a pleasant experience for me especially after joining the ToPS QA

Team. I have been well received by my counterparts in both QA and development and they have

been very co-operative. We feel that face to face interaction is very much needed in a distributed

team. Both teams try to make a point to have someone travel at least once in a year on crucial

217

assignments.

Planning Methods

Doug:

The way in which we plan projects requires a software quality plan (SQP) at the point we reach

the plan complete milestone. Within the quality plan is a QA schedule. One of the methods we

utilize in order to get the schedule data is to take the development components from the

engineering plan and from that create a testing schedule spreadsheet. One of the first planning

exercises that we did as a team was to have the test leads in both the US and India take this

spreadsheet and compile their estimates as to who owns, and how long it will take to test

(develop test cases, completed the functional testing, and to regress any defects) the individual

components. They went to the teams and received feedback. Once this was completed, there

was a pivot table to calculate which tester was testing what component and what was the total

time required to complete the testing. This data was very valuable to the schedule portions of the

SQP, and more importantly, it came from the team.

We have a set of tasks centering around the posting of the files on the server that is an exact

process. We needed to do this in order to avoid an erroneous posting that would cause all of the

customers on the service to receive incorrect files. Due to personnel changes, this posting

process needed to be moved from the US to India. Our posting engineer in India would ask

questions, but would take the stance that the US team would always have the answer. I actually

gave him permission to challenge me; to ask questions if HE deems something incorrect about

the files we were posting. The first few times, he would apologize after proposing a question.

Once he felt comfortable and to this day, he will question our process as well as the correct

implementation.

We now have calls in the evening US time. They are usually at 9:00pm, which is 9:30am in

Bangalore. We did this since there are more people that attend in Bangalore. We have one

meeting a week that is a team meeting where all attend from both the US and India. We have

other meetings that are done as needed during the critical points in the project. There are usually

no meetings on Friday nights (India Saturday). When we do not have a meeting scheduled, we

utilize instant messenger to communicate ideas and quick thoughts. I find that when I am logged

on in the evening, I will check to see who on the India team is logged in and send them a note.

We use the instant messenger extensively and would recommend it for any remote team.

Srinidhi:

By adopting an Agile Mode of Operation, we have been able to reap a lot of benefits like having

shorter development cycles which leads to lower risk, less changes, greater predictability and

higher quality. By adhering to an Agile Resource Model, we have come up with a spreadsheet to

estimate the target quarter based resources availability, leading to better effort sizing. We have

also implemented user story based development with complete traceability to the MRD. By

getting QA involved early enough and following a test driven approach that pairs QA and Dev

engineers together, it has resulted in high quality releases. We also work with our development

counterparts in attempting early defect prevention rather than defect detection at later stages.

We bring product specific functional teams together as a core team for efficient problem solving.

This would comprise of QA, Dev, Tech Pubs and Support teams. During crunch time we

implement a daily stand up meetings. We use this as a forum to bring up “what I did yesterday”,

“what I’m doing today”, any blocking issues, and it also acts as a forum to get other issues

resolved. This process takes less than 5 minutes of time. We have also come up with simple

Agile reporting artifacts, which takes less time to fill, but gives a clear indication and status of the

testing activities. We also have recurring telephone conferences, to keep people across sites on

218

the same page. All project related documents are located and maintained in a single location

(Twiki) for cross site reference.

We plan for ownership of components to individuals across sites. This helps with individual

specialty, but it also helps to cross train with coverage issues that may happen. All engineers

attend planning meetings and are assigned goals and deliverables. Attendance at these meetings

is an active not a passive role as all are free to ask questions, get involved, and collect the

information needed to design effective tests. For each user story document we help determine

the risks, issues, concerns, complexities, assumptions, and dependencies. We also encourage

cross site review of Quality Plan, the schedule, the user stories, and the results.

We believe that “Anything which cannot be measured cannot be improved”. We generate metrics

through all the stages of product development, not just the QA stabilization phases (Requirement,

Planning, Design, Development, QA, Release and Support). We constantly refer to these metrics

and set higher level of expectations and improvements for future releases.

Team Building

Doug:

During one of my first visits to India, I was asked if I wanted to interview one of the candidates for

a test position. During the course of the interview, I asked the question, “Do you like chocolate?”

The individual looked at me for a second, and then smiled. When she said yes, I told her she

would get along well with the rest of the team. This technique has been repeated during other

interviews as well. It makes the person relax and also helps them to understand that we are a

team. I have been told this is very different that the “normal” questions that are asked, but one

that is welcomed by the candidates.

During every visit I have made to Bangalore, I have brought chocolate. I will bring some in on the

first day in the office and set it on one of the desks. That desk becomes a gathering place for

discussions about the product as well as about the people. It works as a very pleasant stand up

meeting to catch up with each member of the team (as well as people from other teams). In

addition, whenever I am in India, we will go out as a team to lunch. The team finds this a good

opportunity to share thoughts and ideas.

Just after my first trip to Bangalore, one of the QA managers from India came to the US for some

training. On one evening I asked him if he would like to go to dinner. He brought one of the QA

engineers that he worked with and we had dinner at my home. Now, whenever one of the team

comes to the Beaverton office, they come to my house for dinner. Sometimes, for the vegetarian

type eaters, we would have a toasted cheese sandwich and tomato soup and all enjoy it. For the

non-vegetarian, it is a barbeque. ☺ I have also been invited to homes in Bangalore for dinner

while I visit.

Srinidhi:

After every major release, we make sure that we go out on a day’s event with the team. Past

events have included team lunches, bowling, go-kart racing, and water games. This would

rejuvenate the team. Very recently we went to watch a 20:20 cricket match. All members on the

team will act as product and company ambassadors. We distribute promotional materials like

caps, t-shirts, jackets, coffee mugs to show off the company or product specific logos. We try to

ensure that there are “Team Building Events” on a time bound basis so as to bring the team much

closer, which results in a better understanding of each other and ultimately results in higher

efficiency of the team.

219

Types of Chocolates

Doug:

Hershey kisses

Ghirardelli’s

Nestle value pack (Nestles Crunch, Nestles Chocolate with Almonds and Nestles Milk Chocolate)

Srinidhi:

Dove

Ritter Sport

Hershey Almond

Nestle-Crunch

Conclusion

Doug:

People all have basic needs and one of the most important is respect. A team is a group of

individuals, who are working on a similar task that will provide some benefit. On a successful

multi site team, there is also mutual respect. Maybe by engaging with your team, asking for their

input, and providing an open environment for sharing both face to face and electronically, you can

build that mutual respect. It might be as simple as a thank you sir, or a let me get that for you, but

please, don’t forget the chocolate.

Srinidhi:

We believe that for any individual to be at peak performance, they should be at ease. That is one

of the reasons why we believe in a “Fun at Work” culture. The organizations role is very important

in building a successful team. There has to be strong thought leadership in driving career

development and training. In recognizing talent and rewarding the deserving ones, having

employee friendly policies and work culture, we would help to ensure higher employee

satisfaction levels.

Considerable amount of time should be spent on getting resources that have right mix of talent

and attitude, the success lies in inducting and grooming them with team values. We need to align

individual goals to that of the product and organization. This helps individuals in the team to

achieve their aspirations and thereby adding value to the product and the organization. Enough

opportunities should be given for innovation at work. The key lies in encouraging and motivating

the team to achieve something new that would add value to the company. The theme of our

teams is chocolates; we make the candidate feel at ease during the interview process by asking if

they like chocolates? This would ensure that the person sheds away the fear or tension

associated with a normal interview and be more involved in discussions, this is one of the binding

factors of the team.

220

Distributed Agile

An Experience Report

Abstract

This paper details our journey from chaos to concord while developing software as a service

with a globally distributed team using Agile methodologies. It highlights the challenges and

successes we experienced as we concurrently developed two small, first-version, online

services using a development team that was located in Redmond and Moscow, and a test

team that was located in Redmond and India. We encountered many interesting and

difficult challenges, but were able to successfully overcome them and release high quality

software on time, delighting our stakeholders. This experience report highlights our

learnings, focusing on several critical success factors, such as well-defined processes, cultural

awareness, continuous integration, open communication and relationship building.

Introduction

About eight months into our first Agile development projects, the Development Lead, the

Program Manager Lead, and I, the Test Lead, attended a seminar titled “Agile meets

Offshore.” The presenter, Ole Jepsen, who has considerable experience in this arena, told

the audience not to try Agile offshore on “… first releases of complex and high-technology-

risk projects, if your onshore development process is not in place, [or] if you don’t have any

onshore Agile experience.”
1

 My colleagues and I looked at each other, and the

Development Lead said, “No wonder this is so hard. We’re doing all of those things!”

Six months later, we had fallen into a cadence of releasing both of our online services on

time every two months. These were the easiest releases I’ve experienced in my fifteen-year

career in software testing. We were even able to release a week early in one case. Our

software quality and team morale was high, we worked productively in ‘round-the-clock’

shifts, and the offshore teams were truly an extension of the core team.

Some of us were enthusiastic about using an Agile software development methodology from

the beginning. Our management was sold on Agile and sent us all to Scrum Master training.

The basic tenets of Agile made sense to me. I had been in software development for many

years, and shipped many different products. I had long been an advocate of involving test in

the process as early as possible, and keeping the bug counts low. The concept of short,

iterative sprints was new to me, but one I thought held promise.

Once the class was over and we went back to our office and tried to implement Agile, we

struggled. There were many on our team who were rather vocal about how silly the

methodology seemed (“Pigs and chickens? Please spare me!”). They did not want to track

their hours. They did not want to spend the time needed in meetings to plan a sprint fully,

and they did not want to be held accountable daily for the work they were supposed to be

doing. There were also struggles with bringing the offshore team members into the process.

221

Joy Shafer

As a management team we patiently, and sometimes not so patiently, met every objection.

We persevered and found solutions to most of the problems, eventually creating a very

effective Agile process that the whole team embraced.

How We Used Agile

Wikipedia defines Agile Software Development as a conceptual framework for software

development that promotes development iterations, open collaboration, and adaptability

throughout the life cycle of the project.

Agile comes with its own set of vocabulary. We used a method called ‘Agile with Scrum.’

We did not use paired programming, test driven development or story points, although

some of us were strong proponents of these methods, and we may eventually have adopted

some of them if we were still together as a team.*

Agile is characterized by:

• Short iterative ‘sprints’ which generally last 2 to 4 weeks

Each iteration includes a detailed planning session at the beginning of each sprint,

and at the conclusion of the sprint there is a retrospective to pinpoint areas for

improvement, and a demonstration to stakeholders of what was accomplished during

the sprint. By the end of the sprint, all features under development should be

completely finished. That means not only coded, but also tested, and all bugs fixed

and verified.

• Agile has its own terminology

ScrumMaster: the person who facilitates meetings, unblocks team members, and runs

interference against those who would randomize team members

Product Owner: the person who makes decisions about what features should be built

Product backlog: a prioritized list of features or other desired or required work items,

such as infrastructure improvements

• Intensive communications: daily ‘Scrum’

The Scrum meeting is a fifteen minutes daily meeting whereby the team members are

held accountable for the work they committed to completing the day before. The

scrum is also an opportunity for the ‘Scrum Master’ to discover and remove blocking

issues.

*Our group was reorganized last summer into a larger non-Agile team, and many of

the team members have moved on to different projects. One of our services was shut

down even though it was successful with customers, because no one could figure out

how to make money from it.

222

• Small teams and team focused control

A typical Agile team is about eight people. Ideally the team is co-located and able to

communicate easily about their work throughout the day. Because of the structure of

Agile, the team holds each other accountable for the work, and management should

be less involved in making sure day-to-day work is completed.

• Division of work by product functionality rather than by task

As the Agile team works together to accomplish their objectives, and given the short

timeframe of a sprint, traditional roles of development, testing, project management,

technical writing, and so on tend to be shared across the team. Some sprints may be

‘test heavy’ in which case developers or doc writers or other non-test team members

may lend a hand to the testing. In some sprints, testers or other technical team

members may fix bugs or work on tools that would typically be done by a developer.

Agile works well when requirements are evolving, as new requirements can easily be

accommodated at the beginning of every sprint.

Project Details

We were a newly formed group, charged with building two brand-new, version-one online

services.

Windows Live VoiceMail is a service that forwards your telephone voicemail to your

Windows Live (Hotmail) account. We were responsible for building the middleware piece

that receives the voicemail from the Network Operator, translates it into a different format

and forwards it on to Hotmail. It also kept the Hotmail inbox in sync with the Voicemail

inbox.

This team consisted of Developers, Testers and Program Managers. We had six based in

Redmond, five in India and three in Russia.

We worked with four internal Microsoft partners and two external partners.

Windows Live Call for Free was a service that could be accessed through a link from the

Earthlink site (http://maps.live.com). It connected users with merchants by phone, either

through a VOIP call or by connecting the user’s phone line with the merchant’s line through

the PSTN (publically switched telephone network). Although the UI (user interface) was

simple, extensive backend rules were implemented to make sure the service was secure and

that there was no possibility for users or merchants to be spammed.

This team had twelve members based in Redmond, four in India and three in Russia. We

interfaced with two internal partners and two external partners.

The offshore development team, which consisted of a lead and seven developers, worked for

a small company in Russia. The vendor relationship with this company had been obtained

along with the acquisition of a company called Teleo. All of the Microsoft developers on the

223

two teams had joined through the Teleo acquisition as well. The Teleo development team

had been successfully working in a geographically distributed model for several years.

The Indian test team, which initially consisted of twelve people across both projects, was

brought on board because there were no other test resources. Qualified testers are scarce,

and there were few internal headcounts available to hire against. By the time the offshore

test team was in place, the rest of the development team had been working on the services

for four months and the target date for the first beta was only two-months out. Test was

already considerably behind.

Challenges of Implementing Agile in a Distributed Team

Certain facets of the Agile methodology make it challenging to implement successfully in a

distributed team environment. Some of the challenges we faced included:

Information Flow

One of the tenets of Agile is lean documentation. Things are only documented when there is

a clear need and purpose for that documentation. When we started doing Agile, we found

that the lack of detailed development specifications caused problems for the offshore team.

A lot of detailed information was shared during our four-hour long planning meetings.

Because of time zone differences, it was impractical for the offshore teams to engage in these

planning meetings. The onshore team was too busy to relay all the detailed information to

the offshore teams, leaving the offshore teams confused and ineffective.

Technical Communication Difficulties

In addition to the logistical problems with communication, there were other more basic

issues. Most of the interactions with the offshore team took place over the phone. Initially

we had a very difficult time understanding what the offshore team was saying. The voice

quality of phone calls was often very bad. The offshore teams had unfamiliar accents and

speech patterns. There were cultural and expectation differences which sometimes made it

difficult for us to understand each other.

Round-the-Clock Work?

The differences in time zones were a big problem at first. Our main method of

communication was email, and it would sometimes take days to resolve blocking issues

because twelve hours passed between each question and answer.

If the onshore team did not complete something or get some piece of information to the

offshore team by the end of our day, we would delay progress by a full 24 hours.

No Shared Vision

Partly because the teams were offshore, and partly because they were vendor teams, we

found it difficult to share the business reasons behind the project activities. The offshore

team was often working in the dark without the knowledge they needed to make decisions

independently. Some of the tasks we asked them to do made no sense to them.

224

No Opportunities for Socializing

Trusting relationships are the foundation of team productivity. One of the best ways to build

these relationships is through casual interaction, sharing details about our lives that let

people know who we are and why we do what we do. It was impossible to get together with

the offshore team in a non-business setting, therefore these relationships did not get built.

Additional Challenges

In addition to the above challenges, which are characteristic of a distributed team, we had

other difficulties to overcome.

Initial Lack of Support for Offshore Test Team

I was hired as the first Microsoft test person on the team. When I was brought on board, the

twelve-member Indian test team had already been working for a month, but they had

accomplished almost nothing. They had no access to the Microsoft environment and they

had spent their energies trying to build their own lab to mimic our facilities, but the

environment was complicated and difficult to setup. After a month of frustration, they still

did not have a working test environment and we were only five weeks away from our first

scheduled beta release. Not a single bug had been filed.

The Microsoft contact for the Indian test team was a very busy developer who did not have

the disposition or desire to help them. He was frustrated that the offshore team was

demanding so much of his time, and the offshore team was stymied by his terse answers and

lack of follow-through.

Lack of Access to Resources:

Initially, neither the Indian testers nor the Russian developers had access to the Microsoft

corporate network. This created a huge overhead for our team, as someone had to send

them files of everything they needed to work on, and the onshore team was required to

spend a lot of time merging the Russian development teams’ code changes into our code

base.

Ineffective Onsite Coordinator

The plan for the Indian test team from the beginning called for an ‘onsite coordinator,’ a

member of the Indian vendor team who could act as the liaison between the offshore test

team and the onshore team. However, visa issues prevented the chosen onsite coordinator

from being able to come to Redmond. (He shared his name, Amit Kumar, with millions of

other Indians, making the visa process very time consuming. Amit Kumar is the Indian

equivalent of Mike Smith.)

The delay in having an onsite coordinator caused considerable frustration for both teams, so

the vendor company sent an alternate. Unfortunately, the person they sent did not have the

temperament to deal with the strong-willed people on the Microsoft team and he was

lacking in basic troubleshooting skills and systems knowledge. He could code, but he didn’t

225

know anything about SQL administration or Web Services, and he lacked the ability to

unblock himself when he became stuck.

Communication Channels Not Yet Established

When I started, there were two half-hour meetings each week with the offshore test team,

one for each project. These meetings were ineffective because of the difficulties in

understanding each other and the need for them to ‘try out’ our suggested solution before

they could come back and ask more questions.

Initially, even after the offshore team was set up with Microsoft email accounts, they were

not in the habit of using them and would miss important emails about the project.

Little Visibility into What Offshore Test Team was Doing

I had twelve unpronounceable names reporting to me on the organization chart, but there

was little visible productivity from the offshore team. This is particularly a problem for test,

which traditionally is difficult to measure.

Lack of Trust

Going along with the lack of visibility into what the offshore team was doing, came a lack of

trust. I was under a fair amount of pressure to make sure the services were tested and ready

for the rapidly approaching beta dates. The communication difficulties, cultural differences,

and lack of a real relationship with the offshore team, led me to mistrust them. I wondered if

they were even honest. The list of people working for them included ‘Amit Kumar’ and

‘Kumar Amit.’ I thought they were trying to pull the wool over my eyes, but I later found

out these really were two different people. I also questioned whether they knew what they

were doing. Most of the documents they sent were not what I was expecting. I’ve since

learned that their documentation was done in a very typical Indian style, but my initial

conclusion was that they did not understand test at all, and were trying to cover up their

lack of expertise with volumes of fluff.

Best Practices for Distributed Agile

We found solutions to most of the problems we encountered. In this section, I’ll highlight

our learnings.

Build Offshore Team Incrementally

Don’t staff up until you’re ready to support an offshore team. When you have someone

onboard who is willing and able to support an offshore effort, you can bring offshore

workers on effectively. However, if there is work that needs to be completed before all team

members can be productive, such as building a lab environment, bring only a few people

onboard at first, and only add the rest of the team when you are able to support them and

keep them productively busy.

226

Bring Offshore Onshore

The offshore test teams did not start to show results until we had good technical

communicators from offshore come to Redmond to become dedicated conduits of

information for the offshore team.

After about two months of working with the offshore test team, I was fed up. The onsite

coordinator they sent was ineffective. The offshore team was finding few bugs and I had

little confidence in their test results. The documentation they sent was subpar. I was ready

to sever our relationship and start over with a new vendor team.

Due to earlier complaints, the vendor company with which we were working had already

sent a second onsite coordinator to assist the first one they sent. She was a little better at

communications, but she didn’t know test. We sent the first onsite coordinator back to

India, and the second followed shortly thereafter for personal reasons (family emergency).

I set up a face-to-face meeting with our vendor representatives in Seattle and we laid out our

grievances, rather bluntly. They listened to us, thanked us for being candid and promised to

try their best to set things right. We were skeptical, but willing to give them another try,

especially since our beta date was fast approaching and we knew that starting the process of

engaging a new vendor would take time. The two projects were different enough that I

realized we needed a dedicated resource for each project to handle the communications with

offshore, someone who could do a deep technical dive and really understand what we were

doing,

At this point in time, Amit Kumar’s visa finally came through and he arrived in Seattle,

followed shortly by Amit Sharma. Both of these men were the test leads from the two

offshore teams. Although the initial contract had only called for one person from offshore to

be housed in Redmond, our vendor company did not charge us for the additional onsite

resource. They wanted our business and were willing to eat the extra expenses to make

things right for us. Both of the people they sent were bright, hard-working and technical.

They set up a system whereby they called the offshore teams every night and spent a half

hour or more going over the day’s events and making sure the offshore teams knew what

was expected of them.

The offshore teams summarized their days’ work and sent it via email to the onsite

coordinators, who acted as the offshore teams’ proxies at the scrum meetings.

The most important thing we did to make the project successful was bringing dedicated technical

resources onsite for each project. These people already had relationships with the offshore team

members and were able to build relationships with the Microsoft teams. Both of these men

were technical enough to make the offshore team understand the complex details of the

software under development.

Build Relationships

Another thing that happened about the same time that helped with my acceptance of our

vendor company was that their offshore project manager came to Seattle for a visit. I had

spoken with her many times over the phone, but my impression of her changed considerably

when I met her in person. Over the phone, long distance, with her unfamiliar accent and

227

unusual verbiage, I assumed she was young and inexperienced. Once I met her in person, I

realized she was a competent, accomplished professional with goals similar to mine. If fact,

we have built the roots of a relationship that will probably outlast our professional

association.

Throughout the lives of these projects, we maintained onsite representatives from offshore.

These typically switched out every three months (we insisted on telephone interviewing the

replacements to avoid the first couple of disasters). Because our relationship lasted for a

number of years, most of the offshore team members had the opportunity work onsite. They

came to understand our culture and ‘how work gets done’ at Microsoft. We learned that the

Indian team overall was smart, honest and hard-working, and they brought their positive

impressions of us back to India with them as well.

Unfortunately, due to budget constraints, the Microsoft team was unable to visit the team

offshore, however, I think it would have given us a deeper understanding of and

appreciation for our offshore workers, and it is something that I highly recommend.

Multiple Communication Channels

Establishing multiple communication channels was very helpful in fostering productivity.

Much of our communication was done via email; however, many team members would

send Instant Messages (IMs) to each other with questions if they found their counterparts

online. We had regular telephone meetings, and occasionally scheduled video conferences

as well. Sometimes we would take photos of whiteboard diagrams to send to our offshore

teams.

Cultural and Time Zone Awareness

About three months into the projects, I hired three Microsoft testers for our teams. Although

I did not specifically look for Indians, two of the three people I hired were Indian. By

chance, one of our developers was Russian and we also hired a Russian Program Manager

(PM). These folks were able to communicate effectively with the offshore teams, and to

explain cultural nuances to the onsite team members.

The time-zone differences became less of a problem once everyone got into the habit of

making sure their work was ready for hand-off by the end of the day. Simple awareness of

the time zones made a big difference. The overlap in time zones between the Russian

developers and the Indian testers was a bonus. They often instant-messaged back and forth

with each other.

Common Code Base / Document Repository / Tools

Having a common code base and document repository was essential to making the offshore

teams effective. It took a very long time to get Microsoft corporate network access for the

Russian developers, but our new Russian PM made this happen shortly after he came

onboard.

The problem of lack of visibility was solved by having the offshore team members enter their

hours directly into our scrum tool. Every day we could see exactly who spent their time

doing what, and along with tangible evidence of their productivity such as test cases, bug

228

reports, test automation, and metrics reporting, my confidence in the offshore team

increased dramatically.

Partners Must be Flexible

If our vendor company had not been so willing to go the extra mile for us, we would not

have been successful. The vendor company must be willing to try new processes and

procedures and not be too dedicated to one way of doing business.

Allow Time for Processes to Mature

Assume that it will take several months for problems to surface and solutions to be found.

Plan time in the schedule for communication channels to be worked out and for working

processes to be put in place. Don’t assume instant productivity and a smooth transition for

an offshore team.

Open, Honest Communication

We were blunt in our communications with the vendors. We told them our grievances

without sugarcoating them. We encouraged feedback from them as well. Both vendor teams

were receptive and responsive to our complaints.

Other Best Practices

In addition to the problems we encountered in working in a distributed Agile model, there

were other problems we ran into that are likely to crop up even with co-located teams. I will

not go into the details of the problems, but I would like to highlight a few additional best

practices that we discovered.

Continuous Integration

Once we finally got both the offshore teams connected to the Microsoft corporate network

and we invested in infrastructure so that we could automatically build, deploy to a test

environment, and run build verification tests (BVTs), our velocity increased dramatically.

Before releases, we built twice a day. The morning build would include all of the Russian

developers’ check-ins from the night before and would get tested by the team in Redmond.

The evening build would include the check-ins done during the day by the Redmond team,

and would get tested by the offshore team over night.

Continuous integration allowed us to create and maintain a very stable code base, making

both new feature development and subsequent releases much easier.

Understanding ‘Done’

Our team struggled with the meaning of ‘Done.’ Early on, if the developer declared the code

finished, the story was deemed complete. However, we then found ourselves continuing to

work on tasks related to the same story into the next couple of sprints. It seemed impossible

to both code and test a feature completely within the same sprint.

229

Our velocity increased, which helped, but the main thing that brought us to the point where

we could finish a complete story within a single sprint was getting really clear on the done

criteria for the story, and making sure that all of the attendant tasks would fit within the

sprint. We defined our done criteria (acceptance criteria) within our sprint tool and our PM

Lead became very particular about making sure the criteria were complete and detailed for

every story on the first day of every sprint. Of necessity, we had to break our features up into

smaller pieces so that the entire development cycle could happen in a two-week timeframe.

Defined ‘Done’ Criteria

Notes: P0-P2 refer to bug priority, P0 meaning ‘fix immediately.’ FXCop, PREfix,

PreFAST and StyleCop are all internal Microsoft tools which check for code and security

flaws.

Continuous Improvement

Retrospectives: Early on in our adoption of Agile, our retrospectives were hour-long

meetings that yielded volumes of suggestions for improvements. Some items, such as ‘there

was not enough time to finish testing,’ appeared sprint after sprint. As time went on and our

processes matured, we had fewer and fewer things to discuss at the retrospective. Our

retrospective shrank to fifteen minutes, and we usually did them at the very beginning of our

sprint planning session rather than in a separate meeting. Because the team was committed

to continuous improvement, we never abandoned the retrospectives, and even once things

were going very well, there were sometimes great improvement suggestions that came out of

the retrospectives.

Investing in infrastructure and process: Early on in the formation of our team, it was very

difficult to make forward progress on software development. It seemed that for every hour

spent productively, at least two hours needed to be spent on support tasks. We realized that

we needed to invest in automation and process improvements in order to cut our overhead

time. We took this back to our Product Owner and convinced her that we needed to invest

230

some of our energies in infrastructure otherwise we’d never be able to reach the productivity

levels that she wanted. Some of the investments we made were:

• Building an automatic build/deploy/BVT system

• Building emulators for all of our external dependencies

• Investing in lab infrastructure to increase our flexibility and minimize resource

contentions

• Hours spent in meetings hammering out what ‘Done’ meant

• Hours spent in meetings discussing process improvements

Metrics for tracking progress: Our Product Owner believed strongly in tracking progress

through metrics, and most of the team agreed with her. We defined a basic set of metrics to

track and report. Some metrics were reported for every sprint, some for every month, some

for every release, and some we only tracked quarterly. For each release metric, we set a

minimum bar that we needed to meet before we could release, as well as a goal metric for

which to strive. We began to see improvements in the metrics almost immediately and this

lent us motivation to try even harder.

Some of the metrics we tracked included:

• Bug metrics: bugs found per release, resolution of bug, priority of bug, feature area of

bug, etc.

• Code coverage

• Test automation percentages

• Test results

• Code complexity

• Unit test coverage

• Percent of stories completed in each sprint

• Percent of committed hours completed in each sprint

• Customer metrics: % up-time for the services, % positive feedback from customers,

average latency of transactions, etc.

231

Sprint Estimation Metrics

Bug Statistics

Note: RTW means ‘Release to Web’ (or, sometimes, ‘Release to World’)

232

Test Automation Statistics

Summary

Agile solves many of the problems associated with the Waterfall model. It incorporates

requirements change as part of the model, and it leads to more dependable schedules and

higher quality releases. There are many benefits to Agile in general.

But what about Agile offshore? Does it really make sense for a geographically distributed

team to adopt Agile processes? We found that doing Agile in a distributed environment is

difficult, but so is doing Waterfall in a distributed environment. Waterfall relies on detailed

requirements and specs, but documentation is not generally a good method for

communication. Once you solve the communication and relationship problems, working in

an Agile fashion on a distributed team can be very successful.

I’ll summarize what we learned using Agile with Scrum in a distributed development

environment with the following four points:

• Have patience—expect several months of chaos before relationships are built and

processes evolve to create a smoothly working team.

• Choose a flexible partner—your offshore counterpart should be willing to work the

way you want to work.

• Plan for onsite rotation—set up a system whereby your team members work at the

offshore facility and/or offshore team members work at your onsite location. Rotate

team members out occasionally so everyone gets a chance to know the offshore

team.

233

• Build relationships—the heart of a solid team is trust. Building a solid working

relationship will provide a foundation for you to work through issues as they arise

and maintain mutual respect for each other.

We made tremendous improvements in our processes and productivity over the course of a

year-and-a-half. After our initial betas came in months late, we were finally able to reach a

cadence of releasing updates to each service every two months, so effectively every month

we had a release.

Releases became easier as we gained more experience doing them. Our partners came to

believe us when we gave them a release date, and also to have confidence in the quality of

our systems.

The offshore teams truly became an extension of core team. Due to a hiring freeze and

turnover, our team ended up being 80% vendor/contractor resources, and only 20% full-

time Microsoft resources. We were able to work very effectively with this model.

Our metrics continued to improve, and the VP of our group began pointing to our team as

the ‘poster child’ for productivity.

Early on when we were struggling so hard to get a release out, we would work evenings and

sometimes weekends. As we made improvements that increased our productivity, we found

we could accomplish considerably more in less time. Once we reached the cadence of

releasing every two months, we never needed to work extra hours. The team was happy and

relaxed, and we all enjoyed working together in the Agile model. Best of all, we felt good

about our contribution.

Endnotes

1

Jepsen, Ole “Agile Meets Offshore,” Agile2006 Conference, Minneapolis, MN, Handout, p.3.

234

Case Study: Fostering Meaningful Change with the

Large Format Printer Division at HP

Carolina Altafulla (carolinaaltafulla@gmail.com)

Jim Brosseau (jim.brosseau@clarrus.com)

Abstract
Sustaining meaningful, strategic change in any organization can be difficult,

particularly when there are strong personalities and established practices in place.

Most initiatives are either too broad in their changes, or fail to address the needs of

participants.

Within the Large Format Printer Division at Hewlett-Packard in Barcelona, despite

some of the strongest front-end analysis practices in the industry, projects continued

to face delivery challenges similar to those in many other companies.

Management decided to take action and revert the trend in declining product

development efficiency. The authors collaborated with the specific intent to provide

lasting and meaningful change for the group.

Through a series of interview sessions with all of the key people in the team, we

collected a wide range of different perspectives: current practices, pain points, and

suggestions for improvement.

As the stories were collected, a broader picture began to emerge. This was a strong,

disciplined engineering culture, with strong elements of practice in place that needed

to be reinforced and leveraged for the needed improvements.

Rather than making recommendations that could easily be dismissed, we focused on

collaborating with the teams to help them find a solution they could embrace. The

resulting solution required more of a change in perception than behavior.

In deployment, we worked with management, marketing and engineering to help

them understand the value of change in their terms, and the energy of the group grew

quickly. As the information sessions progressed, there was greater demand for

participation.

We describe the initial situation within the group, and the approach to selecting and

implementing appropriate changes. We will reveal the deceptively simple viewpoint

that was the core of the changes, the effect on the culture and project results that

have taken place since.

235

Biographies

Jim Brosseau
jim.brosseau@clarrus.com

Jim has been in the software industry since 1980, in a variety of roles and

responsibilities. He has worked in the QA role, and has acted as team lead, project

manager, and director. Jim has wide experience project management, software

estimation, quality assurance and testing, peer reviews, and requirements

management. He has provided training and mentoring in all these areas, both

publicly and onsite, with clients on three continents.

He has published numerous technical articles, and has presented at major

conferences and local professional associations. Addison-Wesley Professional

published his first book, Software Teamwork: Taking Ownership for Success, in

2007. Jim lives with his wife and two children in Vancouver.

Carolina Altafulla
carolinaaltafulla@gmail.com

Natural from Barcelona, Spain, Carolina has been in the technology industry since

1992, first in medical devices and later in the printing industry. She has worked in

new product development as development and as QA engineer; she has also acted as

team lead, and initiative manager for international and multidisciplinary projects.

As a matter of fact Carolina speaks fluently 6 languages.

Carolina has recently relocated with HP to the USA to broader her experience in

Program management for new product development in the printing industry.

Carolina lives with her husband and 4 children in San Diego, California.

236

Case Study: Fostering Meaningful Change with the

Large Format Printer Division at HP

Carolina Altafulla

Jim Brosseau

Sustaining meaningful, strategic change in any organization can be difficult,

particularly when there are strong personalities and established practices in place.

Most initiatives are either too broad in their changes, or fail to address the needs of

participants.

Within the Large Format Printer Division at Hewlett-Packard in Barcelona, despite

some of the strongest front-end analysis practices in the industry, projects continued

to face delivery challenges similar to those in many other companies.

This case study is presented from two perspectives: inside the business (Carolina) and

outside, from an external consultant’s viewpoint (Jim). We go back and forth

between the inside and outside perspective, chronologically through the engagement.

Both perspectives help us understand the complete picture, and we will see that only

when the perspectives are brought together in a team environment do we see the

complete value of the engagement.

Outside Perspective: Overall Industry Context
Change is tough on anyone. We’ll fight tooth and nail to avoid change, even if our

current situation is untenable. Dealing with this human barrier is the key to driving

effective change.

As consultants, there is the old story that we can identify the top three issues that

clients face before we even talk to them. First, they will have challenges around how

they define and manage the scope of what they want to build. Secondly, because of

this first challenge, they will have deficiencies in estimation and planning, and many

schedules are driven primarily by time constraints than any credible understanding of

how long it will take. Thirdly, because of the first two, the teams will not have the

infrastructure for effective change management.

That’s the easy part. The tough part is to understand how each of these three issues

manifests themselves for each client. While many organizations are finding value in

adopting agile approaches, they are acknowledging these challenges and addressing

them by embracing a dynamic environment.

For some organizations and some products, though, there is an opportunity to

perform a deep analysis of the customer problem up front, and use this as a basis for

developing a product. This turned out to be one of those places.

237

Inside Perspective: The Existing Situation
The balance is easy to break and difficult to keep. The balance in a mature

organization is essential to most of its members. Break it and you will be in trouble.

Changing an organization and not impacting that balance was something that

worried both the management and myself (Carolina).

Before this initiative, engineers would attend meetings to try to catch up with overall

project information and more specifically with the customer requirements that they

had to deliver. That was easy as long as they only reported to a small or medium

project, as the engineers were able to manage and filter all information about the

whole project.

When the projects grew in complexity and number, for efficiency sake engineers

became horizontal (delivering the same piece to different programs). They also felt

more pressure for multiple and more rhythmic deliveries.

Program synchronization among the members became unmanageable as there were

too many people needed in a room. Many of them had the sense of wasting their

time.

Engineering teams began to be more complex, with more layers of hierarchy. We

worked in a matrix model, assigning each engineer one program for primary

responsibility, but also being the owner of deliverables for different programs.

What began to happen is that many requirements were discussed without enough

criteria because the owner was not present.

Extra management layers were added and then engineers were diluted in the

organization. Their access to reliable information was heavily reduced and the

"theoretical" information channel was not working well.

The communication skills did not grow at the same pace as the organization and

what happened is that there was missing information all over the place.

Nothing gets engineers more nervous than being out in the dark. And that began to

happen a lot.

Outside Perspective: History With The Team, and Why Go
Back?
I (Jim) originally worked with this Division in Barcelona several years earlier, with

what can be called drive-by training. Back then, two jam-packed days of bullets of

information hit the group, but nothing really came of the engagement. There was no

opportunity to facilitate effective change of any kind. Combine this with the long

flights over to Europe and back, and the time away from the family and I quickly

decided that this sort of engagement wasn’t all that rewarding for me.

The same group called over a year later. They were now really interested in change.

They had found an internal champion and a budget, and asked if I was interested in

pitching in. Despite the past experience where I had sworn it just wasn’t worth the

effort, I now jumped in with both feet.

238

One of the first things I look for with clients is the team dynamics. If we consciously

understand the rules that govern our actions as well as those of our peers, we have

harnessed a very powerful tool.

As with many large groups in this industry, this group demonstrated a wide variety

of situations and responses. A diverse group will always bring a number of different

players to the table, and it can be fascinating to step back and watch the moves the

players make.

This particular group was dominated by what one could call a pack of alpha males:

very bright and competent, and also very adept at working the system to help them

achieve their goals. They had advanced within this system through leveraging

influence, exhibiting behaviors that demonstrated their superiority, and at times

maneuvering craftily through the political landscape. They leveraged their deep

technical knowledge, but this was not their strong differentiating trait. They

understood the game being played, played it well, and thrived in their environment.

They played to win.

There were others that saw the game for what it was and chose not to get caught up

in the machinations. They had found their niche, their comfort zone where they

could gain satisfaction from a job well done despite the game going on about them.

They were not as deeply impacted by their environment, and could perform well in a

wide variety of different games – while they may not have come out as the dominant

winner, they were also less likely to suffer deep losses. Consciously or not, they

behaved in a manner that supported both themselves and others.

Finally, there were those that were frustrated by the games. They were often

overwhelmed by the strong players, sometimes to the point of having to leave the

game altogether, through choice or through exhaustion.

We clearly had a wide range of viewpoints that we needed to address with this

engagement.

Inside Perspective: Why Did We Follow This Approach?
We heard the consequences; engineers were verbal about the issues. We had internal

reviews where much of the feedback was complaints.

Identifying the causes could be a difficult work for the insiders as we are part of the

problem and it is difficult to know what “we do not know”.

Doing a good job about solving the problem in a balanced organization without

breaking it looked huge. It was important to keep the “status quo” as it had to be part

of the solution. It was also difficult to provide a different way of doing things to a

group of colleagues that have worked together for a long time.

We attempted to look for the solution a couple of times without a real plan and a real

effort towards it. Complaints kept on coming, so a group of senior managers decided

to give change another chance. I (Carolina) was appointed, and I actually did get

some resources.

Being supported by management, I decided to give this a different approach. I went

for a deep change.

239

Right from the beginning I had in my mind to do extensive research on what was

going on, with a detailed design of what should be happening instead. I knew from

the first minute that I needed external help that no insider could give me.

So I looked for the best available help in the industry and that led me to Jim, who

guided me through the research, which went from informal to more formal. We got

data to compare to and he told me where to look.

Outside Perspective: What We Found in Discussions
The group certainly had what would appear to be all the classic symptoms of trouble

in the area of requirements. Projects were being significantly delayed and resources

were cannibalized from other projects to pick up the pieces (hence delaying those

projects, sometimes before they got started). Key resources on the team spent a great

deal of their time answering the same questions from different people, and felt

bogged down with their efforts. E-mail was the primary communication source for

changes that occurred during the project (and we all know how effective E-mail can

be for maintaining a clean audit trail).

With a little bit of poking around, though, they had some real strengths to build on.

They had a great handle on the competitive landscape and set objectives for their

projects based on specific quantified factors relative to their competition. They took

the time to identify composite personas for their different user classes to ensure that

they had a common understanding of their client and could reasonably gather the

breadth of critical use cases. They even started to manage all their projects in terms

of a broad strategic portfolio rather than unrelated projects with no leverage between

them.

They spent a great deal of time up front defining the business requirements, and their

practices were among the best I (Jim) have ever seen in the industry, yet they had all

these symptoms of requirements problems.

Where was the challenge?

The challenge was in the minds and attitudes of the team members themselves. Most

of them approached requirements as something to do on a project before you get

started to actually build the product. They had two modes of operation. The

engineers would start out chilling their heels with requirements work in the early

stages when the pressure was low. At some point in the project, an imaginary switch

would be turned on, and suddenly it became time to get busy.

At that point, all that requirements work would be cast aside; they were under

pressure to get what they perceived to be the real work done. Build some prototypes,

evolve them into the final system, and then switch over to fixing bugs as a means of

getting the project completed. Changes were made on the fly in a scramble to get

things done, and the overruns began. Eventually a product was shipped, and the

whole cycle started again after management rewarded the heroes that saved the day

on this challenged project.

The team needed to appreciate the true value that their early requirements work

could provide them.

240

Here is some context for our decisions in Barcelona. We ran a diagnostic of current

requirements practices with all participants to use as a baseline prior to our efforts

(this was used, with permission, from Software Requirements, 2
nd

 Edition (1),

Appendix A). As with most diagnostics we have run, we found a broad range of

responses, and the results were a great way to get everyone thinking about the

breadth of issues to address.

We began to see some interesting trends in the data when we broke the twenty

questions into four categories: deriving requirements from predecessor information;

developing the requirements in a disciplined fashion; using them as a basis for

successor products on the project; and effective change control. For all of the groups

that we have worked with so far (this diagnosis has been performed with 25 different

groups thus far, in a wide range of companies), they tend to score higher in the first

two categories than in the last two.

It appeared that this group was not much different. Many companies put significant

effort into developing their requirements, then fail to leverage their full value, either

by not referring to them or failing to reasonably manage them throughout the

lifecycle. Often, this leads to the perception that the whole requirements effort is a

waste of time - is overhead work. The cycle can spiral out of control, and teams fall

into the code-and-fix approach for getting their work done.

On the positive side of this challenge, we had the opportunity to frame potential

changes in the context of work that is currently being done. All the effort in place

provided powerful insight into the problem space and structure into defining an

effective solution, so change in this context did not involve a great deal of additional

work, which is usually the greatest barrier to change.

Indeed, in this situation, we needed to weigh the cost of everyone discovering and

solving important issues independently (the status quo) against the cost of managing

an infrastructure that allows people to actually find the information that has been

collected up front (the better future). The arguments for change become much more

compelling as we get people to recognize that the information exists, and we provide

improved mechanisms for finding and maintaining this information.

The requirements gathering effort was fine here; it was the knowledge management

that needed to be addressed, as well as the habits and perceptions surrounding the

initial efforts on the project. We refined the problem from trying to put a reasonable

requirements development process in place to helping people appreciate the value in

the work they are already doing. This was still a challenge to resolve, but a much

more precise area to focus on.

That work they were doing up front was the real effort to drive project success.

Inside Perspective: What People were Thinking
People had different expectations about the outcomes of our work, especially in the

beginning when no communication was being done. These expectations could be

classified in different ways.

There were people that thought that someone would become the middle man, who

would have all the information from marketing. These people wanted someone to

241

tell them what to do so they could focus on the “important” work, which is

engineering delivery. They did not look at requirements work as part of the solution.

This was a simplistic way to see things.

There was another group of people that wanted to have a say in the solution, in a

confrontational way. They felt they had a lot of experience in different projects and

knew what “others needed to do”. They had the need to know more and the need to

feel they were part of the success, because they felt like heroes in many projects.

They were used to being treated as key people. In the end, these were the easiest

people to deal with.

There were the skeptics. Nothing we could do would help in any way. Our destiny is

to keep on dealing with the same issues project after project, and fatalism was the key

in their discourse. Those people had an engagement problem.

And of course, there were also other people with other opinions and attitudes as

well.

Everyone thought there was a problem with requirements, but there were many

descriptions of the problem and many suggestions for how to solve it. This is a very

positive thing, as that eased our work a lot. We benefitted from other people’s

experiences, and as everyone felt there was a problem, change was easier to

implement.

During the process, those mindsets were evolving. At some point, we could feel a lot

of people "thinking about the solution" and contributing by coming back to us and

explaining "my solution" as if this was their idea. That part was fun and it was great

to be part of such a change in people’s opinions.

Outside Perspective: The Changes We Introduced
We listened to a lot of people: how they worked, the pain they were feeling, the

suggestions they had for making things better. It was clear that everyone experienced

significant pain, but everyone had a very different sensation for this pain. With

different perspectives, the perceived ramifications of the challenges were different as

well. As we correlated our information, we started to see a picture developing. We

had uncovered a root cause, which was the disconnect between the initial business

requirements gathering and the subsequent implementation. We could finally start

attacking the real problem.

We went back to the people in face-to-face meetings to discuss the findings, both the

strengths and opportunities within the team. We started to help them paint a picture

of what a better world might look like. To do this effectively with the different

groups, we ended up painting a gallery of different pictures. One where there was

predictable closure on projects, another where there was less disruption and chaos.

We painted a picture where projects could happily co-exist without stealing resources

and the group as a whole could leap ahead against the competition.

We walked them down the path of how to get to these places. We had carefully

selected the path of least resistance. There was little proposed disruption to the way

they did work in the past. Indeed what we suggested was an infrastructure that

242

would allow them to do the things they wanted and needed to do in an unfettered

manner.

We then ran a significant amount of...well, not quite training, more like

acclimatization. We reinforced the concerns that the pain was universal, walked

them through the root causes we were trying to excise and the changes that would

allow that to happen. Everyone had the opportunity to express their challenges, and

in seeing the broad range of perspectives, different groups started to bond. We

worked with almost as many managers as we did technical staff to reinforce that they

had the critical role of removing the roadblocks that could get in the way (including

some of their disruptive behaviors from the past). As the changes were incorporated,

we worked with their partners that were across the globe, creating more managed

communication across all groups.

There was only one critical adjustment that we made, which was one of perception.

As the group was quite comfortable driving their development efforts based on the

burn-down of defects, we proposed the idea that an unimplemented business requirement

can be treated essentially the same as a defect. Rather than cast aside that wonderful

business analysis that was done, we suggested they take that information and seed

their defect tracking system (enter these unfulfilled business requirements into the

system as defects) before implementation started. This gave them a way of working

in the same environment they were used to (low culture shock), but allowed them to

trace back to the original requirements.

This was the only change; no additional “best-practices” were added to their

workload.

There was universal support. Beyond engagement in the classroom, there was a buzz

around the coffee machines that went beyond caffeine, and as the training progressed

there was an increased demand. Lunchtime discussions were centered on looking

forward to getting started, rather than 'anything but that training'. Criticisms were

almost exclusively suggestions to go further with the implementation, but we were

careful to ensure we could walk before we ran.

Compared to the reaction to the stock training eighteen months earlier, it was a

different group. Except that it was actually the same group. In the earlier training,

there was relatively little investment, and virtually no value gained. We were merely

helping them spend their training budget. Now, there was significantly more

investment, but there is also an overwhelming upside. This turned out to be a strong

business decision.

The difference is that we didn’t lecture or ramble on about what they should be

doing. We listened, we coached, we solicited input, we facilitated. We helped the

team find their own better place, which was not that far from where they were in the

first place.

Inside Perspective: Current Practices
When we first proposed our solution, we wanted to implement it in a controlled way

for only one project, then extending process improvement later to other projects in

their beginning stages.

243

That got in the way of some people who wanted to implement our designed solution

more aggressively. They wanted the solution for everything now, without

understanding that change needs to be controlled in a consistent way.

A quiet period was negotiated. After a few months of success in the pilot project

where these changes were working, I (Carolina) had to incorporate the changes into

six more projects within the organization. I also had to help build databases for

horizontal components deliveries (project components that were very similar from

project to project but differences between them needed to be well controlled).

As I could not control all details in all those projects, I needed help. As the projects

had essentially different needs, different approaches were redesigned for each one.

Those designs were not my responsibility anymore.

The requirements project left my hands before I was ready for it: as when you are

raising children, they leave before you think they are ready.

Looking at it now with the distance and time, I think the project was ready.

Everyone went through the training and was aware of what to do and what not to

do. The proof is that complaints about requirements engineering dropped

significantly in the list of engineering complaints.

All the requirements engineering activities that happened afterwards were improved,

with more understanding and more suited for the organization.

Outside Perspective: The Challenge of Sustaining Change
Many companies that change the way they do business often find themselves falling

back into their familiar old habits.

It’s not a software team syndrome; it is part of the human condition to quickly lose

what has not been conditioned and reinforced in favor of what is familiar, regardless

of the consequences.

In Leading Strategic Change (2), Black and Gregersen suggest that change is a cycle

as follows:

“Stage 1: Do the right thing and do it well.

Stage 2: Discover that the right thing is now the wrong thing.

Stage 3: Do the new right thing, but do it poorly at first.

Stage 4: Eventually do the new right thing well.”

We start in a state where we are doing the right thing, and doing it well – the

proverbial status quo.

Something happens (market conditions change, for example) and we find that while

we are still doing the same thing, and doing it well, it is no longer the right thing to

do. In software, I would modify this to suggest that while in the status quo state,

some disastrous event or astute introspection highlights that we actually weren’t

doing the right thing in the first place, but we were oblivious to the problems.

We change our behavior, and initially, the new practices, although they are the right

things to do in the new situation, are not being done well. In software, this is where

we learn to see the value of appropriate application of “best-practices”. For the

244

situation in this study, this crucial step was minimized: we did not introduce any

“new” practices, thus minimizing the learning curve.

It is at this point where we need to ensure that there is strategic continuity in what

we do. We need to constantly reinforce our belief that the new behaviors are the right

ones, through demonstration of our new successes, however small initially. Until we

start to see those new successes, we need to focus even harder to ensure our efforts

don’t fall off the rails.

We need to strive to truly institutionalize our changed behaviors, while recognizing

that they may be subject to that same disruptive change cycle in the future. More

than demonstrating simply that we can do it, more than even showing the benefit, we

need to get to a point where it becomes rote. When it becomes rote, we need to

continue to reinforce the practice, to make this reinforcement part of the practice

itself, part of our culture. We need to constantly recognize the positive efforts in the

group, share the positive experiences as a standard part of doing business, or those

improved practices are at risk of being neglected into oblivion.

It is an ongoing effort to avoid the tendency to backslide into our old habits.

Inside Perspective: What has Happened Since
Since I (Carolina) left, the ownership of the project has changed a few times. Very

different people with very different opinions have had this ownership. Their ideas

and design are quite different.

One thing that remains is the alignment in the organization that we created with our

training. Another is the awareness of what is a good practice and what is not and

what are the consequences of these.

It now looks like no one owns the initiative, but it is alive and embodied in the

engineering mindset. The Project managers continue to grow the requirements

database. There are more uses for our design and more and more projects are

controlled.

For my current work, I need to contact the people I used to work with. I have access

to their projects, and also get some information periodically to design new project

requirements structures. I am amazed by the maturity and detail of some of the new

projects Barcelona is creating.

I could say Barcelona is now a leading edge organization in Requirements

engineering, without being aware of it.

Lessons Learned
Overall, this initiative was a success for three key reasons:

1. Everyone (management, marketing and engineering) was involved in the

initiative, from the solicitation of their diverse perspectives through the

understanding of how potential changes would affect each of them differently.

2. The proposed changes were extremely simple to implement (to interpret

unimplemented business requirements as defects), leveraging off of the

245

group’s existing strengths and carefully tying these strengths to existing

behaviors that were already part of the culture.

3. The engineering team took ownership of requirements management, and the

effort was carefully managed and sustained over time to ensure that these new

behaviors truly took hold.

References
(1) Software Requirements, 2

nd

 Edition, Karl Wiegers (Microsoft Press, 2003)

(2) Leading Strategic Change, J. Stewart Black and Hal B. Gregersen (Prentice Hall,

2003)

246

Collaboration Among Software Components

Dick Hamlet

Department of Computer Science

Portland State University

hamlet@cs.pdx.edu

Biographical Sketch

Dick Hamlet is Professor (emeritus) in the Department of Computer Science at Portland State University.
He has worked as an operating-systems programmer and systems-programming manager for a commercial
service bureau and for a university data-processing center. He was a member of the software engineering
research group at the University of Maryland for 12 years, a visiting lecturer at University of Melbourne
in 1982, and a Science Foundation Ireland fellow at National University of Ireland, Galway in 2003-4. He
has been actively involved in theoretical program-testing research and in building testing tools for almost 40
years. He is the author of three textbooks and more than 50 refereed conference and journal publications.
Dick has been involved with PNSQC since 1985, when he gave the keynote speech at the 3rd Conference.
He has worked on program committees for many of the Conferences since then and he helped to invent the
present system for soliciting and selecting technical papers.

Keywords: Software components, design decomposition, testability, synthesis of properties, CAD tools

Abstract

Software components are executable programs created without knowledge of how they may later be assembled
into systems. They are therefore an ideal setting for analysis of unit- vs. system testing. Using a suite of
prototype CAD tools for component-based analysis and synthesis, the behavior of components and systems
can be measured and predicted. Examples are presented to illustrate the pitfalls of testing component-based
designs. Two questions are investigated: (1) To what extent can the results of component testing predict
the results of system testing? (2) What component- and system designs minimize surprises that emerge
when systems are assembled and tested? Several design rules are presented that will improve the accuracy
of the tool predictions. When accurate predictions can be made, a new method of system development is
suggested.

1 Introduction

Software components are independent executable programs developed in isolation, but intended to be com-
bined into a variety of systems. Blackbox components communicate entirely through well defined interfaces,
which describe their stand-alone inputs and outputs. A component may have local persistent state, but does
not share state with any other component, nor may there be any global system state. These strong con-
straints make it possible to implement and test components without knowing their eventual application, and
to design and test systems without access to the component source code. However, within the constraints

247

some components and some systems are much better than others, as judged by how easy the designs are to
understand and to test. It is not at all obvious how different component structures and allocation of state
among them influence quality of a system made from those components.

The intuition behind good quality components and good quality systems design is that component testing
in isolation should allow prediction of system properties. In good designs, component tests capture the
component behavior; then those tests can be combined to predict system behavior with enough accuracy to
be useful in understanding the system and seeing if it meets its specification.

In this paper, component-synthesis tools (described in Section 2) are used to experiment with testing of
components and systems. Simple case studies suggest some guidelines (Section 5) for defining components
and designing systems whose quality can be more easily tested. Cases will be exhibited in which:

1. Series composition of components leads to unpredictable system behavior because of the pattern of
discontinuities in each. (Section 3)

2. Apparently meaningful component and system states are in actuality impossible to enter. (Section 4)

Sometimes an improved design results from combining several components into one. This moves the
burden of testing the composite from the system level where there are always too many test scenarios to the
component level where testing is easier to control. The lesson for the component designer is not to go too
far in dividing functionality. Sometimes it is systematic testing of states that misleads the tester; random
testing using input sequences may be better.

When the tools described make accurate system predictions, their calculations can replace execution of
a system assembled from components. The tool predictions are very fast, allowing the system designer to
try more components in different configurations, ‘on paper’ instead of by physical trial and error.

2 Component Analysis and Synthesis Tools

A collection of software tools was written over the course of the last six years to experiment with component
testing and synthesis. Analysis tools for the component level are straightforward. Given executable code
for a component, the tools allow it to be executed in several systematic ways (that is, tested) and the test
results displayed. The analysis is based on a division of the component input domain into subdomains.
These subdomains are provided along with the executable code, and represent the programmer’s best guess
at input subsets on which it is useful to try the code. On each subdomain, the component is executed a
number of times, either by systematically sampling the subdomain, or by collecting samples from domain-
wide random sampling that happen to fall in the subdomain. The execution results are averaged across the
subdomain, and this yields an approximation to the component’s execution behavior. The tools compute
the r-m-s deviation of these subdomain averages from the actual behavior samples, which is a measure of
how well the subdomains capture all possible component executions. Both positive and negative deviations
accumulate without cancellation in the r-m-s error measure.

Subdomain testing from a specification (which is usually called ‘functional testing’ or ‘specification-based
testing’) is the primary method used in the testing phase of software development. If the averages measured
in subdomains are a close approximation to what the actual code does (because the subdomains are well
chosen to capture different aspects of its execution), then intuitively the subdomain test is a good one.
However, our component tools use subdomain testing for a quite different reason. Dave Mason and Denise
Woit recognized in the late 1990s that subdomain-defined approximations to the behavior of code can be the
basis for a composition theory of components [7]. By subdividing a component’s behavior into subdomain
fragments, it is possible to calculate how the fragments of one component will feed into the fragments of
another, and thus make an approximate prediction of what the two components would do if placed in series.
In particular, subdomain analysis partially solves the difficult technical problem of mismatch between tests
of two components: in haphazard testing the outputs obtained from a component-A test may not match
inputs tested independently for component B, so that predictions for the A − B series system cannot be

248

made from isolated tests of the two components. But if both A and B have tests that cover all subdomains,
then any A-input subdomain must produce outputs that fall in some B-input subdomain, so the tests always
match up.

Although subdomain decomposition of testing always matches A test outputs to B test inputs, there
is more to component composition. For independent test results to combine accurately, the distribution
of A’s outputs over B’s input domain must match the way test points were selected in testing B. These
distributions are called profiles, which are probability density functions that describe how likely it is for any
particular point to appear. Accurate composition of test results requires that the output profile of A (from
testing A) match the input profile used to test B. In terms of subdomains, if inputs in a B subdomain are
equally likely to be tested (a uniform input profile by subdomain), then A’s test output profile must also be
uniform. That means not only that the spread across each B subdomain must be uniform, but that each B

subdomain must receive the same number of values from A, just as it was when B was tested. Unfortunately,
the profiles usually fail to match. In a sense, each subdomain now acts as did the original input domain,
scattering values in a non-uniform way. We call this fundamental difficulty the profile-matching problem.
Without using subdomains, tests do not match, and there can be no predictions of combined behavior. Using
subdomains, predictions are always possible, but for badly matching profiles they are inaccurate.

Subdomain-based composition theory also applies to non-functional software properties like performance
(run time) and to reliability. For example, to predict the run time of an A − B series system on one of
its subdomains D (which is also a subdomain of A), it is only necessary to add A’s run time on D to B’s
run time on its subdomain to which D maps. The match-up of subdomains is again crucial, since B is not
running on an arbitrary input, but only on one that A produces as output. Again, the profile-matching
problem may affect the accuracy of predictions for non-functional properties.

In 2001, Mason, Woit, and Hamlet developed this theory to predict system reliability from measured
reliabilities of stateless components that form a system [5]. They used the system synthesis operations of
sequence (series), conditional, and iteration. Shortly after, the first experiments were conducted with real
code and the stateless versions of synthesis tools developed. The tools were extended to components with
local state starting in 2005. Currently, versions of the tools that process a change in subroutine definition
incrementally, without re-measuring or re-calculating for subdomains that have not changed, are under
development. The tool collection has a number of features not of immediate interest here, notably the
ability to include non-functional behavior in its measurements and predictions. Complete documentation,
tutorial examples, and the tools themselves are freely available on the Internet [3].

Implementation of novel and sophisticated software tools is a process of carefully choosing what program-
ming languages and systems will be allowed in the software to which those tools apply. This implementation
effort was done by a small team with ever-changing student members, many of them high school students
working under a summer internship program. It was therefore decided to impose severe restrictions as
follows:

• The tools run on Linux systems, making heavy use of the GNU utilities, particularly shells and file
manipulation. The tools are written in Perl. It would not be difficult to port to another UNIX system,
but moving to a different operating system not intended for code development (like Microsoft Windows)
was never imagined.

• Components analyzed and synthesized may be written in any language, and are presented to the system
as compiled executable code files.

• Each component must observe the following restrictions on its input-output behavior:

– There must be a single floating-point input value read by the component during its execution.

– There must be a single floating-point output value written on each execution.

– A single non-functional parameter with a floating-point value (e.g., run time) is measured and
output on each execution.

249

– Persistent local state is kept in a specially named permanent disk file, and consists of a single
floating-point value. Initialization occurs when this file is absent at the beginning of execution
and the component creates it; thereafter an input state is read from the file at the beginning of
execution and a result state written at the end of execution.

• Systems are formed using only a pipe-and-filter architecture with sequence, conditional, and iteration.

These restrictions are severe limitations that would disqualify most software that is intuitively a ‘com-
ponent.’ In particular, code is seldom written with a tidy ‘read input, read state, compute, write output,
write state’ pattern. The model does not allow for concurrency, with its many ways of communication
and synchronization among components. The restrictions are justified primarily because they enabled a
complete tool set to be written and debugged by a small team in a few years, a tool set that is useful in
experimenting with components. The choices can be partially justified on other grounds. Numerical values
allow experimentation with random testing, an important research topic. Single values do not seem a funda-
mental restriction, since in principle it is possible to code several values into one. For the given component
restrictions, the pipe-and-filter architecture covers all possibilities.

3 Emergent System Properties

A good way to introduce the tools described in Section 2 is to consider two identical stateless software

CSCS CS

component component component

system

Figure 1: A component CS in series with itself

components CS connected to form a series system. In Fig. 1, each copy of CS has its black-box input-output
behavior (at the left), as does the system combination (at the right). On a UNIX platform, the series system
could be executed using a pipe: CS | CS.

Fig. 2 shows behavior graphs of a particular CS measured by the prototype tools; this example component
computes a saw-tooth function with an envelope that is an inverted parabola. The tools are used to test CS

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

O
ut

pu
t

Input
 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Input

Figure 2: Component CS behavior measured and approximated by subdomain testing

on the interval [0,10). The left graph in Fig. 2 shows this function measured by executing the component

250

over [0,10). The right graph in Fig. 2 reproduces the shaded region of the measurement (smooth curve) and
superimposes (step function) values obtained from averaging over samples in 96 equi-spaced test intervals
(subdomains). These intervals are the width of the ‘steps.’ The test averages capture the behavior of CS to
within an average r-m-s error of about 1.9%. Testing is better in some subdomains than others; the r-m-s
errors range from about 0.1% to 3.1%.

From these component test results, the tools can calculate a prediction for testing the series system. Fig.
3 shows the actual system measurements on [0,10) at the left, and at the right the superimposed prediction
on the shaded region. The average r-m-s error in the predictions is about 9.8%. The r-m-s prediction error
is below 10% in most subintervals, but is over 100% in five subintervals, e.g., 125% error in [2.92,3.02),

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

O
ut

pu
t

Input
 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Input

Figure 3: System CS | CS behavior measured and predicted from component test results for CS

the left ‘valley’ at the right of Fig. 3. These errors are considerably larger than those for the component
measurements, and the reasons are apparent by comparing the right sides of Figs. 2 and 3: Firstly, the
functional behavior of the system changes more rapidly than the behavior of CS, so in the same test intervals
there is larger r-m-s deviation. More importantly, the test interval boundaries match the discontinuities in
CS, but they do not match all the system discontinuities. In component testing the code is available to aid
in choosing test intervals, and a subdomain boundary at (for example) 3.3333333333 was matched to the
discontinuity in CS behavior there (right of Fig. 2). In contrast, the location of discontinuities in system
behavior is an emergent property of the system, and cannot be predicted from component-testing data. This
system also has a discontinuity at 3.3333333333 that is accurately captured, but the emergent discontinuity
at about 2.96 is not (right of Fig. 3). The emergent discontinuity arises only from the system design, and
although component testing could be adjusted after the fact to capture it, that would violate the essential
purpose of components: to be reused without retesting.

Error in component measurement can be decreased by a better approximation. Using smaller subdomain
intervals is one way, but the tools also provide fitting the best line to measurements in each subdomain [4].
Using this option, the CS component r-m-s error is reduced to an average of 0.8% using only 24 subdomains
(vs. 96 above), while the r-m-s system prediction error for CS | CS is reduced to an average of 0.4% , using
82 subdomains1.

The ultimate source of all prediction errors is the profile-mismatch problem. When CS is tested, its
uniform input profile produces a non-uniform output profile. The tools predict what this profile will be by
subdomain for the given system structure, as shown in Fig. 4, which also shows the observed profile obtained
from conventional instrumentation of the executing system2.

1One of the good features of the linear approximation is that it automatically refines system subdomains when making a

system prediction, and to some extent the refinement tracks the system behavior. The problem of emergent discontinuities is

thereby reduced, but not eliminated.
2The piece-wise linear approximation was used with 24 subdomains of CS; accurate profile predictions require small approx-

imation errors.

251

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12
re

la
tiv

e
fr

eq
ue

nc
y

subdomains of 2nd component in series

[0
.0

, 0
.4

)

[0
.4

, 0
.8

)

[0
.8

, 1
.2

)

[1
.2

, 1
.7

)

[1
.7

, 2
.1

)

[2
.1

, 2
.5

)

[2
.5

, 2
.9

)

[2
.9

, 3
.3

)

[3
.3

, 3
.8

)

[3
.8

, 4
.2

)

[4
.2

, 4
.6

)

[4
.6

, 5
.0

)

[5
.0

, 5
.4

)

[5
.4

, 5
.8

)

[5
.8

, 6
.2

)

[6
.2

, 6
.7

)

[6
.7

, 7
.1

)

[7
.1

, 7
.5

)

[7
.5

, 7
.9

)

[7
.9

, 8
.3

)

[8
.3

, 8
.8

)

[8
.8

, 9
.2

)

[9
.2

, 9
.6

)

[9
.6

, 1
0.

0)

uniform profile

Figure 4: Output profile from the first component of CS | CS, which is the input profile seen by the second
component. The solid-outline bars are measurements and the dashed bars are predictions

The inaccuracies displayed in this section are inherent limitations of component testing for quality as a
means to guarantee system quality. Further discussion is postponed until Section 5.

4 Component and System State

A fundamental principle of software component design was recognized by Parnas more than 35 years ago:
persistent software state should be encapsulated in what he called “information-holder modules” [6]. Local
state is also a cornerstone of object-oriented design. These programming concerns stem from modularity and
software maintenance: if state is allowed to pervade the code for a system, no code can be changed without
examining and potentially changing all the code. But software components developed for deployment in a
variety of systems add an important new reason to forbid shared state. If a component’s behavior depends on
state and state can be changed by other components, no isolated component properties can be trusted when
that component is placed in a system: in the system, component interactions will make each component’s
behavior depend on them all. For example, testing a component in isolation (‘unit testing’ as usually
understood) has little significance if the integrated system has shared state.

When there is only local state, a component’s stand-alone behavior can be accurately described and
there is hope for predicting the behavior of any system using that component. It is usual to say that the
component’s behavior, functional and non-functional, depends on both its input and its state. Indeed, in
software reliability engineering (SRE), state parameters are simply added to the input parameters in sampling
program behavior. It is common in testing object-oriented classes to set some state value externally, then
try different inputs; this amounts to taking test points for the class as (input, state) pairs.

Unfortunately, the ‘state is just another input’ view is wrong in principle. Input is an independent test
variable. The tester controls it and the component does not. Indeed, it is basic testing wisdom that every

252

input may have to be considered, since in use the component may receive anything. Programs routinely
contain conditional statements for unusual or ‘error’ inputs and issue error messages for them. State is
quite different; it is dependent (on input): the component completely controls its state, setting state values
in response to inputs, then subsequently using the values it has previously set. It is very unusual for a
program to contain code that checks state values, because it is expected that they could not be in error. (A
misguided view—erroneous state values are often created and it is good defensive coding to check for them.
The point is that programmers know that states do not arise independently, and hence do not need to be
verified as inputs must be.) Because state is not externally controlled, a tester must not choose state values
arbitrarily—to do so risks fabricating behavior that can never occur. Trying impossible states is a mistake
because:

• It wastes scarce test time;

• It can give a distorted picture of what a component actually does;

• It hides real but unexpected state values that could lead to failure.

The last two points often interact in a pernicious way, when the states tried come from a specification: If
the actual program states do not follow the specification, by forcing the program into expected (but actually
impossible) states it may appear to be correct, while in actuality its states are nothing like those of the
specification and have not been tried.

The correct way to sample (test) in the presence of state uses sequences of inputs alone. Starting from
an initialization state (‘reset’), each input in a sequence sees the current state (starting with the reset value),
and the program maps this (input, state) pair to an output value and a result state, the latter next paired
with the following input in the sequence. Thus the output and result-state results depend on (input, state)
pairs, but only with state values that can actually arise.

Another characteristic of real component states is that their values are very sparsely distributed over the
possible data-type values. For example, a database is a particular kind of file, but of all possible files, even
those observing strong syntactic restrictions, almost none are actually databases. It would be silly in testing
a database component to attempt to cover the huge file space of non-databases. A database component
creates databases, according to specification if it is correct, according to its own crazy logic if not. It must
be tested with what it creates, and the tester’s main task is to recognize when its logic goes wrong and
creates states that are not according to specification.

To illustrate these points about state, consider the following specification of component DIG that requires
state:

On each execution, DIG takes a floating-point input in (-10.5,9.5). Let X be the input rounded
to the nearest integer. After initialization, DIG uses local state to remember the length of longest
sequences of the same digit (X non-negative input 0..9) over a series of executions, returning 0 on
each execution. For negative rounded inputs, −10 ≤ X ≤ −1, the component returns the longest
sequence of digit |X | − 1 that has been previously seen. A negative input is not considered to
interrupt the count of a sequence of positive inputs. Out of range inputs are ignored, returning
-1. Should a sequence of more than 9 successive same digits occur, -1 is returned, and the count
stops at 9.

For example, the following table shows a sequence of inputs in the first row, with the specified
outputs in the second row. (init) -1 1 0 -1 13 0 0 5 -1 -6 5 1 -2 -6

(0) 0 0 0 1 -1 0 0 0 3 1 0 0 1 2

A Perl program was written to implement this specification. The state that a component keeps to meet
the specification is not prescribed, but this implementation keeps a counter for each digit and remembers
the previous digit and its current sequence count. In keeping with the tool restrictions described in Section
2, its state is a single floating-point value, the integer part recording the previous digit seen d, and the

253

mantissa keeping the digit counters, in order after the decimal point: (tenths) count of d seen so far in the
current repetition; (hundredths) maximum count of digit 0 seen previously; (thousandths) maximum count
of digit 1 seen previously; and so on for the other digit counters. For example, in state 3.14159265358, digit
3 was last seen and once so far; 0 had a maximum previous count of 4, 1 of 1, 2 of 5, 3 of 9 (or perhaps the
3-count exceeded 9), ..., 9 of 8. At the end of the sample sequence in the specification, the state should be
1.13100020000.

The subdomain description files for DIG have 46 input subdomains and 36 state subdomains, chosen as a
compromise between accurate test measurements and the need to display graphs that are not too crowded.
The tools were used to test DIG with systematic state sampling (wrong!) and with sequences of input (right!).
The tests show component output values and also resulting state values, presented as a pair of 3-D graphs
in 2-D projection. Figures 5 and 6 show test results when each of the 46 × 36 subdomains is sampled six

-10 -5 0 5 10 15 0
 2

 4
 6

 8
 10

 12-2

 0

 2

 4

 6

 8

 10

Output

Input

Input State

Output

Figure 5: Equi-spaced sampling of DIG output as a function of (input, state). Crosses are measured data
points; rectangles are average test results over input×state subdomains.

times in a systematic (equi-spaced) manner for a total of 9936 test points. Figures 7 and 8 instead use 130
sequences of random inputs, of random lengths up to 130, keeping track of the 9114 (input, state) pairs that
result to plot the graphs.

The best way to see the effect of erroneous systematic state sampling is to compare Figs. 6 and 8. Figures
5 – 8 illustrate testing a component with state and the tradeoff between systematic subdomain sampling and
testing with random sequences. The following are a few observations:

Functional vs. state behavior. Programmers and testers are accustomed to thinking of output as the
essence of software behavior. It is less usual to consider the functional form taken by state, since states
are hidden. Furthermore, since state is both an input- and output variable, if the program does nothing
with it, the result is an identity function as at the right of Fig. 6 for the error case of inputs at 10 and
above. To get similar linear input-output behavior, the programmer would need to assign the input
variable to the output variable. Thus better understanding is obtained from the output graphs like
Fig. 5. The flat area with output 0 for non-negative inputs (right of the figure) is cases where digit
counts are stored. And in the state graphs like Fig. 6 the result-state values are increasing roughly
linearly with the input (the ‘staircase’ right from input 0). For negative inputs, the behavior at the

254

-10 -5 0 5 10 15
 0

 2
 4

 6
 8

 10
 12

 0

 2

 4

 6

 8

 10

 12

Result state

Input

Input State

Result state

Figure 6: Equi-spaced sampling of DIG result-state as a function of (input, state).

-15 -10 -5 0 5 10 15 0 1 2 3 4 5 6 7 8 9 10-1

 0

 1

 2

 3

 4

Output

Input

Input State

Output

Figure 7: Random-sequence sampling of DIG output as a function of (input, state).

left of Fig. 5 is layers at output 0, 1, 2, ..., 9; these are the return of the stored digit counts. The
subdomain averages are not accurate here, since at a given negative input all the values between 0 and
9 might be returned. The reader who thinks that state is easy to understand should try to account for
short ramps in the state dimension along the ‘staircase’ for positive inputs in Fig. 6, for example in

255

-15 -10 -5 0 5 10 15
 0 1 2 3 4 5 6 7 8 9 10

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Result state

Input

Input State

Result state

Figure 8: Random-sequence sampling of DIG result-state as a function of (input, state).

the four (input×state) subdomains within [0.5,1.5) × [1.25,1.75). Figure 9 shows this region magnified
from Fig. 6 at the left and from Fig. 8 at the right.

 0.2
 0.4

 0.6
 0.8
 1

 1.2
 1.4

 1.6
 1.8
 2

 0 0.5 1 1.5 2 2.5 3 3.5

 0
 0.5

 1
 1.5

 2
 2.5

 3

Result state

Input

Input State

Result state

 0.2
 0.4

 0.6
 0.8
 1

 1.2
 1.4

 1.6
 1.8
 2

 0 0.5 1 1.5 2 2.5 3 3.5

 0
 0.5

 1
 1.5

 2
 2.5

 3

Result state

Input

Input State

Result state

Figure 9: Detail of result-state behavior of DIG (left: systematic sampling; right: input-sequence sampling

Infeasible states. The most obvious difference between the equi-spaced sampling figures and those using
sequences is missing states in the latter. Systematic sampling gives all state values equal weight, where
in fact state values cluster closer to integers and state never reaches value 10 or above. What Fig. 5
doesn’t show is a number of exceptions reported by the running code when it tries to compute with
an ‘impossible’ state, for example, using ‘digits’ like 11. Chasing such ‘bugs’ is a waste of time, since
they only occur in executions that are artifacts of systematic state sampling.

256

Spurious or missing behavior. There is a subtle difference between systematic-state sampling and input-
sequence sampling shown at the left of Figs. 5 and 7. Each systematic test is started with state
initialized to the value to be tested. Therefore, systematic tests are really only looking at sequences
of length one, and the particular state chosen is critical. If that state is infeasible, the behavior is
spurious. But for DIG it is also likely that the systematic sampling will fail to select interesting states.
Thus while Fig. 7 shows the pattern of layers of output at 0, 1, 2, ..., Fig. 5 has strange gaps in this
pattern. An empty diagonal ‘track’ is visible in the random-sampled figure, where output 0 does not
occur for (input,state) pairs around (-1,0), (-2,1), (-3,2), etc. This is a consequence of the peculiar
meaning given to states: for example, a state with integer part 3 means that digit 3 is currently being
seen, hence must have occurred at least once, never 0. With systematic sampling, there is no reason not
to select (say) state 3.0000000000, so this diagonal track is missing in Fig. 5. In ‘compensation’ there
is a spurious diagonal track at level -1 for positive inputs. A close study of Fig. 5 reveals many such
‘features’ of the test, but close study is just what the figure won’t bear, since much of it is erroneous.

Uncovered states. There is a cost for the use of test sequences, however. Large repeat counts are unlikely
to occur, and in Fig. 7 only a few go as high as 4. If the tester were concerned about what happens for
larger counts, the input sequences required to enter these states would be very long, and no sequence
can settle the question of whether states at 10 and above are possible (because they are not). Similarly,
more sequences would be required to answer the question about ramps in the state behavior; not enough
samples were taken for the behavior magnified on the left of Fig. 9 to show clearly on the right of
the figure. Is the ramp behavior feasible but hard to reach, or is it an infeasible artifact of systematic
sampling?

Improving the tests. There seems no alternative to using sequences of inputs, since only in this way will
tests show real behavior. Random sequences are used because the idea of a ‘equi-spaced’ or ‘systematic
coverage’ sequence is hard to define. If there were such a sequence, how would the parameters of
sequence-length, position in the sequence, and input values be ‘systematically’ varied without going too
far in exploring one parameter at the expense of the others? However, when testing to a specification,
it is sometimes possible and necessary to bias random factors. In the testing of DIG, a bias could be
introduced that favors selecting the same input in successive positions in the sequence, which would
more quickly reach states with larger counts. The need for bias was noticed by Antoy in testing a
class that could store or retrieve values in a set. Unless he artificially forced more store operations
than random selection would have used, the tested states were almost never complex enough to be
interesting [1]. The difficulty in biasing random input sequences is in choosing a bias, i.e., what states
to explore, and in finding input sequences that will explore them.

When a system is built from components with local state, the system behavior depends on a system
state that is a cross product of the components’ local states. Each local state of course can influence only
the behavior of the component that owns it, but since the system can invoke all components it intuitively
combines all their states3. Thinking about what the system does or should do requires reasoning about this
composite. The issues of state infeasibility raised for components come up again for systems. To give a
simple example, suppose that the component DIG were assembled with a conditional component that allows
it to count only repeats of digits 0..3 and 7..9; the digits 4..6 are considered errors in this system, and are
sent to a third component that returns -1 instead of being stored and counted. However, negative values are
not filtered by the conditional, so an input in -7..-5 should always return a count of 0. The output behavior
of this system is shown in Figs. 10 and 11 using random-sequence sampling. A band of states has become
infeasible, and new plateaus at -1 for the ‘error’ digits, and at 0 for reporting their ‘counts’ have been created.
Otherwise, Figs. 10 and 11 are copies of Figs. 7 and 8. They display both the strengths and weaknesses
of random-sequence sampling: Only 322 of the 1656 subdomains were calculated to be feasible and were so;
but 73 of the 1334 infeasible predictions were wrong because execution did fall in those subdomains.

3The composite is not a ‘global’ state, because components cannot use it to communicate.

257

-15

-10

-5

 0

 5

 10

 15 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

-1

 0

 1

 2

 3

 4

Output

Input

Input State

Output

Figure 10: Predictions (rectangles) and measurements (crosses) of system output behavior.

-15
-10

-5
 0

 5
 10

 15

 0 1 2 3 4 5 6 7 8 9 10

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Result state

Input
Input State

Result state

Figure 11: Predictions (rectangles) and measurements (crosses) of system result-state behavior.

Predictions of system behavior in Fig. 10 are not good for negative inputs (the cases where DIG is
reporting previously-stored counts). The primary reason is that for DIG measurements (Fig. 7) cannot be
accurate, as described above. However, there is a sense in which the measurements and predictions are
useful even though they are averages of many scattered values. When DIG is reporting counts, all of its

258

values lie between 0 and 9, with an average of 5 for systematic sampling. For the number of random trials
shown in the figures, the values don’t often reach 4 and average 1− 2. While the averages are not correct for
any subdomains smaller than the whole negative input space, they are the correct averages, which for some
purposes is enough. For example, the system run time is roughly the same no matter what count value is
reported, so for predicting run time the calculations are OK.

If only one component of a system has state (as in the previous example), the component synthesis tools
can display the system prediction as in Figs. 10 and 11. But we run out of dimensions if the behavior
depends on two or more local states. For example, composing the digit-counting program DIG with itself
(however silly that might be), the output would be a function of input and a pair of states. The system
subdomains would be rectangular solids and no comprehensible graphs could be drawn for the system. As
the number of components with state increases, the ability to visualize system behavior falls, and tools are
less helpful. Graphs aid understanding of what is being tested and how well; for example, Fig. 8 illuminates
the issue of testing infeasible states.

There is one important case with composite state in which the tools can be helpful, however. Often
state takes the form of ‘modes.’ The state values are limited to a small set, used by the program to tailor
its behavior without requiring user choices on each execution. (Modes are sometimes called ‘preferences.’)
A command-driven text editor is a good example: it has an ‘input’ mode in which it stores text, and a
‘command’ mode in which text is taken as directives to act on what has been stored. (Of course, such an
editor’s primary state value is the stored text itself.) When several components assembled into a system
each have only this kind of ‘mode’ state, then the system cross-product state consists of a finite number of
state tuples, and these can be graphed in the input-state dimension as discrete points. An idealization of
the text-editor example, used with a conditional component that itself has states to restrict access to the
editor commands, is presented in [2].

A system whose composite state is mode-tuples is particularly difficult to test, because many tuple values
are infeasible, the specification may be less than clear about what unusual tuples are supposed to mean, and
the tester does not know which ones to try, or how to excite them. Yet catastrophic system failures arise
precisely from somehow reaching in execution some strange state, not tested because it was not thought of
or it was deemed impossible. In such cases it is especially dangerous to confuse specified states with real
program states, since unexpected real states are ‘meaningless’ in the specification, which in no way prevents
the program from falling into them and crashing.

5 Discussion: Component vs. System Testing; Design Rules

It is common wisdom that testing components in isolation is easier than testing a system built from them, but
not useful in predicting what the system will do. The tools and experiments reported here support the first
half of this position but refute the second half. Testing components is easier, if only because the results can
always be graphed—a component has exactly one collection of local states. Furthermore, test subdomains
for components can be adjusted to match significant input points like those where discontinuities occur. By
using input test sequences, infeasible state values are avoided. Experimenting with these tools shows that
system predictions can be made from component test results. The predictions are not always accurate, but
by studying the sources of their inaccuracy, we may hope to come up with some rules for ‘good’ component
and system design, that is, design rules that will make the prediction algorithms work.

As currently practiced, unit testing is an activity that is considered ‘good for you,’ but is quantitatively
unrelated to the quality of the component, much less the quality of a system to be developed later. The
surrogate quality measures for unit test (like structural coverage, number of points tried, or number of failures
found) have only a weak connection with quality—everyone knows examples where the measures were good
but the component later failed badly. More important, unit measures are entirely disconnected from the rest
of development. No one says, “since I achieved 85% unit statement test coverage, system testing can use
36% fewer cases,” for example. In other engineering disciplines, things are quite different. Parts are tested
to verify the parameters on which system design is based. For an example in structural engineering, because
the rivets pass hardness tests, beams fastened with them are expected to resist shearing. In software, unit

259

testing is done and then forgotten, with no quantitative contribution to the rest of development. Our tools do
better. A component test is accompanied by an error analysis, giving the r-m-s deviation of each subdomain
approximation from measured behavior. When that error is small, the subdomains are capturing behavior
well, and being well tested. Large errors indicate that the subdomain breakdown could be improved. The
tools provide graphical feedback that helps the programmer/tester to adjust the subdomain boundaries4.
The subdomain error analysis is thus a quantitative measure of component-test quality, and it can play a
crucial role in component-based system development, described below.

The primary theoretical difficulty in accurately composing component test results into system predictions
is the profile-matching problem. In an extreme case of mismatch, the first component might send the second
only one value y0; then no test of the second other than at y0 has any significance. Our tools that predict
system behavior try to get around the profile-matching problem by testing in subdomains. Component
behavior is thereby split into a collection of behaviors, one on each of many subdomain pieces of the input
space. But unless the subdomains are fine-grained enough to capture behavior perfectly (in the worst case,
they would have to be singleton points, which is clearly impractical), they can be fooled. In the extreme
case above, y0 falls in some input subdomain which will have been tested in the second component, but the
behavior across that subdomain may vary so much that what happens on input y0 is poorly represented by
the subdomain average value.

It is, however, possible to quantify the quality of a system prediction made by our tools without testing
that system. Our tools can calculate the profile each component sees in the system (e.g., in Fig. 4). Insofar
as this profile approximately matches the profile used to test that component in isolation, the predictions
should be good. Where there is strong mismatch, it calls for replacing or retesting the component.

Design Rule 1 Check calculated system internal profiles against component test profiles; retest or replace
components when there is a mismatch.

There is a simple special case of Design Rule 1: Don’t use a general-purpose component with wide
functionality for a few special values. It will have been tested with a wide spread of inputs, and your special
values will likely have been neglected. Retest at those values or use a different component with restricted
capability.

Design Rule 1 does not apply to the component tester, who is working before any system application is
known. Rather it tells the system designer not to trust a component in a particular system if a mismatch is
observed. For example, Fig. 4 shows that subdomains below about input 6.0 (particularly two of them) in
the second copy of CS are more frequently used in the system CS | CS than they were tested.

Profile mismatch matters most when there is a discontinuity in component behavior that falls across
some subdomain, as illustrated in Fig. 3. Since discontinuities always arise from conditional statements, the
system designer can try to avoid the problem.

Design Rule 2 Avoid series combination of components in which the first has major discontinuous behavior.

One way to observe Design Rule 2 is to amalgamate two series components into one. This moves an
offending discontinuity from the system- to the component level, where it is easier to capture with tests
and subdomains. Another way is to move conditional statements out of the series code and into a new
conditional component, which selects one of two new components, formed from the alternatives that were in
the original code. The conditional component can be given subdomains that exactly capture the break point.
Of course, Design Rule 2 should be used sparingly, because too much amalgamation defeats the purpose of
component-based design.

It is tempting to formulate a simple design rule to control problems with persistent state: don’t use
it! But that’s hardly practical. There has been very little study of testing in the presence of state, so the
following are based on just a few experiments.

4In the tool versions now under development, changes in subdomains are handled incrementally, so that measurements and

calculations are not repeated for subdomains that have not changed.

260

Design Rule 3 Don’t distribute ‘modes’ across states of several components; group all modes into one
control component for a system.

Design Rule 3 suggests that it is more comprehensible and easier to test many modes as state values in a
single component than to deal with them at system level as cross-product states from several components.
The number of cases is the same, but collecting them makes it harder to miss some composite case.

Design Rule 4 When state has a large set of possible values, make one component responsible for all
possibilities rather than distributing values among several components.

Design Rule 4 can be viewed as a restatement of Parnas’s advice to use information-holder modules (but
not many). It is supported by systems that have a single database component. The reasoning behind the rule
is similar to that for Design Rule 3: having many information holders creates problematic cross-product state
values whose meaning is unclear, which must be dealt with at system level. Testing a database component
is difficult enough by itself.

By observing these design rules (and no doubt many others yet to be formulated), the predictions made
by our tools are likely to be accurate. Then unit (component) testing can assume a new importance:
system tests are never needed. That does not mean that an arbitrary system can be assembled from tested
components and it will work ‘out of the box.’ It is obvious that there might be arbitrary mistakes made
in the system design that are unrelated to the quality of the components used. What it does mean is that
when the predictions of tools like ours are accurate, predictions can be substituted for actual testing of the
assembled system. Instead of trying system executions, one can examine the predictions of what the system
will do and match them against the system specification. The advantage of using calculated values in place
of real system executions is that they are much cheaper to obtain, and therefore the designer can afford
to try several designs and to use a variety of alternative components in them. Our tools can calculate and
graph the behavior of a system hundreds of times faster than a real system can be executed, and that does
not count the time required to integrate the actual components and ready a system test.

The suggested paradigm for system development using components is then the following:

1. Develop components in isolation and test them using subdomains that capture their behavior, to the
limit of testing resources. Or, the development and testing work may have been already done if the
component was selected from a repository. In any case, a subdomain breakdown and quantitative test
accuracy, not just the component code, are required.

2. Design the system using the components of step 1.

3. Calculate properties of the system of step 2, using CAD synthesis tools like those described in this
paper. In particular, calculate the internal profiles seen by each component in place.

4. Check the validity of the system calculations by comparing the internal profiles calculated in step 3 with
the test profiles in step 1. If there is a bad mismatch, repeat steps 1 and/or 2, changing components,
tests, or system design to minimize it.

5. Using the system specification and the system properties calculated in step 3, verify that the system
should meet its requirements. If not, change components and/or design and repeat from step 3.

This procedure corresponds quite closely with the way system design and implementation is done in
structural, mechanical, and electrical engineering, particularly in relying on CAD tools to synthesize and
verify a system design. No one (other than Rube Goldberg!) builds a mechanical system by buying compo-
nents and trying to put them together by trial and error, then extensively testing a system where they seem
to fit. The success of the older engineering disciplines in component-based design is one that we have yet to
approach in software engineering.

261

References

[1] Sergio Antoy and Richard G. Hamlet. Automatically checking an implementation against its formal
specification. IEEE Trans. on Soft. Eng., 26:55–69, 2000.

[2] Dick Hamlet. Subdomain testing of units and systems with state. In Proceedings ISSTA 2006, pages
85–96, Portland, ME, July 2006.

[3] Dick Hamlet. www.cs.pdx.edu/∼hamlet/components.html, 2007.

[4] Dick Hamlet. Software component composition: subdomain-based testing-theory foundation. J. Software
Testing, Verification and Reliability, 17:243–269, December 2007.

[5] Dick Hamlet, Dave Mason, and Denise Woit. Theory of software reliability based on components. In
Proceedings ICSE ‘01, pages 361–370, Toronto, Canada, 2001.

[6] David L. Parnas. On the criteria to be used in decomposing systems into modules. Comm. of the ACM,
December 1972.

[7] Denise Woit and Dave Mason. Software component independence. In Proc. 3rd IEEE High-Assurance
Systems Engineering Symposium (HASE’98), Washington, DC, November 1998.

262

Selecting Software Estimating Techniques that
Fit the Software Process

Kal Toth
Portland State University

ktoth@cs.pdx.edu

Abstract
When embarking on a new project, the software engineering manager will need to
decide early on whether to follow a Waterfall, Agile, Prototyping, Incremental or some
hybrid or variant of these software processes. To assess project feasibility, to secure
budget, and to properly plan resources and schedules, responsible managers should
also decide about their software estimating process - whether to us expert judgment
with estimating rules-of-thumb; parametric techniques like COCOMO and Function-
Points; or estimating databases populated with analogies and proxies from prior
projects. The characterizing attributes of a given new project greatly influence software
process and estimating choices. This paper provides context and guidance that will
help the software practitioner understand the influences of project attributes on the
selection of suitable software processes and on software estimating techniques when
embarking on the next software project. This paper will also assist companies decide
how to best apply their resources to maintain a suitable software estimating
infrastructure to support project planning and execution.

About the Author
Kal Toth is the Director of the Oregon Master of Software Engineering Program (OMSE) and Associate
Professor in the Maseeh College of Engineering and Computer Science, Portland State University (PSU).
A Professional Engineer (P. Eng) with a software engineering designation registered in British Columbia,
he has a Ph.D. from Carleton University in electrical and computer systems engineering. Kal has over 25
years of management, technical, and consulting experience leading and working for a range of
technology companies and organizations including Hughes Aircraft, Datalink Systems Corp., BC Software
Productivity Centre, the CGI Group Inc., Intellitech Canada Ltd., National Defence (Canada),
Communications Canada, and External Affairs (Canada). He has managed and participated in a
technical capacity addressing project management, software quality, and information security aspects of
air traffic control, e-commerce, distributed information, and packet-switching systems. At PSU he
facilitates software engineering courses including software project management, software engineering
principles and processes, software quality, and practicum projects.

263

How do software processes and estimating relate?

Software Project

Attributes

Software Process(es)
Selected

Software Estimating
Techniques Used

characterized by

Influence

How do they relate?

Figure 1

Introduction
Software engineers and teams are constantly being asked questions like: “How long will this take?” and
“How many developers are needed to get it done? Far too often, estimates are produced in an ad hoc
manner and yield unreliable results, or results that are misunderstood and misused. The prudent
software engineer will study the attributes of the software problem at hand and systematically apply their
experience on similar projects to come up with useful estimates. They will also revise their estimates on
an ongoing basis as project uncertainties firm up. The most experienced software professionals will apply
software estimating methods that have worked consistently for them in the past. Mature software
companies will support their projects by sustaining software estimating culture and infrastructure including
proven estimating processes, tools and historical project data.

When practitioners work on similar projects, in similar domains, using similar software processes, and
their company’s standard estimating process, they tend to produce fairly useful and consistent estimates.
But what does a team or company do when they shift from Waterfall to Agile development? What
happens if they transition from an estimating culture without systematic estimating to one where
estimates are integral to the software process? What about the developer making a career move from
the aerospace industry with a formal estimating culture to a company or industry sector in the world of
commercial software products, e-commerce applications, enterprise information systems, embedded
computing, or open source software? Such radical shifts may render a proven estimating technique to be
inappropriate in the new domain. At the very least, several adjustments will be needed to re-tune and re-
target the estimating technique being used to adapt it to the new development culture.

To make the necessary adjustments, software engineers first need to understand the ramifications of the
estimating techniques they used in the prior context. Next they need to differentiate the new types of
projects they expect to tackle from their previous ones (What’s different?). Finally they need to learn
which aspects of their estimating technique(s) can be re-used, and which ones will need to be adjusted or
re-worked to support the new domain. Armed with a suitable mapping of estimating techniques and
development processes, the software professional should be able select the most appropriate estimating
technique for the new domain, identify the gaps, and transition to the new or revised estimating approach.

One approach to tackle these challenges
is to consider key project attributes that
distinguish projects from each other. If
we can use these attributes to
characterize both software process
selection and software estimating
choices, it should be possible to relate
software processes and estimating
techniques to achieve “best fit” (see
Figure 1). This should help companies
and their software engineers focus on
the most suitable range of estimating
techniques for their context thereby
improving estimating effectiveness.

264

Central Questions Posed by this Paper
Development teams naturally tend to select the software process they are most familiar with. This may
often be the correct choice, especially if the company tends to take on similar projects in a given
application domain. However, many companies, especially larger ones, have projects with widely ranging
process needs and they often have multiple software process cultures and competencies across their
various software development groups.

As suggested in [1], the unique attributes of a new software project should be examined and related to
the company’s capabilities when deciding on the software process to be adopted. Once this choice is
made, project planning can begin in earnest including the application of suitable processes to estimate
effort and schedules. Given that software estimates are derived, one way or another, from work activities,
it follows that the chosen software estimating technique(s) should also account for the unique attributes of
the project.

Such relationships between software process and estimating for a given project are not widely
acknowledged across the software engineering community. This paper explores this gap by addressing
the following questions:

 What are the key attributes characterizing an arbitrary project?
 How do such factors influence process selection? 1

 How do such factors influence software estimating choices?
 Which SW estimating techniques are most suitable at a given stage of software development?
 Which SW estimating techniques are most suitable for a given software process?

Key Assumptions Underlying this Paper
The primary goals of software estimating are to: confirm project feasibility, rationalize budget for the
project, and use estimates to control the project (determine when a new or better estimate is required).

Ideally, projects should start with stable objectives and scope:
 Scope should not change very much, otherwise you are really tackling a different project; 2

 Properly defined scope covers the breadth of project requirements and constraints;
 When required functions and features emerge, they should be consistent with objectives and scope;
 Requirements should not expand scope without stakeholder agreement (those controlling budgets).

Estimates are uncertain, but they should improve with time: as the project progresses, new
knowledge yields better estimates which reduces estimating uncertainty; estimating should be iterative -
new estimates are opportunities for re-shaping the project, re-targeting objectives and scope as required.

The Customer and Contractor must mutually embrace success:

Both parties must recognize that requirements are rarely certain or static and that resources (budget and
schedule) are finite; they must agree to consider and accept trade-offs between requirements, budget and
schedule; also agree to explore and understand impacts of key project influencing factors while meeting

1 Project influencing factors can be used as “adjustment factors” or “drivers” when producing estimates
2 If scope is pushed out significantly by requirements changes, the customer and contractor should be
prepared to revise estimates, assess project impacts on budgets and schedules, and renegotiate scope
or trade-off requirements to fit within previously agreed upon budgets and schedules.

265

What do software projects estimate?

“Size”

“Effort”

“Schedule”

It is not obvious where
we should start

?

?

?

Figure 2

mutual commitments; The Customer and Contractor are thereby mutually involved and committed to
achieve success (a.k.a. “win-win”).

Software Estimating in a Nutshell

Software Estimating Basics
Most software estimating techniques start by estimating the “size” of the software product deriving effort
and schedule estimates from software size. Historical and industry data are used to arrive at standard
allocations of effort to such size measures; and schedules are derived using other guidance that
distributes effort over the timeline or calendar. Several (but not all) techniques apply project adjustment
or influence factors to account for various attributes of the project.

Software size represents the magnitude of the problem being tackled. The underpinning rationale is that
effort and schedule should naturally correlate with the relative difficulty of the software problem being
tackled. Software “size” is typically measured in terms of the number of features or “points” representing
the amount of software to be constructed – for example, the number of functions, stories, use cases,
objects, components, files, user interface widgets, lines-of-code (LOC), etc. Such points are typically
categorized by relative complexity and other product attributes with effort estimates being associated with
each type of point. Nominal effort estimates per point come from industry data or past company projects.
The software estimator’s task, then, boils down to assessing the number of points of each applicable
category and calculating the total estimated product size, effort and schedules.

Of course, many practitioners directly estimate software construction effort without explicitly relating their
estimates to product size – deriving loading profiles and schedules from these effort estimates.

A critical aspect of software estimating is to
determine where to start. Figure 2 illustrates
this challenge. Should we first estimate size
and then estimate effort and schedule? Or
should we start with a fixed schedule and
then determine how much software (size) and
effort can be fit into that schedule. Or is it
really the level of effort that should drive the
estimate? In other words, should we estimate
how much software can be built within
allocated effort and then find a schedule that
will best accommodate this effort and the
amount of software to be built?

Using Historical Project Data
Estimates can be derived from historical industry and company data. Parametric models with estimating
tools exist to support companies lacking their own historical project data. Tool vendors have collected,
categorized and analyzed data from numerous projects across various application and technology
domains. Their tools use empirical formulas to calculate estimates according to inputs that characterize
the properties (influencing factors) of the software project to be estimated. The estimator’s main task is to
identify and evaluate the new project’s influencing factors and provide these as inputs to the tool.

266

Uncertainty of Estimates Progressively Decreases

Feasibility

Time

Es
tim

at
es

 (s
iz

e,
 e

ffo
rt,

 s
ch

ed
ul

e)

Plans & Requirements
Design / Detailed Design

Development & Test

estimating should be an ongoing process

Boehm’s “Cone of Uncertainty” [2]

Figure 3

Historical databases of past projects can improve the quality of estimates and reduce estimating
overheads, that is, the effort and time expended to produce good estimates. Such databases represent
the collective software project knowledge of the company, thereby providing consistent and more certain
estimates, than the other techniques mentioned above. Historical estimating biases (over and under
estimating) can also be derived and used to adjust estimates. Furthermore, useful rules-of-thumb can be
extracted from such databases and used to produce rough-cut estimates that match the company’s
project profiles. Estimating databases are populated with software components from prior projects.
Referred to as software “analogies” and “proxies” they are “sized” and categorized by their project
attributes. Statistical techniques (e.g. regression analysis) are applied to estimate and adjust size, effort
and schedule from previous analogies and proxies.

Using Influencing Factors to Drive Estimates
It is fairly clear that the nature of the software product itself and the company’s capabilities are the main
factors that drive a given project estimate. But are there other useful factors? Luckily, we can draw upon
parametric estimating techniques that employ detailed attributes of a software product, the chosen
development environment, project team competencies, and other project aspects.

Take note that these parametric estimating techniques do not use the same or equivalent influencing
factors (though they somewhat overlap), and many estimating techniques use them only superficially, or
even disregard them altogether. For example, experienced software engineers often produce “fuzzy”
estimates from their experience with similar prior projects together with prerequisite knowledge of the
current project’s objectives and scope - project influencing factors are considered implicitly - rarely
explicitly. In other cases, rough estimates are derived from industry or company rules-of-thumb without
addressing project attributes systematically.

If project influencing factors are not available or not used, the prudent estimator should understand and
communicate to management and the customer that such estimates are very rough (uncertain) and that
they should be accordingly used with
caution.

Estimating Uncertainty
Software estimating should not be
thought of as a one-time effort for a
project. Estimates and plans should be
updated iteratively during or at the
completion of each significant
development stage. Early on, estimates
tend to be highly uncertain; as the project
moves forward, additional knowledge
and experience accumulate hence
yielding tighter estimates (see Figure 3).
Barry Boehm called this the “Cone of
Uncertainty” [2].

Recommended Readings on Estimating: Barry Boehm [2], Steve McConnell [3], and Mike Cohn [4].

267

Software Process Selection

What Influences Software Process Selection?
To understand how project factors influence software process selection, let’s review the rationale that
motivate the software practitioner to select one software process over another:

Waterfall development is best suited for projects with high complexity, criticality, and maintainability
requirements. Waterfall processes are fairly sequential allocating detailed analysis, specification, and
design decisions in the initial stages of development to address performance, security, reliability,
safety, maintainability, and other non-functional requirements including design constraints. This
approach implies higher process ceremony than most of the alternative software processes.
Agile development focuses on working code over detailed specification, analysis and
documentation. Short iterations (often called “sprints”) of fairly systematic development are
advocated with close customer involvement, test-driven development, continuous integration, pair-
programming, and ongoing refactoring. Agile processes are characterized by lower process
ceremony than Waterfall.
Prototyping, sometimes referred to as evolutionary development, is exploratory in nature tackling
unknown or poorly understood aspects of the project - for example, user interface and technology
uncertainties. Typically, software prototypes are developed using low process ceremony to build
knowledge before transitioning the project into more systematic development following Waterfall and
Agile development processes.
Incremental development aims at increasing project scalability by applying divide-and-conquer
strategies to fashion independent development activities that may be executed concurrently or
serially. Such independent development is achieved by using thorough analysis and design
techniques to partition the requirements and/or the architectural design into loosely coupled
components that may be independently addressed. Development increments may be governed by
Prototyping, Waterfall or Agile approaches.

Incidentally, none of these processes is “pure” – they don’t adhere dogmatically to a given process. For
example, Waterfall processes do not necessarily dictate strict sequencing, high ceremony processes, or
massive documentation. Similarly, Agile does not mean abandoning proven design principles, coding
standards, or test coverage analysis.

Aside: You might wonder why I left iterative and spiral software development off the above list of
processes. My reasoning is that Prototyping, Agile, Waterfall and Incremental processes possess very
distinctive properties. And both iterative and spiral development processes are really strategies that can
be applied to fine-tune them. For example, an entire project could be broken down into iterations along
the time-line where each iteration delineates several concurrent increments of development. Iteration is
also a way of organizing the work within a given development increment to progressively explore software
work products as they are being prototyped, or augment functional capabilities as new stories are
formulated during Agile development, or execute mini-waterfall processes to progressively refine and
mature a branch of the software development effort. Meanwhile, spiral development, which is very
closely related to iterative development, allocates risk management activities to separate spirals where
each could follow Prototyping, Agile or Waterfall processes to address specific risk mitigation objectives,
albeit using different styles of development.

268

Process Ceremony Versus Problem Difficulty

Increasing need for more “Process “Ceremony”

Increasingly Difficult Software Problems

Increasing
Software
Process

Ceremony

(e.g. # functions, complexity, uncertainty, volatility, criticality, maintainability, usability, etc.)

Figure 4

Customer-Supplier “Flexibility” Biases the SW Process

Project A Project B Project C Project D
Requirements “Fixed” “Fixed” “Flexible” “Flexible”
Budget “Constrained” “Flexible” “Constrained” “Fixed”
Schedule “Flexible” “Constrained” “Fixed” “Constrained”

Table 1

Software Process Ceremony is Driven by Project Influencing Factors
Figure 4 depicts how software processes relate process ceremony to the difficulty of the problem being
tackled. Prototyping, Agile, Waterfall, and Incremental development are shown as software processes
that cover a scale of increasing
process ceremony addressing
increasingly difficult (harder) software
problems. For example, a project to
develop a large, complex system to
control a nuclear reactor, an aircraft
navigation system, or an embedded
medical device, may be best
organized as a number of concurrent
increments of development that
incorporate Prototyping, Agile, and
Waterfall processes across an
iterative lifecycle. In other words, a
hybrid high-ceremony process is
planned out to address the needs of a
very difficult software problem.

Note: See Toth [1] for insights into process selection, and Brook and Toth [5] on process ceremony.

Customer-Supplier “Flexibility”
Customer-supplier “flexibility” represents the degree to which the customer and supplier have agreed to
constrain requirements, budget and schedule. For example, the budget might be agreed to be fixed while
the requirements are flexible (e.g.
allowed to vary within project
scope), and the schedule is
constrained (e.g. the schedule
may be pushed out by some
agreed period of time). Futrell et.
al. in [6] recommend explicitly
addressing such flexibility in the
project plan using a matrix. Table
1 illustrates customer-supplier
flexibility for 4 projects.

Project A: Consider Waterfall to ensure fixed requirements are addressed within the constrained budget.
Estimating effort should focus on assessing whether an acceptable schedule is feasible;
Project B: Consider Waterfall to ensure fixed requirements are addressed within the constrained
schedule. Estimating effort should assess whether an acceptable budget is feasible;
Project C: Consider Agile since time-to-market / product release is the top priority. Estimating should be
“design-to-schedule” within an acceptable budget;
Project D: Consider Agile since budget is fixed. Estimate should be “design-to-budget” within an
acceptable schedule.

269

“Flexibility” also Influences Software Estimating

“Size”

“Effort”

“Schedule”

Figure 5

Requirements
Schedule

Budget

How does flexibility affect estimating?
As discussed earlier, the goal of estimating is to assess the expected product “size”, the effort to build the
product, and the schedule within which to build the product. However, it is not always clear where to
start, and it is not always possible to arrive at a reasonable size estimate. One interesting observation, is
that a flexibility matrix focuses our attention on a natural starting point. Consider the following project
flexibility possibilities:

Requirements are “fixed”: This implies that the customer has a fairly fixed idea of functions, features
and non-functional requirements that have been well-specified in a software requirements specification
(SRS) or similar document. The customer has likely agreed to a fairly systematic change process as well.
The main goal, therefore, is to estimate acceptable budget and schedule to implement the requirements.
Some flexibility with respect to budget and schedule may be allowed. Such projects are considered
“requirements driven”.
Schedule is “fixed”: This implies that the customer or marketing department is highly focused on
delivery milestones and shipping dates to meet market urgency or operational needs. The main goal is to
estimate which requirements can be implemented within the allocated schedule. They are also likely to
allow changes in functions and features mid-stream to meet requirements. And some budget flexibility
may be permitted. Such projects are referred to as “schedule driven” or “design-to-schedule”.
Budget is “fixed”: This implies that the customer expects the project to operate within a budget envelop
that will directly or indirectly fix the total allowable effort. Exceeding the budget will likely lead to serious
customer dissatisfaction and possibly even payment penalties. Such projects will endeavor to assess
which functions and features can be feasibly implemented within the fixed budget. Depending on the
customer’s preferences, trade-offs between
software size and schedule may be made
before settling on an acceptable project
posture. Such projects are considered
“budget driven” or “design-to-cost”.
Figure 5 illustrates these three project
flexibility scenarios and reinforces the iterative
aspect of estimating. For example, a design-
to-cost (budget driven) project starts with
budget and effort considerations but is likely
to trade off various requirements and
schedule options before settling on a
combination of effort, requirements and
schedule that will satisfy the budget
constraint.

Common Estimating Techniques and Strategies
To explore the implications of project influencing factors, let us delve a bit further into the common
estimating techniques (illustrated in Figure 6) focusing on key differentiating aspects:

Expert Judgment: Assumes an experienced software practitioner is familiar enough with the application
domain to make a sound estimate. The expert is really calling on their personal recall of past software
projects and project attributes. Such estimating is typically referred to as rough-cut or “fuzzy” estimating”.
When the base data is simply memory recall, we refer to it as “Guestimating”.

270

Estimating Techniques
• Expert Judgment
• Function Points
• Analogy-Based
• Proxy-Based
• Rules of Thumb
• COCOMO

Estimating Strategies
• Partitioning/Decomp
• Composition/Reuse
• Work breakdown
• Group/Team Collab.

Estimates (iterative)

Visualizing the Software Process and Estimating

Size
Effort

Schedule

Software Process Delivered
Products

Late

Objectives
Scope

Early
Very
Early

Project
Planning

Update & Tune

Industry Data / Tables
Parametric Formulas
Historical Analogies
Historical Proxies

Adjustment Factors
Rules, Ratios, Rates

Prototyping?
Agile?

Waterfall?
Incremental?

Hybrid?

Figure 6

Function-Point Estimating: Function
and feature points and categories are
derived from industry data. The estimator
assesses the number and complexity of
functions and features by category to
arrive at a size estimate and uses
estimating adjustment factors that
characterize the requirements and the
design.

Analogy-Based Estimating: Past project
analogies are characterized by their
attributes, actual software size, effort, and
project schedules. The estimator
searches for comparable analogies in the
historical database to arrive at
representative estimates.

Proxy-Based Estimating: Software features (e.g. stories, objects, components, widgets, etc.) of past
projects are counted, characterized, categorized, and maintained in the estimating database. The
estimator assesses the number and size of each feature point in the new product, searches for
comparable proxies, and extrapolates size, effort and schedules from this base data.

Estimating Using Rules-of-Thumb: Rules-of-Thumb include: software productivity rates (LOC/unit of
time), possibly categorized; re-use factors such as the relative cost of reusing software components as a
percent (%) of the original development effort; and effort distribution factors used to distribute rough-cut
estimates over project activities and phases. Rules-of-Thumb may be derived from industry data or may
be drawn from a company’s software project history.

COCOMO Estimating: A fairly widely used parametric technique, COCOMO used empirical formulas
based on regression analysis of industry data categorized by relative project complexity (“organic”, “semi-
detached”, or embedded”). COCOMO uses estimating adjustment factors that characterize product,
computing environment, personnel and project attributes. COCOMO uses an input size estimate in lines-
of-code (LOC) to yield effort and schedule estimates. Several COCOMO variants and products are
available.

Estimating Strategies for Refining Estimates
Design to Cost/Schedule: This is really a cost or schedule driven estimating technique. Through trial
and error, size estimates yielding the desired cost or schedule are located. Software size may be derived
from analogies, proxies or function-points.

Partitioning/Decomposition: Requirements may be partitioned into relatively independent parts that can
be separately estimated. Once a stable design is developed it can be partitioned into loosely coupled
parts and separately estimated.

Composition: This is actually a design technique that can be used to produce bottom-up solutions from
components that can be estimated and aggregated to yield rolled-up estimates.

Group Estimating: Delphi estimating involves bringing together several software practitioners who use
their expert judgment to converge on a collective estimate through consensus. Team members may also
be called upon to support bottom-up estimating, a recommended strategy to secure commitment of team
members to achieve results that meet their own estimates.

271

Key Project Influencing Factors

Project
Scope & Objectives Senior ManagementCustomer/ Market

Personnel:
- Tech Competencies
- Mgmt Competencies
- Team Competencies
- Domain Knowledge
- Turnover/Retention

Develop. Environment:
- Process Infrastructure
- Capability of Tools
- Platform Capability
- Reuse Leverage

Product Attributes:
- #Functions / Features
- Complexity
- Uncertainty
- Volatility
- Criticality (“ilities”)
- Maintainability
- Usability

Pressure/Involvement:
- Customer Oversight
- User Involvement
- Urgency (Time-to-Market)

Figure 7

Requirements Budget (effort) Schedule

Project Flexibility
(re. requirements, budget, schedule)

Project Influencing Factors
It should be clear by now that project attributes influence both the software process and the software
estimating technique(s) we may elect to use. Top-level project flexibility attributes have been identified
(requirements, budget and schedule) that influence how to begin strategizing about estimating. These
factors also help us decide whether to use Waterfall or Agile development – but they tell us less about
how to choose when to use Prototyping and Incremental development. The discussion about process
ceremony should encourage us to consider incremental development strategies to scale-up by organizing
hybrid development processes.

Meanwhile, we have examples of estimating techniques that leverage project attributes to account for
project differences. COCOMO, for example, uses various product, personnel competency and other
project attributes. And Function-Points uses product-specific attributes almost exclusively. Of course,
many estimating techniques almost totally ignore such project attributes assuming the estimating expert
will somehow bring them into play as required.

Figure 7 captures and synthesizes the fundamental observations made earlier about project flexibility,
COCOMO, Function-Points, and personal experience. This figure presents what I believe to be a fairly
complete “taxonomy” of project influencing factors. The hierarchy is first broken down by project flexibility
drivers, and then further broken down by product, environment, personnel and project pressure /
involvement factors. Several of the project influencing factors map to Function-Points and COCOMO
adjustment factors.

Important Note: Although Function-Points
and COCOMO provide guidance on
assigning weights to their adjustment
factors, they use different value ranges and
aggregation methods. I have made no
attempt herein to rationalize these scales.
For the purposes of this paper, the reader
should simply assume that each of the
influencing factors may take on a range of
values (e.g. small to large; few to many; low
to high; etc) and that such factors should be
used to adjust initial estimates upwards or
downwards as appropriate.

Project Flexibility
As discussed earlier, this represents customer-supplier flexibility regarding the project’s requirements,
budget and schedule within agreed objectives and scope. For example, the customer and supplier might
agree to be flexible with respect to requirements, but fixed with respect to project schedule (completion
date) while constraining total budget.

Product Attributes
Functions / Features (#): the relative number of functional requirements and features; from a few key
functions to a very large number of functions, use cases, scenarios, user stories, etc.
Complexity: represents the relative complexity of the product in terms of the number of dependencies
among functional requirements, features, external interfaces, and technologies.

272

Requirements Uncertainty: unambiguous, precise, and logically complete specifications denote low
uncertainty; high-level, vague and incomplete requirements imply high uncertainty.
Requirements Volatility: the rate at which and the extent to which the customer and users are expected
to make changes to required functions and features throughout the project.
Criticality: characterizes the security, reliability, safety, availability and performance requirements (a.k.a.
“ilities”) of the project – for example, web-sites, games, electronic toys are examples of low criticality
applications; aerospace, military, and embedded applications are typically high criticality projects.
Maintainability: relates to the quality of the documentation and the modularity of the design – ad hoc,
experimental prototypes do not need much documentation; highly maintainable systems have extensive
and high quality requirements specifications, design documentation, and installation manuals.
Usability: represents the relative ease of use of the product’s user interfaces and navigational controls.

Personnel / Team Factors
Technical Competency: analysis, requirements, design, coding, integration, testing, etc.
Management Competency: planning, estimating, directing, monitoring, reporting, negotiation, etc.
Team Competency: communications, collaboration, coordination, interpersonal, etc.
Application Domain Knowledge: knowledge and experience with domain functions and features.
Retention / Turnover: ability of the company and team to retain quality and proven personnel.

Development Environment Characteristics
Process Infrastructure: technical (eg coding) standards, spec templates, checklists, guidelines, etc.
Capability of Tools: extent and quality of requisite tools supporting reqts, design, coding, testing, etc
Platform Capability / Volatility: capability and maturity of O.S., DBMS, commercial apps, etc.
Reuse Leverage: extent and quality of reusable components and source code from prior projects.

Pressure and Involvement
Customer Oversight: the degree to which progress is made visible to customer representatives through
reporting, documentation, and demonstrations.
User Involvement: the degree to which users get involved in developing and reviewing work products
from requirements, through development, to product acceptance.
Schedule Pressure / Market Urgency: relative urgency expressed by the customer to deliver and
release final products.

Key Project Factors Influence Software Process Selection
With reference to Table 2, the following summarizes the “key drivers” (only) that influence the selection of
each software process (note: lesser project influencing factors have been set aside):

Prototype Development is driven by product complexity, unknown platform capability (technology risk).
Also usability, requirements uncertainty and unfamiliar domain knowledge (requirements risks).

Agile Development is driven by schedule pressure (urgency to deliver to market). Volatility and
uncertainty of requirements are also key Agile drivers. Agile is particularly dependent on technical
competency and user involvement.

273

Key Factors Influence Software
Process Selection

Product Requirements:
Functions / Components
Complexity
Volatility
Uncertainty
Criticality
Maintainability
Usability

Team / Personnel:
Technical Competency
Management Competency
Team Competency
Application Domain Knowledge
Retention / Turnover

Development Environment:
Process Infrastructure
Capability of Tools
Platform Capability / Volatility
Reuse Leverage

Pressure / Involvement:
Customer Oversight
User Involvement
Schedule Pressure / Market Urgency

Table 2

Project

COCOMO

*
*

*
* *
*

* *
* *

*

*
* * ***
*

*

*

*

Software Estimating Super-Model

Objectives and Scope

Analogies of Past Projects
• similar domain, functions, features
• extrapolate size, effort, schedules

adjustment factors

* *

*
* *
*

* *
* *

*

*

*
*

* * ***
*

*

*

*

* ****
*

*

* * *

Proxies from Past Projects
• objects, widgets, stories, comps
• categorized by size and effort
• productivity and velocity trends
• estimating vs. actual trends
• effort vs. size trends

Function Points
adjustment factors

Simple Average Complex
Outputs 4 5 7
Inputs 3 4 6
Queries – Out 4 5 7
Queries – In 3 4 6
Files 7 10 15
Interfaces 5 7 10

Expert Judgment

FPs -> LOC

Rules of Thumb
• productivity rates
• velocity
• re-use factors
• distribution strategies

Estimates:
• size
• effort
• schedule.

Project Attributes
(Influencing Factors)

Key Functions
and Features

Preliminary
Architecture

Refined
Reqts and
Design

LOC

Objects
Stories
GUI Widgets
Std Components

Figure 8

Waterfall Development is driven by criticality and maintainability requirements. Waterfall is also heavily
dependent on process
infrastructure, management
skills, and customer
oversight. Typically, the
customer requires
significant project visibility
through documentation,
reporting and in-progress
demonstrations.

Incremental Development
is driven by large-scale, that
is, large numbers of
functions, features, and
complexity. An incremental
process implies strong
process infrastructure,
customer oversight and
project management
competencies.

A Closer Look of Estimating and Influence Factors
Suppose we had a few highly expert estimators who are trained and experienced in all of the estimating
techniques identified herein. These estimating gurus are also well-versed in facilitating estimates with
developers. Suppose also that their company supports a “Super Estimating Model” (see Figure 8) with
commercial Function-Points and COCOMO tools as well as industry tables and a corporate repository of
historical analogies and proxies. Estimating has been facilitated by having the proxies and their nominal
counts categorized and regressions of these proxies automated. Various rules-of-thumb have been
derived and tuned from
previous projects.

On top of this, the
estimating gurus are quite
familiar with the range of
application domains and
technologies within which
the company specializes,
namely, healthcare and
medical informatics.
These estimating
specialists also recognize
that this project, like most,
will encounter some
technology risks,
application domain
unknowns, and uncertain
requirements. Also most
of their projects need to

274

Choosing SW Estimating Technique by Development Stage

E
st

im
at

es
 (s

iz
e,

 e
ffo

rt,
 s

ch
ed

ul
e)

Figure 9

Time

Judgment

Rules-of-Thumb

Fn Pts Analogy-Based Proxy-Based

COCOMO

Feasibility
Plans & Requirements

Design / Detailed Design
Development & Test

address some critical security, reliability and availability requirements. And they have a good supply of
skilled developers at their disposal, some of whom have experience building security and reliability
systems, and others who have good experience with Agile development.

Now suppose they are responsible for leading the software estimating effort on a new project that is
similar to various elements of prior projects covered by the company’s historical estimating database.
Their estimating process would be characterized as follows:

A. They would apply the following estimating steps iteratively throughout the lifecycle of a given project
from early feasibility, through requirements and design stages of development, to core software
development stages

B. As they progress through the project from feasibility through to final delivery, they would:
1. Validate project objectives and scope;
2. Identify project influencing factors / attributes (hopefully most of them, but perhaps not all);
3. Assign appropriate values for each project influencing factor;
4. Obtain key functions and features that comprise the initial requirements baseline;
5. Obtain preliminary architectural design plus additional functions and features as they become

better understood;
6. Obtain refined requirements and design details as they become better understood;
7. Repeat step 6 as required until project completion;
8. If major changes in scope are encountered and (hopefully) agreed to, many of the steps

above will need to be re-visited to assess impacts and produce new estimates.

Software Estimating by Stage of Development
Given the above scenario, the
estimating specialist would
develop the software estimates
iteratively along the timeline as
indicated in Figure 9. Judgment
with rules-of-thumb is useful
during early project stages.
Function-Points estimating is
useful during initial project
planning and requirements
engineering; Analogy-based
estimating is most useful in
support of initial planning,
requirements and preliminary
design stages. Proxy-based
techniques should be used to
develop more accurate estimates
in later project stages from
detailed design through software development (construction) stages. Here are some additional pertinent
observations:

 Judgment and Rules-of-Thumb are commonly used together; but Judgment accuracy fades as the
project moves forward; Rules-of-Thumb also fade with time;

 Function-Points needs special training;
 Analogy-based estimating is easier to use and support than Proxy-based estimating;

275

Product Requirements:
Functions / Components
Complexity
Volatility
Uncertainty
Criticality
Maintainability
Usability

Team / Personnel:
Technical Competency
Management Competency
Team Competency
Application Domain Knowledge
Retention / Turnover

Development Environment:
Process Infrastructure
Capability of Tools
Platform Capability / Volatility
Reuse Leverage

Pressure / Involvement:
Customer Oversight
User Involvement
Schedule Pressure / Market Urgency

Key Project Factors Influence Choice
of Software Estimating Technique

Table 3

 COCOMO is useful throughout lifecycle; but COCOMO may over-estimate small projects;
 Analogy-Based and Proxy-Based require significant investments in maintaining a historical database;
 Rules-of-Thumb and Proxies need to be constantly tuned to realize good results.

Key Project Factors Influence Choice of Estimating Technique
Important Observations:

1. Table 3 identifies key project
factors for comparing estimating
techniques; unchecked factors have
second-order influences and have
been set aside (are unchecked);

2. Volatility, uncertainty,
management competency, process
infrastructure, customer oversight,
and user involvement are not
explicitly addressed by any of the
estimating techniques. However,
volatility, uncertainty and user
involvement may influence the
selected software process (Agile
versus Waterfall for example). The
estimator should consider these
factors prior to completing an
estimate.

With reference to Table 3, estimating technique selections are driven as described below:

Judgment:
 Judgment can be used to yield effort estimates and/or size (LOC, stories, widgets, objects, …);
 Use Rules-of-Thumb to derive effort and schedule from size estimates;
 First consider number of functions and features, complexity, and technical competencies;
 Then consider applying the remaining maintainability, application domain, tools and reuse factors.

Function-Points:
 Works best when high level functions and their relative complexities are fairly well understood;
 Consider only if you have requisite training and practice so that you apply this technique correctly;
 Function-Points adjustment factors cover maintainability, usability, platform capability and reuse;
 If used together with COCOMO, most project influencing factors will be covered.

Analogy-Based and Proxy-Based:
 First consider prior projects with similar application domains, functionalities and complexities;
 Second consider past projects that used similar tools, were implemented on similar platforms, and

were produced under similar schedule pressure;
 Proxy-Based estimating will need to choose the appropriate type of proxy and should incorporate

reuse into estimates by applying rules-of-thumb;
 If COCOMO is used to derive effort and schedule estimates, many of the other influencing factors will

be accounted for in the estimates.

276

COCOMO:
 COCOMO is capable of addressing a range of projects, including large scale and complex projects

often with significant criticality and maintainability requirements;
 Use COCOMO to derive effort and schedule from LOC; or when other size measures like function-

points can be converted into LOC;
 COCOMO, when carefully applied, should yield better estimates than Rules-of-Thumb estimates

because this technique encourages the estimator to consider most of the project factors while Rules-
of-Thumb do not cover such influencing factors;

 The estimator should consider adjusting the estimates for process infrastructure, customer oversight,
and management competency which are not explicitly covered by COCOMO adjustment factors.

Recommendations / Guidance
The following top recommendations are first offered:

 When tackling a new project, the software practitioner should start by reviewing and annotating the
project influencing factors presented in Figure 7. By creating and annotating a checklist of these
factors, analysis will be focused on selecting the most appropriate software processes and estimating
techniques thereby facilitating and rationalizing subsequent budgeting and planning decisions;

 Consider investing in a COCOMO tool – a relatively inexpensive but useful initiative. Although,
COCOMO estimates can be rough-cut – especially when influencing factors are not well-understood,
a COCOMO estimate using nominal values for these factors will provide a solid initial basis for new
project planning and launch.

 Companies should also seriously consider establishing and maintaining an estimating database of
historical software project data to support analogy-based, proxy-based and rules-of-thumb estimating.
This would leverage several of the practical recommendations that follow.

The choice of software development process should be made as early as possible in a project. This can
be done once the project’s flexibility posture is decided and once key project drivers are understood.

With reference to Table 4, Prototyping is mainly driven by technical and requirements uncertainty and
lack of knowledge; Agile processes mainly by requirements flexibility and schedule pressure; Waterfall
development mainly by criticality and maintainability factors; and Incremental development by total project
scale and complexity.

Expert Judgment combined with Rules-of-Thumb is a particularly useful and economic approach when
little more than project objectives and scope are known, that is, during feasibility and early requirements
formulation stages. However, the quality of estimates is highly dependent upon the domain experience
and estimating skills of the software practitioner. Such estimates should be used mainly to assess project
feasibility and rationalize budgets and schedules for new projects. They may be safely used to control
small projects or those with constrained or fixed schedules or budgets and a flexible requirements posture
(i.e. design-to-cost and design-to-schedule projects). However, when it comes to large, critical, complex
and/or constrained projects, Expert Judgment with Rules-of-Thumb (only) estimating will not be good-
enough, in most cases, to monitor and control budgets and schedules for fixed or highly constrained
projects.

Because prototyping aims to explore technology, requirements and other risks and unknowns, it is not
feasible to apply a systematic estimating technique to such activities. Prototyping, therefore, will require
careful Expert Judgment to assess each project risk that could impact negatively on project feasibility,
budget and schedule. Rules-of-Thumb will not apply. Such prototyping tasks will need to be broken-

277

down, time-boxed, resourced, and addressed early enough in the project schedule to avoid budget and
critical path (schedule) problems. Clearly, adequate risk identification, risk evaluation and risk mitigation
actions are essential project aspects to coordinate with estimating efforts.

Function-Points estimating is particularly useful during the requirements phase. However, the technique
requires intensive training and is not widely practiced in non-MIS (management information system)
domains.

Analogy-Based estimating and Proxy-Based estimating require the company to create, maintain and tune
a historical database of analogies and proxies. One recommended strategy is to augment the company’s
version control system with tools to categorize and count proxies. Mechanisms for collecting and
associating development effort would also be required. Similarly, Rules-of-Thumb should be maintained
in such a database and tuned as new project data is collected. This implies a corporate investment in
requisite tools and support.

Analogy-Based estimating is applicable during early stages of a project while Proxy-Based techniques
begin to be practical during the core construction phases of a project. Agile development will use story-
points and track “velocity” to estimate the next iteration (or two) of development. Waterfall development,
meanwhile, can exploit standard components as proxies during design stages, and GUI widgets and use-
case-points during construction stages. For smaller and less critical projects, Rules-of-Thumb (like
productivity factors and velocity) are likely good-enough to derive effort estimates from LOC, Function
Point and story-point estimates.

COCOMO can be used successfully to produce effort and schedule estimates for both Agile and Waterfall
projects given LOC size estimates have been provided as input, the correct COCOMO estimating
equations are used, and suitable values for the adjustment (influencing) factors have been made.
COCOMO is well-suited for medium to large sized projects with high complexity, criticality, and
maintainability requirements using Waterfall or Incremental development.

SW Processes Estimating TechniquesProcess and Estimating
Choices are Driven by Key
Project Influencing Factors
Product Requirements:

Functions / Components
Complexity
Volatility
Uncertainty
Criticality
Maintainability
Usability

Team / Personnel:
Technical Competency
Management Competency
Team Competency
Application Domain Knowledge
Retention / Turnover

Development Environment:
Process Infrastructure
Capability of Tools
Platform Capability / Volatility
Reuse Leverage

Pressure / Involvement:
Customer Oversight
User Involvement
Schedule Pressure / Market Urgency

Table 4

278

Incremental development can benefit from all of these estimating techniques. For example, Analogy-
Based estimates can be used to secure early budgets and other resources; a prototyping increment
would use Expert Judgment; an Agile increment might use Proxy-Based story-points; and Waterfall
increments could apply Analogy-Based estimating with COCOMO. A pre-requisite for such an approach
would be to partition requirements, and possibly the preliminary design as early as possibly in the project.

Summary / Conclusion
The software practitioner, whether developing project plans, leading the estimating effort, or contributing
bottom-up estimates, has a vital role to play in the preparation and ongoing control of the project. As
professionals, they are accountable to senior management and customers for the software estimates that
shape the project. They should therefore be intimately involved in the selection of software processes that
directly affect the estimates.

The selection of software process and software estimating technique are driven by key project attributes,
namely, project influencing factors. The relationships between software process and estimating technique
are far from deterministic, however, they do appear to be coupled in practical ways that should inform the
software practitioner and should be exploited in the conduct of their work.

To enhance software estimating effectiveness, the company should first decide whether to invest in
building and maintaining a software estimating database which represents a significant investment in
tools and effort. However, without such a repository in place, the company will not be able leverage
Analogy-Based or Proxy-Based estimating techniques and the increased confidence in estimates they
offer.

As an alternative, the company may consider acquiring Function-Points training and tools. An investment
in COCOMO estimating tools, meanwhile, would be useful as an adjunct to Analogy-Based, Proxy-Based
and Function-Points tools and infrastructure.

The fall-back, of course, is to rely on Expert Judgment and Rules-of-Thumb which yield good-enough
early estimates to secure budgets, and to support design-to-budget or design-to-schedule projects.
However, Expert Judgment and Rules-of-Thumb will not yield better estimates-to-complete for projects
with relatively fixed requirements. On the other hand, story-point estimating may be a reasonable
alternative for companies practicing Agile projects where it is only necessary to estimate the next iteration
(or so) of development.

A given project’s influencing factors will inform the software professional, especially with respect to project
planning and estimating. The project influencing factors identified in this paper can be used as a checklist
to help decide on the software process, choose an appropriate software estimating technique, and use
project influencing factors to adjust software estimates. Such a checklist should be annotated and
appended to the project’s objectives and scope during the feasibility phase and updated as required
throughout the project lifecycle.

A project’s influencing factors should to be tracked and “tuned” from project to project. This implies
conducting in-progress and post-project reviews comparing actual results to original estimates. Such
reviews should assess the relative impacts of project influencing factors on the obtained results and fine-
tune the criteria used to select values for each of these factors.

In summary, software practitioners and their companies are strongly encouraged to create a sound
software process and estimating infrastructure. This paper has recommended, among other things, to

279

systematically apply project influencing factors, implement a historical database for analogy and proxy-
based estimating, and employ a COCOMO estimating tool to anchor estimating activities.

Possible Further Study
Among the key influencing factors, Process Infrastructure, Customer Oversight, and Management
Competency did not yield explicit intersections with software process selection, or software estimating
techniques. However, COCOMO’s equations for “embedded” projects may very well (partially)
compensate for these omissions. It would appear that these attributes would be particularly relevant to
large mission-critical projects and would therefore be used to necessarily inflate software estimates for
such projects. These perspectives are left as an open area for further study. Nevertheless, these omitted
factors should be systematically addressed by prudent software practitioners to adjust their estimates.

References
[1] Kal Toth, "Which is the Right Software Process for Your Problem?” The Cursor, Software Association

of Oregon (SAO), April 2005
[2] Barry Boehm, “Software Engineering Economics”, Prentice Hall, Englewood Cliff, N.J., 1981
[3] Steve McConnell, “Software Estimation: Demystifying the Black Art”, Microsoft Press, 2006
[4] Mike Cohn, “Agile Estimating and Planning”, Prentice Hall, 2005
[5] Dan Brook, Kal Toth, “Levels of Ceremony for Software Configuration Management”, PNSQC,

October 2007
[6] Futrell, Shafer, Shafer, “Quality Software Project Management”, Prentice Hall, 2002

280

Collaborative Techniques for the Determination of a Best Alternative in a Software Quality

Environment

Dr. James McCaffrey

Volt Information Sciences, Inc. / Microsoft Corp.

presented at the Pacific Northwest Software Quality Conference

Portland, Oregon

October 13-15, 2008

== Introduction

Consider the general problem of determining one best option from a list of alternatives, where the

decision making process is collaborative (performed by two or more people) rather than by a single

person or by some purely quantitative technique. Examples of this type of activity in a software quality

environment include a group of beta users choosing the best user interface from a set of prototypes, and

the members of a company or team voting for some policy alternative. Situations where exactly one of a

set of alternatives must be selected by a group of people occur in a wide range of problem domains, and

different problem domains tend to use different terminology. In sociology, the study of this type of problem

is usually called social choice theory, and typically uses terms like options and evaluators. In political

science, analysis of these problems is often called voting theory and often uses the terms candidates and

voters. In mathematics, group determination of a best alternative is frequently considered a sub-branch of

decision theory. In a software development and testing environment, a mixture of terminologies is

typically used.

Based on my experience, practical techniques for performing a group determination of a best alternative

are not widely known in the software quality and development communities. Dozens of group analysis

techniques have been studied. This paper presents five of the most common methods used for group

determination of a best alternative in a software testing environment:

• The pure plurality technique

• The majority runoff technique

• The Borda count system

• The Condorcet method

• The Schulze method

Each technique is explained with an emphasis on their application to software quality. The techniques

described in this paper apply to a fairly narrow range of problems and do not apply to strictly quantitative

scenarios where a best alternatively is clearly defined, non-collaborative scenarios where the decision is

made by a single person, or scenarios where a group of people use discussion and negotiation to arrive

at a consensus decision.

== The Pure Plurality Technique

The pure plurality technique is the simplest technique and one of the most common ways to perform a

collaborative determination of a best alternative -- but one which is not the best approach in many

software quality situations. Imagine you are developing a Web based software application for your

external use and you create four significantly different user interface designs. Although you could ask a

single person to choose the best design, in most situations a better approach is to ask a group of people

to rank your four different prototypes. The process of performing a collaborative evaluation, and

interpreting the results of the evaluation, are a bit trickier than you might expect. The pure plurality

technique is simply to submit the alternatives to a group of evaluators and allow each evaluator to select,

or vote for, just one alternative. The alternative that receives the most votes is declared the winner.

Suppose for example, that you submit the four different prototypes (call them A, B, C, D) to 10 evaluators,

281

and ask each person to choose the best prototype. Now imagine the results are: Prototype A is best

according to 4 people, prototype D is ranked best by 3 people, prototype C is chosen by 2 people, and

prototype B is selected best by 1 person. Therefore, you select prototype A for further development.

There are several problems with this approach. Suppose that while your ten evaluators are looking at the

four prototypes, they are mentally ranking each alternative in this way:

A > B > C > D according to 4 people

D > C > B > A according to 3 people

C > B > D > A according to 2 people

B > C > D > A according to 1 person

Notice that even though prototype A is selected as best by the pure plurality rule, that prototype is

evaluated as the worst design by 60% of your evaluation group. Furthermore, in this situation, suppose

that prototype A was compared against each of the other prototypes in a head-to-head fashion. Prototype

A would lose each head-to-head comparison by a 60% to 40% margin. Additionally, in some sense the

non-winning opinions do not contribute directly to the final result.

== The Majority Runoff Technique

The problems with pure plurality led to the development of another group selection technique which is

usually called the majority runoff system. There are many possible variations on the idea, but the winning

alternative is required to receive more than 50% of the first place votes of all votes cast. This can be

accomplished either by performing multiple rounds of voting, or by performing just a single round of voting

but requiring the evaluators to rank all options from best to worst. For example, if evaluators vote for the

best prototype design according to the data above, after the first round of voting, no prototype would have

a majority. So, the list of candidates would be reduced (typically to the top two options.) In this case the

top two alternatives are prototype A with 4 votes and prototype D with 3 votes. A second round of voting

takes place. If evaluators vote according to their original ranking preferences above, after the second

round of voting, prototype A would still receive 4 votes as best but prototype D would now receive 6 votes

and be declared the winner. Using multiple rounds of voting in a software development and quality

environment often has significant disadvantages compared to using a single round of voting. In some

software development scenarios, multiple rounds of voting simply aren't feasible. Furthermore, because

you are dealing with human beings, multiple rounds of voting can become tedious. Also, situations can

arise where a group of people are voting for losing alternatives over and over until they are forced to

choose an option they don't really like. Because voters are most often stakeholders in the sense that they

will be affected by the outcome of the voting, you can potentially create disenfranchised voters at the end

of a physical runoff scheme. So instead of performing multiple actual rounds of voting, you can just

perform one round of voting but require evaluators to rank all candidates from best to worst. This allows

you to determine voters' preferences in virtual rounds of voting. Requiring ranking of all alternatives has

disadvantages too. The technique often isn't practical when the number of alternatives is large (typically

more than eight) simply because humans have difficulty comparing large numbers of alternatives. Also,

research has shown that evaluators tend to get careless with their evaluations of options that are low on

their list of preferences. And, when performing multiple, physical rounds of voting, evaluators may not

rank a subset of alternatives in the same order in which they rank the entire set of alternatives.

== The Borda Count System

The problems with the pure plurality and majority runoff techniques led to the development of an analysis

technique called the Borda count system. The Borda count approach is very simple and one that you

have almost certainly used before. Suppose there are k alternatives. Each evaluator ranks the

alternatives from best to worst. A top-ranked alternative is assigned a value of k-1 points, a second-

ranked alternative is assigned k-2 points, and so on, down to the last ranked alternative which receives 0

points. The Borda count is the sum of the point values for each alternative. For example, suppose there

are four alternatives, A, B, C, and D, and seven evaluators. Therefore a first place ranking is worth 3

points, second place is worth 2, third place is worth 1, and last place is worth 0 points. If voting results

are:

282

B > A > C > D according to 4 people

A > C > D > B according to 2 people

D > C > B > A according to 1 person

then the Borda count for each alternative is:

A = (4 * 2) + (2 * 3) + (1 * 0) = 14

B = (4 * 3) + (2 * 0) + (1 * 1) = 13

C = (4 * 1) + (2 * 2) + (1 * 2) = 10

D = (4 * 0) + (2 * 1) + (1 * 3) = 5

and so alternative A is selected as the best option. The Borda count technique is widely used in many

problem domains, especially in sports competitions. Advantages of the Borda count technique when used

in a software development and testing environment are that the technique seems to make sense

intuitively, and all evaluators' opinions are taken into account. However the Borda count system has

several technical problems. Suppose that you decide to remove option D, which was a clear loser.

Common sense suggests that removing an (apparently) irrelevant alternative should not affect the final

result of voting. However the voting data becomes:

B > A > C according to 4 people

A > C > B according to 2 people

C > B > A according to 1 person

and so the Borda counts are now:

A = (4 * 1) + (2 * 2) + (1 * 0) = 8

B = (4 * 2) + (2 * 0) + (1 * 1) = 9

C = (4 * 0) + (2 * 1) + (1 * 2) = 4

and now option B becomes the best alternative instead of option A. In other words, with this particular set

of data, removing an irrelevant alternative changes the outcome. It is even possible to construct Borda

count examples where the best alternative actually becomes the worst alternative. This effect is

sometimes called the Borda count winner-becomes-loser paradox. There are two other closely-related

technical problems with the Borda count technique. The first is the pair-wise comparison problem. It is

possible when using the Borda count technique to run into situations where the Borda winner would lose

against a non-winner in a head-to-head comparison. For example, suppose there are four alternatives

and 12 evaluators. If the ranking preferences are:

B > A > C > D according to 7 people

A > C > D > B according to 1 person

C > A > D > B according to 2 people

D > A > C > B according to 2 people

then using the Borda count method, alternative A is selected as best with 25 points. However if you

examine head-to-head comparisons you will notice that alternative B is preferred to all other alternatives

(B is preferred to A by a score of 7 people to 5, B is preferred to C also by 7 to 5, and B is preferred to D

again by 7 to 5.) The other problem with the Borda count technique is that it is theoretically vulnerable to

evaluator manipulation. In some situations it is possible to affect the outcome of a Borda count evaluation

by adding a spurious alternative that is very close (in terms of evaluators' preferences) to an existing

alternative. This can have the effect of diluting close alternatives and changing the winner of the analysis.

The references at the end of this paper contain examples of this effect. Despite these technical flaws with

the Borda count technique, the system is quite practical often works well for collaborative policy

determination by small groups in a software testing environment. The Borda count technique is generally

seen by voters as fair in a subjective way, and therefore if voters are stakeholders, the people who voted

for non-winning alternatives generally accept the result of the voting and do not come away with a

283

psychological bias against the winning alternative. The point is that if you do use the Borda count

technique, check your data for the effect of removing an irrelevant alternative, the result of pair-wise

comparisons between the Borda count winner and non-winning alternatives, and mid-process addition of

a new alternative.

=== The Condorcet Technique

The Condorcet technique for collaboratively determining the best alternative from a set of options, was

developed primarily as a reaction to the head-to-head pairing problem of the Borda count method. The

Condorcet method is very simple. It requires evaluators to rank all alternatives, and then a comparison of

the results between each possible pair of alternatives is performed. If one alternative beats every other

alternative in a head-to-head comparison then that one alternative is declared the Condorcet winner. If

there is no Condorcet winner then a separate, tie-breaking technique is employed. The tie-breaking

technique can be any other technique (such as Borda count or pure plurality.) The main principle of the

Condorcet system is that a unanimous head-to-head winner should automatically win over any

alternatives chosen by any other criteria. In practice, the Condorcet system is not often used by itself as a

group evaluation technique. Instead, evaluation techniques such as pure plurality, Borda count, and

others are mathematically analyzed to see if they satisfy the Condorcet principle in all cases.

== The Schulze Method

One of the most interesting voting systems which satisfies the Condorcet principle has a variety of names

including the Schulze method, the clone-proof Schwartz sequential dropping technique, and the beat-path

method. The Schulze method is somewhat more complicated than the other techniques presented in this

paper. The Schulze method is similar to the Condorcet system in the sense that the Schulze algorithm

checks to see if one option dominates all other options. However, instead of directly using raw ranking

data like the Condorcet system does, the Schulze method performs a head-to-head comparison using an

indirect measure of the strength between alternatives. This indirect measure is called the Schulze path

strength. The technique is best explained by example. Suppose you have four alternatives, A, B, C, and

D, and 11 evaluators. And suppose the voting data is:

A > B > C > D according to 4 evaluators

B > C > D > A according to 2 evaluators

C > D > A > B according to 3 evaluators

D > C > B > A according to 1 evaluators

C > A > B > D according to 1 evaluators

The Schulze method allows evaluators to rank options equal to each other, and also allows evaluators to

leave out alternatives altogether. The first step in the Schulze method is to construct a matrix of pair-wise

defeats. For the raw voting data above, the matrix of pair-wise defeats is:

0 8 4 5

3 0 6 7

7 5 0 10

6 4 1 0

The first row of the matrix means option A is preferred by 8 voters over option B, preferred by 4 voters

over option C, and by 5 voters over option D. The second row means option B is preferred by 3 voters

over option A, by 6 voters over option C, and 7 voters over option D. The third and fourth rows, for options

C and D, are interpreted similarly. The pair-wise defeats matrix has 0 values on the main diagonal

because these values are comparisons between an option and itself. At this point the Condorcet system

would check this direct pair-wise data to see if there is a unanimous head-to-head winner but the Schulze

method derives an indirect measure of strength between alternatives called the path strengths. For this

example the path strengths are:

284

0 8 6 7

6 0 6 7

7 7 0 10

6 6 6 0

This is the key idea behind the Schulze method and is a very clever concept. The first row of this matrix

means the strength of the path from option A to option B is 8, the strength from A to C is 6, and the

strength from A to D is 7. Explaining the idea of path strength is best done visually. We can convert the

raw ranking data to a matrix of pair-wise defeats. Next we can conceptualize the pair-wise defeats matrix

as a directed graph as shown in Figure 1.

<Figure 1 - Pair-wise Defeats as Matrix and Directed Graph>

The arrow from node A to node B means that option A is preferred by 8 evaluators over option B. We do

not put an arrow from node B to node A because option B is preferred by only 3 evaluators over option A,

so B dominates A. In this example, all the arrows are unidirectional but if two nodes are preferred by

equal numbers of evaluators then you can draw a bidirectional arrow. Now consider the path between

node/option A and node/option D. A "beats" B by 8 which in turn beats D by 7. We choose 7, the smaller

of these two values, to represent the overall strength of path between A and D. The idea is that the

overall strength between two nodes which have intermediate nodes is best represented by the smallest

direct node-to-node strength. Notice that we can also take a different path from A to D and say that A

beats B by 8, and B beats C by 6, and C beats D by 10, and select the smallest number, 6, as the path

strength. In situations where there are multiple paths between nodes, you select the largest path strength,

so in this case the final path strength between A and D is 7.

Computing the strength of each pair of nodes can be performed by a variation of the Floyd–Warshall

algorithm. The standard Floyd–Warshall algorithm finds the shortest paths in a weighted, directed graph.

Once the path strengths have been determined, you can determine the Schulze method winners by

checking to see if there is any option where its path strength is greater than or equal to all other options'

corresponding path strengths. In this case option C is the only Schulze winner because option C's path

strength to option A is 7 (but option A's path strength to B is just 6), option C's path strength to option B is

7 (but C's path strength to C is just 6), and option C's path strength to option D is 10 (but D's path

285

strength to C is just 6). On the other hand, option A is not a Schulze winner because option A's path

strength is better than option B (8 to 6) but option A's strength is worse than option C (6 to 7). Figure 2

shows the matrix of path strengths that corresponds to the data in Figure 1 and demonstrates that option

C is a Schulze method winner. Visually, an option is a Schulze winner if every path strength value on that

option's row is greater than or equal to the corresponding value across the matrix's main diagonal.

<Figure 2 - Path Strength Data>

Although the Schulze method can be easily performed by hand, the process can be error-prone.

Therefore, in practice the Schulze method is usually performed using a software tool. The Schulze

method has strengths and weaknesses. One weakness of the Schulze method in some scenarios is that

Schulze is not immediately intuitive. In situations where the evaluators are stakeholders, the Schulze

method can possibly be viewed as a black box technique that produces a magic result. The primary

advantage of the Schulze method is that is has been extensively analyzed and has been shown to meet

many favorable criteria. Recall that the Borda count system can sometimes be affected by the removal of

an irrelevant alternative. There are many voting system criteria. For example the monotonicity criterion

can be loosely stated as the principle that a winning option cannot become a non-winner by one or more

evaluators ranking that option higher. There are many proposed voting system criteria, and the Schulze

method has been shown to meet most of these criteria. An interesting exception is that the Schulze

method violates what is called the participation criterion. In informal terms, it is possible to add to an

existing system, new voters who prefer the current winner to some other alternative, which results in the

less preferred alternative becoming a Schulze winner. In spite of its shortcomings, based on my

experience, the Schulze method is often very effective, especially in situations with a large, educated

group of evaluators (meaning they have knowledge of the underlying Schulze method and therefore do

not view the algorithm as mysterious) who are determining a policy alternative (as opposed to a product

decision) and who are stakeholders in the final result. For example, the Schulze method is used by

several Open Source groups to determine general policy decisions and to elect officers. In software

development and quality scenarios, the Schulze method is generally an excellent technique to employ.

== Conclusions

When performing a collaborative determination of a best alternative, the interpretation of exactly what

best alternative means is entirely defined by the approach used. Each technique has pros and cons and

there is no single best approach in all situations. Some of the key factors you should consider when using

collaborative evaluation techniques include the number of alternatives, the number of evaluators, whether

the alternatives are policy decisions or product decisions, and the extent to which evaluators are affected

286

by the final result of the analysis. In general, you should use more than one collaborative analysis

technique when possible in order to use multiple results to cross-validate your analysis. If multiple

techniques yield the same conclusion, you gain some measure of confidence in your results. If multiple

techniques do not yield the same results then you are well advised to reexamine your assumptions and

try and determine why you are getting different results. The situations where the collaborative techniques

described in this paper are used are often quite subjective so your experience and intuition should play a

big part in interpreting your results. In other words, you should not blindly accept the results of any

collaborative technique.

As a general rule of thumb, the pure plurality technique is only effective in situations where ranking all

alternatives is simply not feasible. Because the majority runoff technique has the potential to alienate up

to 49% of your evaluators, you should generally use this technique primarily to supplement other

techniques. The Borda count system, in spite of technical flaws, works quite well especially when the

evaluators are stakeholders in the analysis. The Condorcet principle is very simple, and so can often be

used to validate the results of other techniques. The Schulze method is an excellent general purpose

technique in many software quality situations except when you are dealing with a relatively small group of

evaluators who are influenced by the results, or evaluators who do not understand the Schulze algorithm.

Acknowledgment: I am grateful to Joshua Eisenberg (McAfee, Inc.) and Moss Drake (Dentists

Management Corp.) who reviewed this paper and made significant improvements to its quality.

== References

Gaetner, Wulf. "A Primer in Social Choice Theory", Oxford University Press, New York, 2006.

McCaffrey, James. "Group Determination of a Best Alternative in Software Testing", MSDN Magazine,

November 2008 (in press).

Nurmi, Hannu. "Comparing Voting Systems", Springer-Verlag, 1987.

Saari, D. G. "Basic Geometry of Voting", Springer-Verlag, New York, 1995.

<end of document>

287

288

Quality Software Engineering:

Collaboration Makes the Experience

Diana Dukart and Brian Lininger

Abstract

Well-executed collaboration can often make the difference between a quality software

system and one that falls short. Strong collaboration skills are necessary for the varied

roles software engineers are required to apply when undertaking software and

information technology projects. In fact, close coordination and communication is

needed in all aspects of the software process, from the initial customer requirements

definition through the detective-like collaborative work required to triage and resolve

errors in the final system. Any flaw in these lines of communication can greatly increase

the risk of diminished quality in the end product.

During the process of completing the Oregon Master of Software Engineering (OMSE)

Practicum Project, the authors applied a variety of collaboration styles and technologies

commonly practiced on software engineering projects today. Project aspects addressed

by such practices include distributed team member location, variability of member

experience and skills, multiple modes of stakeholder integration, and constrained

schedules and resources.

This paper examines the “lessons learned” from the full range of collaborative styles

and technologies that were encountered during the project. These insights will provide

other software professionals ideas and guidance on how to navigate similar challenges

in their future collaborative software projects.

About the Authors

Diana Dukart is a senior software engineer with professional experience at Tektronix,

Inc. She is a recent graduate of the Oregon Master of Software Engineering (OMSE)

program at Portland State University and holds a bachelor’s degree in Computer

Science from the University of Portland. Email: diana.dukart@comcast.net

Brian Lininger is a senior software engineer at Oracle, where he performs Quality

Assurance activities on the Fusion Middleware Application Server. He is a recent

graduate of the Oregon Master of Software Engineering (OMSE) program at Portland

State University and holds a bachelor’s degree in Computer Science from the California

State Polytechnic University at Pomona. Email: Brian.Lininger@Oracle.com

289

 Introduction

Software development is inherently a social activity, as are most other types of product

development. The core activities in any kind of product development are:

understanding the requirements, defining the product specifications, and validating the

correctness of the final product. Fred Brooks describes software development as:

“The essence of a software entity is a construct of interlocking concepts: data

sets, relationships among data items, algorithms, and invocation functions… I

believe the hard part of building software to be the specification, design, and

testing of this conceptual construct, not the labor of representing it and testing

the fidelity of the representation.” [1]

As Brooks states, the critical part of any software development project is the

“conceptual construct”. For most software projects, a team of software engineers

performs the project development, so the “conceptual construct” is a collaborative

product influenced by each interaction of the members on the team. As a result, the

collaborative experiences of the team will have a profound impact on the outcome of the

software development project. Below are the experiences of a team of software

engineers as they collaborate in the completion of a software development project as

part of their educational practicum in software engineering.

Project Background

OMSE Overview & Requirements

The Oregon Master of Software Engineering (OMSE) program at Portland State

University (PSU) is a graduate level software engineering education program designed

for working software and information technology professionals. It provides participants

both breadth and depth in the application of principles, methods, processes, and tools

used in the dynamic and evolving software industry.

OMSE offers degrees, certificates, and professional courses tailored for working

professionals. The degree program requires completion of 16 courses including a two

term practicum experience. The practicum offers hands-on management and

development experience in applying the skills learned, a variety of collaboration styles,

and technologies commonly applied to software engineering projects today. Practicum

participants are guided throughout the process by a member of the OMSE faculty and

often work directly with an industry sponsor.

Sponsor Overview

Lifecom was the industry sponsor for the authors’ 2008 practicum project. They are a

small Portland business developing software for clinical cognition patient diagnostics.

Lifecom is revolutionizing medical informatics and patient care by developing a new

form of artificial intelligence to provide knowledge, quality assurance, and safety to

290

medical practitioners. This ground-breaking software system is directly used for patient

care as well as reducing administrative costs. With integrated patient records as well as

built-in artificial intelligence using a large and current knowledge warehouse, Lifecom

provides improvements on accuracy and timeliness of medical diagnosis.

Project Overview

As with all software systems, the Lifecom system needs to be updated periodically as

new medical knowledge is obtained and added, as well as other enhancements. The

practicum project was centered on this opportunity presented by Lifecom.

The Lifecom system runs on tablet computers used by medical practitioners. The

applications running on these on-site tablets are what Lifecom needs the ability to

update in a secure and timely manner. For these reasons, the practicum team named

their project the Secure System Provisioning Project.

In addition to the main functional goal of updating the tablet applications, there are

several ancillary goals. These include dealing with firewalls, running over the internet

and the intranet, deploying custom updates for a specific customer, pushing out

emergency updates, validation of file integrity, and producing an audit trail and version

report.

Team Overview

The practicum team for this project was made up of four individuals who were

completing the OMSE degree. The dynamics of this team lent well to the opportunity of

gaining a wealth of collaboration experiences. These opportunities included:

• Distributed Team Communication

• Team Members with Different Backgrounds

• Learning a New Industry Sector

• Converging as a Team

• Team Expectations

• Work Product Management

• Working with Stakeholders

The following sections will delve into greater detail in each of these areas, providing a

summary of the team’s experiences during the project, their lessons learned and

recommendations on how fellow engineers might approach similar challenges. Given

that this was a newly formed team with members who had never worked with each

other before, the experiences will generally be more valuable when forming a new team

rather than for teams already working together.

291

Collaboration Experiences

A Distributed Team

Experiences

The OMSE program allows people to take classes remotely. For this practicum team,

one member was based out-of-state with a job that took him all over the country during

the course of the project. From the beginning, the team needed to figure out how to

bring this individual into the project and allow him to contribute along with the rest of the

team.

In addition to a permanently remote member, travel was necessary for another member

of the team taking him overseas for three weeks during the project. Since the team was

already set up to communicate remotely (at this point in the project the team regularly

communicated via Skype), the travel was initially viewed as “not an issue”.

Unfortunately, the team did not anticipate or plan for electricity shortages limiting

communication with the team member traveling internationally. The result was delays

on planned work.

On top of this, a third member of the team was “unavailable” for several weeks due to

his child’s birth. As with the out-of-state member, this was planned from the beginning

of the project. Unluckily for the team, it occurred the same time they were missing their

other member overseas.

Lessons Learned: Communication & Risk Management

It is critical in planning for a project to include issues that may come up outside of the

project. Risk management is essential in being able to control the many aspects that

come up when running a project such as staying on schedule, unplanned events, and

breakdowns in communication.

In general, the team did well in learning the new technologies to make remote

communication work. Skype was chosen and integrated early in the project and it

worked nicely for team meetings as long as the infrastructure was in place. The

unfortunate experience of relying on Skype overseas when brownouts were occurring

was not a problem with the technology, but rather a problem of the moment. In this

case, moving the responsibilities of the critical tasks from the member traveling

overseas to a local member temporarily would have been ideal. Although this was not

done for this particular project, the team viewed it as a lesson learned to be used when

executing future projects.

This lesson was similar to the other case of having a team member gone for family

reasons. Planning ahead of time to move responsibilities to other available team

members would have been easier for the members left with the work and possibly even

kept the project on track. In addition, there could have been better scheduling on

completion of work in anticipation of planned absences.

292

There were also lessons learned in working with people remotely. For certain tasks,

such as brainstorming solutions, the optimal work environment is face-to-face

communication. Ideas can be diagramed to communicate ideas more quickly, as well

as non-verbal communication coming into play with hand gestures and facial

expressions. The same work can be accomplished through remote means, but it takes

more time. This extra time needs to be planned into the project schedule.

Recommendations

When a team includes remote members, there are several details that should be taken

into consideration. First, any outside demands on the time or placement of team

members needs to be included in the project plan. Communicating remotely must rely

on many pieces of the system including not only the software, but the entire hardware

infrastructure. With this being the case, there must be a contingency plan for when

things do not work.

Second, the plan should always include a backup member to each person responsible

for a critical piece of the project. This is to prepare for those unplanned events that take

a person away from the job. The backup person can then step in and keep the project

going and on schedule. When this occurs, completing the work the backup person had

to put aside to pick up the critical tasks also has to be addressed. Although this type of

issue can be different for each project, many times there is flexibility in when the non-

critical work has to get done and a backup person at least keeps the project moving

forward.

Lastly, extra time needs to be scheduled into the plan for communication. Although

technologies like Skype are available and do aide in remote communication, it will never

be as efficient as face-to-face meetings for some tasks.

Varied Backgrounds

Experiences

Each team member came from a different background. This included different industry

sector experience as well as work experience and educational backgrounds. This

diversity was an asset to the team because of the many skills that could be leveraged.

However, at the same time, it became a stumbling block as people started assuming

what they thought other team members already knew.

An example was the decision to use Web Services for a primary piece of the project

solution. One member of the team already knew this technology intimately, but the

others did not. Assuming the others knew more than they did, the knowledgeable

member sometimes skipped critical details when explaining pieces of the solution. This

caused confusion and misunderstandings within the team and negatively affected the

necessary collaboration efforts.

293

This is just one example of many assumptions that were made throughout the project

and each team member can claim at least one mistake. As teams try to gel and get to

know each other, issues like this will arise and the experiences of this team were no

exception.

Lessons Learned: Getting to Know Strengths and Weaknesses

Team members getting to know each other and learning each other’s strengths and

weaknesses in the beginning can help alleviate problems later on in a project. This not

only includes learning which technologies each person knows, but also learning

processes, industry experiences, and expectations of each member. Only after this

initial assessment of the team is complete can the team begin to start assigning roles

and responsibilities that really leverage the team’s skills.

Collaboration can only take place when every member is in full understanding of the

problem as well as knowing where each team member fits into the big picture.

Establishing that foundation is essential for the success of a project as well as for the

quality of the end product. This is especially true with such a diverse group of

individuals who had never worked together on a project before.

Recommendations

When a new team comes together, they need to get to know each other first. A project

kickoff meeting is a good first step in this direction. It not only presents the initial

overview of the problem the team needs to tackle, but also begins the socialization

between the team members.

A kickoff meeting is a good place for team members to talk about their background and

experiences in the industry. Since this information is so important for a new team, the

meeting agenda should explicitly include this discussion. Each member needs to bring

up relevant knowledge that can help the project as well as areas where they have an

opportunity to learn.

New Industry Sector

Experiences

Medical informatics was the industry sector of the practicum project. This is an exciting

field to be involved in today because of the amount of growth and the endless

opportunities it presents. In this case, no one on the team had any experience in this

sector.

Fortunately, many of the skills needed to solve software problems are applicable across

industry sectors. In fact, one of the main goals of the OMSE program is to teach such

skills. The team was able to use this commonality to leverage the common language

and processes learned in the OMSE program coursework. Each team member had

completed the same core classes and this common foundation provided a framework to

identify the important issues of the project confronting them.

294

The first important issue confronting the team was to understand the context and the

goals of the project. Research became an important starting point in which all the

members contributed. This built the foundation to the requirements elicitation and

documentation efforts. This research not only included the specific problem domain, but

also the medical informatics industry sector as a whole.

Lessons Learned: Learning Opportunities

The computer industry has grown a staggering amount since the early days of Alan

Turing (English mathematician and philosopher, widely known as the father of modern

computer science). [3] Used daily by most of the population, software has become a

standard way of life. It is not plausible that any individual could know everything there is

to know about every sector in the software industry. However, continuous improvement

of software skills is a requirement because of the constant change. Therefore, learning

about a different industry sector is an essential part in the career of software

engineering. This project was just such a learning opportunity for the team.

Starting out as a team, the work of deciding which project to carry out or the initiation

phase was completed. The team researched and read papers on current work in the

medical informatics field. Challenges and future needs also came up in this exploration

such as creating a National Framework for Healthcare and Electronic Medical Records.

There are many laws and politics around this field as well such as the Health Insurance

Portability and Accountability Act (HIPPA). None of these things actually became

pertinent because of the nature of the project; however, the team did use what was

learned in knowing what questions to ask the customers. It was only after asking

questions, that the team knew things like HIPPA did not apply to the problem space.

Recommendations

Learning as much as possible about a project’s industry sector is invaluable when

eliciting requirements from the customer. Experts in any field have a tendency to leave

out details that seem obvious to them, but are vital to the understanding of the problem

for others not as well versed in the subject. Therefore initial research becomes

essential before meeting with the customer. Once requirements elicitation begins,

further research is also needed as subjects come up that are unclear to the engineers

involved.

Converging as a Team

Experiences

Being able to successfully converge as a team in many ways comes down to having

good communication, working together rather than as individuals, and having good

leadership. A breakdown in any of these things can lead to floundering in a team’s

attempt to collaborate.

295

There are many ways in which a team can communicate; such as email, voice and

video communication, and direct human interactions. While email is a good medium for

transporting binary data, it falls short in communicating other important cues, such as

sarcasm or voice inflections. It is important for teams to communicate regularly via a

live mechanism. In addition, even voice communication (such as Skype) is not as

productive as direct human interaction. Since the team was constrained to certain

communication styles because of remote members, communication became a big

challenge.

For one thing, voice as well as video still lacks the ability to whiteboard ideas, which is

critical for architectural and design discussions. The team had no choice for their

project and discovered that work can be accomplished electronically; however, it took

more time than initially planned. Fortunately, other work tasks, such as requirements

and planning, are more amenable to voice and video and did not impact the schedule.

The team converged in other ways, for instance, handling the administrative project

tasks such as note-taking and configuration management. They decided to rotate these

tasks, which worked well in getting acquainted with each other’s work and forcing the

members to work together.

Leadership was also rotated during the project. Each member was responsible for

taking the lead role six weeks during the project. This gave each member a chance to

exercise the leadership skills they had acquired through work experiences and skills

learned in the OMSE program.

Lessons Learned: Communication and Management

There was some confusion and misunderstandings on project goals. Since the remote

member could not attend local meetings with the customer, there was a limitation on

how much he could take away from the notes written by the other members. In

addition, the communications between the team members themselves were constrained

to email and voice communication. In this case, more could have been done to

explicitly talk about each member’s assumptions and expectations on project goals. Not

understanding each other’s point-of-view led to some problems later in the project that

could otherwise have been worked out earlier if better communication had happened.

In some ways this was the result of the communication medium and in others; it was the

result of the team learning how to work together.

As far as rotating tasks, the team learned that it worked okay for the small group of four,

but did not feel it would work for a bigger team. In fact, four people were sometimes

difficult to manage because of time constraints and other outside factors and

responsibilities causing delays in communication and completion of work. A four-

member team is close to the limit for this type of project management style to work.

Rotating the team leadership position did not work well in this project. There needed to

be one person who always focused on the big picture in order to keep the work on

course. For instance, when team members had conflicting project goals, a person

296

keeping an eye on the big picture could have picked up the signs of this conflict earlier

than actually occurred. In rotating out the leader, this big picture focus was a little

different for each cycle. In addition, setting up meeting agendas and following up action

items could have happened better with a single person in this role.

Recommendations

There needs to be a single person with the specific role of focusing on the big picture

and following up on work tasks. In line with this, roles and management style need to

be adjusted for the type of project being addressed. In this case, the team was small,

so rotating tasks worked. When this role is rotated among team members, there is a

variation in the big picture view that will affect the direction of the project. The variation

in task assignment and tracking leads to differing expectations among the team

members, causing different working assumptions for the team members.

Communication of project goals and expectations should happen at the beginning of a

project with these subjects explicitly called out. In addition, this type of communication

should be revisited throughout the project to make sure everything is still on track and

everyone is in agreement.

Team Expectations

Experiences

Whenever people are brought together for a project, each person brings with them

unspoken expectations. These expectations can include gaining proficiency in a new

technology or learning a new role in the organization. Unspoken expectations can work

against a project if they remain unspoken, or if they are voiced in advance, can be

leveraged to benefit the team.

This project team was no different in their possession of unspoken expectations. In

some cases, expectations had no bearing on the outcome of a project; however, in this

case a critical expectation was missed regarding how much the team could accomplish.

After a scope for the project had been determined, the team moved forward with the

project tasks but diverged approximately halfway through the project schedule. The

problem was differing expectations of what the team could accomplish. Half of the team

had set higher expectations and were proceeding to execute the project tasks in a

manner that would allow them to exceed their planned scope. The other half of the

team was executing their tasks to complete the project within the scope originally

planned.

The result of these mixed expectations left the team frustrated and forced them to stop

and evaluate their progress. It was at this point that the discussion of expectations

occurred, taking into account the current state of the project. With this new insight, the

team was able to refocus their efforts and complete the project as originally scoped.

297

Lessons Learned: Setting Expectations

Like all projects, communication is critical for success. It is important to identify the

expectations of each team member at the outset of the project, as this will impact both

technical and managerial decisions. In this instance, it would have been very useful to

identify the differing expected project outcomes of each team member early in the

project, as this could have been used by the team to avoid conflicts and manage project

tasks more effectively. Knowing that half of the team had higher expectations would

have allowed the team to partition their work in such a way that all members were

satisfied.

Recommendations

As already discussed in the Different Backgrounds section, initiating a project kickoff

meeting is a good start to any project. In this case, a discussion of each team

member’s expectations for the project needed to be included on the agenda as it would

have averted much of the frustration felt by the team. The meeting needs to

encompass all of the team members, but should be as hierarchy free as possible. The

goal of this meeting is to allow the members of the team to state their expectations for

the project so they can be used in planning and performing project tasks.

This exercise should not be used for employee evaluations but solely for the purpose of

managing the expectations between team members and for allocating project tasks. In

short, the main reason for knowing expectations is to gain insight and understanding of

team members. In this example, differing expectations could have been the result of a

team member expecting a new child during the project or another team member

wanting a promotion as a result of the project’s success. To get everyone working in

the same direction, these expectations need to be explicitly discussed and managed.

Work Products

Experiences

Developing the Work Products within a distributed team can be challenging. Each team

member was responsible for updating and/or reviewing each document multiple times

during the course of its evolution. As each member of the team maintained a full-time

work schedule and family life in addition to participating in this project, the schedule of

each member was variable as well. As a result, the team needed a mechanism for

managing the work being done on several documents by different members of the team

on different schedules.

Lessons Learned: Document Management

Several mechanisms of collaborative document management were tried. One member

used GoogleDocs for a document draft so that each team member could work on the

document whenever it was convenient. The main issue with this was the rest of the

team being unfamiliar with the tool and therefore, a learning curve had to be overcome

before the entire team was effective using it. This included overcoming the security

mechanisms that are necessary for protecting shared work.

298

Utilizing the merging capabilities of most source-code repository tools is another

mechanism commonly used and was tried by the team. The team ran into issues;

however, when any type of non-text document was used. A significant number of the

documents the team produced were not simply text, but utilized diagrams and pictures

to convey the intent and details of the system. As a result, a significant amount of work

had to be redone when the repository could not resolve the conflict in the document

versions.

One mechanism that worked well for the team was to use a Round-Robin style of work

product updates. When work was required on a document, an explicit sequence was

set for members to complete their updates. Each member would receive a notification

that they could modify a specific work product and when their work was completed, they

would notify the next team member in the sequence. This worked remarkably well for

the team and became their default mechanism for the remainder of the project.

Recommendations

For a small sized team, a Round-Robin style of document management can be useful

and effective. However, its use must be planned and explicit. A planned sequence

must be stated at the outset and members must be held accountable for their work

completion time as it can delay the entire team’s work. Including the entire team on

work completion notifications keeps the team informed of the current state and enforces

a ‘social justice’ among team members. As already discussed, problems with

communication or unavailability of team members must be part of the project plan as

well and dealt with on a case-by-case basis.

Additionally, the ability to use common tools across a team cannot be ignored. If a

process can be devised that allows the team to utilize their current tools and still

perform the collaborative work necessary, this would be most desirable.

Multiple Stakeholders

Experiences

An experience of the team, which is likely common among most projects, was the

existence of multiple stakeholders. In this case, there were two stakeholders that were

looking for different outcomes from the project.

The first stakeholder, the project sponsor, was much like a typical customer. They

provided as much input on system requirements as possible, participated in reviews,

and provided feedback wherever possible. Their expected output from the project was

the same as most customers, in this case, a set of work products that they could utilize

in their company to extend their product-line. They had little interest in the project

management side aspect, such as the work that went into generating a useful project

plan and requirements document. They were interested in the end products:

architecture, design, and prototype of the system.

299

The second stakeholder, the practicum instructor, was evaluating the project from a

different perspective. In addition to providing input and evaluating the set of work

products, the instructor’s goal was to evaluate the team’s effectiveness working together

and their application of the knowledge the team had acquired during their coursework.

The output from the team for this stakeholder was status updates and presentations that

communicated the how and why the team had made certain decisions. In addition, the

practicum instructor was interested in the internal work product qualities, such as the

project plan and requirements documents, as part the evaluation process.

Lessons Learned: Stakeholder Input Benefits

Any software product that is going to be competitive in today’s world needs a set of

unique features that set it apart from what is already available on the market. With this

being the case, each software project presents learning opportunities, such as applying

software a little differently to a common problem or learning about a different industry

sector.

In this case, the team learned both of those things and much of this input came from the

project sponsor. It was a great opportunity for the team to learn from individuals who

had been in the medical informatics sector for years. In addition, they were able to take

other experiences in applying software updates and learn how to apply that knowledge

in a new and different way.

As well as the input benefits from the project sponsor, the team also leveraged and

benefited from the OMSE instructor’s input. With this guidance and involvement, the

team was able to maintain a macro-project focus and utilize processes that prevented

them from falling into the typical pits of micro-task optimization.

Another learning experience for the team was dealing with the occasional conflict

between the stakeholder inputs. In one instance, a disagreement of the detail of the

project background came into question. One customer had an in-depth knowledge of

the project domain, while it was new for the other. The lesson here was learning how to

handle the expectations and needs from two very different perspectives. In this case,

the team chose to include more detail so everyone could understand the project, even

though this included details the one stakeholder already knew. In this way all parties

were working from the same project basis.

Recommendations

Whenever a project has multiple stakeholders, there are two options:

1) View the different inputs as liabilities, or

2) View them as an opportunity to improve the project outcome.

In this case, the additional stakeholder inputs were an asset leveraged for the success

of the project. Stakeholders provided information to the team that prompted them to ask

further questions, define further requirements, and expose more views of the system.

300

As a result, the final product for both customers turned out more comprehensive and of

better quality, a real-life example of “the whole is greater than the sum of the parts.”

In addition, differing inputs between stakeholders is a common occurrence that

engineers will need to address. Collaboration skills again come into play, as the

engineer must work with multiple stakeholders to come up with a solution. The job of

the engineer after all, is to solve problems.

Conclusion

Collaboration is an essential piece to any software project for reasons of the inherently

social activities involved. As such, there will be many experiences with lessons that can

be taken away. In the case of the practicum project described in this paper, these

lessons included learning how to work with remote members, leveraging different

backgrounds, learning a new industry sector, converging as a team, handling team

member expectations, managing project artifacts, and valuing customer input.

It is always less painful and more efficient to learn from the experiences of others. With

the descriptions of experiences, lessons learned, and recommendations; this article

hopes to assist professionals in similar circumstance to improve and enhance the

quality of software project knowledge and understanding for the future.

References

[1] Brooks, Fred. “No Silver Bullet – Essence and Accidents of Software Engineering.”

Proceedings of the IFIP Tenth World Computing Conference (1986): 1069-1076.

[2] Dukart, Diana, Lininger, Brian, Pierson, Derek, and Subramanian, Mahesh. “Secure

Provisioning System.” OMSE Program Practicum Project. Portland State University,

2008.

[3] Lewis, Harry R., and Papadimitriou, Christos H. Elements of the Theory of

Computation. New Jersey: Prentice-Hall, 1998.

301

302

Collaborative Change

Debra Lavell

Intel, Corporation

Abstract

At Intel, we have implemented a more effective approach for capturing and sharing

lessons learned through retrospectives. A retrospective is a ritual where a team

comes together several times during the lifecycle of the program to discuss what is

working well and uncover opportunities for improvement. Retrospectives are a

powerful way to help teams apply the wisdom learned with the intent of long-term

behavior change.

As with any organization or business process change undertaking, one of the most

difficult challenges to overcome is getting an entire company to change their culture

and modify the way they work and behave. Introducing the retrospectives

methodology into Intel has been no different. In this paper, we explore the people

side of bringing retrospectives into an organization. The tips and tricks are from a

facilitator’s perspective. This paper will explore how one handles the human aspects

of introducing collaborative change.

Bio

Debra has over 10 years experience in quality engineering. She currently works as a

Program Manager in the Corporate Platform Office at Intel Corporation focusing on

Retrospectives and Organizational Learning. Since January 2003, Debra has

delivered over 200 Project and Milestone Retrospectives for Intel worldwide. Prior to

her work in quality, Debra spent 8 years managing an IT department responsible for

a 500+-node network for ADC Telecommunications. Debra is a member of the Rose

City Software Process Improvement Network Steering Committee. For many years,

she was responsible for securing the monthly speakers. She currently is the

President of the Pacific Northwest Software Quality Conference, Portland, Oregon.

She holds a Bachelor's of Arts degree in Management with an emphasis on Industrial

Relations. To contact please email: Debra.S.Lavell@intel.com

303

Introduction

Due to the increased complexity of our product and service development processes

at Intel, as well as the expanded use of globally dispersed development teams, we

have implemented a more effective method for capturing and applying our program

and project lessons learned. This approach is known as the retrospectives

methodology. A retrospective is a ritual where a team comes together several times,

(we recommended three strategically placed) during the lifecycle of the program so

the team can pause and reflect on what is working well (so they can keep doing it)

and discover collaboratively where there are opportunities for doing things better

(start or stop doing it). Retrospectives are a powerful way to help a team apply the

wisdom learned with the goal of long-term behavior change.

As with any process change, one of the most difficult challenges to overcome is

inspiring an entire organization to change their culture by collaboratively changing

the way they work, and how they behave. Introducing the retrospectives

methodology into Intel has been no different. This paper will explore the people side

of bringing retrospectives into an organization. The tips and tricks are from a

facilitator’s perspective focusing how to handle the human aspects of introducing

collaborative change.

Changing human behavior

One reason organizational change is so difficult, is that it requires sustainable

changes in how people do their work and how they behave while performing that

work. By working collaboratively, the team members identify what needs to change

and what the team is willing to commit to do (rather than management dictating

what they want to see change). This “wisdom of the crowd” deciding what is the

most important to the success of the team dramatically increases the likelihood the

change will happen. Introducing an effective retrospective methodology within an

organization requires the management of many facets of change:

Adoption of a new way of doing things. Many program and project teams have

never experienced continuous process improvement efforts through multiple

retrospectives across the lifecycle. They normally wait until the end (typically called

a Post-Mortem or Post Project Review) to discuss what happened, which is too late to

affect the current program. Most team members move quickly on to other teams

and are not interested in spending a day reviewing what happened on the program.

The retrospective methodology requires a series of events where team members

collectively meet face-to-face (if possible), at strategic points during the

development lifecycle to discuss what is working and what needs to be improved.

Collaborative discussions and activities are the basis of a retrospective.

Management of a new deliverables. After a post mortem, some team’s output is

a bulleted list of items, which is never reviewed or discussed again. The deliverable

from a retrospective is an action plan, written collaboratively by those who have a

passion to fix the problem. Every action plan has next steps broken down into tasks

with an owner, who is passionate about ensuring the change is implemented. The

team manages the completion of the action plan by adding it to their weekly product

development meetings, monthly goals, and possibly roll up to a group level as IMBOs

(Intel Management by Objective) to ensure the changes desired are visible and

progress tracked.

304

Updating existing systems. To ensure retrospectives and the lessons learned that

came from them become institutionalized, work systems need to be developed or

existing work systems must be modified to incorporate organizational learning as

part of their normal processes. For example, we recommend three milestone

retrospectives within the Product Life Cycle, which is the common development

lifecycle framework that most teams utilize to manage their programs and projects.

Before a team can exit a particular phase or milestone, a retrospective is held to

capture learnings. Change happens when collaborative discussions facilitate a

culture of “this is how we work to constantly improve.”

Replacing old behaviors. This is the most challenging aspect of change. If you

want to get the most out of retrospectives, it will require a change the way people

work and associated business practices. When the team collectively decides what

behaviors need to change, it becomes self managing and self policing. Nevertheless,

not without an occasional reminder to help spark forward progress. At three, six,

nine, and twelve months, reminders are sent via email and if no response, a 30 min

meeting is scheduled to discuss what progress has been made in the implementation

of the new behavior. This means that the human side of change has to be managed

in order for it to become institutionalized.

Why does institutional change need to be managed?

In order for retrospectives to become a broadly accepted and utilized method for

capturing program and project key learnings within an organization, and to see

measurable change, the majority of the organization must acknowledge and embrace

the change, as something they believe will benefit them. It is not uncommon for

new ideas and ways of doing things to be tried, and if successful, accepted by a

percentage or slice of any organization known as the “Innovators” and “Early

Adopters.” However, gaining widespread support for an idea can be a much tougher

problem to solve. Below is Figure 1, where Geoffrey Moore and his book titled

“Crossing the Chasm” describes the challenges gaining institutional acceptance of

retrospectives within Intel. 1

I
n
n
o
v
a
t
o
r
s

E
a
r
ly

A
d
o
p
t
e
r
s

E
a
r
ly

M
a
jo
r
it
y

L
a
t
e

M
a
jo
r
it
y

L
a
g
g
e
r
s

Adoption

Chasm

%

a
d
o
p
t
i
o
n

I
n
n
o
v
a
t
o
r
s

E
a
r
ly

A
d
o
p
t
e
r
s

E
a
r
ly

M
a
jo
r
it
y

L
a
t
e

M
a
jo
r
it
y

L
a
g
g
e
r
s

Adoption

Chasm

%

a
d
o
p
t
i
o
n

Source: Crossing the Chasm (author modified)

Figure 1: Modified Version of the Technology Adoption Life Cycle

305

As described by Moore’s model, a chasm exists between people and project/program

teams willing to experiment with retrospectives (innovators and early adopters), and

the remainder of the organization that may not be willing to implement it as a

standard method of improving their organizational learning capability (early majority,

late majority, and laggers).

Collaborative discussions among the team members of what needs to change and

securing advice and support from an influential sponsor, is a critical aspect for

crossing the adoption chasm. In addition, fundamental to the process is having an

understanding that the value proposition for method changes such as retrospectives

is different on each side of the chasm. To the left of the chasm, the value

proposition needs to be sufficient to convince the innovators and early adopters to

experiment with the method. However, if you want to achieve broad adoption by the

remainder of your organization, the value proposition on the right side of the chasm

must be sufficient to convince the majority to change the way they collect and

disseminate program learnings – a much more difficult task.

As part of our retrospective process, we schedule time to share the results of a

retrospective with senior management so they can provide support to the team and

remove any barriers to implementing change. It is always helpful to look at an

example to better understand the impact of sharing the outputs from a retrospective

with management. During the execution phase of a major platform, the Program

Manager decided to “try out the new process.” After the retrospective, we held a

management report out, the purpose of the presentation was to share the

recommendations from the team (action plans) that resulted from the collaborative

discussions, and to gain senior management support for broad adoption of the

methodology across the business unit.

It quickly became apparent the senior manager was satisfied with the current

method of performing a single post-program review at the end of the program, after

launch of the product. The retrospective output was good, but it did not satisfy the

value proposition for broad deployment. The significance of the methodology

became obvious during the meeting when the collective voice of the team and the

business unit champion successfully demonstrated the mid-execution phase

retrospective output applied to the follow-on program that had just entered the

planning phase was invaluable “early warning” learning. The business unit now had

the means to quickly apply key program learnings to improve two programs in

progress the execution improvements on the current program, and planning

improvements on the follow-on program.

If the senior manager continued to stay with the old methodology of a single post-

mortem, the planning phase learnings would continue to come in too late to affect

the next program. At best, the changes may improve the third program on the

roadmap – too late for effective change. As a result, the senior manager now

requires all programs within his business unit to utilize the retrospectives

methodology as part of the standard program management practices multiple times

during the life of a project or program.

306

A Case Study

Over the past three years, we have collected a mound of data from our early

adopters. To illustrate the power of collaborative change, meet Team Dolphin (not

the real team name. The real name has been removed to ensure confidentiality of

the product being developed). The Dolphin program team is responsible for

effectively and systematically defining the platform planning deliverables such as

platform requirements, value proposition, and scope for the product. The platform

planner requested a four-hour retrospective prior to the hand-off to the execution

team to:

• Improve platform planning efficiency through repeatability

• Align with platform planning team(s) during the key scope, feasibility and

commit milestones

• Ensure all planning documents are achieving a specific work state to drive

effective technical analysis

The sponsor decided to hold a six-hour retrospective (broken into two three-hour

meetings) so both the planning and the execution teams could participate. In

addition, the current platform planner invited the *NEXT* platform planner to sit in

and listen to the discussions during the retrospective. For example, the Dolphin

program team is just exiting the planning phase and is preparing to hand off to the

execution team. The Dolphin planner invites the Penguin planner, who is next

generation platform, to attend the retrospective so the Penguin team will have an

early warning to issues and concerns. One of the most powerful aspects of their

participation is for them to hear the emotion and passion from the Dolphin team

when they share significant problems that plagued their planning efforts. Since the

Penguin planner was just entering their planning phase, the learnings are

immediately applied and impact to the program is instantaneous.

We are using a model at Intel where we locate a “recommender” and a “receiver”

who commits to making changes on the next program. In the example above, the

Dolphin team is the recommender and the Penguin team is the receiver. During the

Dolphin platform retrospective, the team prioritized five areas for improvement. All

of the five learnings (that came out of the current planning efforts) were shared

(they are the recommender) with the subsequent planner (who has “received” the

learnings) and has committed to implement the recommendations by saying “I will

stop the repetitive mistakes and implement change.”

What did the “receiving” team decide to do differently next time? The top three

items are:

1. Ensure a documented plan is achievable. The next planning team has

committed to creating and communicating a timeline that includes a much

narrower scope with a better understanding of constraints.

2. Add a new position and staff it within the planning effort to focus on

identifying opportunities, gaps, and constraints. The next planning team has

been involved in the hiring of this key position to ensure the planners have

one picture of the program.

3. Improve the use of tools to document and manage requirements. The next

planning team is piloting an enterprise-wide Product Lifecycle Management

(PLM) tool to integrate platform data and connect teams. The team is

307

committed to producing better requirements and managing changes as the

project progresses.

So what happened?

It is too early to tell. What we do know is that a third program is just wrapping up

their launch for the current product and two previous teams have captured learnings

they are willing to share. Imagine five generations are sharing and comparing

learnings to improve all aspects of the program. We believe collaborative

discussions, focused on multiple generation learnings provide a more comprehensive

learning opportunity as comparisons can uncover gaps which initiate conversations

with experienced planners.

In conclusion, we have captured over 30 learnings within this business group,

spanning five generations. All key learnings are captured in a common repository for

planners, architects, and engineers to query, browse, and search for learnings, which

allow various solutions and experts to talk with about specific problems they are

trying to solve. The planner wants to document key practices in the repository so

other divisions can benefit from their wisdom. This is a way for all planners to give

back to other teams by sharing best practices and innovative solutions. For the

repository to be useful, the planners tell us they want a robust search engine that

returns logical and ranked learnings so they get to what they are really interested in,

they want a web-based solution, and prioritized learnings with data from a trusted

source.

Keys to managing collaborative change

Once the value proposition for broad deployment is established and influential

sponsors are behind you, the real work begins to ensure retrospective methodology

achieves full adoption. The five primary aspects for managing the transitional

change management activities are:

1. Determine if your company is a “Learning Organization.” The first step is

to build the case for organizational learning as a means for continuous improvement,

and retrospectives as the method for collaboratively capturing and applying the

improvements is to do an environmental scan to find out what is current state. Ask

questions such as:

• What is your process to gather lessons learned?

• How often do you require teams to stop and reflect?

• Do you document the lessons learned in a consistent format and in one

location?

• Can you effectively search, monitor, and update the documented learnings?

Look for a consistent process to capture lessons learned, multiple touch points

during the lifecycle, and a centralized location so the entire organization can query,

search, and monitor the learnings. You are well on your way to being a learning

organization if these three items are in place.

2. Tailor the methodology. Every organization is unique; therefore, the

retrospective methodology must be flexible and scalable to meet the full needs of the

team. Start by asking simple questions to understand the current program review

308

process, and then negotiate how much change the team can absorb. For example,

instead of starting with performing three retrospectives at strategic points across the

program lifecycle, negotiate for one additional retrospective (in addition to the end)

as a place to start.

3. Ensure someone is accountable for results. Action plans collectively created

in a retrospective, have committed owners, and established due dates, but it

becomes easy for the owner to procrastinate on the completion of an action plan

when it is in addition to their normal program-related work. Below are three

suggestions to prevent apathy from taking over and increasing the accountability of

action plan owners.

• Select one opportunity the team whole-heartedly agrees must improve.

During the brainstorming of issues, it is easy to get over zealous and want to

“solve world peace.” Resist the temptation!

• Document the one opportunity in the form of an action plan (working as a

team) to fully understand the problem you are trying to solve. It is human

nature to want to jump to solution space and fail to clearly state the problem

in the form of a well-written problem statement. A good problem statement

reads: Lack of X, resulted in Y. Brainstorm together various obstacles to

making the improvement, identify who needs to support the change, and the

next steps in short, two-week intervals.

• Ensure the completed action plan is accessible to the team. Many times the

output from a retrospective is stored on someone’s computer hard drive. If

possible, create a centralized repository for all learnings so those who need

to get to the data can do so quickly and easily. In addition, capturing and

documenting the team member names associated with the recommended

action improves accountability of the action.

4. Make changes to existing work systems. Change is easier for humans to

embrace when it is embedded into well-established work systems. Companies who

use a development “lifecycle” or a “software development life cycle” where a

program team passes through various stages such as exploration, planning,

development, and product launch can link lessons to the entry and exit criteria of the

phases and milestones to help reinforce change.

5. Change reward systems: Establish a reward system to recognize and reward

teams that make use of the retrospectives methodology and implement the

necessary behavioral changes. We have found an effective reward is something

desirable, timely, and provides an opportunity for reinforcement of the change.

Small rewards, delivered for meeting smaller goals, are many times more effective

than bigger rewards. These can be as simple as a hand written thank-you, gift

certificate from a good restaurant, or movie passes. Bigger recognition efforts such

as monetary awards such as $500 or $1000, extra vacation days off, or annual

“extreme performer” incentive award trip to some exotic location. Whatever the

reward, invest time and energy to create a reward system that reinforces the

behavior changes you desire.

Conclusion

As with any change in the way people perform their work, one of the most difficult

challenges to overcome is getting people en mass to modify the way they behave in

309

order for the change to become part of the fabric of the organization. Change is

hard; however, working collaboratively to identify what needs to change and then

working together to help make the change(s) stick will be easier utilizing the

retrospectives methodology.

The first challenge is to define and communicate the value proposition for broad

adoption of the methodology and cross the chasm between the early adopters and

the mass majority of the organization. Once this is accomplished, the five key steps

in making collaborative change are:

1. Determine the starting point based upon an organization’s current learning

capability

2. Tailor the methodology to ensure problems are collaboratively identified by

the team

3. Ensure someone is accountable for implementing the documented action

plans

4. Make necessary changes to existing work systems

5. Change the reward systems to reinforce positive behavior

Working together, to collaboratively solve problems is the most effective way for

significant change to happen. Going it alone is more difficult and isn’t as much fun.

References

1. Moore, Geoffrey A. Crossing the Chasm. New York, NY: HarperCollins Publishing,

1991.

310

A
g

ile
 R

e
tr

o
s
p

e
c
ti
v
e

s
:

C
o

lla
b

o
ra

ti
o

n
fo

r
C

o
n

ti
n

u
o

u
s

Im
p

ro
v
e

m
e

n
t

D
ia

n
a

 L
a

rs
e

n

d
la

rs
e

n
@

fu
tu

re
w

o
rk

s
c
o

n
s
u

lt
in

g
.c

o
m

L
e

a
rn

in
g

,
T

h
in

k
in

g
,

&
 D

e
c
id

in
g

 T
o

g
e

th
e

r

311

S
e

t
th

e
 S

ta
g

e

G
a

th
e

r
D

a
ta

312

G
e

n
e

ra
te

 I
n

s
ig

h
ts

D
e

c
id

e
 W

h
a

t
to

 D
o

313

C
lo

s
e

 t
h

e
 R

e
tr

o
s
p

e
c
ti
v
e

W
h
e
re

 d
o
e
s

it
 g

e
t

u
s?

Im
p

ro
v
e

d
 P

ro
d

u
c
ti
v
it
y

Im
p

ro
v
e

d
 C

a
p

a
b

ili
ty

Im
p

ro
v
e

d
 Q

u
a

lit
y

In
c
re

a
s
e

d
 C

a
p

a
c
it
y

H
ig

h
e

r
T

ru
s
t

&
 M

o
ra

le

314

P
re

p
a

ri
n

g

C
h

o
ic

e
s

G
o

a
l,
 D

u
ra

ti
o

n
,

L
o

c
a

ti
o

n

In
v
it
a

ti
o

n

D
e

s
ig

n
 S

k
ill

s

F
a

c
ili

ta
ti
o

n
 S

k
ill

s

S
u
p
p
o
rt

C
h
a
n
g
e

R
e

s
o

u
rc

e
s

re
tr

o
s
p

e
c
ti
v
e

s
-s

u
b

s
c
ri

b
e

@
y
a

h
o

o
g

ro
u

p
s
.c

o
m

D
e

rb
y
 &

 L
a

rs
e

n
.
A

g
ile

 R
e

tr
o

s
p

e
c
ti
v
e

s
:

M
a

k
in

g
 G

o
o

d
 T

e
a

m
s
 G

re
a

t.

K
e

rt
h

.
P

ro
je

c
t

R
e

tr
o

s
p

e
c
ti
v
e

s
:

A
 H

a
n

d
b

o
o

k
 f

o
r

T
e

a
m

 R
e

v
ie

w
s
.

K
a

n
e

r,
 e

t
a

l.
 F

a
c
ili

ta
to

r’
s
 G

u
id

e
 t

o
 P

a
rt

ic
ip

a
to

ry
 D

e
c
is

io
n

-M
a

k
in

g
.

S
ta

n
fi
e

ld
,

e
d

.
T

h
e

 A
rt

 o
f

F
o

c
u

s
e

d
 C

o
n

v
e

rs
a

ti
o

n
.

h
tt

p
:/

/w
w

w
.e

s
th

e
rd

e
rb

y
.c

o
m

h
tt

p
:/

/w
w

w
.e

s
th

e
rd

e
rb

y
.c

o
m

/w
e

b
lo

g
/b

lo
g

g
e

r.
h

tm
l

h
tt

p
:/

/w
w

w
.f

u
tu

re
w

o
rk

s
c
o

n
s
u

lt
in

g
.c

o
m

/b
lo

g

h
tt

p
:/

/w
w

w
.c

u
tt

e
r.

c
o

m
/o

ff
e

rs
/la

rs
e

n
.h

tm
l

B
io

g
ra

p
h

y

D
ia

n
a

L
a

rs
e

n
 c

o
n

s
u

lt
s
 w

it
h

 l
e

a
d

e
rs

 a
n

d
 t

e
a

m
s
 t

o
 i
m

p
ro

v
e

 p
ro

je
c
t

p
e

rf
o

rm
a

n
c
e

,
s
u

p
p

o
rt

 i
n

n
o

v
a

ti
o

n
,

a
n

d
 e

s
ta

b
lis

h
 s

a
ti
s
fy

in
g

,
re

s
u

lt
s
-

o
ri

e
n

te
d

 w
o

rk
p

la
c
e

s
.

W
it
h

 m
o

re
 t

h
a

n
 f

if
te

e
n

 y
e

a
rs

 o
f

e
x
p

e
ri

e
n

c
e

 w
o

rk
in

g
 w

it
h

 t
e

c
h

n
ic

a
l

p
ro

fe
s
s
io

n
a

ls
,

D
ia

n
a

 b
ri

n
g

s
 f

o
c
u

s
 t

o
 t

h
e

 h
u

m
a

n
 s

id
e

 o
f

s
o

ft
w

a
re

d
e

v
e

lo
p

m
e

n
t.

 H
e

r
c
lie

n
ts

 v
a

lu
e

 h
e

r
c
o

lla
b

o
ra

ti
o

n
 i
n

 b
u

ild
in

g
 t

h
e

ir
c
a

p
a

b
ili

ty
 t

o
 i
n

te
ra

c
t,

 s
e

lf
-o

rg
a

n
iz

e
,

a
n

d
 s

h
a

p
e

 a
n

 e
n

v
ir

o
n

m
e

n
t

fo
r

p
ro

d
u

c
ti
v
e

 t
e

a
m

s
.

C
u

rr
e

n
t

c
h

a
ir

 o
f

th
e

 A
g

ile
 A

lli
a

n
c
e

 b
o

a
rd

,
D

ia
n

a
 c

o
-a

u
th

o
re

d
 A

g
ile

R
e

tr
o

s
p

e
c
ti
v
e

s
:

M
a

k
in

g
 G

o
o

d
 T

e
a

m
s
 G

re
a

t.

S
h

e
 w

ri
te

s
 a

n
 o

c
c
a

s
io

n
a

l b
lo

g
 p

o
s
t

a
t

“P
a

rt
n

e
rs

h
ip

s
 &

 P
o

s
s
ib

ili
ti
e

s”
h

tt
p

:/
/w

w
w

.f
u

tu
re

w
o

rk
s
c
o

n
s
u

lt
in

g
.c

o
m

/b
lo

g
/

.

F
in

d
 m

o
re

 i
n

fo
rm

a
ti
o

n
 a

b
o

u
t
F

u
tu

re
W

o
rk

s
 C

o
n

s
u

lt
in

g
,

D
ia

n
a

L
a

rs
e

n
,

a
n

d
 a

d
d

it
io

n
a

l
re

s
o

u
rc

e
s
 a

t
th

e
 w

e
b

s
it
e

,
h

tt
p

:/
/w

w
w

.f
u

tu
re

w
o

rk
s
c
o

n
s
u

lt
in

g
.c

o
m

 .

315

316

Collaboration between Theorists – Analyze This!

Discussions leading toward better cost/benefit estimations and project management

Abstract

Between three different sessions at the Agile Open Northwest 2008, the author and another software professional

developed a cost/benefit charting scheme that:

1) enables development teams and customers to prioritize features,

2) identifies features that should be quashed, pursued, or further decomposed, and

3) allows stakeholders to monitor and manage priorities over the course of development.

This collaboration amounted to about 15-20 minutes total and produced a diagramming technique that can be used

in bleeding-edge agile shops and in shops using more traditional methods. The chart is a basic Cartesian plane with

Cost (Points) on the x-axis, Value on the y-axis, and something other than dots at the intersections. We call this

technique Analyze This as it focuses analysis where it is needed.

My collaborator is a noted Agilist with direct control of his team's practices: I am a software quality practitioner with

influence in a more traditional plan-driven shop.

With differing needs and mutual respect, these two collaborators developed a useful tool in far less than an hour by

listening, expanding, and deferring to one another's areas of expertise.

Keywords: cost/benefit, estimate-ranges, estimate-boxes, analysis focus

Bio

Ian Savage

A quality evangelist, Ian is a veteran software developer, quality assurance engineer, and manager with experience

in the manufacturing, financial services, construction estimating, and security domains. For more than 30 years he

has worked to improve productivity and software quality through rigorous development methods and processes and

now through the pragmatic application of Agile methods.

Ian serves on the Software Association of Oregon’s Program Committee. He authored the SAO Quality Assurance

Special Interest Group charter and serves on the SAO QASIQ Steering Committee. He has contributed to American

Society for Quality’s certification program for software quality engineers and the Software Engineering Institute’s

Software Engineering Process Group conference. He is a member, and supporter, of the Agile Alliance.

Ian attended the very first Pacific Northwest Software Quality Conference in 1983. Since then he has served on

PNSQC’s board as President, Vice President, and Secretary. He has also chaired the PNSQC Software Excellence,

the Strategic Planning, and the Program Committees. Ian is currently serving as the PNSQC Program and

Conference Chairman.

His current interests include a) the soft side of quality assurance; b) coaching semi-agile, high performing teams; c)

requirements engineering; and d) exploring the wonders of Central Oregon.

317

Collaboration between Theorists – Analyze This!

Discussions leading toward better cost/benefit estimations and project management

Overview

In the course of three offline discussions and one ad-hoc presentation, we may have invented something useful: a

cost/benefit diagramming method that has applicability in agile shops and in project-oriented shops.

Built on value engineering and the axiom that estimates get better as time passes, we postulate that using a simple

cost vs. benefit graph leads to more profitable software releases and better use of available resources.

The concluding section contains a twelve-step program that can improve product content decision-making and

communication between product owners and engineering. Lastly, suggestions for further work are included.

Our story begins…

Agile Open Northwest is a fantastic conference. Recognized Agile leaders, many practitioners, and many others

moving toward agile methods organize into small groups to talk about topics suggested by any of the participants.

At the 2008 version in Seattle (http://www.agileopennorthwest.com/index.php), Arlo Belshee
1

 led one such session –

“Kanban-based Planning.” This session ended with a discussion costs, benefits, and estimates. Several participants

gave their ideas about value. Arlo drew a standard cost/benefit graph (Figure 1) on the flipchart and something

clicked in my head.

Simple Cost/Benefit

Engineering Cost

M
a

r
k
e

t

B

e
n

e
f
i
t

Figure 1: A standard cost/benefit chart where each dot represents a feature

The cost/benefit discussion was a tangent to Arlo’s Kanban session, which was almost over, so I decided to discuss

my epiphany with him after his session.

But before we go there, let’s modernize the basic chart. As evidenced in the Kanban discussion, an emerging trend

in the Agile movement is to use “points”
2

 as a measure of cost and “value” as the customer expectation. So an

Agile cost/benefit chart might look like Figure 2. The “Product Owner,” of course, could be either a product manager

or an on-site customer.

1

 Arlo is a former PNSQC director and author of “Promiscuous Pairing and Beginner's Mind: Embrace Inexperience”

[Belshee2005].

2

 See Agile Points calculator: http://cgi.nordija.com/AgileMetrics.cgi and Kieth2006

http://www.agilegamedevelopment.com/2006/03/hours-vs-story-points.html]

318

Agile Cost/Benefit

P
r
o
d
u
c
t

O

w
n
e
r

V
a
l
u
e

Engineering

Points

Figure 2: A standard cost/benefit chart using Agile terms

Returning now to AONW 2008… our collaboration started…

“Arlo, it occurs to me that the points on this cost/benefit chart are [expletive deleted]. They imply too much

precision.”

The small dots on a typical cost/benefit chart are bogus. They imply that we can a priori determine the value of a

feature and the impact that its development will have on the producing organization.

In real estate, the true value of a property is only known when it changes hands. Likewise, even the most astute

product owners can only give us educated guesses about to potential income a specific feature will generate. In the

software world, Steve McConnell has educated us about the foolhardiness of point estimates for developing features

[McConnell1996].

What we really need are estimate-ranges for both engineering points and product values for each feature thereby

creating estimate-boxes. When we allow cost and the benefit to float, we have a more realistic picture of each

feature’s impact on scope and resources.

Better Cost/Benefit

P
r
o
d

u
c
t

O

w
n

e
r

V
a
l
u
e

Engineering

Points

Figure 3: Points and Values expressed as ranges

319

Still, there’s something artificial about these estimate-boxes. The standard deviation is zero – they are all the same

size. The likelihood of each feature having exactly the same projected value and estimated cost is nil. Tim Lister

advised us [Lister1993] that the acid test for quality is whether anyone is doing serious assurance of the project

schedule. An audit of a cost/benefit chart with these identical estimate-boxes would correctly find that the estimates

were contrived.

A more realistic view is represented in Figure 4. This reflects that fact that not features are all created equally and

they have different value
3

 in the marketplace.

More Realistic Cost/Benefit

P
r
o
d
u
c
t

O

w
n
e
r

V
a
l
u
e

Engineering

Points

Figure 4: Estimate-Boxes of Differing Sizes

Again returning to AONW 2008…

At the next break, I approached Arlo again. “I’m thinking that the rectangles would change in size and location over

the course of a project.”

Going in a different direction, Arlo said “The scales are different. The points scale is linear and the value scale is

logarithmic.”

Fumbling, my response was something like “Huh? Why in the world…?” but then I remembered that Arlo is a trained

mathematician. One thing we have learned at PNSQC is that experts often know the answers without thinking

through all the steps. They can simply leap to correct conclusions. Three examples:

� Ace fighter pilots turn OFF audible warnings so they can focus on the dogfight.
4

� Chess grandmasters (and presumably chief software architects) find solutions through pattern recognition.

[Gobet2003]

� World-class athletes, in their best performances, rely on instincts. [Will1991]

I didn’t need to challenge Arlo. I instantly surmised that he was probably right. His assertion passes the sanity test:

Some features are worth millions, some are worth very little, and those in the middle are orders of magnitude more

valuable than those at the bottom. So our emerging cost/benefit chart now has scales (Figure 5).

3

 Note: For simplicity, consideration of the time value of money is intentionally omitted from this paper.

4

 This does not appear in the literature for obvious reasons. It was reported in a PNSQC Keynote address.

320

Quantified Cost/Benefit

0 10 20 30 40 50 60 70 80 90 100

1

10

100

1K

10K

100K

1MM

10MM

100MM

P
r
o
d

u
c
t

O

w
n

e
r

V
a
l
u
e

Engineering

Points

Figure 5: Points are linear but Value is logarithmic.

But he wasn’t done. Showing his considerable value to this collaboration, Arlo then drew on his experience as a

consultant.

“Now, the first thing a consultant will do is divide it into quadrants.”

This simple addition was a second breakthrough for our collaboration. These quadrants provide a way to categorize

the project features and they indicate different actions. Our heretofore academic collaboration suddenly became a

powerful project management tool. The four categories in Figure 6 have different payoff matrices and require

different development strategies.

Actionable Cost/Benefit

0 10 20 30 40 50 60 70 80 90 100

P
r
o

d
u

c
t

O

w
n

e
r

V
a
l
u
e

Low-Low High-Low

High-HighLow-High

Engineering

Points

1

10

100

1K

10K

100K

1MM

10MM

100MM

Figure 6: Actionable quadrants

As objectionable as the term “no-brainer” may be, some decisions are simply obvious. As Figure 7 shows, some

decisions are the easy. Should we build those items in the low-cost/high-benefit quadrant? Yes, of course. How

about those in high-cost/low-benefit quadrant? Obviously not.

321

Obvious Cost/Benefit Decisions

0 10 20 30 40 50 60 70 80 90 100

P
r
o

d
u
c
t

O

w
n

e
r

V
a
l
u
e

No

Yes

Engineering

Points

1

10

100

1K

10K

100K

1MM

10MM

100MM

Figure 7: The two easy decision quadrants

This is analogous to risk-based testing – concentrating on those areas where problems exist and not the rock solid

areas. Since high-quality software needs less testing than low-quality software, a prudent testing organization

focuses its efforts on those areas that are known to contain errors. Taken to its extreme, a well-constructed, broad

and shallow test could qualify a release for shipment if the tests constituted a statistically representative sampling

and all other release criteria were met. See PNSQC Proceedings 2002 for papers on release criteria.

That leaves two quadrants. How should we treat those? Figure 8 shows the quandary quadrants.

Questionable Cost/Benefit Decisions

0 10 20 30 40 50 60 70 80 90 100

P
r
o

d
u
c
t

O

w
n

e
r

V
a
l
u
e

?

? No

Yes

Engineering

Points

1

10

100

1K

10K

100K

1MM

10MM

100MM

Figure 8: The Hard Part – What to do with these quadrants?

This is analogous to the two types of risks in sampling theory: alpha and beta. If a producer tests too lightly, she is

subjecting herself and the consumer to alpha risk (this is also known as “consumer’s risk”). If she tests too heavily,

she is subjecting herself and the company to beta risk (this is also known as “producer’s risk”). [Johnson1974]

322

Back to the collaboration again…

“Don’t do the low-low things.” Eh? Why so? Aren’t these low-hanging fruit?

Arlo had me reeling now. But he explained that Yourdon wrote about these seemingly small things. They end up

being not-so-small. They are the stuff of death marches. [Yourdon2006]

While a little disconcerting at first, this too makes sense. Firstly, since Parkinson’s Law [Parkinson1958] holds that

work expands to fill the available time, it’s entirely feasible that these “small” things end up being medium things and

the cost grows linearly – consuming the available points. Also, the industry practice is trailing the theory: One agile

tenet is to do the easiest thing that will possibly work [Cunningham2003]. However, coders are still anticipating

future uses.

Got it: Small features grow, they never shrink. If you do enough low-value things, you won’t have time for the high-

value things.

I resolved to read the Yourdon book.

“Quick Hits” � Death March

0 10 20 30 40 50 60 70 80 90 100

P
r
o
d
u
c
t

O

w
n

e
r

V
a
l
u
e

?

Death March

No

Yes

Engineering

Points

1

10

100

1K

10K

100K

1MM

10MM

100MM

Figure 9: The myth of “quick hits”

We both jumped to the one remaining quadrant: Arlo said “Decompose” while I said “Analyze.” Or was it the other

way around? And this is where the payoff comes.

In large part, our industry has shunned doing comprehensive systems analysis. We have excellent methods and

modeling tools. We don’t use them. Yes, of course, there are many exceptions but let’s face it – managing

requirements is the software industry’s biggest improvement area.

Yourdon [2006] suggests that our industry move to a triage model to deal with the preponderance of projects that

become death marches. Applying structured analysis to features in the high-cost/high-value quadrant is one way of

focusing resources where the potential return is highest. This will avoid “analysis paralysis.”

323

Analyze the Right Requirements

0 10 20 30 40 50 60 70 80 90 100

P
r
o
d
u
c
t

O

w
n
e
r

V
a
l
u
e

Scope creep
No

AnalyzeYes

Engineering

Points

1

10

100

1K

10K

100K

1MM

10MM

100MM

Figure 10: Focus requirements analysis in the high-high quadrant

Functional decomposition is a heavy-weight process if applied to the entire problem space. So do it if you must (for

regulatory or safety reasons, but don’t do it to maximize ROI. Rather, analyze those things that have high-value

components. Parsing the high-high features into their constituent components allows you to pull some components

into the low-cost /high-value quadrant (the YES quadrant). The other components, the fallout, add little or no value.

They fall into the high-cost/low-value quadrant (the NO quadrant).

Value engineering (c. 1942) is another way to analyze these features. Its purpose is to find the primary function and

alternative ways of performing that function. The Allies used VE extensively during World War II to conserve

resources and to provide support to win the war. From Wikipedia:

Value engineering is a systematic method to improve the "value" of goods and services by using an examination of

function. Value, as defined, is the ratio of function to cost. Value can therefore be increased by either improving the

function or reducing the cost. It is a primary tenet of value engineering that basic functions be preserved and not be

reduced as a consequence of pursuing value improvements.
[1]

.

Apply Value Engineering

0 10 20 30 40 50 60 70 80 90 100

P
r
o
d
u
c
t

O

w
n
e
r

V
a
l
u
e

Scope creep
No

High-value components

AnalyzeYes

Engineering

Points

1

10

100

1K

10K

100K

1MM

10MM

100MM

Apply Value Engineering

0 10 20 30 40 50 60 70 80 90 100

P
r
o
d
u
c
t

O

w
n
e
r

V
a
l
u
e

Scope creep
No

Low-value components

AnalyzeYes

Engineering

Points

1

10

100

1K

10K

100K

1MM

10MM

100MM

Figure 11: Value Engineering separates essential and non-essential functions

The ideal Analyze This chart is shown in Figure 12.

324

In this vision of Nirvana, we have:

� filled the low-cost/high-value quadrant.

� removed low-value components from the work queue,

� reduced the estimate-boxes sizes (increased the precision) through the deeper analysis, and

� an empty high-high quadrant - room for other high-value ideas as they arise.

Nirvana

0 10 20 30 40 50 60 70 80 90 100

P
r
o

d
u
c
t

O

w
n

e
r

V
a
l
u
e

High-value components

Low-value components

Yes

Scope creep
No

(Space for Big Ideas)

Engineering

Points

1

10

100

1K

10K

100K

1MM

10MM

100MM

Figure 12: The ideal Analyze This chart

When to Use the Analyze This Technique

Who exactly should this Analyze This technique and when? Since circumstances, contexts, and cultures differ from

shop to shop, the ownership and frequency decisions are left to you. But some suggestions follow.

In a typical plan-driven shop, at project initiation the product managers would set the vertical sizes and positions and

the development managers set control the horizontal. Then make adjustments before each successive iteration and

whenever new information arrives. It’s entirely reasonable to ask a developer to update her task estimate once she

has burned 50% of her initial estimate. Likewise, it’s entirely reasonable to ask the product manager to update her

sales projections once the competitor releases a similar product or a major sales opportunity opens up. With

adequate tool support (see Next Steps), the cost of updating estimates is would be small.

During the course of every plan-driven project, requirements change. The Analyze This technique handles this

nicely. The new requirement slide directly into the existing chart!
5

In an agile shop, the team unit can adjust both dimensions during each planning game and at daily stand-up

meetings.

5

For instance, my development manager asked this… but we still have only so many people and only so much time-to-market. How

do we prioritize what we do next?

My response… Too bad you’ve headed off for [vacation]. I’d like to get clarification on your question. Always the one with opinions, I’ll

press on…

If you mean “how do we prioritize among the resultant buckets”:

Well, the buckets higher in value and lower cost certainly seem good candidates.

In case of ties, I would go with the ones with lower spread – i.e. those about which we are more certain.

Else if you mean “how do we prioritize within the buckets”:

I hadn’t considered that issue. I had assumed that any features selected for implementation would need all their constituent

components done. One could imagine applying Value Engineering to those buckets also.

Else if you mean “how do we prioritize features as they are introduced during the project (e.g. via CCRs)”:

I hadn’t considered that either. You ask the darnedest questions! Could we just slide them into the Value/Points matrix and see

where they land?

Else:

Sorry, I don’t understand the question.

Endif

325

Conclusion:

Perhaps there is a twelve-step program to high-value use of engineering/analysis resources:

1. Open the product backlog.

2. Nominate candidate features.

3. Estimate their engineering cost (Dev & QA managers).

4. Estimate their product value (Product Owner).

5. Assign the high-value, low-cost features.

6. Cancel the low-value, high-cost features.

7. Ignore the low-value, low-cost features.

8. Analyze the high-value, high-cost features.

9. Repeat steps 5-7 for these newly-analyzed features.

10. Revise estimates as you learn more about the market and costs.

11. Repeat steps 5-10 until you meet your project completion criteria.

12. Conduct retrospective and celebrate.

As Barry Boehm notes in his excellent book [Boehm2003], some conditions merit more “discipline” and that includes

process improvements. One effect is that change takes longer in plan-driven shops than in agile shops. Ian is

working with his product manager, development manager, and other stakeholders toward piloting Analyze This at

McAfee where we are using elements of plan-driven and agile methods.

Suggestions for further study:

� Case studies of applying this Analyze This technique including lessons learned. Especially experiences with

adjusting the value and cost estimates from iteration to iteration.

� A tool to make these charts visible for all stakeholders. A visual technique like Analyze This needs tool

support. We may have such tool support to demo at the conference.

o Any tool that supports Analyze This technique should display the total values and costs.

o It should support “window, icon, menu, pointer” metaphors for resizing estimate-boxes.

� How to reduce the variability of initial feature estimates.

� Trending reports for cost and value estimates.

� Can we really assume that experts are right? What’s the risk/payoff picture?

References:

Belshee, Arlo: “Promiscuous Pairing and Beginner's Mind: Embrace Inexperience”:

http://portal.acm.org/citation.cfm?id=1121987.1122100&coll=&dl=acm&CFTOKEN=6184618, 2005

Boehm, Barry and Richard Turner: Balancing Agility and Discipline – A Guide for the Perplexed, Addison Wesley, 2003.

Cunningham, Ward: http://en.wikiquote.org/wiki/Ward_Cunningham, 2003

Gobet, Fernand: http://people.brunel.ac.uk/~hsstffg/papers/Chabris_Hearst_www.doc, 2003

Johnson, Robert: Elementary Statistics, Duxbury Press, 1974

Lister, Tim: “The Acid Test for Quality” PNSQC Proceedings Keynote Address, 1993

McConnell, Steve: Rapid Development – Taming the Wild Software Schedules, Microsoft Press, 1996.

Parkinson, Cyril: Parkinson's Law: The Pursuit of Progress, London, John Murray, 1958.

Will, George: Men at Work: The Craft of Baseball, HarperCollins Publishers, 1991

Yourdon, Ed: Death March, Second Edition, Yourdon Press, 2006.

326

PNSQC 2008: IT Collaboration at Stanford University

Copyright © 2008, Stanford University. All Rights Reserved
327

IT Collaboration at Stanford University
Beyond Quality

Claudia Dencker
Administrative Systems, Stanford University

Stanford, CA 94305
650-736-0599

Abstract
In February 2007, the Quality Assurance organization in Administrative Systems (AS),

Stanford University was formally underway with two mandates in mind: to set up an independent
testing function and to improve the quality of AS delivered software solutions. The challenges
that these two mandates attempted to address are as follows:

 Inconsistent (and in some cases, non-existent) processes, tools and procedures
across all practice areas within AS

 Lack of transparency of project activities within and outside of AS
 Bad software quality upon delivery

Today significant progress has been made on all three challenges. Silo’d practices are
slowly merging into a cohesive whole, projects are more open and transparent with business
partners actively participating in project progress, and software quality is improving in key areas.

This paper reports on the progress that the QA organization has achieved since its
formation and highlights the unique role that collaboration tools and processes have played in
improving business partner satisfaction in AS’ delivered solutions at Stanford University. One
project will be profiled, the PeopleSoft Student Administration and Human Resources version 9
upgrade project that affects all business offices in support of the university’s mission of teaching,
learning and research. Tools used are a wiki integrated with an issue tracker, test case
management, project dashboards and more.

The more open mode of working with staff across different job disciplines, in different
physical locations and in a few cases, across multiple time zones has led to a much higher
degree of satisfaction for all team members. Additionally, the university has benefited where
individuals are accountable, projects are more disciplined and structured and transparent through
the use of an open collaboration set of tools and processes.

Note: Products listed by name in this paper do not imply endorsement. Rather they are
listed to provide context for the tools being used by Stanford University, AS Department.

Bios
Ms. Dencker is Director of QA, Administrative Systems, Stanford University. She was

formerly Program Coordinator of the newly consolidated program, SEQ (Software Engineering
and Quality) at University of California, Santa Cruz Extension and President of Software SETT
Corporation, a company that provided QA and software testing solutions to software IT
professionals worldwide. She has trained professionals worldwide in software testing and test
management as well as led and managed teams on many projects in Silicon Valley. Ms. Dencker
is a Certified Software Quality Engineer (CSQE) and graduated from San Jose State University
with honors.

PNSQC 2008: IT Collaboration at Stanford University

Copyright © 2008, Stanford University. All Rights Reserved
328

Introduction
Bringing a Software Quality organization into a university unfamiliar with such a function

has been an enormous challenge. But as most universities today increasingly rely on software
solutions to run their “business” of learning, teaching and research, traditional software
development practices are folded in. Stanford University is no different. Many of the business
functions of student admissions, student records, financial aid, payroll, and more are solely driven
not by punch cards and paper documents, but rather by highly sophisticated, web-enabled, self-
service software solutions. All the off-the-shelf and custom-built solutions must be specified,
developed, tested and supported following solid industry practices.

In 2006, the Administrative Systems (AS) group was reorganized into an independent
function, apart from its sister organization, Information Technology Services (ITS). This new
organization maintains and supports the following applications:

 PeopleSoft Campus Solutions (Student Admissions, Human Resources),
STARS (online training), time tracking and more.

 Oracle Financials including various custom bolt-ons such as iOU, CMS
(Commitment Management System – a forecasting tool) and more.

 Reporting and EDW (Enterprise Data Warehouse)
 Middleware and Integration Services

As a part of this reorganization a need was identified to establish an independent QA
group whose mandate was to:

 Set up an independent testing function
 Improve the quality of AS delivered software solutions

Quality of solution delivery had been a troubling problem in past software deployments, and
hence, led to the establishment of a group dedicated to solving this issue. But, as most readers
will recognize, software quality is not owned by just one department, but rather by all.

As with any endeavor in which ramp-up and results need to be achieved quickly, looking
for solutions that span multiple areas is always a big win. This was accomplished through the
use of collaborative tooling.

Collaborative Tooling
One of the goals of the new AS, not just QA, was to bring a greater level of transparency

to its efforts. This can be a challenge as many university business offices and/or staff don’t
understand the inherent dynamic nature and inherent susceptibility of software to instability,
unreliability and poor performance. Opening up a process that many don’t understand invited
criticism, anxiety and intrusive micro-management that added a burden to the AS project teams.
But, as in all technology driven endeavors, everyone had to learn and come up to speed as to
what can and cannot be done.

The ramp-up for greater transparency was facilitated through the introduction and use of
collaborative tools. In support of the QA mandate of improving quality, collaborative web-based
tooling became an instrumental solution that spanned a number of QA roadmap goals. The
collaborative tools that are discussed in the following sections are as follows:

 Issue Tracking, Jira
 Wiki Collaboration, Confluence
 Test Case Management and Tracking, Quality Center

Issue Tracking
The first tool to be introduced was Jira, an issue tracker from Atlassian Software. During

the initial phase of investigation as to bug trackers used throughout AS, practice areas were not
in sync. AS teams used spreadsheets, a custom form add-on to the call tracking system and
Bugzilla. Jira offered a nice upgrade path from Bugzilla, an excellent step-up solution from

PNSQC 2008: IT Collaboration at Stanford University

Copyright © 2008, Stanford University. All Rights Reserved
329

spreadsheets, and a more configurable solution from the custom call tracking form. Furthermore,
this product has strong ties to the open source community which meant a strong base for quality
(100’s of developers, testers, users testing it) and rapid pace of enhancements (due to the
pressure from a vocal open source community).

The issue tracker workflow was configured to map to optimum quality practices in support
of the Find/Fix process. It was quickly rolled-out as a pilot solution for the Reporting practice
which was still working off of spreadsheets. The pilot lasted about 6 months with a production Go
Live when the Bugzilla data was migrated in.

To enhance use of the solution and to facilitate quick turnaround of issues during the
course of a project, AS/QA opened the tool up to business users who participated closely with AS
during the two major test phases:

 SIT (system integration test) which is an internal, independent AS test phase
similar to the QA or test phase of commercial endeavors

 UAT (user acceptance test) where the Business Affairs central offices and their
distributed users test to ensure fit to their needs.

Issue Tracking Benefits
Consolidating onto one web-enabled issue tracker had the following benefits:

 Consistency in how bugs are identified and tracked through the fix process
 Consistency in practice among a diverse group of users who report in to a wide

range of organizations
 Transparency of pre-production issues which engages all participants, excludes

no one

Wiki Collaboration
Another tool to be adopted was Confluence, a collaboration wiki from Atlassian Software.

This tool had already been used by one of the practice areas in AS, the Middleware and
Integration Services group as part of their agile practices. All their technical and test
documentation, requirements analysis and design were conducted on the wiki. Confluence was
embraced by the QA group to post group-specific information such as project updates, new team
member info, group mission and mottos, team minutes, etc. The fact that this tool was from the
same company that created the issue tracker was an added plus.

No workflow was necessary; we simply created workspaces and let the dynamics of the
group determine what was posted and how it was to be used. The use of the wiki was rolled out
to all of AS as of the Jira Go Live in December 2007. Some examples of workspaces are as
follows:

 Project-based spaces whereby project teams posted information relevant to the
project participants. Note: The use of a wiki on one of the largest projects in AS
is described later in this paper.

 Group-based spaces such as the AS/QA space whereby information was posted
relevant to the group members

 Personal pages in workspaces to maintain a log of events

Wiki Collaboration Benefits
Consolidating onto one web-enabled wiki had the following benefits:

 Relevance of information (assuming information was maintained!)
 Enhanced ownership (team/group members had specific directives to update

pages or sections)
 Consistent knowledge about a project or group
 Transparency of effort which was in sharp contract to the business as usual,

opaque/black hole of the past

PNSQC 2008: IT Collaboration at Stanford University

Copyright © 2008, Stanford University. All Rights Reserved
330

Test Case Management and Tracking
The third tool was Quality Center from HP for test case creation, management and

tracking of test results. This tool isn’t typically thought of as a collaboration tool as it was primarily
used as a tracking tool from which to draw test case execution metrics. Nonetheless,
information was posted in the wiki on a regular basis and as such was folded into the broader
collaborative initiative started with Jira and Confluence. Two projects used this tool to upload
their test cases, maintain the cases, and to log their test results. The reporting and query
analysis is outstanding and hence made for a great addition to the project information that was
posted to the wiki.

Progress graph showing planned tests that
have passed, failed, not completed, not run.

Planned tests sorted by priority (urgent, very high
and high priority) and their status of passed,
failed, etc. Medium and low tests not shown.

Test Case Management and Tracking Benefits
A key benefit from this tool is the accuracy of test execution progress. On many projects

estimating progress in an objective manner is rarely done. Rather project team members
invariably estimate based on “gut feel” as to their percent complete. These estimates tend to
favor the optimistic and are typically wrong. Quality Center removes the guesswork from
reporting testing progress subjectively, and maps progress to very concrete, objective criteria for
a predictable, solid report to project and executive management.

Secondary benefits are as follows:
 Consistency in how tests are identified and tracked through the test execution

process among a diverse group of users who report in to a wide range of
organizations

 Enhanced reuse of tests
 Ease of creating test execution runs
 Transparency of test results

PNSQC 2008: IT Collaboration at Stanford University

Copyright © 2008, Stanford University. All Rights Reserved
331

Tool Integration Roadmap
The three tools mentioned above are part of a larger roadmap of integrated tooling that

will provide an holistic approach to the tracking and management needs of AS. The roadmap is
comprised of off-the-shelf, vendor products and home-grown solutions with the intent of more
effectively managing the AS systems and communicating changes. Today, four out of the nine
applications are integrated.

Call Tracking. New production issues are
initially logged and tracked in a Call Tracking
system.

Bug tracking. 1) Issues that require technical
work or technical assistance are automatically
logged into the issue tracker. 2) New issues
from various testing efforts are created and
tracked in the issue tracker. This includes
change requests, bugs, enhancements, tasks
and supports a CR, find/fix, migration/approval
process.

Team Wiki. Project, group and miscellaneous
information is logged and published to all
registered users. Issues are automatically
published to the wiki. Users must be
authenticated to view information.

Dashboards – Public websites. Executive view
of AS projects and AS system outage. Details
are found in the wiki, the issue tracker, team
time tracker or MS-Project which has a direct
feed into the AS Project Dashboard.

Test Case Management – Test repository of test cases and test results. Test cases and test
runs are created and run in support of all pre-production test efforts. Reports are published on
the wiki project pages.

Approval system. Required approvals are sent via e-mail to university staff not in the issue
tracker. Most other approvals for production migrations are handled directly in the issue tracker.

Code Migration tools (deployment manager tools) – Code fix migration information to any
environment updated on issue tracker tickets for full end-to-end information about issues.

Code repository – Code repository that is referenced and tracked in deployment manager tools
during builds and code migrations to desired target environment.

Tools not on the roadmap but that are used in AS and that foster collaboration are as follows:
 Shared calendar
 Instant messenger
 Online web conferencing
 LCD projectors that project one’s laptop image
 Laptops for all staff and mobile devices for selected staff in support of the Stanford

Work Anywhere initiative

PNSQC 2008: IT Collaboration at Stanford University

Copyright © 2008, Stanford University. All Rights Reserved
332

PeopleSoft v9 Upgrade
So what do all these tools have to do with a real project? How are the delivery practices

improved when a large cross-section of the university uses the same open tools? Well, a lot of
great things happen. The reach is enormous and the results fantastic.

In 2003 Stanford University upgraded its PeopleSoft implementation from version 7.2 to
8.0. This project resulted in an enormous effort that involved many departments on campus. The
primary vehicle for communicating among members was e-mails. Working spreadsheets,
announcements and key information would be sent to members on e-mail distribution lists. As
the project progressed, staying on top of key communications became more and more
challenging as spreadsheets would be updated by multiple people and routed via e-mail,
individuals would start silo’d discussions in e-mail inadvertently omitting others, and common,
definitive posting of project information was not maintained.

In 2008 this changed as collaborative, server-based communications was instituted by
AS/QA during the UAT (User Acceptance Test) phase of the project. Now team members (13 in
number) would update wiki pages knowing with confidence that they were working with the most
recent version of a page. All issues were tracked in Jira and test results tracked in Quality Center
with stats posted weekly. The project dashboard represented accurate information as to overall
project progress because the dashboard was populated directly from the time tracking system.
Code fix migrations to the various pre-production environments were easily visible on the issue
tracker tickets due to the code deployment integration. Essentially the goal was to make all
project information and team involvement as open and transparent as possible and to introduce
objective criteria by which to measure progress with the net result of building trust and a higher
confidence level than on the earlier release. By and large this goal was achieved.

This upgrade was an enormous undertaking before it even reached the UAT phase. The
project included the following pre-UAT activities:

 The services of an offshore IT vendor were engaged which included retrofitting of the
application’s 970 online and 380 batch customizations and conducting SIT (System
Integration Testing) on Stanford systems. Over 25 engineers in three locations in
India were involved in this effort along with an onshore staff of 5.

 The vendor’s performance and quality of deliverables were audited by QA through
careful analysis of breadth of testing and depth of coverage which resulted in an
increase by 45 % more testing to close the identified gaps (for a total of 1,696 tests
executed) and finding 1/3 of the missing tech docs.

 The AS analysts conducted ad hoc testing to complement the strategy employed by
the vendor and logged new issues as well.

 Vendor and AS technical staff fixed and retested all logged issues.
 Over 10 environments were created throughout the project to support development,

code control and testing.

During UAT, the following key activities took place:
 All collaborative tooling was spearheaded by the newly formed QA group with initial

workspace and pages being set up and maintained by QA.
 All planning was done on the wiki and included the following information:

1. Test team member profiles
2. FAQ’s for common questions raised in the beginning. Not maintained much

once effort was underway.
3. Weekly meeting notes and action items
4. Team status and metrics (bug and test case metrics)
5. Calendar (time-off plans, test cycle definitions, end-game plans, vendor

contacts, DB links)
6. Special test activities in support of parallel testing and Full System

Integration Testing (FSIT) with FSIT ultimately being moved into Test
Director

PNSQC 2008: IT Collaboration at Stanford University

Copyright © 2008, Stanford University. All Rights Reserved
333

7. Test summaries

 Team members met once a week in person or dialed in if they weren’t on campus.
The Stanford business offices and groups that were involved were as follows:

1. Admissions, which included undergraduate admissions as well as graduate
school admissions for business (GSB) and law.

2. Campus Community, comprising representatives from various offices
3. Financial Aid, which included the central financial aid office as well as the

GSB and Law School financial aid offices.
4. Graduate Financial Support (GFS)
5. HR, Benefits, and Faculty Affairs
6. Payroll
7. Registrar’s Office, including undergraduate/graduate student records as well

as the GSB and Law School
8. Student Financial Services
9. Oracle Financials (Controller’s Office)
10. ReportMart1 (RM1) reporting

The following organizations not involved in this upgrade because their systems
are separate from the university.
1. Stanford Hospital, Medical Centers
2. SLAC (Stanford Linear Accelerator)
3. Stanford Management Group

 Test phases entailed the following:
1. Smoke Testing. This testing was done by most offices at the beginning of

UAT to ensure that the v9 functionality, customizations and environment
were stable enough for further testing.

2. Business Testing. This testing was completed by all Business Affairs offices
to ensure that Stanford job objectives could be accomplished.

3. Parallel Testing. Two payroll cycles were formally conducted (mid-month,
month-end) to ensure that transactions (such as payroll, billing) in the
production system matched the test system or were within acceptable limits
in variance. Additional payroll testing was completed during the normal
course of business testing.

4. End-to-End Testing (FSIT). This testing was conducted at the end of UAT,
involved all business units, both within Stanford and across vendors, working
together to ensure that:

1. Full system or life cycle processes (manual and/or automated,
Registry, vendors, etc.) functioned as expected.

2. All dependencies were accounted for and correct.
3. The upgrade has not adversely affected the proper passing of data,

events, files, etc.
5. Performance Testing. This testing took place on the new production boxes to

ensure that production performance was acceptable.
6. Regression Testing. This testing was done throughout UAT to ensure that

bugs were fixed correctly and that prior tests continued to provide the same
results as before.

7. Mini-FSIT. This testing was added to provide a higher level of assurance that
the system truly was ready for Go Live. It was a repetition of some of the
FSIT tests.

 Approximately 2,400 tests were run with test results logged in Quality Center.
 Approximately 1,000 issues were logged in the issue tracker with bug fixes tested by

AS and QA analysts before being deployed to the primary UAT environment for final
verification by the UAT testers.

PNSQC 2008: IT Collaboration at Stanford University

Copyright © 2008, Stanford University. All Rights Reserved
334

 Team members were required to update their status on Confluence and in Test
Director by 5 pm the day before the weekly meeting.

 QA Lead pulled defect and test case reports and posted in the wiki by 10 pm the
same day as the leads.

 Project manager consolidated information into executive reports which were handed
out at the weekly governing group meetings and posted on the Project Dashboard.

Team members who had participated in the upgrade years earlier repeated numerous
times how much more effective and better the project was run this time around. Everyone
appreciated the inclusiveness and openness that the collaborative tools brought to the team’s
effort. While the collaborative tools and the transparency of the effort were not perfect, it was a
huge step in the right direction.

Adoption Challenges
Bringing new tools and processes to Administrative Systems was at times challenging for

the following reasons.

Timesink
Change is not always appreciated as it involves an added burden to an already packed

plate of work. The value-add of new tools must be compelling in order to break through the
resistance that invariably occurs. This was fairly easy to achieve by using an open issue tracker.
But, moving from e-mail to a wiki was slower as updating pages and maintaining information on
the wiki was more burdensome. E-mail and IM are quick and easy (we’re all used to this mode of
communication now) but using a wiki requires a “rethink.” The wiki has to be logged into, the user
has to click on ‘Edit’, save their work periodically, clean-up the messed-up format of the page and
then call it a day. Due to the current state of wiki functionality, it is not a perfect substitute for e-
mail though there is a huge momentum by many wiki vendors to beef up the features.
Regardless of the burden of wiki content maintenance (i.e., server-based communications), the
effort is hugely worth it. Upon project completion, all team members would chant “Put it on
Confluence!” when Go Live planning was underway. The benefits of open communications far
out-weighed the added time (only in minutes) it took to bring the information to the wiki.

Open versus closed
In silo’d communications information can be more easily hidden or more easily taken out

of context. In open communications this becomes much more difficult. If certain team members
want to hide progress or project problems, it is considerably easier in the pre-collaborative mode.
While it is possible in a collaborative world (just don’t bother to track, publish or report on certain
aspects of a project), the spirit of openness as represented by the collaborative tooling represents
an opportunity for all team members to come together, educate others and truthfully represent
what they are working on. This engages team members and management in a proactive manner
and ensures that proper management support is brought to bear throughout the life of the project.

Timidity
One of the key hallmarks of wiki’s is resistance to editing pages for fear of messing up

(for all to see), losing key information (and not knowing how to pull lost information back) or
stepping over someone else’s edits (with no change marking present). Many people are more
comfortable leaving someone else’s work to stand on its own.1 Most wiki’s have minimized this
by tracking all page changes and allowing users to reinstitute a prior page. To work through the
initial timidity of using a new tool many users had to be explicitly directed to what page and where
on the page to update. After a few times, everyone started to feel more comfortable and took
ownership of their pages or sections of pages. All pages were by and large open to the team with
certain critical pages having edit restrictions placed upon them.

PNSQC 2008: IT Collaboration at Stanford University

Copyright © 2008, Stanford University. All Rights Reserved
335

Inability to turn off
In a collaborative world, the presence and availability of team members is more visible.

We used IM extensively, received nightly news as to updated pages in the wiki over the prior 24
hours, could follow how an issue churned through the find/fix process by reviewing the issue
history (who assigned an issue to whom and why), could get onto each other’s calendar through
shared calendaring and more. This on-going presence of the team 24/7 meant that it was at
times difficult for team members to tune out, turn off, and recharge.

Conclusion
 The AS/QA initiative of bringing open, collaborative tooling to projects had a major

impact in building trust and confidence among all team members. While impacts to software
quality are many (rigorous and inclusive review of requirements by all team members including
the ultimate users of the solution, SDLC best practices, standard tools and supporting processes,
independent testing, and much more), software quality is owned by all and supported through the
use of collaborative tooling.

In fact, the experience by team members fit well to how Wikipedia defines collaboration3:

Collaboration is a recursive process where two or more people work together toward an
intersection of common goals — for example, an intellectual endeavor that is creative in
nature—by sharing knowledge, learning and building consensus.

Recently I came across a slightly better definition of collaboration by Evan Rosen, The Culture of
Collaboration.

A working together to create value while sharing virtual or physical space.

The goal of openness, transparency, ownership and consensus among team members from
many departments across campus was achieved on the PeopleSoft v9 project during the UAT
phase and other AS projects through the use of these integrated collaborative tools.

Using cool new tools is always fun but these new tools alter the way we communicate in
a fundamentally new way. Rather than to initiate the communication from our desktop (e-mail) in
a client-centered view of the world, these tools allow us to communicate in a server-centered
manner with an immediacy not realized to-date. We no longer push information out and wait for
others to respond on their time table, rather we pull information in whenever, wherever and
however we want it 2; information that is open to anyone who cares to look. This engages team
members more fully as they are not only passive viewers of the information, but in fact, active
originators as well.

PNSQC 2008: IT Collaboration at Stanford University

Copyright © 2008, Stanford University. All Rights Reserved
336

Bibliography

Books
Collaboration 2.0, Technology and Best Practices for Successful Collaboration in a Web 2.0
World, David Coleman and Steward Levine, January 2008. Published by Happy About.
2 The Culture of Collaboration, Maximizing Time, Talent and Tools to Create Value in the Global
Economy, Evan Rosen, 2007, Red Ape Publishing.
Unleashing Web 2.0 From Concepts to Creativity, Gottfriend Vossen, Stephan Hagemann, 2007.
Morgan Kaumann Publishers.

Internet Links
1 http://metamedia.stanford.edu/projects/traumwerk
http://c2.com/cgi/wiki?WikiDesignPrinciples
3 http://en.wikipedia.org/wiki/Collaboration
http://en.wikipedia.org/wiki/Collaborative_software

Product Information
PeopleSoft Enterprise Campus Solutions -
http://www.oracle.com/applications/peoplesoft/campus_solutions/ent/index.html
Oracle Financials - http://www.oracle.com/applications/financials/intro.html
Jira - www.atlassian.com
Confluence - www.atlassian.com
Quality Center -
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-127-
24_4000_100__
Bugzilla - http://www.bugzilla.org/
MS-Project - http://office.microsoft.com/en-us/project/default.aspx

http://metamedia.stanford.edu/projects/traumwerk
http://c2.com/cgi/wiki?WikiDesignPrinciples
http://en.wikipedia.org/wiki/Collaboration
http://en.wikipedia.org/wiki/Collaborative_software
http://www.oracle.com/applications/peoplesoft/campus_solutions/ent/index.html
http://www.oracle.com/applications/financials/intro.html
http://www.atlassian.com/
http://www.atlassian.com/
http://www.atlassian.com/
http://www.atlassian.com/
http://www.bugzilla.org/
http://office.microsoft.com/en-us/project/default.aspx

It’s Not Just an Update: Using Status Reporting to Expand Collaboration

Michael Kelly

How quickly can you answer the following questions?

 * What’s the status of your testing?

 * What are you doing today?

 * When will you be finished?

 * Why is it taking so long?

 * Have you tested _______ yet?

Your ability to answer those questions directly affects your ability to collaborate with those around you.

Status reporting is an important collaboration tool, even if we don't often see it as such. It doesn't only

communicate a boolean pass/fail, or a stop-light red/yellow/green. It can also communicate the

intricacies of what you're working on, what you view as risky, and what can be done to help you be

more effective in your work. In this paper, we’ll take a look at some of the aspects of "good" test

reporting and two different examples of test reports. In the talk that this paper follows, we'll look at

examples of how status reporting affects collaboration and we'll practice some exercises for more

effective status reporting.

Good test reporting is difficult. Difficulties include tailoring test reports to your audience, clarifying

confusion about what testing is, explaining how testing is actually done, and understanding which

testing metrics are meaningful and when they’re meaningful. In addition, people to whom you’re

providing your report frequently have assumptions about testing that you may not share. Some great

examples of these assumptions:

 * Testing is exhaustive.

 * Testing is continuous.

 * Test results stay valid over time. (My personal favorite.)

Aspects of a Good Test Report

Have you ever found yourself at a loss for words when someone asks for an ad hoc testing status?

There you were, diligently testing, and someone asks how things are going, and then, bam—like some

out-of-whack Rube Goldberg machine where the mouse flips though the air, misses the cup, and

smacks against the wall—your mind freezes up. You mumble something about the technique you’re

using and the last bug you found, and the person you’re reporting your progress to just stares at you

like you’re speaking some other language.

That has happened to me more than once. But now I have a framework for thinking about my testing

that lets me answer questions about my status with confidence and tailor my test report appropriately

for the audience. In its simplest form, a test report should address a range of topics: mission, coverage,

risk, techniques, environment, status, and obstacles. This holds true for both written reports and the

dreaded verbal report.

Mission

A test report should cover what you’re attempting to accomplish with your testing. Are you trying to

find important problems? Assess product quality or risk? Or are you trying to audit a specific aspect of

the application (such as security or compliance)? In general, if you have a hard time articulating your

status, it might be because you don’t have a clear mission. Having a clear mission makes it much easier

to know your status, as you have a precise idea of what you’re supposed to be doing.

337

Coverage

A test report should include the dimensions of the product you’re covering. Depending on your

audience and the necessary completeness of your report, it may also include dimensions that you’re not

covering. A great heuristic (and the one I use the most) for remembering the different aspects of

coverage is James Bach’s "San Francisco Depot" (SFDPO):

 * Structure

 * Function

 * Data

 * Platforms

 * Operations

Michael Bolton talks about SFDPO in his Better Software article on Elemental Models.

Risk

It’s not enough to say what you’re covering; you should also indicate why you’re covering it. That’s

where risk comes in. What kinds of problems could the product have? Which problems matter most?

You may find it helpful to make a mental (or physical) list of interesting problems and design tests

specifically to reveal them.

Techniques

Once you’ve talked about what you’re testing and why you’re testing it, you might want to indicate

how you’re looking for it, if you think the audience is interested. That’s easiest said by talking about

specific test techniques. Examples would include scenario testing, stress testing, claims testing,

combinatorics, fault injection, and random testing; this list goes on and on. Wikipedia has an excellent

list of techniques with links to information on all of them.

Environment

The environment where your testing is taking place may include configurations (hardware, software,

languages, or settings), who you’re testing with, and what tools or scripting languages you’re using. If

you’re using standard or well-understood environments for testing, you might just note exceptions or

additions to the standard.

Status

Perhaps the most important aspect of a test report is your status. In this section of the report you answer

questions like these:

 * How far along are you?

 * How far did you plan to be?

 * What have you found so far?

 * How much more do you have to do?

Tailor your status report to the needs of your audience: If they’re concerned about potential risks, cover

the negative. If they want to measure progress, cover the positive. In the same way, you can determine

whether to present a status report that’s summary or detailed.

Obstacles

A follow-up to your test status may include the obstacles to your testing. This can be simple:

 "I didn’t do X because of Y."

or detailed:

338

 "If we had X we could do 20% more of Y and 10% more of Z, but that might also mean that we

don’t get around to testing W until Friday."

It can be helpful to think of questions like these:

 * Do I have any issues I need help with?

 * Is there anything I can’t work around?

 * Are there any tools that would allow me to test something that I can’t test right now?

Putting It All Together

Figure 1 puts it all together to show the framework for test reporting. Notice that everything flows

through the filter of your audience. If you’re talking to the project manager, you might choose to focus

on mission, status, and obstacles—talking about techniques and environment only when asked for

details. On the other hand, if you’re talking to a test manager, you might focus on risk and coverage,

relating status and obstacles as appropriate. Finally, if you’re talking with a developer, you might focus

on techniques and environment. Each person gets a different perspective on what you’re testing.

Figure 1 Framework for test reporting.

For any given aspect of your reporting, you need to be able to report at different levels of precision.

Just as you filter what you report based on your audience, you need to be able to filter how much of

something you report. Your mission can be a couple of words, or it can be a paragraph. Your risk and

coverage can be entire documents, or sketched out on a napkin (something Scott Barber is fond of

339

doing when modeling performance testing). James Bach talks about "dialing in your precision." A tester

should be able to report to any level of detail, to any stakeholder, at any time. I like that idea. It makes

me think of a testing control panel with different dials I can tune to get the report I need (see Figure 2).

Figure 2 "Dialing in" your reporting precision.

Examples of Test Reporting in Action

Here I’ll share two examples of test reporting in action. Both examples are trivial in nature (what you

might get after an hour of testing), but both illustrate the aspects of test reporting discussed earlier. As

you read through the examples, you’ll see some aspects called out specifically; others will be implied

or included as part of the findings. Both of these reports are informal—that is, they don’t follow a

rigorous, predefined template—which is my preference. I’m not a big fan of templates, but that’s not to

imply that something like this couldn’t be formalized for consistency across the team.

The first example is a test report I put together after about an hour of testing a sample application called

ProSum, developed by Earl Everett. Notice that I call out mission, coverage, and risk explicitly. I talk

about techniques and environment only as related to status. I also talk about what testing I didn’t do.

Test Report on ProSum Version 1.4 by Earl Everett

Mission:

1) Provide information about the application in terms of potential defects.

2) Identify coverage, risk, and test strategy for this application.

Coverage:

Functionality:
- Application
 - Generate a random number
 - Spinner controls
 - Add numbers
 - Clear fields
- Error checking
- Calculation
- Testability

Data:
- Random numbers
- Bounds
- Types
- Rounding

Usability and Platform:
- User Interface

340

- Consistency
- Windows compatible
- Look and feel

Operations:
- Stress

Risks:

- Incorrect addition
- Incorrect random number generation
- Incorrect error handling
- Other features implemented incorrectly
- Inconsistency with Windows features and user expectations
- Company image

Process:

1) Variability Tour
 - I started with getting to know the application. Read About, clicked some
buttons, did the blink test.

2) Functional Exploration
 - I looked at functionality and used heuristic oracles based on consistency,
image, claims, expectation, and purpose.
 - I looked at usability in terms of me as a user and my expectations in terms of a
Windows application.
 - I did what limited stress testing I could think of that I thought was valuable.
 - The only data analysis I did was to identify boundaries for addition, determine
rounding for decimals, and to try some simple equivalence classes for input values.

Testing Not Done:

- There don’t seem to be any files written to the hard drive, but I did not do an
extensive check using any tools.

- Other than when pasting large character sets, there don’t seem to be any
noticeable performance problems on my laptop. However, I don’t know that there are
no performance problems that might not manifest themselves over time or with a high
volume of usage.

- I looked for a command line interface, but there does not seem to be one (or at
least I can’t get it to work).

- I did not test internationalization.

- I did not get to see the source code.

- I did not test on multiple platforms (only an HP Pavilion ze4600 running Windows
XP Pro SP2).

Results of Testing:

1) There are spelling, grammar, and stylistic problems on the About dialog. This is
inconsistent with purpose and is bad for the company image.

2) There are four buttons on the About dialog that allow you to exit the dialog. It
would appear they all do the same thing (close the dialog). This is inconsistent
with purpose because it may confuse the user (it confused me initially) and it is
inconsistent with the product because the error dialog has only one button (the OK
button) to exit the dialog.

3) On the About screen, the versions displayed (title bar and text) do not match.
This is inconsistent with the product.

4) The way Version is displayed in title bars is inconsistent. On the About dialog
the word Version is spelled out and it is 1.0 ("Version 1.0"). On the error dialog
it is just a V with a 1 ("V1"). And on the main screen it is V with a 1.0 ("V
1.0"). This is inconsistent with the product and bad for image.

5) The error dialog has some stylistic problems with the text (caps in the middle
of the sentence on "Integer", "Between", and "Only"). This is bad for image.

6) On the About dialog, the OK button has a hotkey and on the error dialog there
seems to be no hotkey for OK (or at least if there is, it is not the same as the

341

one on the About dialog). This is inconsistent with product.

7) Similarly for the main screen, each pushbutton has a hotkey with the exception
of the About dialog (as far as I can tell - if there is one it is not indicated in
the same way as the other buttons). This is inconsistent with product.

8) If I push the "Pick Two Random Numbers" button many times it does not seem to
generate negative numbers in the top field. This seems to be inconsistent with the
purpose of the random number generator.

9) If I push the "Pick Two Random Numbers" button many times it will sometimes
generate a 100 (or what appears to be a value in the 100 range) in both the bottom
and top fields. This is inconsistent with the product since valid values are from -
99 to 99.
10) The spinner control for each field seems to work independent of values entered
by hand into the text fields. This could be inconsistent with user expectations.
When I enter a 33 and click up, I expect a value of 34, not 1.

Etc....

You get the point. The full test report is available here:

http://www.informit.com/content/images/art_kelly10_goodtest/elementLinks/testreport.zip

342

The second example, shown in Figure 3, comes from James Bach’s Rapid Software Testing course

appendices and is an excellent illustration of how simple a test report can be. (To see the images in full

size, go to page 97 of the appendices.) Notice that this example includes a recommendations section.

This is in line with the stated missions. Also worth noting is that only 45 minutes of testing seems to

have been done (15 minutes on the .NET application and 30 minutes on the J2EE application). In just

45 minutes, you can already have this much to report!

Figure 3 Hand-written test report by James Bach comparing J2EE and .NET applications.

I know that's difficult to read. That test report is available here: http://www.satisfice.com/rst-

appendices.pdf

Next Steps

The first step to getting better at test reporting is to practice both written and spoken test reporting. A

very easy way to do this is to partner with someone you work with (ideally several people) and at

random points throughout the day ask for a quick one-minute or five-minute status report. (You’ll be

amazed how big a difference four minutes makes.) Also, write up a status report at the end of each day

343

and send it to your team members for review and feedback. Can they understand what you did and

didn’t do? Do they know why you did it? Can they tell what techniques you used? You can also use a

tool such as Spector Pro to record your test sessions so you can replay them and compare against your

notes.

You may find it helpful to ask others to report their status to you. What types of questions do you find

yourself asking? Take note of those questions and make sure that you’re providing the same

information when you report your status. What information do they provide that you really find useful?

Use this information to develop a better model that fits your context. My model works for me, but

yours might need to be different. Develop a model of your own. Once you have a model, share it with

others, get feedback, and use it.

Armed with your new test reporting skills, you’re ready to increase collaboration on your projects.

Focus on reporting your mission (what you’re trying to accomplish), coverage (what you’re looking

for), risk (why you’re looking for it), techniques (how you’re looking for it), environment (where

you’re looking for it), status (what you’ve found so far), and obstacles (what you could test if you have

more resources). Either written or spoken, test reports that cover all of these dimensions have the

makings of a good test report.

NOTE: This paper was first published under the title “Dimensions of a Good Test Report” on

InformIT.com. It draws heavily on the work of James Bach and uses several examples (such as

the opening questions, his hand-drafted test report, and various other items) from his Rapid

Software Testing course materials. In addition, I would like to thank Neill McCarthy and Scott

Barber for their contributions.

344

Getting and Keeping Talent: Women in Software Development

Sharon Buckmaster and Diana Larsen, Futureworks Consulting

sbuckmaster@futureworksconsulting.com/dlarsen@futureworksconsulting.com

Abstract

Companies interested in gaining software quality through collaboration maximize the

talents of their female software developers, testers, business analysts and quality

assurance staff. Although women’s participation is on the rise in many fields, including

some of the traditionally male-dominated ones such as accounting and medicine, the

percentage and number of women in the IT field is actually declining. The Computing

Research Association reports fewer computing degrees awarded to women in 2004

than in 2000. Numerous academic and industry studies have documented that high exit

rates for women from the IT arena contributes to an inability to fill roughly 500,000

information technology jobs nationally. With more than 50% of the current U.S. science,

technology, and engineering workforce approaching retirement age, organizations must

examine strategies to address the workplace conditions that attract capable women and

men, and increase the likelihood of their continued employment.

Catalyst, a leading research and advisory organization, works globally with businesses

to expand opportunities for women and business. In their 2007 landmark study on

Women in IT, Catalyst examined drivers of satisfaction, retention, and advancement

among women in technology. Learn to leverage these six drivers to recruit and retain

talented women for your software development projects through an interactive

discussion exploring which drivers make the most sense for your organization.

About the Authors

Sharon Buckmaster, Ph.D. and Diana Larsen are the principals of Futureworks

Consulting, a firm specializing in bringing collaborative processes to organizations that

want more productive, resilient workplaces. Both Sharon and Diana have many years of

experience developing the generative capacities of individuals and teams that lead to

higher quality products and services as well as a higher quality of organizational life.

Diana is known in the software industry for conducting project retrospectives and

transitioning groups to Agile processes. She currently chairs the board of the Agile

Alliance. Her publications include Agile Retrospectives, Making Good Teams Great,

coauthored with Esther Derby. She consults and speaks internationally.

Sharon’s research has focused primarily on women in leadership roles. She is the

founder and past president of The Women’s Center for Applied Leadership and is

affiliated with the Center for Gender in Organizations at Simmons College. Sharon

teaches in the Masters-level Applied Information Management Program at the

University of Oregon and coaches executives and upper level managers.

345

The Current Situation for Women in Technology Positions

Many organizations face a serious constraint to growth in their inability to attract and

retain sufficient numbers of qualified individuals to fill science, engineering, and

technology positions (SET. This dilemma is particularly acute in the case of women.

Contrary to popular belief, a large number of female scientists, engineers, and

technologists have entered the workplace. However, these women don’t stay in the

technology field. They are abandoning their professions in droves. Numerous academic

and industry studies document high exit rates for women from the IT arena, contributing

to the daunting challenge of filling roughly 500,000 information technology jobs

nationally (2007p. 121). With more than 50% of the current U.S. SET workforce

approaching retirement age, organizations must examine strategies that attract and

retain capable men and women.

According to The Athena Factor, a new Harvard Business Review Research Report, the

female talent pipeline in science, engineering and technology (SET) for private sector

firms is surprisingly deep and rich. Athena Factor survey data show that 41% of highly

qualified scientists, engineers, and technologists on the lower rungs of corporate career

ladders are female. Unfortunately, the female drop–out rate is huge. Fully 52% of highly

qualified females working for SET companies quit their jobs, driven out by hostile work

environments and extreme job pressures (Hewitt et al., 2008).

Looking more deeply to understand the reasons women exit the technology field,

Catalyst recently completed a major study with 60,000 male and female respondents in

global, high-technology organizations. Catalyst studied six areas:

• Companies as places to work

• Supervision and corporate leadership

• Career development and talent management

• Fairness and voice

• Job satisfaction, engagement, and commitment

• Work-life effectiveness

Study Results

For four of these areas, very few statistically significant differences between women and

men, or between women in technical roles and women in all other roles emerged from

the data. However, two areas showed important differences in perceptions. In

comparison with men and with women in positions other than technology, women in

technology roles were the least satisfied with their supervisory relationships. Tech

women rated supervisors lower for three reasons: not giving adequate, timely feedback,

346

lack of sufficient and effective communication, and lacking responsiveness to

suggestions.

In addition, the findings show that women in technology roles were less satisfied with

their companies’ approaches to fairness and voice than any of the other comparison

groups (Foust-Cummings, Sabattini, & Carter, 2008). For the purposes of this study,

Catalyst defined fairness as procedures that result in the perception that management

makes fair decisions regardless of a favorable or unfavorable outcome to the individual.

Voice means having a say in the decision-making process, often contributing to

perceptions of fairness.

Catalysts study data relates to the findings of other researchers noting that lack of

respect poses a significant problem for many women in technology (Allen, Armstrong,

Riemenschneider, & Reid, 2006). As Harris noted, “the isolated or single incident isn’t

the main problem. It’s the culture of incidents; a lifetime of small, seemingly insignificant

occurrences that create a hostile, even toxic environment” (1995,p. 121).

So What Should We Do?

Improving Supervisory Relationships

When asked, tech women suggested these steps as the most crucial to improving the

supervisor-supervisee relationship:

• Communicating openly and directly with staff members

• Providing regular, performance-related feedback

• Providing access to more challenging “stretch” assignments with greater visibility

• Implementing stronger career and goal-planning processes

Enhancing Perceptions of Fairness

Tech women suggested that companies could enhance perceptions of fairness and

voice by taking the following steps:

• Advancing and promoting more women

• Ensuring more diverse corporate leadership, particularly at higher levels

• Accepting diverse individual working styles

Successful Organization Initiatives Resulting in Higher Retention Rates for

Women in Technology Roles…a few examples

Texas Instruments- reorganized hierarchical structures by creating multilevel, cross-

functional teams. Women advanced more quickly because of increased visibility and

greater access to developmental assignments.

347

Hewlett-Packard- organizes worldwide Technical Women’s Conferences to showcase

female engineers and scientists and to provide career development workshops.

IBM- The “Taking the Stage” program designed to show women how to achieve a

strong leadership presence when speaking in any situation. Available to IBM women

around the world, the four program components are accesses via intranet by individuals

and small groups. Ideally, higher-level IBM females facilitate the groups, thus providing

opportunities for role modeling and networking.

In Your Organization…

How can you benefit from this new information?

Determine whether this date rings true for your organization or what you notice in the

industry

Talk about “fairness”. What are the ingredients that contribute to fairness in technical

workplaces? Learn what your female staff members think.

Do the recommendations of the women in this study appear to you to be the most

critical issues to address…in the industry, in your organization, in your project team?

What other possibilities for organizational improvement that would result in higher

retention rates for talented tech women come to mind?

How could you build a coalition of support to accomplish these goals?

Taking steps to improve the work environment for female staff members will improve

your ability to recruit skilled male and female professionals.

References

Allen, M., Armstrong, D., Riemenschneider, C., & Reid, M. (2006). Making Sense of the

Barriers Women Face in the Information Technology Workforce. Sex Roles,

54(11-12), 831-844.

Foust-Cummings, H., Sabattini, L., & Carter, N. (2008). Women in Technology:

Maximizing Talent, Minimizing Barriers.

Harris, D. (1995). Grease the gears of equality. Personnel Journal, 74, 120-127.

Hewitt, S., Luce, C. B., Servon, L., Sherbin, L., Shiller, P., Sosnovich, E., et al. (2008).

Athena Factor, Reversing the Brain Drain in Science, Engineering, and

Technology. Harvard Business Review Reports.

Nobel, C. (2007). Why are Women Exiting IT? Infoworld (January 29 2007), 34.

348

S
t
o
r
y
t
e
ll
in

g

T
e
c
h
n
iq

u
e
s
:

R
e
p
o
r
t
in

g

P

r
o
d
u
c
t

S
t
a
t
u
s

in

a

M
e
a
n
in

g
f
u
l
W

a
y

K
a
r
e
n

N

.

J
o
h
n
s
o
n

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
1

©
K

a
r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8

W
h
o

a
m

I
?

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

2

K
a
r
e
n

N

.

J
o

h
n

s
o

n

I
n
d
e
p
e
n
d
e
n
t

S

o
f
t
w

a
r
e

T

e
s
t

C
o
n
s
u
lt
a
n
t

w
w

w
.
k
a

r
e

n
n
j
o

h
n

s
o

n
.
c
o

m

H
o
s
t
e
d

o
n

T

e
c
h

T

a
r
g
e
t

h
t
t
p

:
/
/
s
e

a
r
c
h

s
o

f
t
w

a
r
e

q
u
a

li
t
y
.
t
e

c
h
t
a

r
g

e
t
.
c
o

m

M
y

b
lo

g
h
t
t
p

:
/
/
w

w
w

.
t
e

s
t
in

g
r
e

f
le

c
t
io

n
s
.
c
o

m
/
b

lo
g

/
3

8
0

4

C
o
-
f
o
u
n
d
e
r

o
f

W

R
E

S
T

w

o
r
k
s
h
o
p

h
t
t
p

:
/
/
w

w
w

.
w

r
e

s
t
w

o
r
k
s
h
o

p
.
c
o

m
/
H

o
m

e
.
h
t
m

l

D
ir
e
c
t
o
r

h
t
t
p

:
/
/
w

w
w

.
a

s
s
o

c
ia

t
io

n
f
o

r
s
o

f
t
w

a
r
e

t
e

s
t
in

g
.
o

r

g
/
d

r
u

p
a

l/
e

x
e

c
u
t
iv

e
s

A
b
o
u
t

t
h
is

p
r
e
s
e
n
t
a
t
io

n

L
e
t
’
s

l
o
o
k

a
t

t
h
e

e
l
e
m

e
n
t
s

o
f

s
t
o
r
y
.

•
I
’
v
e

r
e
s
e
a
r
c
h
e
d

s
t
o
r
y
t
e
l
l
i
n
g

b
o
o
k
s
,

jo

in
e
d

a

s
t
o
r
y
t
e
l
l
i
n
g

g
u
il
d
,

a
n
d

a
t
t
e
n
d
e
d

s
t
o
r
y
t
e
l
l
e
r
s

e
v
e
n
t
s
.

•
F

a
s
c
in

a
t
i
n
g
,

r
i
g
h

t
?

B

u
t

w

h
a
t

d
i
d

I

l
e
a
r
n

a
n
d

w

h
a
t

c
a
n

y
o
u

g
e
t

f
r
o
m

t
h

i
s
?

•
E

v
e
n

b
e
t
t
e
r
,

h
o
w

c
a
n

y
o
u

a
p
p
l
y

t
h
i
s

t
o

y
o
u
r

w

o
r
k

i
n

s
o
f
t
w

a
r
e

t
e
s
t
i
n
g
?

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

3

T
h
e

S

t
o
r
y

•
S

t
o

r
ie

s

d

o
n

’t

f
it

in

p

o
w

e
r

p

o
i
n

t

•
S

t
o

r
ie

s

d

o
n

’t

b

e
l
o

n
g

in

b

u
ll
e

t
s

•
S

t
o

r
ie

s

b

e
lo

n
g

i
n

t
e

ll
in

g

…

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

4

349

S
t
o
r
ie

s

b
r
in

g

d
a
t
a

t
o

li
f
e

“
F

a
c
t
s

n

e
e

d

t
h

e

c
o

n
t
e

x
t

o
f

w

h
e

n
,

w

h
o

,

a

n
d

w

h
e

r
e

t
o

b

e
c
o

m
e

T

r
u

t
h

s
.
”

A
n
n
e
t
t
e

S

im
m

o
n
s

T
h
e

S

t
o
r
y

F

a
c
t
o
r

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

5

M
i
n
d
m

a
p
p
i
n
g

:

t
h
e

S

t
o
r
y

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

6

H
o
m

e
w

o
r
k

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

7

•
T

h
e

r
e

’s

n

o

b

y
p

a
s
s
in

g

o

u
r

in
v
e

s
t
ig

a
t
io

n

a
n

d

a
n

a
ly

s
is

w

o
r
k
.

•
W

e

s
t
il
l
n

e
e

d

t
o

b
u

il
d

,

c
o

ll
e

c
t

a

n
d

in

t
e

r
p

r
e
t

d
a

t
a

.

•
B

u
t

in

p

o
s
t

a

n
a

ly
s
is

,

t
h

e
r
e

’s

a
n

o

p
p

o
r
t
u
n

it
y

t
o

u
s
e

t
h
e

s
t
o

r
y

f
o

r

d

e
li
v
e

r
y
.

•
T

h
e

r
e

’s

r
o

o
m

f
o

r

s
t
o

r
y

e
v
e

n

in

a

h
a

ll
w

a
y

m
e

e
t
in

g
.

S
t
r
u
c
t
u
r
e

•
I
d

e
n

t
if
y

t
h

e

p

a
r
t
s

o
f

t
h

e

w
h

o
le

.

•
S

e
e

k

t
h

e

n

a
r
r
a

t
iv

e

o
p

p
o

r
t
u

n
it
ie

s
.

•
D

e
t
e

r
m

in
e

t
h

e

t
y
p

e

o

f

s
t
o

r
y

y
o

u

w

a
n

t
/
n

e
e

d

t
o

b
u

il
d
.

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

8

350

C
a
li
b
r
a
t
e

•
A

u
d

ie
n

c
e

s

a
n

d

m

e
e

t
in

g
s

h
a

v
e

a

t
e

m
p

e
r
a

t
u

r
e

.

•
G

a
u

g
e

a
n

d

c
a

li
b

r
a

t
e

t
o

a
c
c
o

m
m

o
d

a
t
e

.

•
P

r
e

v
e

n
t

a

u
t
o

m
a

t
ic

r
e

p
e

a
t

m
o

d
e

.

A

d
ju

s
t

t
h

e

s
t
o

r
y

f
o

r

t
h

e

a

u
d

ie
n

c
e
.

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

9

T
im

in
g

•
D

e
li
v
e

r
y

•
O

v
e

r
a

ll

le

n
g
t
h

•
P

a
u

s
e

s

d

u
r
in

g

•
S

il
e

n
c
e

h
a

s

it
s

im

p
a

c
t

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

1

0

C
lo

t
h
e
s
p
in

s

•
L

e
a

v
e

s
p

a
c
e

o
n

t
h
e

li
n

e

f
o

r

o

t
h
e

r
s

t
o

in

t
e

r
p

r
e

t

a

n
d

in
t
e

r
a

c
t

w

it
h

t
h

e

s
t
o

r
y
.

•
C

li
p

in

a

n
d

o

u
t

p

ie
c
e

s

b
a

s
e

d

o

n

a

u
d

ie
n

c
e

a

n
d

t
i
m

in
g
.

•
W

h
il
e

y
o

u

m

a
in

t
a

in

t
h
e

t
h

e
m

e

a

n
d

o

v
e

r
a

ll

m
e

s
s
a

g
e

(
s
)
.

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

1

1

T
w

in
e

•
W

e
a

v
e

d

e
t
a

il
s

a

r
o

u
n

d

c
o

r
e

c
o

lu
m

n
s
.

•
L

o
o

k

f
o

r

in

k
li
n

g
s
,

i
m

p
r
e

s
s
io

n
s
,

h

a
n
d

s

o
n

e
x
p

e
r
ie

n
c
e

t
o

f
o

r
t
if
y

f
a

c
t
s
.

•
“
…

q
u

ir
k
y

d

e
t
a

il
s

a

n
d

t
a

n
g
e

n
t
s

e

n
h
a

n
c
e

a

g
o

o
d

s
t
o

r
y

…

”
(
S
i
m
m
o
n
s
)

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

1

2

351

L
in

k
a
g
e

•
T

r
a

n
s
it
io

n
s

a

r
e

e

s
s
e

n
t
ia

l

in

s
t
o

r
y
.

•
T

h
e

li
n

k
a

g
e

b
e

t
w

e
e

n

t
h
e

c
o

r
e

c
o

lu
m

n
s

c
r
e

a
t
e

c
o

n
t
e

x
t
,

c
o

n
t
in

u
it
y

a

n
d

a
v
o

id
s

t
h
e

d
a

t
a

d

u
m

p
.

•
S

t
o

r
y
t
e

ll
e

r
s

o

f
t
e

n

m
e

m
o

r
i
z
e

k
e

y

w

o
r
d

s
.

P
h

r
a

s
e

o
lo

g
y

m

a
t
t
e

r
s
.

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

1

3

R
o
m

a
n

C

o
lu

m
n
s

•
K

n
o

w

t
h

e

c
o

r
e

c
o

m
p

o
n

e
n

t
s

o
f

t
h
e

s
t
o

r
y
.

•
M

a
p

o

u
t

a

n
d

m

e
m

o
r
i
z
e

t
h

e

c
o

r
e
.

•
W

it
h

t
e

c
h

n
ic

a
l
s
t
o

r
ie

s

a
n

d

d

e
t
a

il
s

le

a
r
n

h
o

w

t
o

u
s
e

t
h
e

c
o

m
p

r
e

h
e

n
s
io

n

g
r
a

p
h

.

•
C

h
e

c
k
-
in

w

it
h

y
o

u
r

a
u

d
ie

n
c
e

t
o

m

a
k
e

s
u

r
e

e
a

c
h

c
o

r
e

c
o

lu
m

n

is

u
n

d
e

r
s
t
o

o
d
.

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

1

4

S
e
n
s
o
r
y

D

e
t
a
il
s

•
S

e
n

s
e

s

g
e

t

d

u
ll
e
d

b

y

v
o

lu
m

e
s

o

f

d

a
t
a

.

•
S

t
o

r
y

g
iv

e
s

o

p
p

o
r
t
u

n
it
y

t
o

li
v
e

n

t
h

e

s
e

n
s
e

s
.

•
“
…

li
n

e
a

r

a

n
a

ly
s
is

m
is

s
e

s

t
h

e

p
o

in
t
…

”
(
S

im
m

o
n
s
)

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

1

5

T
h
in

k

U

n
iq

u
e

W
h
a

t

d

o

y
o

u

h

a
v
e

t
h
a

t

c
o

u
ld

b
e

u
n

iq
u

e
?

•
A

c
o

n
c
e
p

t

•
M

e
m

o
r
a

b
le

e

le
m

e
n

t
s

•
I
n

t
e

r
e

s
t
in

g

p
o

in
t

o
f

v
ie

w

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

1

6

352

S
e
n
d

a
h
e
a
d
's

a
n
d

le

a
v
e

b
e
h
in

d
’s

•

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

1

7

•
T

ie

s
t
o

r
y

t
o

d

a
t
a
.

•
D

a
t
a

p

r
o

v
id

e
s

p

r
o

o
f

t
h
a

t

b
a

c
k
s

t
h
e

s
t
o

r
y
.

•
D

a
t
a

p

r
e

v
e
n

t
s

s
t
o

r
y

f
r
o

m

b
e

c
o

m
in

g

f
a

b
le

.

•
T

o

b

u
il
d

a

s
t
o

r
y

o

f

v
a

lu
e

,

s
t
o

r
y

h

a
s

t
o

c
o

r
r
e

la
t
e

t
o

f
a

c
t
s
.

W
r
a
p
p
in

g

t
h
e

p
ie

c
e
s

t
o
g
e
t
h
e
r
:

O
p
p
o
r
t
u
n
it
ie

s

t
o

u
s
e

S

t
o
r
y

•
P

la
n

n
in

g

•
E

x
e

c
u

t
io

n

•
A

n
a

ly
s
is

&

s
t
a

t
u

s

•
R

e
s
u

lt
s

•
D

e
b

r
ie

f
s

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

1

8

P
r
a
c
t
ic

a
l
A

p
p
li
c
a
t
io

n
:

T
y
in

g

it

t
o
g
e
t
h
e
r

S
t
r
u
c
t
u
r
e
:

•
W

h
a
t

d
o

y
o
u

w

a
n
t

t
o

c
o
m

m
u
n
ic

a
t
e
?

•
M

o
n
o
lo

g
u
e
?

D

ia
lo

g
?

C
a
li
b
r
a
t
e

•
W

h
o

a
r
e

t
a
lk

in
g

w

it
h
?

•
A

u
d
ie

n
c
e
’s

t
e
c
h
n
ic

a
l
c
o
m

p
r
e
h
e
n
s
io

n

a
f
f
e
c
t
s

d
e
t
a
il
s

o
f
f
e
r
e
d
.

T
im

in
g

•
S

n
ip

p
e
t

•
F

u
ll

r
e
p
o
r
t

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

1

9

P
r
a
c
t
ic

a
l
A

p
p
li
c
a
t
io

n
:

T
y
in

g

it

t
o
g
e
t
h
e
r

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

2

0

C
lo

t
h

e
s
p

i
n

s

•
C

a
n

d
id

a
t
e

s

f
o

r

c
lo

t
h

e
s
p

i
n

s
:

m

e
t
r
ic

s
,

m
il
e

s
t
o

n
e

s
,

o

n

s
h

o
r
e

t
e

a
m

v
s
.

o

f
f
s
h

o
r
e

t
e

a
m

,

t
e

s
t

la

b

n

e
e

d
s
,

p

r
o

je
c
t

r
e

a
d

ju
s
t
m

e
n

t
s
.

T
w

i
n

e

•
H

o
w

t
e

s
t
i
n

g

im

p
r
e

s
s
io

n
s

r
e

la
t
e

t
o

d
e

f
e

c
t
s

r
e

p
o

r
t
e

d
.

•
H

o
w

t
e

s
t
i
n

g

im

p
r
e

s
s
io

n
s

r
e

la
t
e

t
o

r
e

m
a

in
in

g

w

o
r
k
.

353

P
r
a
c
t
ic

a
l
A

p
p
li
c
a
t
io

n
:

T
y
in

g

it

t
o
g
e
t
h
e
r

L
in

k
a
g
e

•
T

e
s
t
e
r
’s

h
a
n
d
s

o
n

e
x
p
e
r
ie

n
c
e

t
ie

d

t
o

c
r
it
ic

a
l
d
e
f
e
c
t
s
.

•
T

ie

r
e
p
o
r
t
e
d

c
u
s
t
o
m

e
r

is

s
u
e
s

t
o

t
e
s
t

s
t
r
a
t
e
g
y

t
o

o
p
e
n

d
e
f
e
c
t
s
.

C
o
lu

m
n
s

•
C

o
r
e

in

f
o
r
m

a
t
io

n

•
H

o
w

c
a
n

y
o
u

o
r
g
a
n
iz

e

in

f
o
r
m

a
t
io

n

s
o

y
o
u

d
o
n
’t

f
o
r
g
e
t

t
o

d
e
li
v
e
r
.

S
e
n
s
o
r
y

D

e
t
a
il
s

•
H

o
w

c
a
n

y
o
u

d
e
li
v
e
r

s
t
o
r
y

s
o

t
h
e
y

d
o
n
’t

f
o
r
g
e
t

w

h
a
t

y
o
u
’v

e

s
h
a
r
e
d
.

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
2

1
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8

A
c
k
n
o
w

le
d
g
e
m

e
n
t
s

“
T

h
e

S

t
o

r
y

F

a
c
t
o

r
”

A
n
n
e
t
t
e

S

im
m

o
n
s

W
o
n
d
e
r
f
u
l
q
u
o
t
e
s
,

h
ig

h
ly

r
e
a
d
a
b
le

,

p
r
a
c
t
ic

a
l
a
p
p
li
c
a
t
io

n
s

t
o

b
u
s
in

e
s
s
.

“
T

h
e

r
e

a

r
e

t
w

o

m

a
in

r
e

a
s
o
n

s

p

e
o
p

le

h

o
ld

b

a
c
k

t
h

e
y

t
e

ll

a

s
t
o

r
y
.

T

h
e

f
ir
s
t

r
e

a
s
o
n

is

t
h

a
t

t
h

e
y

a

r
e

a

f
r
a

id

t
h

e
y

w

il
l
lo

o
k

s
t
u
p

id
,

c
o

r
n

y
,

m

a
n

ip
u

la
t
iv

e
,
o

r

“
u
n

p
r
o

f
e

s
s
io

n
a

l.
”

…

S
o

w

e

a
c
t

“
p

r
o

f
e

s
s
io

n
a

l”
a

n
d

k
e
e
p

t
h

in
g

s

t
id

y
,

lo

g
ic

a
l,

a

n
d

r
a

t
io

n
a

l.

…

U
n

f
o

r
t
u
n

a
t
e

ly

o
u

r

d
e

li
v
e

r
y

b

e
c
o
m

e
s

u
p

t
ig

h
t
,

c
li
n

ic
a

l,

e

m
o

t
io

n
le

s
s

a
n
d

b

-
o

-
r
-
i-
n

-
g

.
”

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

2

2

A
c
k
n
o
w

le
d
g
e
m

e
n
t
s

“
P

r
e

s
e

n
t
in

g

t
o

W

in
:

T
h

e

A

r
t

o
f

T

e
ll
in

g

Y

o
u

r

S

t
o
r
y
”

J
e
r
r
y

W

e
is

s
m

a
n

C
o

n
c
e

p
t
s
:

S

ix

r
o

m
a

n

c
o

lu
m

n
s
,

t
h
e

d
a

t
a

d

u
m

p
,

t
h

e

c
o

m
p

r
e

h
e

n
s
io

n

g
r
a

p
h

.

S

e
n
d

a

h
e

a
d

a

n
d

le

a
v
e

b
e

h
in

d
s

*

*

T

e
r
m

s

a
ls

o

r
e
f
e
r
e
n
c
e
d

b
y

E

d

T

u
f
t
e
.

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

2

3

R
e
f
e
r
e
n
c
e
s

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

2

4

T
i
t
l
e

A
u

t
h

o
r

T
h
e

S

t
o
r
y

F

a
c
t
o
r

A
n
n
e
t
t
e

S

im
m

o
n
s

W
h
o
e
v
e
r

T

e
ll
s

t
h
e

B

e
s
t

S

t
o
r
y

W
in

s
:

H

o
w

t
o

U

s
e

Y

o
u
r

O

w
n

S
t
o
r
ie

s

t
o

C

o
m

m
u
n
ic

a
t
e

w

it
h

P
o
w

e
r

a
n
d

I
m

p
a
c
t

A
n
n
e
t
t
e

S

im
m

o
n
s

I
m

p
r
o
v
in

g

Y

o
u
r

S

t
o
r
y
t
e
ll
in

g
D

o
u
g

L
ip

m
a
n

T
h
e

L
e
a
d
e
r
's

G

u
id

e

t
o

S

t
o
r
y
t
e
ll
in

g
:

M
a
s
t
e
r
in

g

t
h
e

A

r
t

a
n
d

D

is
c
ip

li
n
e

o
f

B
u
s
in

e
s
s

N

a
r
r
a
t
iv

e

S
t
e
p
h
e
n

D

e
n
n
in

g

T
h
e

S

p
r
in

g
b
o
a
r
d

S
t
e
p
h
e
n

D

e
n
n
in

g

I
n
f
lu

e
n
c
e
r
:

T

h
e

P

o
w

e
r

t
o

C

h
a
n
g
e

A
n
y
t
h
in

g

K
e
r
r
y

P

a
t
t
e
r
s
o
n
,

J
o
s
e
p
h

G

r
e
n
n
y
,

D
a
v
id

M

a
x
f
ie

ld
,

a
n
d

R

o
n

M

c
M

il
la

n

354

R
e
f
e
r
e
n
c
e
s

S
t
o

r
y
t
e

ll
in

g

T

e
c
h

n
iq

u
e

s
©

K
a

r
e

n

N

.

J
o

h
n

s
o

n
,

2

0
0

8
S

li
d

e

2

5

T
i
t
l
e

A
u

t
h

o
r

R
h
e
t
o
r
ic

A
r
is

t
o
t
le

S
t
o
r
y

P

r
o
o
f
:

T

h
e

S

c
ie

n
c
e

B

e
h
in

d

t
h
e

S

t
a
r
t
li
n
g

P

o
w

e
r

o
f

S

t
o
r
y

K
e
n
d
a
ll

H

a
v
e
n

W
a
k
e

m

e

u
p

w

h
e
n

t
h
e

d
a
t
a

is

o
v
e
r

L
o
r
i
S

il
v
e
r
m

a
n

N
a
t
u
r
e

C

e
n
t
e
r

S

t
o
r
y
t
e
ll
e
r
s

G

u
il
d

h
t
t
p
:
/
/
w

w
w

.
s
t
o
r
y
n
e
t
.
o
r
g
/
P

r
o
g
r
a
m

s
/

G
u
il
d
s
/
il
.
h
t
m

B
e
t
h

H

o
r
n
e
r
,

s
t
o
r
y
t
e
ll
e
r

h
t
t
p
:
/
/
s
t
o
r
y
t
e
ll
in

g
.
o
r
g
/
H

o
r
n
e
r
/

355

356

Selling Your Idea to Upper Management

Steven M. Smith

DAVID: Ruth, I think we should buy the ABC software to track trouble tickets and issues.

RUTH: There is no budget for that.

DAVID: But it takes me days to put together the information you want about the state of

the product. And without an automated collection mechanism, I think many problems

aren’t being reported.

RUTH: Provide the best information available.

DAVID: @#!~

Like many technical people who don’t know the basic ingredients and recipe for selling

their ideas to management, David leaves this interaction feeling frustrated.

I’ve felt the hurt of management rejecting my ideas. When I look back on those

experiences, I see a clear pattern—rejection was an understandable response to my

failure to connect an idea to something that management considered significant.

Think back to a personal experience when someone was trying to persuade you to do

something. If whatever they wanted you to do—such as buying insurance, volunteering

your time, or making an investment—didn’t offer you significant value, didn't you reject

or ignore it?

Upper managers’ thought process isn’t different than yours. They need to know how an

idea connects to something that is significant to them. If you want a thousand times

better chance to sell an idea to management at any level, connect it to something

that has significant value to that person.

Change the Perspective

Did David put Ruth’s desires first during his dialog with her? No. His desires dominate the

interaction. That’s a huge mistake.

Effective selling focuses on the buyer, not the seller.

But David can change the perspective. It starts by doing research about Ruth. By

recalling past interactions with Ruth, reviewing emails from her, and querying his

network about her goals, David quickly finds many things that Ruth value. It surprises him

that he never took the time to notice them before. Three things seem significant: 1) Ruth

wants to hire additional testers; 2) her management has rejected her proposal to hire

more testers; and 3) she wants her management to see that her organization is

delivering more quality at a lower cost.

357

Change the Recipe

Learning about what matters the buyer is the vital ingredient for successful selling. But

the flavor of that ingredient is enhanced when combined with other ingredients using a

simple recipe.

 The following recipe has served me well over the years when preparing for a selling

interaction:

If you do X (the idea), you will get Y (the benefits).

Otherwise (if you do nothing) it will cost you Z (the cost of doing nothing).

Do I have your approval to do X?

In his first interaction with Ruth, David articulated X (the idea) but he didn't articulate Y

(the benefits) and Z (the cost of doing nothing). And he didn't ask for approval to take

action so Ruth didn't have to explicitly reject his idea. She was free to ignore it, which is

what she did.

Using the recipe, David can put the ingredients of the interaction with Ruth in context.

He sees that the idea (X) is for the company to buy the ABC software package to track

trouble reports. The benefits (Y) to Ruth are related to the three thinks he discovered

that are significant to her. The cost of doing nothing (Z) is unknown, which tells him to

estimate that cost before the interaction. And finally the recipe reminds him to explicitly

ask Ruth for permission to proceed with the purchase.

Change the Interaction

Let’s look how David’s interaction with Ruth might change after using the recipe and

updating the interaction with what he has discovered:

DAVID: Ruth, if you approve the purchase of the ABC software to collect and analyze

trouble ticket data, you could justify to your management the additional testers you've

talked about hiring. The software will enable us to provide management with timely

summaries of the troubles encountered by both the testers and beta clients. If we

continue to be unable to articulate the quality of the product, we will continue to

ineffectively prioritize the use of our developers. I estimate that poor prioritization is

wasting 30% of the development's time, which works out to about $150K per month.

RUTH: I don't have the budget to buy the product.

DAVID: Are you willing not hire the additional testers you want and for the development

organization to continue to waste $150K per month?

RUTH: @#!~

358

DAVID: Do I have your approval to buy the ABC software?

RUTH: Let me think about it.

DAVID: When should I check back with you?

RUTH: Friday.

Did David make an immediate sale? No. But Ruth did hear him and he is a thousand

times better chance of action being taken on his idea.

Notice that David’s interaction with Ruth also provided information to justify the idea to

her manager, Stan. Selling to upper management starts by selling your manager and

providing information that helps them sell their manager.

If Ruth rejects the ideas, David may want to appeal to Stan. He will want to change Y

(the benefits) so they resonate with Stan. As you sell higher up the management chain,

the benefits that matter come from the idea’s impact on increasing revenue and

reducing cost.

The same ingredients and recipe apply whenever you sell ideas to anyone, such as a

teammate or client.

Summary

Many people with technical backgrounds consider “selling” to be a dirty word. That’s a

curious notion. I believe selling ideas is part of every aspect of life. Many organizations

fail because they buy inferior ideas from people who know how sell. If you have superior

ideas, I believe you owe it to your organization and yourself to learn how to sell them

effectively. Start with the lesson of putting the desires of the buyer first and your own a

distant second. And use the X, Y, Z ingredients and the recipe for combining them to

sell your ideas to management. You will have a thousand times better chance of selling

the idea.

.

359

360

Non-Regression Test Automation

Douglas Hoffman 8/3/2008

Software Quality Methods, LLC.

Doug.Hoffman@acm.org

www.SoftwareQualityMethods.com

Experience and qualifications:

Douglas Hoffman has over twenty-five years experience in software quality assurance. He

has degrees in Computer Science, Electrical Engineering, and an MBA. He has been a

participant at dozens of software quality conferences and has been Program Chairman for several

international conferences on software quality. He architects test automation environments and

automated tests for systems and software companies.

He is an independent consultant with Software Quality Methods, LLC., where he consults

with companies in strategic and tactical planning for software quality, and teaches courses in

software quality assurance and testing. He is a Fellow of the ASQ (American Society for

Quality), founding member of SSQA (Silicon Valley Software Quality Association) and AST

(Association for Software Testing), and is also a long time member of the ACM and IEEE. He is

Past Chair of the Santa Clara Valley Software Quality Association (SSQA) and Past Chair of the

Santa Clara Valley Section of the ASQ. He has also been an active participant in the Los Altos

Workshops on Software Testing (LAWST) and dozens of its offshoots. He was among the first

to earn a Certificate from ASQ in Software Quality Engineering, and has an ASQ Certification in

Quality Management.

361

Non-Regression Test Automation

Introduction

In my experience, most automated tests perform the same exercise each time the test is run. They

are typically collected and used as regression tests, and are unlikely to uncover bugs other than

very gross errors (e.g., missing modules) and the ones they were specifically designed to find.

Testers often think of test automation as GUI based scripted regression testing, using scripts to

mimic user behavior. Tool vendors actively sell the automating of manual tests. These are very

narrow views of the potentially vast possibilities for automating tests because they are limited to

doing things a human tester could do. When we think of test automation we should first think

about extending our reach – doing things that we can’t do manually. This topic describes getting

past the limitations of automated regression suites and generating more valuable kinds of test

automation.

The difficult part of automation is determining whether or not the software under test (SUT)

responds correctly. Automated tests can easily feed huge numbers of inputs to the SUT.

Variation of inputs in automated tests can use data driven approaches or random number

generators. In the absence of an excellent mechanism for recognizing expected SUT behavior (an

oracle), verification is time consuming and extremely difficult. With an oracle, automated tests

can be designed using potentially huge numbers of variable inputs to evaluate the responses of

the SUT – without doing exactly the same test exercise each time. This is not to say that the tests

are not repeatable, as described in the section Mechanisms for Non-Regression Automation

below. This type of automated test has the chance of uncovering previously undiscovered bugs.

Regression Testing Defined

According to �����������	��
�����������“regression testing [is]�Selective retesting of a

system or component to verify that modifications have not caused unintended effects and that the

system or component still complies with its specified requirements.” Mathur defines “the word

regress means to return to a previous, usually worse, state. Regression testing refers to that

portion of the test cycle in which a program P
’

 is tested to ensure that not only does the newly

added or modified code behave correctly, but also that code carried over unchanged from the

previous version P continues to behave correctly.”
[i]

 Wikipedia describes the idea as applied to

software testing: “Regression testing is any type of software testing which seeks to uncover

regression bugs. Regression bugs occur whenever software functionality that previously worked

as desired, stops working or no longer works in the same way that was previously planned.

Typically regression bugs occur as an unintended consequence of program changes. Common

methods of regression testing include re-running previously run tests and checking whether

previously fixed faults have re-emerged.”
[ii]

 Although the definitions are consistent with one

another, common usage in software testing is the rerunning of previously run tests and getting

the same results.

Sources of Regressions

From a practical standpoint, regressions occur due to poor source code management (SCM),

incomplete bug fixes, or unintended consequences (side effects) of code changes and bug fixes.

362

The first two should not occur or should be immediately discovered. Unintended consequencs

are difficult, if not impossible to eliminate because in this case the change in one place causes a

bug in some remote part of the system. Unintended consequencs, by definition cannot be

anticipated.

Arguably, regression tests were initially created as a response to SCM problems. However, bugs

should not be introduced through poor SCM today because the principles and techniques were

mastered in the 1970’s and many tools exist which make SCM straightforward. Some

organizations fail to follow well established source code management techniques, with the

expected consequence of introduction and re-introduction of bugs. In these instances regression

tests can find reintroduced bugs. This first category of regressions are virtualy eliminated by the

use of current SCM tools. Regression tests that find this type of regressions are really finding

development process problems.

Incomplete bug fixes may occur for many reasons; e.g., because of misunderstanding of the

bug’s scope, fixing of a different bug, resource constraints, or ineffective developers. These are

generaly caught when every bug fix is verified in the initial build containing it. The likelihood of

getting a complete fix is high when changes are fresh and the developers are most familiar with

the code.

Although the regression test case may be used to verify the veracity of a fix, bug fix verification

is usually done specifically for each fixed bug, not as a general part of running the entire

regression suite. �

Advantages of Manual Tests

Automation of a manual test reduces its variability. Even though a manual tester may be

attempting to follow the same steps each time, humans are prone to making mistakes and the

‘mistakes’ sometimes lead to the discovery of new defects. Mis-keying an input, clicking on the

wrong spot on the screen, typing “Yes” in a date field, or pasting a file’s contents instead of its

name are all examples that might turn up a bug. Even though the human may quickly correct for

the error without apparent changes in SUT behavior, there is some chance that an error may be

exposed by this activity. Variation leads to unexpected behavior, and in these situations

validation and recovery are very difficult problems to solve in an automated environment.

Automated regression tests always provide exactly the values programmed and expect the same

result each time.

A regression test does the same thing over and over. It covers the same conditions and inputs

each time it is run. Since software doesn’t break or wear out, we would not expect to find a

functional error the second (or subsequent) time we run a test on a build.
 [1]

 An automated

version of the test becomes progressively less likely to find errors each time it is run.

1

 In some respects, the second and subsequent times we run a test we are looking for different kinds of errors – e.g.,

variable initialization, test design, interference problems, etc. The question we asked the first time the test was run

has been answered, and each subsequent time it runs the software is starting from a slightly different set of

conditions.

363

Limits of Regression Tests

As defined above, a regression test runs to test current versus previous behavior of the SUT. The

majority of existing automated tests are automated versions of manual regression tests. These are

not the most powerful tests we could make (in terms of the likelihood and types of bugs to be

found) and there are important and valuable automation we could be creating. Even so, there are

many circumstances where automating regression tests is well justified.
[iii]

However, regression tests are usually not an effective way to look for new defects. The vast

majority of defects ever found by automated regression tests are actually found by the manual

running of the test prior to automating it.
[iv]

We further reduce the chance of finding bugs by

doing exactly the same thing each time.

�

To better understand the likelihood of finding bugs with automated regression tests, try the

following [mental] exercise. Think of how a [manual] regression test is created and compare that

with creating a demo script.

Creating a Manual Regression Test

The most common regression test creation technique:

• Conceive and write the test case

• Run it and inspect the results

• If the program fails, report a bug and try again later

• If the program passes the test, save the resulting outputs as expected results

• In future tests, run the program and compare the output to the expected results

• Report an exception whenever the current output and the saved output don’t match

What we do for a demo is try to minimize the chance of encountering a bug. Now, think of how a

demonstration exercise might be created (e.g., for a trade show).

Creating a Demo

A demo creation technique for new products (finding a “happy path”):

• Conceive and create the demo exercise

• Run it to see that it demonstrates the desired attributes

• If the program fails, report a bug and either wait for a fix or find a different way to do the

exercise that doesn’t fail

• Remember the specific steps and values that work when the program passes

• In future demos, do not deviate from the steps or try new values to minimize the chance

of failure

• Be at risk for embarrassment if the program fails to do the demo correctly

The two processes are nearly the same. The demo developer finds a path that works and then

sticks to it. A regression test developer is doing virtually the same thing. Once the regression test

has been created, the likelihood of encountering a bug has been minimized. The only bugs likely

to be found are those reintroduced through poor source code management or gross errors (so

364

obvious that any action will expose them). Any other exercise of comparable length will probably

find more bugs because in addition to finding the gross errors there is some chance of finding

legacy bugs that regression tests have no chance of finding.

Non-Regression Automation

There are many alternatives to automating regression tests. In addition to looking for more bugs

by varying the tests, as mentioned in the Introduction, automated tests can extend testing into

seeking new types of errors that can’t be practically found through manual testing. Non-

regression automated tests can do something differently each time they are run and most may not

be performed manually at all..

Some types of errors sought through testing are only practical using non-regression automated

tests:

• Buffer overruns, some types of security issues (e.g., found through potentially massive

numbers of variations on input, huge input files, large data sets, etc.)

• Non-boundary special cases (e.g., internal boundaries, divide by zero, state machine

errors)

• Memory leaks, stack overflows (e.g., accumulation errors)

• Memory corruption, stack corruption (e.g., in memory errors)

• Resource consumption/exhaustion (e.g., system effects)

• Timing errors (e.g., errors with small windows of opportunity)

Mechanisms for Non-Regression Automation

There are many types of non-regression automated tests. Most use a computer’s pseudo-random

number generator to introduce variation from run to run. Pseudo-random numbers are interesting

because the series of values is statistically random but repeatable given a seed value. A test can

generate a new random sequence or use a seed to rerun a sequence for fault isolation. Pseudo-

code for the typical mechanism (for 100,000 possible seed values) is shown below:

IF (SEED parameter not present) /* Use SEED if it’s present */

/* Generate random seed if SEED not present */

SEED = INT(100000 * RND()) /* SEED between 0 and 99,999 */

PRINT SEED /* Print out SEED so the series can be repeated if necessary */

ENDIF

FIRST = RND(SEED)/* Use SEED to generate the first random number */

/* RND() will generate the next random number in the sequence after the first one */

365

The list below provides some of the types of non-regression tests in use today. Each is described

briefly in the Appendix.

Nine examples of non-regression automation:

• Data driven / data configured

• Model based

• Random walks (both stochastic & non-stochastic)

• Function equivalence (using random input)

• A/B comparison (using potentially massive numbers of input values)

• Statistical models

• Real-time external monitors (e.g., memory leaks or data base corruption)

• Cooperating processes

• Duration testing, life testing, load generation (combining existing automated tests)

There are several approaches to automating non-regression tests based upon test style and how

the test communicates with the SUT.

Test case style examples:

• Data driven commercial program

• Real-time monitoring utility

• Driver/stub combination

• Configurable/data driven custom program

• Individual program/test

There are also many touch-points where an automated test can interface with the SUT:

• Public API based

• GUI API based

• Non-GUI API based

• Individual program/tests

• Trusted objects

An example may serve to explain how the various characteristics work together. In the article,

Heuristic Test Oracles
[v]

 I describe testing a sine function in a system library. The test generates

randomly selected sequences of inputs and checks to see that the sine function returns sequences

of monotonically increasing or decreasing results. It looks for non-boundary special conditions

(discontinuities) using a statistical model (monotonic increases and decreases) in an individual

program (custom written test) that interfaces through the public API.

Test Oracles

The key element required to make any tests worthwhile is the oracle (method to check for

expected/unexpected behavior). A person runs manual tests, using five senses and an untold

number of creative oracles to observe and check SUT behavior. Whether using a specification or

intuition, a person notices time between events, feels or hears clicks on a disk, sees sparkles on a

366

screen, or smells over-heated wiring. Automated tests only check elements identified for it, and

some kind of an oracle must be available to provide the individual values to determine whether

or not the behavior is expected. Oracles for automated tests are critically important and can be

quite varied.
[vi],[vii],[viii]

Oracle examples:

Reference Functions – equivalent function or saved values

• Previous values or previous version

• Competitor’s product

• Standard function

• Custom model

Computational or Logical Modeling

• Inverse Functions – “round tripping”

o Mathematical inverse

o Operational inverse (e.g., split a merged table)

• Useful mathematical rules –

o e.g., sin2(x)+cos2(x) = 1

o e.g., time of event order = event number order

Heuristic Functions
[ix]

 – incomplete but usually right

• Almost-deterministic approach

o Check only some of the outcomes

• Compare incidental but informative attributes

o Durations

o Orderings

• Check (apparently) insufficient attributes

o ZIP Code entries are 5 or 9 digits

• Check probabilistic attributes

o X is usually greater than Y

o Statistical distribution (test for outliers, means, predicted distribution)

Conclusions

Regression testing is the rerunning of previously run tests and expecting the same results.

Automated regression tests are the primary mechanism used in test automation. Although

improvement in tools and software development processes have virtually eliminated the original

cause of regressions, there are still circumstances under which regression testing makes sense.

Yet, regression tests are weak at finding new bugs and do not extend the scope of bugs found.

Like product demos, regression tests minimize the opportunity for finding defects by design.

Automating regression tests further reduces the chance of finding defects.

There are a great number of alternatives to simple regression automation that provide powerful

tests for finding bugs that manual testing cannot, such as memory leaks or subtle timing errors.

Non-regression test automation gives us capabilities that a manual tester does not have.

Many different types of non-regression automated tests are possible and there are many

mechanisms that can be used to build non-regression automation. They can be designed to look

367

for types of bugs that typical regression tests cannot. There are also several test architectural

styles, from custom program/tests to data driven commercial programs. Many possible touch

points and monitoring techniques can also be used for SUT stimulation and result monitoring.

The key element required to make any tests worthwhile is the oracle. Oracles for automated tests

are critically important and can be quite varied as described in the referenced papers and slides.

What automated tests can’t do for us (yet):

• Know the expected results in all cases

• Notice things that we haven’t specifically told the test (or the test mechanisms) to look at

• Analyze boundary conditions, partitions, models, etc., to determine the best test

conditions to cover [With the exception of some tools that will tell us how to test that the

code does what the code does]

• Decide on new courses of action (that aren’t specifically written into the test) based on

detection of potentially interesting occurrences

368

Appendix

Types of non-regression automation described

Data driven tests read input values with corresponding expected results. In this way the

values being used in the tests can be repeated or different each time. Data input is not

restricted to specific arithmetic or alphabetic values but may include function calls,

parameter names, and other application specific attributes to be tested.

Data Configured tests read input values to enable/disable or configure the test case code.

(e.g., printer paper sizes or printer dot densities)

Model Based tests use a model of the SUT. (e.g., a state machine or menu tree)

Random Walks use a series of pseudo-random values as input.

Stochastic tests are ones where the sequence matters. (e.g., logging-in before beginning a

financial transaction)

Non-Stochastic tests are ones that are [theoretically] independent of one another. (e.g.,

order of loading of printer fonts)

Function Equivalence is a form of random walk when a true oracle is available and

therefore any random input can be used whether the function is stochastic or not. (e.g.,

there are two versions of the same product)

A/B Comparison is used when a very large number of results are recorded and compared

from one run to the next (e.g., potentially massive numbers of result values)

Statistical Models

Real-time External Monitors are programs run at the same time as the test but are

monitoring characteristics external to the actual SUT (e.g., memory leak or data base

corruption detectors)

Cooperating Processes are tests in which the test or monitor is communicating as a peer

process with the SUT.

Duration Testing is done by running a series of tests (or one test repeatedly) continually for

a period of time.

Life Testing is done by running a series of tests (or one test repeatedly) continually until the

system fails.

Load Generation is one or more series of tests run in the background when a specific test is

run. (e.g., doing performance analysis or to test that a file can be accessed even though

other processes are accessing it)

Statistical Model is based on the statistical characteristics of the data rather than the data

values. For many functions, input with a specified mean and standard deviation will

generate results with a corresponding mean and standard deviation. Many other statistical

characteristics are available and may be used, especially when dealing with very large

data sets and unpredictable expected results.

369

References

[i]

 Mathur, Aditya P., Foundations of Software Testing (2008, Dorling Kindersley (India) Pvt.

Ltd) ISBN 81-317-1660-0

[ii]

 June 14, 2008 at http://en.wikipedia.org/wiki/Regression_testing

[iii]

 Bach, James; “Reasons to Repeat Tests” http://www.satisfice.com/repeatable.shtml

[iv]

 Kaner, Cem, “Avoiding Shelfware” http://www.kaner.com/pdfs/shelfwar.pdf

 Merick, Brian; “Classic Testing Mistakes” http://www.exampler.com/testing-

com/writings/classic/mistakes.pdf

[v

] Hoffman, Douglas “Heuristic Test Oracles” STQE Magazine, April, 1999

http://www.softwarequalitymethods.com/Papers/STQE%20Heuristic.pdf

[vi]

 Hoffman, Douglas “Using Test Oracles in Automation” Software Test Automation

Conference, Spring 2003 http://www.softwarequalitymethods.com/Slides/Oracle%20Auto.pdf

[vii]

 Hoffman, Douglas “Advanced Test Automation Architectures” Conference for the

Association for Software Testing (CAST), 2007

http://www.softwarequalitymethods.com/Slides/TestAutoBeyondX2-CAST07.pdf

[viii]

 Hoffman, Douglas “Using Oracles in Automation” PNSQC, 2001

http://www.softwarequalitymethods.com/Papers/Auto%20Paper.pdf

[ix]

 Hoffman, Douglas “Heuristic Test Oracles” STQE Magazine, April, 1999

http://www.softwarequalitymethods.com/Papers/STQE%20Heuristic.pdf

370

Abstract

This paper describes a test harness that can be used for developing test automation for

websites. The harness provides a set of classes that a test developer can use to develop

custom coding solutions for controlling (automating) and verifying websites. The harness

is completely browser agnostic meaning a single code base is developed that can

execute on multiple browsers. The current implementation is targeted for the Windows

platform.

Introduction

Last year, our department began development of a server management website. Our

team (the UI test team), was given the challenge of developing a test harness that

would allow for the development of a completely automated regression suite and

would give the capability of running against multiple browsers using a single code base.

Our initial idea was to develop a harness compatible with IE7 (Internet Explorer 7) and

Firefox. However, we wanted to make it easily extendable to other browsers and

wanted to shield the test developer from needing to write two sets of code

implementing the same test case.

We addressed this challenge by developing a set of classes that allows the tester to

author tests independent of the target browser (IE7 and Firefox in our case). The test

code implements a single test case that could be targeted towards different browsers.

The test code is completely browser agnostic. Nowhere would one read anything

specific to a particular browser. The following example shows our intention:

Scenario 1

Test Spec

1. Open the browser and navigate to a live.com

2. Enter search criteria “cats”

3. Click search button

4. Verify www.catsite.com is found

5. Click on the link if found

6. Close the browser

PSNQC Conference Paper

Presenters: Jagannathan Venkatesan and Craig Merchant

Contributor: Manuel Tellez

Microsoft Corp.

Web UI Automation – A Browser

Agnostic harness for Web UI Testing

371

Implementation (shown in pseudo code)

//Create browser control object , browser

browser = new Browser()

//navigate to live.com

browser.Navigate(“http://www.live.com”);

//try to find the expected search result

browserInput input = FindInputElement(“www.thecatsite.com”);

//verify the search result

If (input == null)

LogFailure

Else

LogSuccess

Input.Click

Browser.Close()

Existing Solutions

 Microsoft has a significant number of test teams writing website automation. We define

website automation as the ability to programmatically control a website and verify

content of the website. We found that most solutions fell into one of three buckets:

Record and Playback methodologies, JavaScript solutions, and UI Automation based

solutions.

The characteristics of these solutions appear below:

Record and Playback

1. Advantages

� Easy to record a script. Just Point and click. A script of all user input

is created automatically from the recording.

2. Disadvantages

� Different scripts need to be recorded for different browsers. This

type of approach is definitely not browser agnostic.

� A slight change in the UI requires scripts to be re-recorded. Thus,

recording tasks must be duplicated for each UI revision.

JavaScript

1. Advantages

� Low level DOM(Document Object Model) access.

� No special development environment required other than cscript.

Notepad is the editor of choice.

2. Disadvantages

� It is generally harder to debug JavaScript than it is to debug higher

level languages. We need the ability set break points for failure

investigation instead of relying on print statement debugging.

� JavaScript is procedural language vs. object-oriented which in our

experience we have observed naturally caters to UI automation).

372

UIAutomation

1. Advantages

� Provides extremely low level access to all controls on the window.

� Fast and reliable.

� .Net classes available in System. Automation

2. Disadvantages

� Different browsers have different automation ids for the same

control. In fact, the programmer has no control over the

automation id. Browser agnostic tests would not be possible here.

We found that no single solution satisfied all our requirements. Thus we decided to

produce a custom harness. The design of the harness is detailed in the next section.

Design

History

Our test team does leverage existing tools when possible. Prior to the proposed web

based management solution, our team worked on traditional windows software. Our

team developed DFS (Distributed File System) Management Console, Share and

Storage Management Console, and some other management applications on

Windows Server 2008. From our prior work in UI automation, we had a UI automation

harness. The harness was designed with extendibility in mind. It provided a skeleton on

which to build the new web automation harness. Building off the existing harness

allowed our new tests to have an identical structure to our non-web based tests and

allowed us to reuse code for common functions like logging.

Our existing harness was designed to allow users to mix and match back end

automation techniques. Thus the browser agnostic web automation harness was a

natural extension and did not involve any re-design work. We designed two new plug

and play components for dealing with Firefox and IE7. At runtime, the harness loads the

desired plug and play component depending on the browser being tested and from

there the harness uses the loaded plug and play component to control the browser.

Additionally, our current harness is .Net based (C#). Test development and debugging

can be done in MS Visual Studio. Being implemented in a high level object oriented

language makes it accessible to a wide developer audience.

373

The harness has two main layers. They are the Test Case Layer and the External layer.

(Please see Figure 1 for a block diagram of the layers.)

The TestCase layer provides several static classes such as a logger, an environment

mapping resolver for running in particular machine/domain environments, a resource

manager for providing support for running the tests in different locales, and a

performance monitor for collecting performance statistics. It also provides several

dynamic classes for dealing with user interfaces. This is the layer at which we added an

extension to allow test cases to control the browser.

The External Layer level provides specific control to particular browsers such as IE7 and

Firefox. It is at the external layer where we added the plug and play components to

control IE7 and Firefox. When we say plug and play, we are indicating that each

component will implement the same interface. In this way, the objects in the test case

layer can instantiate the objects in the external layer and use them interchangeably to

achieve browser agnostic behavior. The test developer deals with the objects in the test

case layer only and is unaware of which plug and play component has been loaded.

He/she simply calls into the test case layer objects which handle the communication to

the external layer component.

Comparison to Existing Approaches

The following chart shows how our design compares to the existing approaches to web

automation mentioned above,

Browser

Agnostic

Low level

access to all

controls

Debugging

capabilities

Object

oriented

Special Dev

environment

Resilient to

UI changes

Requires

custom

programmin

g

Record &

Playback

NO NO YES NO NO NO NO

Javascript
YES YES NO NO NO YES YES

UIAutomatio

n

NO YES YES YES YES YES YES

Our harness
YES YES YES YES YES YES YES

Structure

The harness is structured such that a test case derives from the BaseUITest class which

derives from the TestCaseBase class. This object oriented approach allows the tester to

immediately have access to pre-existing functionality such as logging, environment

management for running in different machine/domain settings, resource management

for localization testing, performance monitoring for tracking runtime statistics such as

memory usage and CPU utilization, test data management, and other areas. The tester

can extend or override existing code in order to implement the test case. The test

developer can instantiate or use any of the provided objects. For today’s discussion, we

will discuss Browser classes which are used to control and test the website. Recall that

the test developer is not aware of the particular browser being tested. The developer is

only dealing with an object that wraps common browser functionality. The browser

objects are DOM-like meaning that the test developer who is familiar with DOM will be

very comfortable with these classes.

374

Design Diagram (Figure 1)

TestCase Layer

(objects shown are available for your test case code to use (if static) and to instantiate. Your test case should derive from BaseUITest

to automatically initialize the static objects)

BaseUITest

(derives from TestCaseBase in

Base Harness, your test case

would derive from this class)

Internet Explorer
Applications such as DFS

Management.msc,

Storage

Management.msc, etc

IELayer UIAutomation

External Layer

FireFox browser

Firefox Layer (Ajax Layer)

Web Site

#1

Web Site

#2

Application control

Object Instantiation

ObjectFactory

(static object, instantiates objects in the external layer as

needed)

Static Objects Dynamic Classes

Waiter Classes UI Control Classes

Application Classes

Browser Classes

Utility Classes

ResourceManager

EnvrionmentMappingResolver

LoggingHelper

Performance

XmlConfigurationManager

Object Instantiation and return

of external layer interface object

Control of external layer

object via interface pointer

From a tester’s vantage point, he derives a single class from BaseUITest and then uses

any of the static objects and instantiates any other object as needed in the test case

layer in order to write the test case code. Note, the test case code doesn’t know

anything about the target browser. The harness handles the target browser.

375

Implementation

Test case layer – Browser Objects and the Object Factory

The test case resides in the test case layer and can instantiate any existing test case

layer object or use any available test case layer static object. In the case of website

testing, these are the Browser Objects. The Browser objects call into the corresponding

external layer (either IE or FF) to control the specific browser. The tester and his code are

blissfully unaware of the browser they are running on as all of the browser

communication is abstracted away.

There are two factors that make the abstraction possible. The first factor is that the

browser object creates an instance of the corresponding External layer object and

caches that object. The object that the test case layer caches is actually an object

implementing an interface. In other words, we have an interface pointer. Secondly, the

test case code calls into the browser object and then the browser object calls

corresponding methods in the external layer interface object. Since the IE layer and FF

layer implement the same interfaces, how the corresponding external layer talks to the

particular application/browser is of no concern to the test case layer.

Several selected TestCase layer browser objects are described below and related back

to Scenario 1. Appendix A shows a complete listing of objects and their methods and

properties.

BaseBrowser

The responsibility of this class is to instantiate the external layer’s browser object and to

call methods of the external layer browser object. By instantiating the external layer

browser object, the browser window is actually displayed. For example, the constructor

is defined as:

Method 1

public BaseBrowser()

{

 m_Browser = CObjectFactory.CreateObject(OBJECTID.CUIharnessBrowser)

as IUIharnessBrowser;

}

Here you can see that we call into the object factory. The object factory (see

below) takes an object id; in this case, the CUIharnessBrowser and it returns an

interface point to IUIFramworkBrowser.

376

Relating to Scenario 1, instantiating this object opens the browser (either FF or IE7

depending on the external layer being used). The test case code to instantiate

this object is,

Browser browser = new Browser();

The test developer is then free to call methods in this class such as:

Method 2

public bool Navigate(string URL)

{

 bool bRet = m_Browser.Navigate(URL);

 Refresh();

 MainWindow.BringWindowToTop();

 MainWindow.Maximize();

 return bRet;

}

Here, we call the external layer object’s Navigate method. After navigation is

complete we call the browser’s refresh method (Note, refresh in this context

means to clear any cached items the browser object may have and re-

instantiate them on an as needed basis).

Relating to Scenario 1, the test case code would call,

Browser.Navigate(http://www.live.com)

Or,

Method 3

public BaseBrowserElement ElementFromCond(IBaseBrowserCondition cond)

{

 BaseBrowserElement elRet;

 foreach (BaseBrowserDocument doc in Documents)

 {

 elRet = doc.RootElement.FindDescendant(cond);

 if (elRet != null)

 {

 //set the refresh condition for this element (tells how the

element was found)

 elRet.RefreshCondition = cond;

 return elRet;

 }

 }

 return null;

377

}

Here, we search all Documents in the browser for elements matching a particular

condition. In the case of Scenario 1, we are looking for the element with an href

equal to http://www.thecatsite.com/. The test case code for finding this element

is,

BaseBrowserElement element = browser.ElementFromCond(new

BaseBrowserCondition(“href”, http://www.thecatsite.com)

BaseBrowserElement

The responsibility of this class is to provide methods for the test case so that it can

interact with the html element on the web page. A constructor is shown below. It takes

as input an element id and the BaseBrowser containing the element. It finds the

element using the browser object’s ElementFromCond method and caches the

corresponding external layer object. Method 2 shows how the cached object is used

to click on the element.

Method 1

public BaseBrowserElement(string elId, BaseBrowser browser)

 {

 m_Browser = browser;

 m_RefreshCond = new BaseBrowserCondition("id", elId);

 m_Element = browser.ElementFromCond(m_RefreshCond).NativeObject;

 }

 Method 2

public virtual void Click()

{

 if (Browser.UseDOM) //using DOM (Document Object Model) methods

 {

 m_Element.Click();

 return;

 }

 Point pt = new Point(BoundingRectangle.X +

BoundingRectangle.Width/2,

 BoundingRectangle.Y + BoundingRectangle.Height/2);

 BaseUIObject obj =

BaseUIObject.UIObjectFromPoint(Browser.MainWindow, pt);

 obj.Click(pt);

}

378

This method shows two things. First, it shows we are calling the external layer

element’s click method if a flag is set. Also, it shows that if we do not want to call

the external layer’s method, we can click on an element directly using

UIAutomation if we can find the element’s (X,Y) position. Since the external layer

element gives us this, we can retrieve the UIAutomation object from its

coordinates and click it via UIAutomation.

Relating to Scenario 1, the test case code call to click on the element is

Element.Click()

Scenario 1 implementation (Test Case Code)

The follow code is test case code. It shows how the tester would call into the testcase

layer browser objects in order to implement scenario 1.

Browser browser = new Browser();

Browser.Navigate(http://www.live.com)

BaseBrowserElement element = browser.ElementFromCond(new

BaseBrowserCondition(“href”, http://www.thecatsite.com)

If (element == null)

LoggingHelper.LogFail(“Unable to find www.thecatsite.com”);

Else

{

LoggingHelper.LogInfo(“Successfully found the link”);

Element.Click();

Browser.WaitForDocumentComplete();

//Do some additional validations here

LoggingHelper.LogPass(“Successfully clicked on the element

and went to website”);

}

Browser.Close();

Creating the Desired External Layer Object

Up to this point, we have just assumed that the test case layer is able to pick out the

desired external layer and instantiate objects on it. There are two methods that can be

used to help the harness load the correct external layer dll. If a specific known external

layer dll is desired, the test can specify it using xml. Otherwise, the harness scans all of

the dlls in the current working directory until it finds the first dll that contains certain

methods and attributes (see illustration below).

External layer objects are created using an object factory. The harness provides a

preset list of object ids (for example, OBJECTID.CUIharnessBrowser). The test case layer

passes the object ids into the object factory of the external layer dll. If the external layer

dll can create an object with the particular id, it attempts to do so, otherwise it returns

null and the next external layer dll is queried. This can be viewed as follows:

379

Figure 2

ObjectFactory

public static object CreateObject(OBJECTID objid, params object[] args)

UIAutomation.dll

(Shown with code snippet from the CObjectFactory class)

ObjectFactory]

public sealed class CObjectFactory

{

…

[CreateObject]

public static object CreateObject(OBJECTID objid, params object[] args)

{

switch (objid)

{

…

case OBJECTID.CWindowOpenedWaiter:

if (args.Length == 0)

return new CWindowOpenedWaiter();

return new CWindowOpenedWaiter(args[0] as CUICondition);

…

default:

return null;

}

}

Notes, CWindowOpenedWaiter implements an interface, the testlayer can cast the

returned object to the interface and call the methods implemented for the interface.

Likewise, all other objects that this dll creates will implement specific interfaces that the

test layer can use.

IELayer.dll or AjaxLayer.dll

(Shown with code snippet from the CObjectFactory class)

ObjectFactory]

public sealed class CObjectFactory

{

…

[CreateObject]

public static object CreateObject(OBJECTID objid, params object[] args)

{

switch (objid)

{

…

case OBJECTID.CUIFrameworkHTMLInputElement:

return new CUIFrameworkHTMLInputElement(args[0] as IHTMLElement);

…

default:

return null;

}

}

Notes, CUIFrameworkHTMLInputElement implements an interface. The testlayer can

cast the returned object to the interface and call the methods implemented for the

interface. Likewise, all other objects that this dll creates will implement specific

interfaces that the test layer can use.

Other

external

dlls

Enumerates all dll’s in the working folder or uses a specific provided search list in an xml file of dlls. Uses reflection to determine if

the dll supports a class with the ObjectFactory Attribute and the class has a method with the CreateObject attribute. If so loads the

dll and calls the CreateObject method with the object id and params. Successivly calls all of the dlls having this structure until one of

the dlls returns an object (not null).

380

External layers

We have currently implemented two external layers for web testing. We will discuss the

IE external layer first because it is significantly less complicated than the Firefox Ajax

layer. It controls IE7 using ieframe.dll and mshtml.dll (installed with IE7) to talk directly to

the browser. The specifics of these dlls are found in the references section. Briefly, the

dlls are used in conjunction with each other and provide the programmer with an

implementation of the DOM. The Firefox layer, on the other hand, uses a brokered

approach whereby the FF layer talks to a web service running on the same site as the

web application being tested. The web service commands and sends data directly to

and from a JavaScript frame. The JavaScript frame then controls a second frame

containing the website to be tested. Both layers are discussed in detail below and

Appendix B shows the interface definitions that both layers implement.

IE Layer

As indicated above, IE layer uses ieframe.dll and mshtml.dll. Since the code is

implemented in C#, we created interop dlls around these native dlls.

Several selected methods of the browser object of the IE layer objects are presented

below.

Method 1

public class CUIharnessBrowser : IUIharnessBrowser

public CUIFrameworkBrowser()

{

Initialize(true);

}

private void Initialize(bool bVisible)

{

 m_IEC = new InternetExplorerClass();

 //make the browser visible

 m_IEC.Visible = bVisible;

 //create a document complete handler

 m_IEC.DocumentComplete +=

new

DWebBrowserEvents2_DocumentCompleteEventHandler(DocumentCom

pleteHandler);

 //create an event to signal when the document is completely

//loaded

 m_DocLoaded = new AutoResetEvent(false);

}

381

Here, we are creating an instance of InternetExplorerClass using ieframe.dll in the

shdocvw namespace. This effectively loads Internet Explorer. We then attach an event

handler for the document complete event. The document complete handler looks like,

Method 2

private void DocumentCompleteHandler(object pDisp, ref object

URL)

{

 if (m_IEC.ReadyState == tagREADYSTATE.READYSTATE_COMPLETE)

 {

 //set the document done event

 m_DocLoaded.Set();

 }

}

Method 3

Corresponding to the navigate method in the test case layer, there is an equivalent

method in the external layer.

public bool Navigate(string URL)

{

 //dummy parameters for the IE object

 Object obj1 = null,

 obj2 = null,

 obj3 = null,

 obj4 = null;

 m_URL = URL;

 //call the IE objects navigate method with the url and dummy

//params

 m_IEC.Navigate(m_URL, ref obj1, ref obj2, ref obj3, ref

obj4);

 //wait for the document to complete

 WaitForDocumentToComplete();

 return true;

}

382

Ajax Layer for Firefox

We chose a slightly more complex approach for the Firefox implementation. As

mentioned above, this layer uses a brokered or indirect approach to automate the

Firefox browser. Essentially the methods in this layer query and command a web service

running on the same site being tested. The web service receives the commands and

executes those commands in a frame executing JavaScript. The JavaScript then directs

the commands to a second frame (in the same frameset) hosting the website being

tested.

Why did we use this approach? Although Firefox provides an XPCOM interface, we did

not want to rely on external components for the automation. Also, we were creating a

prototype to be later extended to other AJAX enabled browsers such as Safari, Opera,

etc. on windows platforms.

Why not just use this same approach for IE7? The answer is simply that the IE layer

provides superior performance. This layer, though extremely effective in automating

Firefox, has shown itself to be significantly slower than the IE layer implementation.

Typically, our IE layer tests run two to four times faster.

Let’s look at an example to understand this process. Our example will focus on a test

case that clicks the search button on http://www.testwebsite.com. Note that

testwebsite.com lives on a server along with our web service and the browser is hosted

on a different machine altogether.

TestWebsite.com Example Test Case Code

BaseBrowser b = new BaseBrowser(); //causes Step 1 to occur in the

//sequence list below

BaseBrowserButton button = b.ElementFromId(“Button”);

//The following statement will perform the

//sequence listed below.

 //The command will be sent via webService(2)

 //and then fed to the ajaxdriver.aspx (3)

 //which will execute the command (4)

 //and return the results (5)

 //The sending and receiving of commands is

 //coded inside the firefoxlayer and thus

 //has no impact in the test code

button.Click()

Corresponding Sequence of Actions in the Ajax Layer:

Test Machine with browser Website and Web service Host

1. An instance of the appropriate

browser (Firefox.exe) is created via

383

new BaseBrowser constructor call.

During initialization the browser will

automatically request the main

frameset from the server, which will

leave it polling for commands. The

main frameset will load by default

http://www.TestWebsite.com in the

second frame.

2. When the test calls a button.Click()

method, the call will pass through

the harness and finally to the

AjaxBrowserLayer which will invoke

the “ExecuteCommand” function

of the Web Service.

 2. The “ClickButton” command is

enqueued

 3. On the next poll slot (the

webservice is sequentially polling for

commands and subsequently

executing those commands),

AjaxDriver.aspx (part of the

JavaScript engine) invokes the

GetNextCommand() from the Web

Service using the Ajax auto

generated JavaScript proxy. It

receives the command to click

button (elements are identified with

an HTML element id).

 4. AjaxDriver.aspx finds the

appropriate object on its sibling

frame (the page under test) and

through its DOM clicks the button.

 5. The AjaxDriver returns the Web

service’s response to the

AjaxBrowserLayer.

384

Pictorially (shown with the above step #s)

Figure 3

It is important to keep in mind here that this process is self contained in the Firefox Ajax

Browser external layer. The test case code knows nothing about this entire process. It is

just calling the same interface methods that it would call if the IE Layer were being

used.

Client Machine

AjaxDriver.aspx

TestPage.aspx

FireFox.exe

UIHarness

WebServer

http://server/testapp

WebService.asmx

• AjaxDriver.aspx

• TestPage.aspx

• Scripts (.js)

• Frameset.htm

• GetNextCommand()

• AddCommand(Command)

• GetBrowserInfo();

2

3

4

1

Client Machine (hosts browser and test

AjaxDriver.aspx

TestPage.aspx

FireFox.exe

AjaxBrowserLayer

WebServer (hosts website and webservice)

http://server/testapp

WebService.asmx

• AjaxDriver.aspx

• TestPage.aspx

• Scripts (.js)

• Frameset.htm

• GetNextCommand()

• AddCommand(Command)

• GetBrowserInfo();

2

3

4

1

WebUI Harness 5

385

Examples

Example 1 – Scenario, Test Case Data, and Test Case Code

We will be navigating to an external website and then finding the text area with a rows

attribute of 10 and columns attribute of 30. We will then enter the text ‘abcd’ into the

text area.

Example test data comes from the xml snippet given below. Note, the test case code

will use the XmlConfigurationManager object to read the xml file data.

 <Test Enabled="true" Name="Test1" Description="text area test">

 <Steps>

 <Step Descr="Navigate to URL" Name="Step1" >

 <Action Type="URL" Value="http://www.w3schools.com/html/showit.asp?filename=tryhtml_textarea"/>

 </Step>

 <Step Descr="Enter text and click button" Name="Step2">

 <Action Type="TextArea" Id="rows,10*cols,30" Value="abcd" />

 </Step>

 </Steps>

 </Test>

Example code to do this looks like:

//create a browser condition in order to find the element

IBaseBrowserCondition icond = ConditionFromId(strId);

//switch based on type of element

switch (strType.ToUpper())

{

 case "URL":

 Browser.Navigate(strValue);

 break;

 case "TEXTAREA":

 {

 BrowserTextArea iTA = Browser.ElementFromCond(icond) as

BrowserTextArea;

 BrowserElementPropertyChangedWaiter wt = new

 BrowserElementPropertyChangedWaiter(iTA, "innerText", strValue);

 iTA.Text = strValue;

 wt.Wait();

386

 break;

 }

}

//create a browser condition from the id given in the xml file

IBaseBrowserCondition ConditionFromId(string strId)

{

 //strId will be a set of attr,value pair: attr1,val1*attr2,val2*...

 string[] strPairs = strId.Split('*');

 //split at the comma

 int iIndex = strPairs[0].IndexOf(",",

StringComparison.OrdinalIgnoreCase);

 string strAttr = strPairs[0].Substring(0,iIndex);

 string strValue = strPairs[0].Substring(iIndex + 1);

 IBaseBrowserCondition retCond = new BaseBrowserCondition(strAttr,

strValue);

 //for each condition after the first one, And it with the existing

//condition

 for (int i = 1; i < strPairs.Length; i++)

 {

iIndex = strPairs[i].IndexOf(",",

StringComparison.OrdinalIgnoreCase);

 strAttr = strPairs[i].Substring(0, iIndex);

 strValue = strPairs[i].Substring(iIndex + 1);

 retCond = retCond.AndWith(new BaseBrowserCondition(strAttr,

strValue));

 }

 return retCond;

}

How do we actually switch between browsers?

All of our test dlls have a corresponding test xml file as shown above. There is a section

in each xml file indicating the external layers. The browser under test is switched by

switching the external layer assembly listed in the xml. The base class, TestCaseBase,

automatically loads the desired external layer. The test developer only needs to include

the xml below to select the desired browser.

To run Firefox:

 <ExternalLayerAssemblies>

<ExternalLayerAssembly>.\FirefoxLayer.dll</ExternalLayerAssembly>

 <ExternalLayerAssembly>.\UIAutomationLayer.dll</ExternalLayerAssembly>

 </ExternalLayerAssemblies>

To run IE7:

387

Future Directions and Possibilities

The web harness was developed to provide a vehicle for developing an automated

regression suite on a product that does not currently make use of rich web applications

by using SilverLight or AdobeFlash. In today’s internet the penetration of these

technologies is increasing substantially and because of that it is a feature that we

would like to implement in the next version of the harness. How might we extend the

harness to support plugins? In the flash case, we could develop a flash browser object

in the test case layer. Then, in each of the external layers, we would implement a class

that would control the corresponding flash plugin. If the plugin happens to be the

same plugin on both browsers, we could simply implement a test case layer object with

no underlying external layer object.

Currently the test harness is implemented to run on the Windows platform. But the

concept can be applied on non-windows platforms as well.

We mentioned earlier that the harness can be extended to support other browsers or

even different versions of the same browser. Let’s suppose that we have the need to

test on IE7 and prior versions. If the current IE layer is not compatible with prior versions,

we would only need to write another external layer to support the earlier versions. If we

have the need to test on other browsers such as Safari or Opera, it would just be a

matter of writing new external layers.

References

For further learning, please visit the following websites:

Topic URL

MSHTML http://msdn.microsoft.com/en-us/library/aa741317.aspx

UIAutomation http://msdn.microsoft.com/en-us/library/ms747327.aspx

WebBrowser

control

http://msdn.microsoft.com/en-us/library/2te2y1x6.aspx

XPCOM http://www.mozilla.org/projects/xpcom/

 <ExternalLayerAssemblies>

 <ExternalLayerAssembly>.\IELayer.dll</ExternalLayerAssembly>

 <ExternalLayerAssembly>.\UIAutomationLayer.dll</ExternalLayerAssembly>

 </ExternalLayerAssemblies>

388

We have found that our test automation development time is now cut by more than

half as the test code is browser agnostic. In fact, if we did not have this browser

agnostic approach we would need to manually test Firefox. Manual testing isn’t

generally repeatable and we might miss regressions specific to a particular browser.

The coding time is further cut down due to the object oriented nature of the harness.

We are currently using our harness to develop test automation for a storage

management web UI. We will use the harness for this and future versions. Additionally,

our division is developing other storage solutions that are web based and the harness

will be used for automation here.

We plan on extending this harness to include support for other browser such as Safari

and Opera.

Overall, the development process has been a great learning experience for us and will

have a significant impact on the quality of our solutions as we can run test automation

on many different browsers with minimal effort.

Conclusions

389

Appendix A – Browser Objects

390

391

Note, we have BrowserButton, BrowserTextArea, and BrowserInput which are just

renaming BaseBrowserElement.

392

393

Appendix B

public interface IBaseBrowserCondition

{

 IBaseBrowserCondition AndWith(IBaseBrowserCondition cond);

 IBaseBrowserCondition OrWith(IBaseBrowserCondition cond);

 IBaseBrowserCondition Negate();

 bool Matches(BaseBrowserElement el);

}

public interface IUIharnessBrowserDocument

{

 Object NativeObject { get;}

 IUIharnessHTMLElement activeElement { get;}

 List<IUIharnessHTMLElement> getElementsByTagName(string strTagName);

 IUIharnessHTMLElement getElementById(string strId);

}

public interface IUIharnessHTMLElement

{

 Object NativeObject { get;}

 void Click();

 List<IUIharnessHTMLElement> Children { get;set;}

 string TagName { get;}

 string id { get;}

 string ClassName { get; set;}

 string Name { get; set;}

 string Text { get; set; }

 IUIharnessBrowserDocument Document { get;}

 IUIharnessHTMLElement parent { get;}

 string InnerText { get; }

 string InnerHTML { get; }

 string OuterHTML { get; }

 object GetAttribute(string strAttrName);

 Rectangle BoundingRectangle {get;}

 Rectangle BoundingClientRectangle { get;}

}

public interface IUIharnessBrowserElementChangedWaiter

{

 void Wait();

}

//******* The following interfaces are place holders

public interface IUIharnessHTMLTextArea : IUIharnessHTMLElement

{

}

public interface IUIharnessHTMLInputElement : IUIharnessHTMLElement

{

}

public interface IUIharnessHTMLButtonElement : IUIharnessHTMLElement

{

}

//**

public interface IUIharnessHTMLSelectElement : IUIharnessHTMLElement

{

 void SelectItem(string strItem);

394

 int SelectedItem { get;set;}

}

public interface IUIharnessBrowser

{

 bool Attach(System.IntPtr hwnd);

 Object NativeObject { get;}

 void WaitForDocumentToComplete();

 void WaitForDocumentToComplete(int timeout);

 IUIharnessBrowserDocument Document { get;}

 bool Navigate(string URL);

 bool NavigateAndAuthenticate(string URL, string domain, string UserName, string Password);

 void Refresh();

 IUIharnessHTMLElement ElementFromId(string strElementId);

 IUIharnessBrowserDocument DocumentFromElement(string strElementId);

 List<IUIharnessBrowserDocument> Documents { get;set;}

 bool Visible { get;set;}

 IWindow MainWindow { get;}

}

395

396

The Tao
1

 of Software Defect Testing and Estimation

Scott Martin

The Regence Group

sdmarti@regence.com

James Eisenhauer

The Regence Group

jreisen@regence.com

About Scott:

Scott D. Martin currently works for The Regence Group as a Performance Analyst for the

Regence Information Technology Services (RITS) division. Mr. Martin has over 16 years of

multi-level collaborative experience across a broad range of industries and employers which

includes two Fortune 100 companies (Raytheon and Hewlett Packard), and two large

international companies (Japanese-based Kyocera and German-based Infineon Technologies).

Over his career, Mr. Martin has won repeated recognition for his work constructing a variety of

forecasting and trending models, mapping process workflows and quantifying product

contribution margins, improving supplier quality and enhancing corporate workforce

performance through orchestrating broad behavior-based performance reforms.

Scott has earned an MBA from Portland State University, a BS in Business from the University

of Oregon and a BA in Management from George Fox University.

About James:

James R. Eisenhauer currently works for The Regence Group as a Software Process and Quality

Analyst. Prior to Regence, James was a Sr. Software Architect at Lockheed Martin Information

Technology, and was the driving force behind a progressive software solution approach to IT

Service Delivery and Governance.

During his tenure at Lockheed Martin, James was the lead consultant on many application

architecture and software process engagements with major clients that included; Nike Inc,

Goodyear Tire & Rubber, Symetra Financial, Department of Homeland Security, and the United

Negro College Fund.

He holds a Master's of Business Administration (MBA) from the University of Tampa, Six

Sigma Green Belt, ITIL Certification, ISO Auditor and a certificate of Software Engineering

from the Oregon Graduate Institute School of Science and Engineering.

1

 Defined via Google search (i.e. “define: Tao”) www.Summerjoy.com defines Tao as “The all that is” and

www.Buddhanet.net. defines Tao as “The way”.

397

Abstract

Webster defines the act of estimating as “1. A rough or preliminary calculation, as of work to be

done. 2. An opinion: judgment.” While this is all that is defined in theory, in practice, when

millions of project dollars are at stake, estimating requires the focused efforts of its end users

(stakeholders) and a great many subject matter experts (SMEs).

This paper will explore the collaborative process as it unfolded for two Regence analysts tasked

with building a model that estimates the completion date for the software testing cycle. Neither

analyst had a clear view of the path forward, but through collaboration began to: define the

problem, identify the limitations (of both the techniques employed and the data available) and to

construct a defendable model that the senior leadership team could confidently present to its

board of directors. The many problems encountered and limitations to implementing ideal

solutions are chronicled along with the authors’ experience-based recommendations for readers

facing similar challenges in their own profession.

Much has been written on the subject of software development and testing by noteworthy

authors. As such, it is not the authors’ intent to expound or refute the validity of their work.

Rather, the intent is to inform the reader of the understated complexity involved in building

software testing models, to share some of the limitations we discovered are inherent in all

models, and to encourage a collaborative approach among the in-house talent of their

organization to produce a useful estimating model.

Copyright

Copyright © 2008 • The Regence Group • All rights reserved

398

1 Introduction

It was a mild summer afternoon when the rote tasks assigned to me as the new performance

analyst were nearing completion. Without warning, I (Scott) was whisked away to my

director’s office and joined by one of her peers (a vice president). “We have a project for

you,” he stated as a host of curious staff groupies encircled me. “Predict with some level of

accuracy how many defects will be found and corrected in our current software development

and testing process and when that effort will end.” I recited the project’s scope for clarity,

adding, “sure” and looking confident. “Work with whomever you need,” he added, “and try

to have something for me by Monday to review.” It was a Thursday. I returned to my desk

confident in my new purpose, having constructed predictive models before (both in graduate

school and within the high-volume high-tech manufacturing industry), but this was software

development, and already I sensed that it was different…

2 The Problem

Uninitiated in the ways of software development, my first task was to understand and define

the development and testing steps involved in “manufacturing” software prior to production.

Once the steps were defined, including the distributions of each testing step, estimating a

completion date would be a matter of simple addition. To quantify the current performance of

the division’s testing process I planned to use techniques and descriptors borrowed from the

high-technology manufacturing sector like Little’s law
2

 and flow factor
3

, respectively.

As I began to familiarize myself with software development projects, I learned that no two

software development projects are alike. Each project is different from the last and “defects”

occur randomly with varying complexity throughout the process. In this case, the software

development project began over a year ago, with some design features (known as functional

specifications) entering the Integration Technical Testing (ITT) sequence 8 months later. The

project employed over 100 Subject Matter Experts (SMEs), with over 40 integration and

performance testers running more than 50,000 acceptance test cases. Like the software

development projects before it, very little information was available on past projects that

related in a useful way to the new project, but the need to coordinate project delivery with

sales and government filing requirements was a constant. So there it is, the “gift” given to the

new guy to solve. I was stuck between the absence of useful historical data with which to

construct a testing timeline (think “rock”) and the need to set target delivery dates for

management (think “hard place”).

Finding no software superhero cape and tights in my bag of tricks, I sought a collaborative

alliance with anyone who had more knowledge than I on the topic of software development

and testing. After enduring many a theoretical rant from well-meaning, but nonetheless

would-be collaborators, I finally met a capable insider with a big picture view who saw the

problem as a classic one. Jim Eisenhauer works as a Software Process and Quality Analyst

and explained that this problem is well documented in books such as the “Mythical Man

2

 Little’s Law is defined as “Dynamic Cycle Time (DCT) = Work in process (WIP) / “Go Rate” (GR)

3

 Flow factor is defined as “Cycle Time (CT) / Raw Process Time (RPT)

399

Month” and remains an ongoing issue among all software development and testing projects. I

began reading the book, and Jim and I began a collaborative effort to construct a useful

software testing defect prediction model.

3 Collaborative Evolution

My original intent required only minimal collaboration with others to define the software

testing steps of the associated features, known as “functional specifications”
4

 (FS), and to

assign historically related times to each process step. However, the need to involve others

increased significantly with the absence of useful historic data. In addition, development

projects with over 1,400,000 lines of code (1,400 KLOC) and more than 50 functional

specifications, such as ours, are complex and need to be analyzed in the most efficient

manner possible. Jim’s involvement added the researching resources and efficiency to forge a

new estimation method for such a complex task.

We began our effort by inquiring if any predictive models were being used that we could

adopt, leverage, or build upon. We discovered that the Application Development (AD) group

used a predictive model based on the COnstructive COst MOdel (COCOMO) methodology

to predict their testing duration, so we met with them to learn what we could. In reviewing

their model we learned that they applied known industry averages, such as defect density per

thousand (K) Lines Of Code (KLOC), and relied heavily on internal expert opinion for the

model inputs.

After analyzing the results of their model, with its use of benchmark and qualitative inputs,

we discerned that the completion dates and progression rate it produced were very different

from what was planned and what we knew to be true respectively. For example, the AD

group’s model used a percentage of the known development time to estimate the testing

duration. Specifically, they assigned an additional 20% of the time it took to develop the

software to ITT and another 20% to user acceptance testing (UAT), but those figures

produced an end date that was surpassed months ago.

Though the model was inadequate for our needs, we didn’t leave empty handed. In meeting

with them we observed that they were diligently measuring and recording the lines of code

produced and that knowledge later proved very useful.

Next we adopted a somewhat broader view and assumed that if we couldn’t construct the

process steps and populate them with historic data, then perhaps we could construct a ratio of

the defects discovered for each completed FS and apply it to the remaining FS to be tested.

In essence we would be solving for a testing end date of “x” from a ratio of the defects found

per completed FS
5

. To accomplish this we elicited the aid of the Testing Management group,

which is responsible for conducting ITT and UAT testing. The testing group was invaluable

in providing the testing status of each FS (because each varies in complexity) and the number

of defects encountered thus far. With the data they had available we were able to apply ratios

to the remaining FS (assuming the same distribution of FS complexity) to determine how

many defects remained and approximately how long it would take to resolve each.

4

 Functional Specifications are a design category that describes the intended software feature to be built.

5

 Calculated as “Forecasted end date = (Number of Defects Discovered / Completed FS) * Remaining FS).

400

Unknown to us at the time was the fact that we had only found approximately 22% of the

total defects to be discovered by project end. As such we observed that the ratios produced

by this approach varied significantly due to the limited testing history (small sample size).

While the ratios do attain some accuracy near the very end of the project, they are highly

suspect at the beginning of the project. Post project analysis later revealed the inaccuracies of

this method. (See Chart 1.)

Chart 1.

UAT Defect Prediction vs Post Project Defect Count

200

400

600

800

1000

1200

1400

1600

4/29 5/13 5/27 6/10 6/24 7/8 7/22 8/5 8/19 9/2 9/16 9/30 10/14 10/28 11/11 11/25

#

o

f

D

e
f
e
c
t
s

Post Project Defect Count Ratio Prediction

Post development testing efforts, we learned, are like FS development projects. They deviate.

Often, defects found in testing make repeat trips through different parts of the testing

sequence after a “fix” is implemented (very similar to “rework” in manufacturing). Knowing

where each rework effort begins within each testing sequence (what point in ITT or UAT) is

key to predicting future testing times, but that iterative information, like the prior

development histories, was not available.

It soon became clear that piecing together a predictive model by summing the process parts

or grouping similar product features (functional specifications) was also not viable because

first-time build efforts lack a detailed historical reference.

We also recognized that, despite the size-based complexity of the build project, at the core

we essentially had three problems associated with the testing phase that we needed to solve:

 1. How many defects remain?

 2. When will they be found?

 3. How long will it take to resolve each defect?

401

We addressed each problem in a unique way. The total number of defects was estimated

using a KLOC-based ratio (the value of which we learned during our visit with the AD

group). From that estimate of the total defects to be found, we subtracted the defects we had

already found in order to obtain the number that likely remained.

The average defect discovery rate was an average of the sum of defects discovered each week

and provided some insight into how rapidly we would find the defects we anticipated.

The average defect resolution rate was an average of the sum of defect resolutions, and was

also tallied each week. This number would provide the final time period we would attach to

the last known defect to estimate the testing completion date.

Although our predictive model was using a somewhat arbitrary number for the total number

of anticipated defects, the discovery rate and resolution periods were based on actual

performance, and we had a method. In short, adding the defect discovery period (total defects

anticipated divided by the average defects discovered each week) to the average defect

resolution period, will find the completion date. (See Illustration 1. below)

Illustration 1.

Although this was a good start, the model had a number of limitations. One limitation was

that the model was static. It used a fixed defect discovery and resolution rate that could not

account for efficiency improvements (as the development and testing teams became more

familiar with the type of defects they would discover). In other words, it assumed the same

level of performance from the current level to the end of the project, when in fact there would

be improvement gains along the way. In addition, for any average to be useful it must relate

to the same set of variables within its population, apples to apples, oranges to oranges. In our

case all testing resources needed to stay constant, with no loss of key skills or reassignment

of individuals from one week to the next. We acknowledged this was not the case in practice

and accepted that we could do little about it without developing a more complex econometric

model, which was a time-intensive endeavor beyond what both of us could commit to with

our existing work loads.

402

However, we could make the model more dynamic by using a polynomial equation (an

algebraic equation with more than one term). After a few weeks of additional data, to give

the equation more data points to work from, we tested several equations before settling on a

third order polynomial (an algebraic equation with three variable terms). This equation
6

provided a reasonable inflection point rather than a flat (linear) regression trajectory for both

ITT and UAT testing. (See Charts 2. and 3. below)

Chart 2.

 ITT Defect Discovery per Day

y = 9E-06x
3

 - 1.0465x
2

 + 41120x - 5E+08

0

5

10

15

20

25

30

35

3/27 4/10 4/24 5/8 5/22 6/5 6/19 7/3 7/17 7/31 8/14 8/28

#

o

f

D

e
f
e

c
t
s

Chart 3.

UAT Defect Discovery per Day

y = -2E-05x
3

 + 2.8929x
2

 - 113592x + 1E+09

0

5

10

15

20

25

30

35

40

5/16 5/30 6/13 6/27 7/11 7/25 8/8 8/22 9/5 9/19 10/3

#

o

f

D

e
f
e

c
t
s

6

 Obtained from MS Excel. Right-click on the data series, select “add trend line”, “polynomial”, scroll to 3
rd

 order.

403

With the addition of the polynomial equation, the forecasted completion date extended (post

inflection point), as the average weekly discovery rate declined, and the resolution period

extended as more persistent defects lingered. This approach, while more accurate in theory,

compounded the difficulty in obtaining a project completion date from week to week as the

defect discovery and resolution rates changed. This problem could be solved by using

integral calculus to find the length of the area under the polynomial curve. However, getting

Excel to perform this function would be a difficult script to write. Other applications, such as

VB or C++ are much better suited for this, but the time demands to pursue this effort were as

complex as the econometric modeling approach.

After several weeks of additional data gathering to refine our numbers, division management

pressed for results. We made several informal presentations throughout the estimation effort,

but now needed to provide a defendable completion date via a user friendly tool (GUI). We

reviewed our methodology, simplified the front-end tool and presented the polynomial model

to management.

Management was pleased with our approach and accepted our insights given the lack of

detailed historical data and both the time and resource constraints we were under in building

a more responsive model. However, in the absence of a model capable of responding to

changes in FS complexity, testing resources and retest scenarios, the CIO (a PhD. in

mathematics) insisted that we incorporate Monte Carlo Analysis
7

 (MCA) into the model. Of

course! Why didn’t we think of that?!

This was a logical request given the sum of our constraints and would provide a statistical

measure of accuracy to support the model’s conclusion if done correctly. As a graduate

student, I used MCA to predict the outcome of various investment strategies and knew that it

was well-suited for our application.

MCA essentially exposes an equation or model to random variation within a known reference

distribution (most often gathered from historical data). In our case the reference population

had a mean and standard deviation derived from just four months of testing. MCA then uses

the reference population to modulate the results of our prediction model to define a greater

range of possible outcomes.

Finding a quick way to incorporate MCA into the estimating model put us in collaboration

with the finance group who were actively using a commercial application of this statistical

tool. What we discovered, however, was that their version required qualitatively weighted

entries around anticipated outcomes (again based on internal expertise rather than statistical

data we now had available). So, in the absence of a commercially viable MCA tool that we

could simply “plug and play”, but with a good working knowledge of statistics, we

collaborated with a talented VBA programmer and created it ourselves.

7

 Wikipedia defines Monte Carlo Analysis as “a class of computational algorithms that rely on repeated random

sampling to compute their results. Monte Carlo methods are often used when simulating physical and mathematical

systems. Because of their reliance on repeated computation and random or pseudo-random numbers, Monte Carlo

methods are most suited to calculation by a computer. Monte Carlo methods tend to be used when it is infeasible or

impossible to compute an exact result with a deterministic algorithm”

404

4 The Model

Mechanically speaking, the MCA portion of the model works by creating a distribution of

individual, or iterative, results within the statistical possibility of the reference population.

While the mean and standard deviation values of the reference populations for ITT and UAT

testing are hard-coded into the model, the user must input: the KLOC value, the number of

defects discovered in the testing process thus far, and the number of MCA iterations to run.

Limiting the number of inputs was requested by management to encourage use of the tool

and to improve output consistency. We controlled the back-end calculations. (See Table 1.)

Table 1.

When the user selects “run” the model begins the first iteration by subtracting a random, but

statistically viable, number of defect discoveries from the “Remaining Defects” column and

continues to subtract a statistically viable number until the defect balance goes negative. At

that point the model records the number of subtraction events (days) and begins the next

iteration. (See Tables 2. and 3. below)

Table 2.

MCA of UAT Defect Testing

UAT Mean (Historical) x

UAT Sigma (Historical) x

of Monte Iterations 10

UAT Test Comp @ 95% C.I.

(Earliest)

x

UAT Test Comp @ 95% C.I.

(Latest)

x

C
a

p
t
u

r
e

D

a
t
e

B
i
n

a
r
y

O

u
t
c
o

m
e

Days

Remaining

Randomized

Defect Disc.

Rate

Remaining

Defects

0 1 1 4.151565498 1183.3

0 1 2 8.06270953 1175.3

0 1 3 0.505096696 1174.8

… … … … …

0 1 144 8.124268956 24.6

0 1 145 17.34453569 7.3

146 0 146 16.67944873 -9.4

Table 2. This is an example of how each

iteration was tabulated in a separate

Excel tab away from the user interface.

The programmer enters the UAT Mean

and Std Dev. Values here.

The iterations are displayed from the

user interface.

The upper and lower 95% confidence

intervals (an output) from the model’s

previous use are displayed here for

quick reference.

The “Randomized Defect Disc. Rate”

column subtracts a random number of

defects (within the parameters of the

UAT Mean and Std Dev.) from the

previous remaining defect balance.

The “Binary Outcome” column changes

states when the remaining defects go

negative, which triggers the program to

capture the total days remaining.

This MCA iteration produced an ending

date 146 days from the start of UAT

Testing.

Ratios are applied to the KLOC figure to predict a total

number of defects to be found for the project.

ITT and UAT defect discoveries were updated each

week (these numbers are for illustration purposes only)

The model can run up to 1000 iterations of Monte Carlo

Analysis, but the results change very little from running

100 iterations.

405

Table 3.

UAT Monte Carlo Iteration Data

Iterations 1-1000
Defect Det. Days Remaining

99 157

100 165

101

When all the iterations are complete the resultant distribution mimics the statistical properties of

the reference population and can be used to make statistical inferences about a completion date

as long as the mean and standard deviation of the reference population is valid.

At management’s request, we also kept the model’s output as simple as its inputs. Three key

outputs include: a project completion date, percent to forecast values for ITT and UAT and a

graph of key statistical markers for both ITT and UAT completion. The completion date is the

sum of the upper 95% confidence interval values for the UAT defect discovery and resolution

periods (from the date UAT testing began). The percent-to-forecast values are ratios of the

defects discovered to the total predicted. Finally, the graph of statistical markers for ITT and

UAT provides additional insights into the resultant MCA distribution.

Predicted Completion Date

Conditionally formatted ITT and

UAT % to completion windows

Iteration Countdown window(s)

(only active during use)

The “Run” button

ITT and UAT graphical

representation of the defects

discovered to the forecast.

The ITT and UAT defect forecast

windows

The predicted UAT testing period.

Graphs of Key statistical markers

for UAT.

Independent UAT and ITT “Run”

Buttons for testing.

Graphs of Key statistical markers

for ITT.

Note: all the statistical calculations

and MCA related tables ran on a

separate tab to minimize the size of

the interface and to simplify its use.

Table 3. This is an example of how

iterations 99 and 100 were recorded

(apart from the user interface). With the

data now in column format, the

necessary statistical calculations can be

performed with ease.

406

Today, with this software project complete, a review of the forecasts generated with 20% of the

total defects detected (approximately when the polynomial equation was added to the model)

showed reasonable accuracy. Specifically, as the model approached to within six months of the

project end, it yielded 90% accuracy at times (with reduced deviation as the project neared

completion). Given the skewed distribution
8

 of the ITT and UAT defect discovery and resolution

rates, and the "non-dynamic” methods used in the model, we were quite surprised by the overall

accuracy.

Another factor that influenced accuracy was the number of total defects, calculated from a

KLOC ratio each week, but this was mainly attributed to the simplicity of the approach and the

lack of sufficient data to obtain a more accurate number.

Despite the model’s many limitations, we were pleased with the forecasted completion date it

provided. The methods outlined in this paper could be duplicated for any project, but to enhance

its ability to scale to other projects would require many improvements. An econometric

approach, if feasible, would allow the model to adapt to different types of software projects. A

few of those project variables would include:

• Size & Skill of Testing and Development teams

• Project Risk Level

• Application, Project complexity, Domain, Programming Language

• New Development vs. Maintenance Release

However this method requires lots of data about your software development lifecycle. Designing

processes and implementing systems that will enable us to capture this type of data will be our

next challenge.

5 Conclusion

In completing our estimation model we collaborated with a great many talented people that

tested our assertions and shaped our thinking. Throughout our journey we ran into many of the

problems that have plagued software estimation for many years: size and complexity

measurements, multiple levels of software development maturity, and the fact that no two

software projects are the same. We did not solve any of these problems, but through our

collaboration found methods to work around them. In the end, we were able to provide a tool

that provided significant confidence to executive management, making way for final project

budget approvals and successful system implementation.

8

 See charts 2 and 3 on page 8 of this report. The skewed distribution is also thought to have influenced the LPI

figures in the graphs above, producing an MCA result lower than the Min value.

6 Resources

(1) Norman E. Fenton, Member, IEEE Computer Society, and Martin Neil, Member, IEEE

Computer Society, “A Critique of Software Defect Prediction Models”, IEE

Transactions on Software Engineering Sep/Oct 1999.

(2) Brad Clark, Dave Zubro, “How Good is the Software: A review of Defect Prediction

Techniques”, 2001 Carnegie Mellon University

(3) Frederick P. Brooks, Jr. “The Mythical Man-Month”, 1975, 1995, and 1999

(4) David W. Gerbing, “Relevant Business Statistics Using Excel”, 1999.

407

408

Dealing With the Most Influential Factors that Cause Customer Dissatisfaction,

An Organization-wide Effort in Product Crash Reduction/Elimination

Abstract

Product crash is an abnormal termination of a software program, which is usually caused by a software

issue, although a hardware failure can also be the reason. When a computer "crashes," it locks up

(freezes), and the user cannot obtain any response from the keyboard or mouse. Product crashes

represent a relatively small percentage of problems compared to the total number of product issues (e.g.,

~ 20%). However, they have a disproportionate influence on product users. When crashes occur, they

are very annoying to users as they often result in the loss of data and require immediate resolution before

normal operations can resume.

This paper describes the story of how an organization addressed their product crash issues. It will

discuss the success factors and best practices that were used in the context of the following sequence of

key activities:

• Executive commitment and leadership

• Core team and organization involvement in the implementation

• Identifying error-prone products with Failure Analysis and Root Cause Analysis

• The metrics used to verify improvement

• The progress tracking and corrective action process

• The product crash reduction process

• The results

• Lessons learned and future improvements

The first year results confirmed the effectiveness of the effort in reducing the total number of crashes in

the organization’s products. The organization strongly believes that continuous process improvement and

consistent implementation of the product crash reduction process will enable the organization to achieve

its improvement objectives in customer satisfaction and engineering productivity by minimizing the cost of

rework.

The experiences and lessons learned from this story can be useful for other companies with similar needs

in customer satisfaction as well as product and process quality improvement.

Bio

is in the software development process and best practices with emphasis in testing. Dr. Luong's other

interests are in the areas of organizational change, process improvement, customer satisfaction, effective

consulting and problems solving, and operational excellence including metrics and statistical controls.

Dr. Duvan Luong is an Engineer Director/Architect at Cadence Design Systems. Dr. Luong's background

Dr. Luong has had 29 years of experience in the Software Development Industry with AT&T and Bell Labs,

IBM, Synopsys, Sun Microsystems, Hewlett Packard, and Cadence Design Systems.

409

Introduction

For most successful software companies, effectively addressing the key factors of customer

dissatisfaction and the high cost of rework are the top must-have items in the company’s business

strategy. It is widely known that product defects have a very high correlation with the above two factors. If

a company can effectively handle its product defects, it has addressed the major contributors to both its

customer satisfaction and the cost of rework issues.

As customers use their purchased software products they will likely experience many product “issues.”

Depending on the type of issue they encounter, the customer will have a varying amount of negative

experience, and hence their satisfaction for the product is adversely affected. Crashes are one type of

serious product issue. One definition of a “crash” is an abnormal termination of a computer program,

usually caused by a software issue, causing a computer to lock up or freeze and preventing it from

responding to other parts of the system such as the keyboard or mouse. While these are a relatively small

percentage of the total issues (e.g., ~ 20%) they have a disproportionate influence on customer

satisfaction. When crashes occur, they are very annoying to users as they often result in the loss of data

and require immediate resolution before normal operations can resume. Crashes also result in wasted

effort required for re-starting customer operations and for rework by product developers to implement

fixes to the crashes.

The Story

This is a story of a software development organization of several hundred members who reduced the

number of current and potential crash issues in their product code base of more than 15 million lines of

source code. The organization achieved its crashes reduction objectives several years ago and is

currently continuing to expand their improvement efforts to include other areas of product reliability.

When the product team had a meeting with a key customer some time ago to discuss product quality

issues, to the team’s surprise, the customer pulled-out records showing how frequently the product

crashed in their operational environment. By the end of the meeting the message was very clear – “The

company tools crashed too often. When they crashed, the crashes severely impacted customer

operations. The customer was not very happy with this situation”. The team that developed the product

believed it could do many things to improve the customer experience with respect to crashes... The team

then embarked on a journey to eliminate crashes.

As the first year of the improvement program came to an end, the team was starting to see some initial

results from their improvement actions: 100% Unit Testing was achieved for the latest release for the first

time (previously Unit Testing was not emphasized as part of the standard development practice). All

product code was analyzed with a Static Analysis tool that identified many key issues that were promptly

fixed. Root-cause analysis results started to show patterns of common issues so the team could formulate

lasting effective resolutions for them. Total unresolved crashes came down by 70%. Best of all,

customers started to have a better operational-reliability experience with the team’s products.

410

FIG 1: % of Team X Unit Testing Completion - Release n.n

0%

20%

40%

60%

80%

100%

%

o

f

U

n
i
t

T

e
s

t
i
n

g

c

o
m

p
l
e

t
e

d

f
o

r

N

e
w

F
e

a
t
u

r
e

s

% MUST Fetures w . UT % SHOULD Features w . UT

FIG1: % of Team X Unit Testing Completion - Release n.n

FIG 2: Team X 1st Year SEGVs Improvement Summary

W
k
1

w
k
2

w
k
3

w
k
4

w
k
5

w
k
6

w
k
7

w
k
8

w
k
9

w
k
1
0

w
k
1
1

w
k
1
2

w
k
1
3

w
k
1
4

w
k
1
5

w
k
1
6

w
k
1
7

w
k
1
8

w
k
1
9

w
k
2
0

w
k
2
1

w
k
2
2

w
k
2
3

w
k
2
4

w
k
2
5

w
k
2
6

w
k
2
6

w
k
2
8

w
k
2
9

w
k
3
0

w
k
3
1

w
k
3
2

w
k
3
3

w
k
3
4

w
k
3
5

w
k
3
6

S
E
G
V
s

X Weekly Incoming SEGVs X Weekly Fixed SEGVs X Current Assigned SEGVs

FIG 2: Team X 1st Year SEGVs (Crashes) Improvement Summary

As the team continued to make progress over the next several years the effort was shifted from crash

reduction to resolving other kinds of product issues, moving from defect detection to prevention and from

working on prior unresolved issues to managing new incoming issues. The team started the improvement

effort with the belief that “Doing the same thing and hoping for different and better results is unrealistic.”

The team now believes they have a new motto to share: “Consistent focus on making improvements will

produce better results.” At the time this story started this particular software team was ranked at an

undesirable position compared with other teams in the company in terms of product quality; however, the

team gradually improved its position. As of today, it has already surpassed the aggressive quality

improvement targets set by the company and is on the way to make even more improvements with its

strong focus and momentum. The team has become the quality benchmark for many other teams in the

company.

411

FIG 3: Team X Customer Found Defects Reduction by Release

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Month after First Customer Ship

C
u

m
m

u
l
a

t
i
v

e

C

u
s

t
o

m
e

r

F
o

u
n

d

D

e
f
e

c
t
s

Re l N-3 Re l N-2 Re l N-1 curre nt Re le ase N

FIG 3: Team X Customer Found Defects Reduction by Release

The Success Factors

The following are the main factors that made this crash reduction effort possible:

• Leadership

• Reduction Strategy

• Involvement

• Implementing rigorous reduction actions

LEADERSHIP:

This was the most crucial factor that made the effort successful. The organization’s General Manager

(GM) was fully engaged in sponsoring the effort to eliminate crashes. The GM started the effort by

developing and communicating the organization’s vision of “Zero customer crashes” to all members of the

organization. The GM identified and actively recruited the people with the right skills and enthusiasm to

lead the effort. For example, a Senior Engineering Director was selected and recruited to lead the effort.

The GM closely followed the progress of the crash reduction effort – giving praise and recognition to

teams and individuals when significant progress was made. He raised the visibility of the effort and

provided coaching and support when there was regression in performance. There were weekly

discussions between the GM and his direct staff to maintain a continuous focus on the customer crash

reduction effort.

REDUCTION STRATEGY:

To ensure the success of the effort, the crash reduction program was divided into two phases:

Phase 1: focused on the immediate need for reducing the current backlog of unresolved known crashes.

The objectives for this phase were to bring the crash management process under control and to improve

the responsiveness to crash issues.

Phase 2: focused on the longer term reduction and, if possible, the elimination of new incoming crash

issues. The objectives of this phase were to identify the root causes of the crashes in order to eliminate

current problems and prevent similar issues from happening in the future. An additional benefit of this

effort will be as the rate of incoming crashes decreases, the team’s responsiveness to crash issues and

the cost of rework will also improve.

412

INVOLVEMENT:

Almost everyone in the organization was involved in the crash reduction effort. A taskforce was formed

and named the “SEGV taskforce” (SEGV, segmentation violation, is a technical name for the most severe

type of crash). This was led by a Senior Engineering Director and was chartered with the overall

responsibility for the crash reduction effort. The Taskforce, in turn, worked with all the appropriate people

in the Engineering group to put the crash management process under control. Engineers, Product

Managers, Product Directors, Program Managers, Release Managers and Enterprise Quality Consultants

were all involved.

IMPLEMENTING RIGOROUS REDUCTION ACTIONS:

For Phase 1, the focus was on setting up a project tracking and oversight infrastructure to manage crash

resolutions and backlog reduction. The taskforce identified, tracked and published the information about

the known crashes to all involved Engineering personnel every week. The taskforce informed the

owner(s) of the code that caused the crashes and worked with them to ensure closure of the issues.

Crashes that had not been resolved for more than 30 days got special attention from Senior

Management.

For phase 2, the focus was on enhancing the software development lifecycle with new formal technical

best practices that would reduce/eliminate new incoming crash issues. The main actions were:

- Formalize engineer testing: Each of the new/enhanced features needed to successfully complete

the Unit Level Testing by the Beta test entry time. The unit test case(s) had to be documented

and successfully tested. Unit Test cases and their associated test results were archived for

potential integration into the regression test suite and also for later audit.

FIG 4: % of Release n.n Unit Test Completion and Total MUST Features by Manager

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

a b c d e f g h i j k l m n o p q r s t u v w x y z a1 b1 c1 d1 e2 f1 g1 h1 i1 j1 k1 l1

%

o

f

M

U
S

T

F

e
a

t
u

r
e

t
h

a
t

C

o
m

p
l
e

t
e

U
T

0

5

10

15

20

25

30

35

40

T
o

t
a

l

M

U
S

T

F

e
a

t
u

r
e

s

b

y

M

a
n

a
g

e
r

% UT completed MUST Features

FIG 4: % of Unit Test Completion and Total MUST Features by Manager –Release nun

- Use a Static Analysis tool (QAC++ in this case) to identify potential severe issues in the code and

fix them. The team worked with the QAC++ vendor Architect to identify the essential subset of

the tool checking rules that identified code issues that could cause crashes and other serious

code issues. This class of code issues is called severe issues. The team comprehensively

implemented QAC++ in two ways. At the individual Engineer level, the tool was set-up to improve

the unit code quality before it was checked-into the main code stream. At the release level, the

tool was set-up to ensure compliance to the quality standards by the main code stream before it

was released to customers.

413

- Perform Root-Cause Analysis of known crashes to identify the common problems, their common

causes, how they were fixed, and what can be done to prevent these common crash issues from

happening again.

- Incorporate the learning about crash prevention into future release planning so sufficient

resources and time can be allocated to the necessary crash improvement activities.

The Best Practices Used

The following best practices were used by the team to eliminate potential crashes in the product:

• Identifying product crashes

• Effective use of Static Analysis tools to identify and fix potential product crashes

• Identifying the crash-prone area for resolution/reduction

IDENTIFYING PRODUCT CRASHES:

A query on the company defects database for bugs from the previous year containing “crash”, “core-

dump”, and “SEGV” issues resulted in a large number of hits, of which ~20% of hits were associated with

customer found problems. If we use the software industry estimate of 80 hours of effort required to find,

validate, fix, and revalidate a customer found problem and about 15 hours to do same for an internally

found problem, then the effort to find and fix these crash problems can account for a quite sizeable effort.

This is a significant cost for the company. A similar query for just the few months before the crash

reduction program started resulted in a similar proportion of hits. It appears that there wasn’t much

improvement in the crash issues situation just by giving the organization more time. This was the main

reason for the organization’s GM starting the whole crash reduction effort.

FIG 5: Team X Incoming Crashes/SEGVs by Month (Internal Versus Customer Found)

The regular (weekly) tracking of crash related metrics gave the organization the invaluable focus on

resolution of the issues that eventually provided the expected improvements in crash reduction.

EFFECTIVE USE OF STATIC ANALYSIS TOOLS:

Beside product crashes, there are other serious issues that can impact customer satisfaction as well. In

general, we can group these “bad” issues (crashes and other types of serious issues) together under the

classification of “severe” issues. It will be fantastic if we can eliminate these severe issues from our

product so we can channel the effort currently going toward fixing them into more interesting work such

as new feature development. It would be even more fantastic if we can find a cheap but simple and

effective way to do so. New developments in code quality analysis technology made possible the ability to

find “severe” issues in the product code. Static Analysis tools are the class of application software used to

analyze product code and identify potential severe issues (more than just crashes). To effectively use

FIG 5: Team X Incoming Crashes/SEGVs by month (Internal vs. Customer found)

Month

SEGVs

Total Cust-SEGVs Total Team X -SEGVs

Low

High

Ju Au Se Oc No De Ja Fe Ma Ap Ma Jun

Company Average All

Product Crashes by Team

Ju Au Se Oc No De Ja Fe Ma

414

static analysis tool to identify severe code issues, we will need to know what the severe problems in our

products are, what the impacts of those problems on product quality are and, potentially, what we can do

to eliminate them.

Severe code issues can be defined as the issues related to the abnormal termination of the code

execution, the corruption of the data used, the violation of memory allocation, segment violation (SEGV),

and incorrect logic implementation in the products. These issues can severely impact the correct behavior

of our products and cause a negative customer experience and perception about our product quality.

Typical severe issues in C++ applications and their quality impact are described in Table 1.

The current crop of leading static analysis tools on the market come with a large set of capabilities that

sometimes can overwhelm even experienced software developers. It is very important in planning for the

use of static analysis tools to choose a small set of tool features that are specifically aimed at the

discovery of the above class of severe issues. Checking for only this subset of issues by the tool can

reduce the reporting of “false positives. False positives are reports from the tool of an issue that turns out

to not be an issue after all. Reducing false positives helps the tool to be better accepted by the code

developers by reducing the amount of output that they need to review.

IDENTIFYING THE CRASH-PRONE AREA FOR RESOLUTION/REDUCTION:

We all want to resolve every issue causing a product crash, however, in reality, we can only resolve the

issues that our resources and/or business schedule allows. We must find a way to prioritize crashes to

maximize return of investment (ROI) for our crash resolution efforts. There are many ways to do this.

Typical prioritization approaches that can be used to identify areas for focused improvement are: crash-

prone area identification, common crash-type classification, and crash escaped analysis. Figure 6 is an

example of how product crashes are tracked by product. In this example, we can see products a, b, c,

and d will need more attention to resolve product crashes.

Figure 6: Team X Release n.n SEGV by Product

Figure 7 shows an example of crash issue classification for crash-prone product Y. In this case, the

majority of the crashes fell into the error-checking category (error-checking was not built into the product

code). Potential resolution for this common class of crashes is to implement the features in the product

code to check for errors, such as division by zero or out-of-bound conditions, before code operations are

performed.

FIG 6: Team X Release n.n SEGV by Product

Low

a b c d e f g h I j k l m n o

S

E

G

V

Actionable SEGVs Other SEGVs

High

415

Figure 7: Crash Defect Classifications for product Y

Figures 8a through 8c are examples of crash-escaped rate analysis. Each numeric value in these charts

shows the percentage of crashes found by the noted function.

In Figure 8a, a majority of crashes escaped R&D testing and were found by System testing (Operations in

this case means System Testing). One potential improvement in this case is more focus on the R&D

check/testing of products before turning the products over for System testing.

In Figure 8b, the case is reversed. The crashes that escaped the detection during the early phases of

product development (i.e. Requirements and Architect/Design) were found by R&D. In this case,

additional document and code review coverage would prevent many of the crashes that reach the R&D

testing phase.

In Figure 8c, a large number of crashes escaped the internal testing effort. In this case, perhaps more

flow testing or customer-like usage testing could reduce the amount of crashes that escape to customer.

Figure 8: Examples of Crash-escaped Rate Analysis

Standards 2.5%

Data Handling 3.8%

Logic 7.6%

SW Interface 5.5%

HW Interface 7.0%
Specifications

10 0%

User Interface 10.7%

Error Checking 52.9%

Fig 7: Crashes Defect Classification for Product Y

Fig 8-a Crash Found by

4%
2%

11%

4%

23%

56%

69

12

6

12

1

Fig 8-b Crash Found by Fig 8-c Crash Found by

14

2

33

1

11

35

2

2

416

Summary

Product crashes are annoying and can cause customer dissatisfaction and also a large amount of

expensive rework. We want to eliminate and/or prevent product crashes as much as possible. This article

described the process one company used to reduce the number of product crashes in an existing product

line. This included: querying for product crashes among existing defect records, creating various metrics

based on the identified crash reports to identify the crash-prone areas, and making the appropriate

process and product improvements to prevent future crashes. Trend charts can be used to track and

monitor the progress of prevention and reduction efforts.

Best practices that any team can use to ensure product crashes reduction are: leadership, participation

by all members of the team, use of failure analysis and root-cause analysis to identify error areas for

focused effort, and use of static analysis tools for identifying potential code issues.

417

TABLE 1: C++ “severe” issues

• Abnormal Termination (termination by C++ run-time environment)

o Uncaught 'throw' expression in destructor -> if another exception is already being handled, and

this destructor is called during stack unwinding, C++ run-time will stop - clean immediate

termination

o Throw of an exception of a type which is not listed in the exception specification -> C++ run-time

will stop - clean immediate termination (for ISO C++ compliant compilers - doesn't include GCC

compiler, unless -fenforce-eh-specs option is used)

o Rethrow expression is outside a catch block -> C++ run-time will stop

o Throw in main will cause the program to terminate -> C++ run-time will stop

• Data Corruption:

o Missing required return expression -> Garbage returned from function

o The default value is different from the overridden function -> Inconsistency between the default

parameter value in base and derived classes

o Unary minus operator is being applied to an unsigned type -> The value will remain as unsigned

(has the two's-complement value)

o An implicit conversion from an array of derived to pointer to base -> if sizeof (base) < sizeof

(derived) then incorrect index to the array would be used -- because of extra member variables in

the derived class). If the derived class has no new additional members then it is OK (this issue

can also cause SEGV)

o Passing a class object as an ellipsis argument -> for Ellipsis arguments (i.e. third argument to

printf function) the value is copied bit-wise on the stack, and no type conversions are applied (this

issue can also cause SEGV)

o Builtin object or argument is modified and accessed between sequence points -> the order of

evaluation is un-specified for operands in an expression. It is not guaranteed to be left to right so

the compiler can optimize the code

o The right hand side operand of the shift operator is negative or is too large -> undefined behavior,

meaning the resulting value cannot be pre-determined

o A jump past initialization of objects -> use of un-initialized data

o Function has a non-void return type but no return statements -> Garbage returned from function

o Uninitialized member used as initialiser -> use of un-initialized data

• Memory violation (cause memory leaks):

o Object used with inconsistent allocation methods in different translation units -> Link-time issue -

inconsistent use of plain and array allocation of the same object in the project

o There is no corresponding operator delete for this operator new -> Use of custom 'operator new'

with default 'delete'

o This object was used as pointer to non-array object earlier -> inconsistent use of plain and array

allocation in the same source file

o This object was used as pointer to array earlier -> inconsistent use of plain and array allocation in

the same source file (reverse of previous case)

o This object was used as a pointer to old C-style allocated memory -> inconsistent use of C and

C++ allocation in the same source file (malloc and new) -- malloc doesn't call constructor and free

doesn't call destructor unlike new and delete

• SEGV (segmentation violation - termination by the OS)

o The memory referred to has been deallocated -> termination by the OS

o Index is out of bounds -> termination by the OS

• Wrong Logic implementation:

o The operand of 'sizeof' has side effects that will not be performed at run-time -> operand of sizeof

is evaluated at compile-time, so any side effect will not be performed, i.e. a function call or

modification to variable

418

o Exception is derived from an exception caught above -> this catch-clause will never be executed -

dead code

o This catch-all exception handler should be the last -> the following catch-clause will never be

executed - dead code.

References

Review and Inspection

o Michael Fagan - Inspections - http://www-isd.fnal.gov/ftr/www/faganInsp.html

o Tom Gilb - Software Inspection, Addison-Wesley Longman Publishing Co., 1993

o Karl E. Wiegers - Peer Reviews in Software: A Practical Guide, Addison-Wesley, 2002

Continuous improvement, Metrics, Root-cause-analysis:

• Watts S Humphrey:

o Managing the software process, Addison-Wesley Longman Publishing Co, 1989

o Introduction to the personal software process, Addison-Wesley Longman Publishing Co, 1997

• Robert R. Grady:

o Software Metrics: Establishing a Company-Wide Program, Englewood Cliffs, NJ: Prentice Hall,

1987

o Practical Software Metrics For Project Management And Process Improvement, Prentice Hall,

1992

o Successful Software Process Improvement, Prentice-Hall, Inc. 1997

Learning Organization

• Peter Senge - The Fifth Discipline: the Art and Practice of the Learning Organization – Currency,

1990

Static Analysis tools:

• http://weblog.infoworld.com/article/06/01/26/73919_05FEcode_3.html (Between klockwork and

coverity)

• http://www.ep.liu.se/ea/trcis/2008/003/trcis08003.pdf (All the tools)

• http://weblogs.java.net/blog/cos/archive/2006/10/static_analyzer.html (klockwork and coverity)

• http://pubs.drdc.gc.ca/PDFS/unc69/p528977.pdf (Almost all the static analyzer tools available. Has

some info about Polyspace too.)

419

420

Ensuring Software Quality for Large Maintenance Releases

Jean Hartmann
Test Architect

Developer Division Engineering

Microsoft Corp.
Redmond, WA 98052

Tel: 425 705 9062
Email: jeanhar@microsoft.com

Abstract

Like many divisions within Microsoft, Developer Division with its two flagship products
- Visual Studio and Visual Studio Team System - allocates a significant portion of its
time and resources to ensure the highest possible quality of its maintenance releases.
Product teams within the division face the challenge of having to execute increasing
numbers of automated tests against a growing code base in ever shorter development test
cycles.

In a previous PNSQC paper1, we described an approach that focused on leveraging so-
called selective revalidation techniques using code coverage data, which provided a
significant reduction in the number of regression tests that needed to be rerun for a given
code change and better prioritized test suites. Thus, the focus of this paper is to describe
and discuss how we deployed and evaluated these techniques as part of a recent
maintenance test cycle.

Our guiding principles for a successful deployment/evaluation of this technology were:

Redefine the test exit criteria to force a change in test focus from validating the
entire product to validating only the modified portions of that product (aka code
churn)
Enhance the test process and tool infrastructure to support the collection,
analysis and reporting of relevant data, so that test teams could gauge progress
and declare success respective to those new test exit criteria
Enable testers to gain a deeper understanding of the code changes and their
impact on the product as well as requiring them to better quantify the (re)testing
effort

This paper outlines the testing process associated with our maintenance releases. We
reflect on some of the challenges that we faced in enhancing this process and tool
infrastructure. Finally, to demonstrate the potential of these selective revalidation
techniques, we use examples and data from this recent maintenance test cycle.

1 Applying Selective Revalidation Techniques at Microsoft 5-65.

421

1. Introduction

Maintenance work on Microsoft products is characterized by scope and frequency.
Within a division this work is either conducted by the product team during new product
development work or by a dedicated Servicing Team that focuses on maintenance. For
example, a team working on a smaller product, such as the C# compiler, would conduct
its own maintenance, while the Windows organization would have a dedicated servicing
team for maintenance for operating systems such as Windows XP/Server 2003.

Maintenance covers a wide range of activities in terms of required code changes and
testing effort. In this paper, the emphasis is on large-scale maintenance releases, known
as Service Packs (SPs), where the changes are much more substantial and less frequent in
nature compared with smaller-scale patching efforts. These releases require collaboration
and coordination from many teams within an organization. They touch many features in
different ways with resulting code changes ranging from new binaries being added to
existing code being re-factored.

The nature of such large-scale maintenance releases has the potential for introducing not
only bugs within the individual Visual Studio products, for example, the various language
compilers, but more importantly bugs resulting from the integration of these individual
products into the overall Visual Studio product due to numerous dependencies. Thus, the
motivation and goal for improving our regression testing strategy is to thoroughly
exercise the individual products as well as eliminate system integration issues without
having to rerun all our test suites repeatedly.

In a previous paper [1], a methodology for performing selective revalidation was
discussed. In that paper, we focused on how to effectively and efficiently select a subset
of regression tests based only on the code that has changed or churned. Here, we explain
how this methodology benefited large maintenance releases within Developer Division.

2. Selective Revalidation Techniques Recap

While selective revalidation techniques were discussed in detail in a previous paper [1], it
is important to briefly recap the key facts concerning these techniques and highlight those
aspects that contribute to the discussion in this paper.

Selective revalidation techniques are a class of testing techniques that guide testers in the
selection of suitable subsets of regression tests or assist in prioritizing tests in response to
code changes or churn. The techniques described in the previous paper and applied here
use code coverage data which was collected at a previous product release milestone, plus

to determine a minimal
set of tests to rerun for the upcoming maintenance milestone.

The techniques address two issues, both with the same end goal of streamlining the
regression testing process. One technique is known as regression test selection, the other

422

as test set optimization (or test prioritization). The key distinction is that the former
utilizes code churn data in addition to code coverage data to determine a minimal solution
that focuses on tests traversing modified code. The latter simply identifies a minimal and
thus prioritized set of tests from the test suite without regard for where code changes have
occurred.

The previous paper [1] also describes the various scenarios in which these selective
revalidation techniques could be used. This paper is focusing on post-verification
testing. In post-verification testing, code changes have already been checked-in and
tested by the individual product teams. Now test passes are conducted on a larger scale to
validate overall product functionality and in this case, to specifically satisfy a given exit
criterion - code coverage for the SP maintenance release.

3. Enhance the Test Process

While the previous paper [1] focused on describing the test methodology itself, this paper
intends to focus on the next steps that we are taking to leverage the methodology and reap
the benefits of resulting test efficiencies and effectiveness.

3.1 Redefine the Exit Criterion

Maintenance releases are subject to the same set of exit criteria as major product releases,
which requires teams to satisfy a code coverage criterion by reaching 70% block
coverage2 for each executable that is part of the product3. This quality bar applies to both
existing and new executables for a maintenance release. In the past, such a criterion led to
adequate testing of the new code (executables) being introduced, but did not necessarily
ensure that code modified in the existing code was adequately retested, if that code had
reached the 70% bar for the previous product release. Regression suites were being rerun
in their entirety with inadequate attention being paid to how many of those tests actually
traversed the modified code segments. There was no means of assessing test
thoroughness.

Therefore, the first enhancement that we made to the existing test process was to redefine
this exit criterion subtly by stating that the quality bar was now to be applied to the
coverage of churned code. This shift in test focus has the benefit that testers were forced
to examine and better understand the code changes as well as quantify and plan the test
effort required for those changes. As a result, testing a change was not simply a binary
statement of whether or not the change had been tested, but a quantifiable measure of
how thoroughly the change had been tested a big step forward.

2 A basic block is a sequence of binary instructions without any jumps or jump targets. In other words, a basic
block always (in the absence of exceptions) executes as one atomic unit (if it is entered at all). Because several
source lines can be in the same basic block, for efficiency reasons at execution time it makes more sense to keep
track of basic blocks rather than individual lines
3 This coverage adequacy criterion and its specific value of 70% is a corporate-wide standard.

423

Coverage by Churned Code Block Total Coverage
Binary
Name Affected Code Blocks

% Blocks
Covered

Total
Blocks % Total Blocks Covered

binary 1 23 82.60% 2085 69.10%
binary 2 78 91.00% 4907 78.20%
binary 3 206 71.80% 15795 67.80%
binary 4 533 79.20% 4563 74.10%
binary 5 70 75.70% 320 82.80%
binary 6 15 100.00% 5738 99.30%
binary 7 33 97.00% 41183 74.90%
binary 8 107 83.20% 6957 78.00%
binary 9 119 95.00% 2694 76.40%
binary 10 10 100.00% 955 66.20%
binary 11 26 76.90% 12515 74.50%
binary 12 22 72.70% 7643 67.20%
binary 13 47 85.10% 239 77.40%
binary 14 63 79.40% 1029 61.10%
binary 15 46 84.80% 264 80.30%

Figure 1: Code Coverage Statistics for Selected Binaries

Figure 1 above shows the coverage metrics collected by a Developer Division team as
they adopted this redefined criterion. Under the old coverage criterion of 70% block
coverage per binary, several binaries, such as binaries 10 and 14, would have required
additional test effort to meet the quality bar. This would have resulted in additional tests
being created without knowledge of whether those tests actually traversed the churned
code and ensured the quality of that churned code. By applying the new criterion to those
same binaries, we can clearly see that the changes have not only met the quality bar, but
have exceeded it. Availability of such data enables test managers to better monitor test
progress and its completion with respect to code changes - they are no longer simply
relying on the assurances of their staff.

3.2 Improve Tool Infrastructure

Due to the scale of our current testing processes, adoption of new test processes and
technology is only viable when supported by reliable tools. This support must be defined
and deployed in such way that it has minimum impact on the existing test infrastructure
and effectively complements it. Figure 2 illustrates the new and existing tools and their
flow; their usage will be explained in more detail in the next section.

424

Figure 2: Tools and Flow

In prior testing cycles, the environment consisted of the code coverage database, the Test
Case Management (TCM) tool and the Sleuth Code Coverage Viewer tool. In order to
measure code coverage during the maintenance test pass, the code base was compiled and
the resulting binaries instrumented for block coverage. The tests stored in the TCM were
executed and the testers ensured that they had met the quality bar by viewing the
resulting coverage data in the Sleuth code coverage viewer tool. These processes
leveraged the Magellan toolset [3], a suite of tools for instrumenting compiled code
binaries and then collecting, analyzing and viewing the resulting code coverage data.

The new tool flow adds a binary differencing (bindiff) tool that compares each binary in
the previous (baseline) and current product builds and generates an XML file detailing
the differences between builds on code block basis. This file is then consumed by two
tools, TCIndexer and ChangeTested, together with code coverage data associated with the
previous and current builds, respectively. This tool is also part of the Magellan toolset.

TCIndexer, the selective revalidation tool, leverages the code churn data for the two
builds and the code coverage data from the baseline build to compute a regression subset
or prioritized test set that can be rerun to exercise the current build and collect new code
coverage data. XML-based results are delivered with each new instrumented
product build during a test pass and can be consumed and filtered by the various test
teams for their relevant test cases as the solution contains tests (contributions) from other
test teams. Its output file can also be consumed by the TCM tool, so that the process of
rerunning could be fully automated, if the teams wanted to do so. TCindexer is built on
top of yet another tool in the Magellan toolset.

While TCIndexer provides guidance for test selection, the ChangeTested tool can be
regarded as feedback for the teams on how much testing remains before the churned code
has been adequately tested. Again, the tool leverages the code churn data for the two

425

builds and code coverage data. However, this coverage data is reflected in a newly
created and then forward-merged coverage database that coincides with the start of the
maintenance test pass. Metaphorically speaking, you are at base camp respective
coverage of the churned code, looking up the mountain that you need to conquer and
getting feedback with each new product build (step) as to how you are progressing with
testing the churn.

The output files produced by ChangeTested include a coverage report for the churned
code, supplemented with details of the churn. In fact, the table shown in Figure 1 is
derived from such a coverage report. These reports are not only consumed by the
individual teams, but are rolled up to an organization-wide website displaying all exit
criteria relevant to the maintenance release. Figure 4 shows the code coverage reporting
page. The other file being output is a Sleuth coverage viewer filter that testers can use,
whenever they view the coverage data superimposed on the code. The filter file focuses
and guides testers as it directs the viewer to display only those code functions in which
code blocks have churned. This helps testers to more quickly understand the churned
code, its impact and additional testing that may be required.

4. Testing a Service Pack Release

Figure 3 outlines the enhanced regression testing process flow for a recent service pack
release based on the redefined exit criterion and improved tool infrastructure described
above. A step-by-step explanation of the new process is given.

Figure 3: New Regression Testing Process Flow

Before test teams could apply this technology, process and tools, they had to collectively
run their test suites against an instrumented product (reference) build for each major

426

product release. This collected code coverage data, which then became the baseline code
coverage database for subsequent maintenance releases. This baseline met the code
coverage quality bar of 70% block coverage.

As the date for a service pack release grew closer, a new code coverage database was
created alongside stable, instrumented daily product builds. This database was used to
capture code coverage data from each team as they contributed to the testing of the
service pack. The intent was that each team conducted a test pass using their regression
tests (with or without guidance from TCIndexer) and then supplemented them, if
necessary, with new tests. During and upon completion of the test pass, teams measured
their progress and success against the exit criterion using ChangeTested.

As new product builds were released and teams executed their tests against those builds,
a central team with Developer Division ensured that all coverage data was aggregated for
the entire duration of the test pass. The final, merged code coverage database along with
the product binaries was archived. This data now has the potential to be leveraged at a
later date as baseline data for additional test passes where the above process would be
repeated. The result was that test teams would reduce their regression testing workloads,
the closer they got to the final release date for that service pack.

Figure 4: Code Coverage Exit Criteria Reporting

427

During this entire process, the output from ChangeTested (in the form of reports)
showing % coverage of the churned code were updated and delivered to our ship room to
give an indication of how close we were to meeting the coverage quality bar.

Figure 4 shows the type of data being collected during the initial stages of a test pass. The
x-axis indicates the successive builds of the same product over time., while the y-axis
indicates the number of code blocks being churned for each new product build compared
with the baseline code binaries. The stacked bar chart indicates the contributions being
made by the different types of churn deleting, adding or modifying code blocks! This
chart clearly shows the impact and timeframe of code integrations from different team
branches into the main product build branch. Moreover, we superimposed the coverage
data upon the code churn data via a line chart to provide a unified view.

5. Benefits and Challenges

While we only recently started to deploy this approach for service pack testing, the test
teams saw two immediate benefits regarding their test focus. They were able to quickly
identify test holes corresponding to churned code and create additional scenario tests to
exercise that code. They also appreciated the diminishing workload associated with code
coverage test passes required at each release milestone, because they only needed to
validate the churn that had occurred since that last milestone. Examples of this were
discussed in Section 3.1. Unfortunately, this work is so recent that we are unable to make
any kind of statement regarding the impact of this approach on defects.

The biggest challenge was technical in nature and has the potential to seriously impact
this new process. When code coverage data is initially collected in a reference database, a
persistent mapping results between a test case and the binary code blocks it traverses. If
changes are made to the compiler used to compile source code into a binary, then it may
cause different binary code to be emitted. Thus, even if no changes were made to the
source code for that binary, compilation using that latest version of the compiler would
cause the binary differencing tool to flag incorrect differences between the previous and
new versions of the binary. TCIndexer would then consume those differences and attempt
to compute an incorrect subset of tests for rerun, In addition, ChangeTested would show
incorrect churn that would need to be covered4. In summary, compiler changes can lead
to a chain reaction resulting in incorrect data being presented to test teams.

This challenge was mitigated to a certain extent by recompiling the baseline build
binaries with the same compiler version used to produce the latest product binaries. That
enabled us to at least monitor progress regarding coverage of the churned code via
ChangeTested. However, it left us with fewer options regarding selective revalidation as
the binary differences that were being determined could not be used to help determine a
subset of tests for rerun.

4 Note: This situation is relatively unusual as many Microsoft product teams maintain the same compiler
version for building their products over long time periods in which case, the above approach works well.

428

In summary, two approaches are being discussed:

Base the above methodology on source- rather than binary-level differencing to
overcome the compiler issue. We can then fully leverage selective revalidation
and retain the redefined exit criteria.

Use test set optimization/prioritization to determine a subset of regression tests,
effectively ignoring any code changes. This would result in larger numbers of
regression tests being rerun compared with subsets selected based on code churn
and we would need to revert back to the existing exit criteria of % coverage per
binary.

6. Conclusions and Future Work

Regression testing remains a very important topic for companies such as Microsoft who
are developing and maintaining large software platforms and applications over long time
periods. Testing technologies, such as selective revalidation, have the potential to deliver
huge savings in maintenance costs for the company. We are now starting to deploy these
technologies, albeit with a few challenges, and gather the necessary data to make that
case. This paper chronicles how we are starting to deploy selective revalidation
technologies and adapting our tools as well as processes to leverage them effectively.

In future, we intend to apply the test exit criterion to the validation of the individual
products before they are integrated into the Visual Studio product (suite) as well as after.
This will contribute to the quality of our individual products as well as the overall
product. We are therefore working on replicating the above methodology, processes and
tools for each product test team. The result is two instances where the test exit criterion
needs to be satisfied. The test teams would thoroughly test their products prior to final
integration and then rerun a representative (sub)set of their tests against the overall
product suite. The latter would also have the beneficial effect on contributing/improving
the coverage numbers of other product teams.

While the processes and tools outlined in this paper are internal to Microsoft, the
concepts described here are easily repeatable and implementable using commercial-off-
the-shelf tools including code coverage analyzers, test execution harnesses and
management systems, differencing tools, etc.

7. Acknowledgements

I would like to thank Mak Agashe and David Yee, Directors of Test in Developer
Division Engineering for their ongoing support. I also want to express my gratitude to my
Microsoft colleagues, particularly Carey Brown, Apurva Sinha and Ephraim Kam for
their significant contributions, support and discussions concerning this work as well as to
the Developer Division code coverage champions for their feedback as we continue to

429

deploy and refine these technologies throughout the division. Thanks also go to my
reviewers whose invaluable feedback and comments are greatly appreciated.

8. References

1. Applying Selective Revalidation Techniques at Microsoft
2007, pp. 255-65.

2. A Greedy Heuristic for the Set-Covering Problem
Research, pp.233-5, Aug. 1979.

3. A. Srivastava Effectively Prioritizing Test in Development
Environment
pp. 97-106, 2002.

430

Outnumbered: Ensuring Quality with a Low Test-to-Dev Ratio

Brian Rogers brian.rogers@microsoft.com

Abstract

How many testers does a software project need? Ask a test manager and you will likely hear “as

many as we can find!” Unfortunately, it is often difficult to staff a testing organization with as

many resources as is optimal. Does this mean a project must suffer poor quality if it falls short

of the magic “1:1” test-dev ratio? Absolutely not!

Projects with smaller test teams are forced into certain behaviors out of necessity. As it turns

out, these behaviors can be great assets in the quest for high quality. Some of these behaviors

include customer-focused planning, aggressive trimming of unneeded functionality, and

balancing of traditionally tester-only tasks across the team. While these are almost requirements

in smaller organizations, teams of any size can learn and benefit from these activities as well.

A key factor for success given a small test team is the recognition that quality is everyone’s

responsibility. Testers and developers must be partners, not rivals, in ensuring quality.

Author Bio

Brian Rogers has worked as a software development engineer in test at Microsoft for five years.

For most of his career, he has focused on distributed testing of enterprise messaging systems,

including a three year assignment on the first version of Windows Communication Foundation.

He is a strong proponent of engineering excellence within the test discipline, and has designed

and developed static analysis tools for detecting defects in test artifacts. Brian has a Bachelor of

Science in Computer Engineering from the University of Washington.

431

Introduction

The tester-to-developer ratio is a subject of much debate within software circles. In modern

software projects, most test managers seem to have settled on 1:1 as the ideal ratio. Why is this

so? Ask and you may hear one or more of the following reasons:

• “We need at least as many testers as developers to effectively ‘police’ the team.”

• “If one developer is assigned to code a feature, then we obviously need one tester to test

that feature.”

• “A project with fewer testers delivers lower quality.”

• “That’s how we’ve always done it.”

As a consequence, when a project suffers from a dearth of testers it may as well be doomed from

the start, at least according to conventional wisdom. But what real evidence is there that 1:1 is

correct? Products with large test teams still have bugs, still ship late, and still miss requirements.

I assert that the behaviors of the team can make a much bigger impact in the quality and overall

success of a project no matter how many testers and developers there are. Furthermore, the

behaviors which are inherent in smaller test teams can provide insight into some general best

practices for all test teams.

Background

As a professional software tester for over five years, I have been involved in both large projects

and smaller projects. In my experience, most of the large projects had a tester/developer ratio

which held steady at around 1:1. This was true for the most recent large project I worked on

directly, with over 100 engineers participating. To contrast, in the current smaller project on

which I am employed, the tester/developer ratio has consistently been 1:2, with three testers and

six developers.

While it may shock the traditionalists, the small project has maintained exceedingly high

standards for quality. In addition, this small project has been described by participants and

stakeholders alike as highly successful from a test standpoint. How did we get here? I will say

that it was not through luck but through a very deliberate set of behaviors, some of which run

counter to long-established practices of software testing and development.

As a caveat, I will note that the following recommendations and experiences are intended to

apply to home, business, and enterprise software projects. I make no claim that this information

is relevant to life-critical systems or any other strictly regulated development projects.

Quality

So far, the term “quality” has been thrown around without a formal explanation. What does high

quality mean for software? As with all abstract concepts of this nature, the exact definition is

432

open to interpretation and may vary depending on the person or project. To paraphrase the ISO

definition, quality is the degree to which a set of inherent characteristic fulfills requirements.[1]

This is a fair starting point, but we can definitely expand on it. High quality software products

have acceptable behavior and performance as perceived by the primary users of the software.

The product allows these users to perform a set of tasks in a way that meets their expectations.

Invariably there are disagreements between the product team and the end users about what

“acceptable performance” means and whether feature X should have been implemented or not,

and so on. Still, high quality software delights the customer more than it disappoints with

respect to the above aspects.

Who “owns” quality?

In many projects, the test team is given the dubious honor of being the sole guardian of quality.

It is likely that the perceived importance of tester/developer ratios and the horror of being

“outnumbered” stem from this practice. Certainly, testers tend to be more quality-focused, but it

is unfair to let this responsibility rest on any one discipline. As has been stated by many others

(including the American Society for Quality), “Quality is everyone’s job.” It is only through a

team effort that software projects can deliver high quality results.

The role of test in quality

The above points notwithstanding, there are certain activities intended to drive quality which are

uniquely associated with test teams. These include the following:

• Writing test plans

• Executing manual and automated tests

• Analyzing and characterizing aberrant behavior of the software under test

• Filing defect reports

• Verifying bug fixes to catch regressions

This is a list which could have been lifted from Software Testing 101, so of course the test team

(and the test team alone) does all of these tasks – right? Well, yes and no, as we will discuss

later.

To contrast, I will present a set of activities which also have a large impact on quality, but many

test teams do not participate in:

• Customer engagement

• Fixing code defects

• Writing and reviewing product documentation

What causes testers to pass on such important activities? Certainly there are organizational

pressures in many teams which prevent testers from looking at these work items; after all, they

are not associated with the traditional role of a tester. Perhaps more significantly, time pressure

433

prevents otherwise motivated people from considering new activities. Testers have so little time

to do the work they are “supposed to do” that they cannot even think of taking on additional

tasks.

Learning from small test teams

Given the oft-demonstrated phenomenon of the test team time crunch, it is instructive to look at a

case study of a smaller test team. It stands to reason that a small team will be more sensitive to

such time constraints and will develop behaviors to deal with them effectively. Indeed, lack of

resources is a good forcing function for encouraging the right set of activities at the right time,

with as little wasted effort as possible.

In the following sections, I will share some information about my current project and present

three approaches that my small team has used to great success in ensuring a high quality product.

I cannot speak for every small test team, thus some of these experiences may be unique to my

organization. If nothing else, I hope that managers and individuals in teams of any size can use

the approaches that my team has taken to identify areas of improvement for their projects.

About the project

My current project is a framework primarily targeted at developers, so automated testing is a

large part of the quality assurance process. As testers, we must write small pieces of software to

validate various components in the product. In previous similar projects, the test team was more

or less solely responsible for planning, developing, executing, and analyzing the results of these

test cases. Understandably, this is a difficult task, and the software systems involved in testing

the product will often approach the complexity of the software systems being tested. This is one

of the reasons why all projects of this kind made great efforts to maintain a 1:1 tester/developer

ratio.

Faced with the realities of our staffing situation, a 1:2 tester/developer ratio that saw no signs of

changing anytime soon, we knew early on that we could not follow the methodologies of past

projects and expect good results. One of the first decisions we made was pivotal to setting the

tone for future innovations and successes of our test team: all developers must write unit tests to

validate the functionality of the components for which they are responsible. This practice led to

the adoption of a number of related behaviors which I summarize as finding innovative ways to

balance quality-oriented tasks across the team.

With developers largely in charge of low-level and core validation tasks, the test team needed to

clarify its mission. By using a customer-focused approach to project planning, we were able

to come up with test tasks and strategies which everyone agreed were essential to shipping a high

quality product.

As the product evolved and new features were proposed, we were faced with the challenge of

adding work items for a test team already operating at near 100% utilization. With our strong

434

customer focus, we became quite good at pushing for answers to a very important question,

“Why do our users need this?” If there was a clear justification for the added functionality, we

would of course find a way to take on the additional work. If not, we often found that the right

thing to do was to push for less functionality in order to keep the project on target.

There were certainly other practices that we employed along the way, but I believe these three

were emblematic of our most successful behaviors.

Behavior #1

Find innovative ways to balance quality-oriented tasks across the team

As mentioned previously, the decision to put developers in the business of testing their work was

the spark that started a wildfire of best practices that I credit for our continued success. This

example of sharing previously “test-only” tasks with developers did much more than give us

confidence in the core of the system and early warning into product defects (although these were

certainly huge benefits). Since developers knew they had to maintain the product code as well as

their test code through any future changes that would be made to the code base, the product

components ended up being loosely coupled (and thus testable in isolation) with more carefully

thought out design.

Having developers write tests is not a new concept; participants in agile development processes

have been following these practices for years. Even in the larger projects I have participated in,

developers have done some amount of testing. So what exactly did we do differently?

For one, our developers took testing more seriously than in any previous project I have seen. We

jointly developed a “Developer Test Contract” which formalized the responsibilities and

expectations of developer tests. The contract called for a brief test plan to be written as part of

the developer design documents (consequently opening them up yet to another previously test-

only task). Developers and testers reviewed these unit tests with the amount of scrutiny that was

usually reserved for production code, going so far as to reject code submissions due to a lack of

tests.

We on the test team also integrated the developer tests into our own processes. We assumed a

base level of coverage from these tests and opted to not duplicate what we knew was already

tested. Instead, we took a scenario-oriented approach for our own tests, focusing on the higher

level usage patterns of the customer and targeting our tests appropriately.

This stands in stark contrast to past projects, where it was normal for testers to write what

essentially amounted to unit tests. Even in cases where developers had written some of these

tests already, testers were not always aware of what was covered and there was a general feeling

of distrust in these artifacts. Looking back, I blame this on a lack of oversight; if testers had

been encouraged to explicitly review and sign off on these tests, they would not have felt

obligated to fill in these perceived gaps.

435

Balancing of tasks is not a one way street. With the increased understanding of the product that

comes from being involved in code and test reviews, testers on my team are often able to

pinpoint and fix actual product defects. On many of my previous projects, this practice was so

unusual as to be nonexistent. However, on my current project we take “quality is everyone’s

job” more literally.

The practice of testers writing production code is understandably controversial. In a product

group where testers are thought of as the police and the development team are assumed to be

criminals it would make sense that testers were discouraged from contributing to such a conflict

of interest. However, if approached carefully, this practice can benefit everyone. First of all, we

must stop thinking of the police analogy when we think of the tester-developer relationship; high

quality software is built as a result of a partnership between these roles. Additionally, there

should be no special treatment given to a tester who has submitted production code for approval.

The code must pass all the usual independent quality checks and be given as rigorous a review as

if it had been submitted by any other developer on the team.

Not every tester will be able to contribute to development work, and this is perfectly fine. Those

who can contribute should be encouraged to do so. In short, the focus should be on choosing the

right person for the task, regardless of primary role.

Behavior #2

Use a customer-focused approach to project planning

When the test team is focused less on the dev-centric notion of “classes and methods” and more

on the end-user-centric notion of the “product experience,” some interesting changes take place.

As I touched on in the previous section, customer scenarios become the primary pivot for

planning test work.

Presumably, all software exists to fulfill some customer need. These needs are often articulated

like problem statements, the solution for which is outlined in a use case or scenario. For

example, in the case of a multimedia software product, the statement may be, “Mom needs to

create a DVD with a slide show of her family vacation photos.” The scenario associated with

this would have a sequence of steps Mom could follow to achieve the goal, e.g. “She opens the

Slide Show Wizard and is prompted with the Select Pictures dialog,” “She selects one or more

pictures and presses the Next button,” “Mom waits as a progress dialog is displayed while the

pictures are encoded,” and so on.

Software architects and developers are then supposed to think about the individual pieces that

need to be created to actually build the software project fulfilling this scenario. In this example,

there might be several back-end components that the user will never know about, such as a

picture encoder, a set of interfaces to implement progress notification, and low level components

to interact with the DVD device; whether the user sees it or not, of course, it must be designed

and implemented.

436

Thinking back to my previous projects, the test teams focused almost entirely on these types of

back-end components. This style of testing still uncovered defects but it was not always clear

what the actual user impact was. This information would always have to be “reverse

engineered” in essence by attempting to think of a realistic use case in which the bug would

occur. In some cases, the tests were exercising purely negative paths which required passing bad

data or performing other actions far outside mainline scenarios. Negative testing is still a

valuable exercise, of course; the problem was that it was being done in preference to the more

valuable task of proving the product works for its intended purposes.

Due to the intense focus on the low level aspects of the system, many testers did not fully

understand the ways customers actually used the product. This prevented many otherwise

knowledgeable testers from being able to participate in customer engagement activities.

On my current project, we recognized the pitfalls of the previous approaches and looked to

scenario testing as a way to focus our limited resources in the right places. Instead of splitting up

test tasks along software module boundaries, we created “scenario buckets” which grouped use

cases into higher level system areas. Instead of pure negative cases, we focused on plausible

errors or failures which a user could encounter and evaluated the system’s reliability and

consistency in these cases (this was part of the “Recovery” scenario bucket).

One of the many challenges of planning test work is prioritization. In the mathematically infinite

space of testing, priorities can help decide what is essential and what is dispensable. Customer-

focused planning is especially valuable here, as it makes it much easier to make this decision. In

simple terms, the test cases which get first priority are those covering scenarios our customers

exercise most often. The target platforms and conditions we choose for our test passes match our

customers’ systems as much as possible.

While this sounds obvious, the larger projects in which I have been involved have not always

followed this guidance. Since features were often tested in isolation rather than as aspects of a

larger scenario, it was hard to get a sense for how important a smaller case was in terms of the

bigger picture. Even so, a larger team may be able to absorb the cost of a prioritization error by

essentially throwing more people at the problem; if it turns out a last minute high priority test

needs to be written and executed, a few testers can be taken aside for a week to complete this

work. No such luxury exists on a small team, so it is critical to have the right plan the first time.

Behavior #3

Push for less functionality in order to keep the project on target

As professional testers, we are a unique group. We love to experiment with the products we use.

Many of my colleagues spend considerable time setting up their computers in unique ways, even

going as far as changing their keyboard layouts in the hopes that they will be more productive or

efficient. Indeed, we cherish the flexibility and freedom of choice provided by the software we

use.

437

What we must understand, however, is that typical software users do not want choices; they

simply want to get their work done. By allowing features of questionable utility to slip into our

products, we cause two problems, one for ourselves as testers and one for our users. As testers,

we must verify that these features work, which means we must extend the schedule or drop other

tasks to fit this into the release. Furthermore, our customers must deal with the additional

complexity introduced by the new feature; this may come in the form of an additional dialog to

click through, a new settings page, or an extra menu item, all of which have the potential to

confuse or distract the user and reduce their overall satisfaction.

Members of a small test team cannot afford to have more features to test than are absolutely

necessary to fulfill customer requirements. Testers should not be afraid to request outright

removal of features which do not map to any known use case. I can point to a recent example of

this on my team. In our product install utility we had originally planned to include a screen

where some configuration settings could be modified. However, we had no actual scenarios

where a user would want to change the default settings. Armed with this data, and the argument

that the feature added a mostly superfluous, somewhat confusing, and mandatory additional

screen to click through, we successfully lobbied to eliminate it from the product.

Adopting the behaviors of small test teams

My team has beaten the odds; we may be outnumbered but we are no less successful because of

it. We have fought for changes to processes that we saw as unsuitable for a smaller team and

won. We continue to deliver high quality releases to our customers. How can your team do the

same?

First, the test team should encourage the developers to share in the joy of testing. Unit testing

has become fairly popular in recent years and many developers are already doing it. Try to

formalize the practice by establishing some guidelines and expectations for developer-produced

tests. If possible, get testers involved with reviewing these tests. It is great education for both

parties. Teams with non-programming testers can still benefit when developers write tests. A

solid foundation of unit tests prevents defects from entering the product which saves testers time

that would otherwise be spent having to investigate, file, and work around obvious bugs. Such

“common sense” data can be very powerful in convincing skeptical team members that a new

practice is worth a try.

Assuming a worst case scenario where the development team absolutely refuses to do unit

testing, it should still be possible to apply the other techniques. Using customer-focused

planning for test work and shifting the focus to scenarios is a test-centric change; given the usual

recommendations that testers should “think like customers” it should make perfect sense to the

rest of the team. Of course, pushing for smart feature cuts is an option available to any team;

testers simply need to get into this mindset and embrace the “less is more” style of product

planning.

438

Above all, it is important that any changes be made in gradual steps. A bad experience with a

new practice can make future process improvement proposals much harder to sell, no matter how

sorely they are needed.

Conclusion

I encourage all test teams, no matter the size, to consider the points I have raised and start

thinking like a small team. Whether you work with two testers or 200, you can benefit from

these behaviors. My experience has shown that the combination of sharing quality-related tasks,

customer-focused planning, and trimming of features will lead to higher quality software.

Fight for your rights when you are outnumbered – push for best practices in quality assurance.

References

1. No author. “Glossary.” 2007. Whittington & Associates, LLC. Retrieved 15 Aug. 2008

<http://www.whittingtonassociates.com/v2/glossary.shtml>.

439

440

Virtual Lab Automation:

Best Practices and Common Pitfalls

Abstract

Virtualization is a ground-breaking technology that promises quantifiable benefits for

application development and QA organizations: faster lab deployment, less manual set-

up work, greater resource flexibility and utilization, and easier reproduction of defects.

However, adopting virtualization in a development or QA organization isn’t without

issues. Often it’s not obvious whether to build out a custom virtualization framework or

make a strategic bet to implement a full virtual lab management solution, complete with

automation and a pool of centralized hardware.

This paper discusses the software quality challenges commonly faced by application

development teams and how virtual lab automation can lead to a more strategic

approach to QA practices. It describes the best practices for virtual lab automation

adoption and also highlights the common pitfalls organizations face during

implementation. Finally this paper outlines the steps to evaluate a virtualization solution

for your QA organization and provides further resources to help you get started.

Ian Knox

iank@skytap.com

Skytap, Inc.

Ian is currently Director of Product Management for Skytap and is responsible for

product management, market positioning, demand generation and go-to-market

strategy. Ian joined Skytap from Microsoft Corporation where he was group product

manager for Microsoft Visual Studio. In this role, Ian led the product management team

responsible for building a new $400M enterprise tools business in the Application

Lifecycle Management (ALM) category. Prior to Microsoft, Ian was a Principal

Consultant at PricewaterhouseCoopers where for 7 years he worked on global software

delivery projects for Fortune 500 clients.

441

Virtualization Forces a Rethink of QA Practices

A manager in charge of application QA needs to determine the best way to apply limited

resources to achieve the goal of delivering a reliable, performant application. Given the

nature of modern distributed environments, this job is becoming more and more difficult:

• Increasing complexity. Building a lab environment to support testing is a

painstaking task for a typical distributed architecture. Implementing test

environments that mirror production as closely as possible require that machine,

network and application settings are carefully configured to ensure environmental

issues are found before deploying to production.

• Resource constraints. Budgets are shrinking and procuring physical hardware,

storage and network resources for test environments is costly and often hard to

justify given low utilization. Applications often require testing on multiple operating

system versions and language variants, browsers and devices, so achieving the

optimum balance between adequate test coverage and acceptable risk is difficult to

achieve.

• Productivity bottlenecks. The set-up and tear-down of labs is usually a time-

consuming, manual process. This IT provisioning overhead is costly and reduces the

time QA teams can spend testing an application.

• Faster cycle times. The broad adoption of agile development practices have put

pressure on QA teams to reduce test cycles and work iteratively to deliver software.

• Communication issues. Developers often spend an inordinate amount of time

trying to reproduce and debug defects reported by the QA team. If an application

state is difficult to reproduce, it can mean hours of wasted time diagnosing an issue.

• Globally distributed teams. The growing trend of using offshore testing resources

compounds the problem of sharing consistent environments across teams and

facilitating effective team collaboration.

Given the rise of virtualization, application development managers and QA

professionals are rethinking tooling, practices and skills to help solve these ongoing

challenges. Many have already experimented with virtualization in their lab environment

and are now realizing a virtual lab automation solution is necessary to overcome new

challenges that a virtualized environment brings.

442

Virtualization Challenges

Many QA teams are using virtualization by building a proprietary framework using

scripting, such as VMWare images with Perl scripts. This can provide many benefits

including the ability to snapshot and restore images, faster machine deployment times

and better utilization of hardware.

This approach has proved successful in many organizations, especially with ad-hoc or

simple test frameworks. However, as many teams are learning, it can soon become a

significant effort to develop and maintain scripts and a library of images. Additionally, it’s

not easy to deploy and manage multi-machine configurations in an isolated network

without implementing virtual private networking. Usually there is no user interface to

manage the test lab which limits the control users have over the lab environment. The

cost of administration can quickly warrant implementing a more robust solution and

many organizations are investigating virtual lab automation to solve the overhead costs

of a custom solution.

The remainder of this paper suggests five best practices for adopting a virtual lab

automation solution and some common pitfalls organizations should avoid.

Best Practice #1: Understanding Virtual Lab Automation (VLA) Capabilities and

Limitations

Virtual Lab Automation (VLA) is the industry term that has been coined to describe a

new breed of tools and test practices to automate labs using virtualization technology. A

VLA solution can include some or all of the following capabilities:

Resource Pooling and Provisioning

Resource pooling enables processing power, storage and networking infrastructure to

be shared between different teams and individuals, increasing utilization and availability

of resources, and reducing costs. In conjunction with resource pooling, an orchestration

and provisioning process allocates and releases resources as needed.

Multi-Machine Configurations

Virtual machine images are the containers that enable operating systems and

applications to be isolated from physical resources. A group of virtual images that define

a complete system, including network and storage characteristics, is defined as a

configuration. For instance, a configuration could consist of multiple Windows Vista

client machines, an Oracle database server and a WebSphere application server.

Configurations can be easily created by combining virtual machines through a user

interface. A configuration is a very useful concept for QA teams because it allows a

whole system to be defined and isolated in a test environment. Virtual networking

443

enables copies of the same environment to be run in parallel and the emulation of

production environments during the test process.

Configuration Library

A configuration library allows a team to manage and organize virtual images and

configurations. Standard builds and images can be created and made available to

development and QA teams to save hours of set-up time and environment

configuration. Additionally, the library is used to store new configurations that are

cloned or created as part of a test.

Suspend, Snapshot and Restore

The ability to suspend a complete state of a multi-machine configuration and make a

snapshot (a copy at a point in time) is a major benefit of virtualization. This is especially

useful for application development teams because when a bug is found a configuration

snapshot can be taken at the point of failure and a link to the configuration added to a

defect report. Instead of a developer spending hours to reproduce the defect, he or she

can restore the configuration and start debugging the issue within minutes.

Scheduling and Reservations

Many in-house virtual lab implementations have a fixed pool of resources for teams to

share. Scheduling and reservation functionality allows the resolution of resource

conflicts and test environments to be reserved ahead of time.

Reporting and Monitoring

Reporting modules allow users and administrators to manage usage and quotas and

determine whether the system resources are being used optimally. Monitoring enables

the system health to be diagnosed, including CPU utilization, storage performance and

network usage.

Automation API

Automating a test lab almost always involves integrating tools and test processes. An

automation API enables teams to automatically create test environments as part of the

build process and initiate automated test runs once a new build has been deployed. An

automation API is typically made available through a web services interface.

Administration and Security

Administration and security features often include user and quota management, project

creation, permissions and authentication. Remote access to the system (for instance for

an outsourced vendor) is usually managed through secure connections via encrypted

protocols and virtual private networking.

444

These capabilities are undoubtedly attractive to the vast majority of QA teams.

However, every team is different and determining whether some or all of these

capabilities are beneficial is important to consider. Any QA manager who has

implemented functional testing tools knows that there are some testing projects where

the effort required to implement an automated testing framework can far outweigh the

benefits. The same is true for virtual lab automation.

Common Pitfall: Misunderstanding test types that are suitable for a virtual lab

Almost all VLA solutions utilize standard infrastructure and support a wide range of test

scenarios. Hardware and network characteristics can be easily configured through the

web interface to specify number of processors, amount of memory and network settings

of machines in a configuration.

Fig 1. Test Types Supported

Typical customer test scenarios include unit testing, functional testing, system testing,

integration testing and load testing of applications. However, there are a few use cases

where a VLA solution is not recommended. These include tests which require specific

hardware access (e.g. bios driver tests) and some types of performance and stress

testing (e.g. a test of application performance on a specific hardware profile).

445

Best Practice #2: Determine the right implementation approach for your

organization

There are essentially two approaches for adopting a virtual lab automation solution, an

on-site package and a hosted virtual lab service, both with different advantages and

disadvantages

There are a number of vendors now offering packages for Virtual Lab Automation,

including VMware. Many of these solutions offer most or all of the capabilities discussed

above. They have typically been adopted by large enterprise organizations where the

expense, time and organizational changes required to build a centralized lab are worth

the effort. These organizations have seen dramatic Return on Investment (ROI) from

these new labs. Voke, an analyst firm, estimates a virtual lab automation solution can

deliver a 25-50% reduction in hardware needs and an average time saving of 3 days to

deploy a lab environment.

For QA organizations that are not part of a large enterprise organization, there are some

considerations that may lead them to a hosted alternative (such as the solution offered

by Skytap). First, implementing an automated test lab requires a large upfront

investment in lab hardware and software. It also requires significant effort to implement,

configure and train lab personnel. This type of expense is especially hard to justify for

dynamic projects and if departmental QA budgets are under pressure.

Second, implementing an in-house virtual lab solution requires skilled IT resources to be

assigned for administration and virtual image population and maintenance. Unless a lab

reaches a critical mass to cover multiple development and test organizations, this

administration overhead can be prohibitive.

Finally, even though an automated virtual lab improves resource utilization there are still

going to be resource conflicts between teams unless an expensive pool of infrastructure

is procured that covers peak demand. This means some test groups will still need to

wait for resources, reducing their effectiveness and increasing delivery risk.

An alternative to an in-house virtual lab package is using a hosted lab or ‘Virtual Lab-as-

a-Service’. In the same way Salesforce.com offers a CRM package as a service, a

virtual lab as a service solves many of the issues and risks associated with an in-house

implementation. For example, there are no upfront investment costs and infrastructure

can be scaled up and down according to testing needs. Furthermore, the administrative

costs associated with running the lab are handled by the service provider. A hosted lab

can be easily integrated back to on-site assets using a Virtual Private Networking (VPN)

connection and typically a customer will only pay for the hourly usage of the lab

machines when in use, eliminating the expense of test machines sitting idle.

Common Pitfall: Ignoring Indirect Costs

When determining the Total Cost of Ownership (TCO) for each approach, it’s important

not to forget to include the costs for internal IT support, as well as the more obvious

446

hardware and software capital expenditures. Often, much of the ongoing costs for a lab

involves IT administration. Also, indirect costs should be included such as time savings

for development and test team members gained by using the capabilities of a VLA

solution.

Best Practice #3: Automate Your Test Lab Operations

One of the major benefits of a VLA solution is the ability to integrate with a build process

and testing framework to enable an automated workflow. Typically, this workflow is

enabled through scripting or tooling support in the build server and/or automated testing

tools. Almost all VLA solutions (both in-house and hosted) offer an API to enable

integration.

Figure 2, Typical Lab Automation Process

Investing in populating an asset and configuration library will enable standard

environments to be deployed quickly. Many environment set-up tasks can be automated

to avoid manual user intervention. For instance, as part of a nightly build, new virtual

machines configurations can be automatically deployed and software builds and

patches installed in preparation for a test run. In addition, using the virtual private

networking functionality found in a typical VLA solution, a test environment can be

deployed to mimic a production environment as part of the automation process.

Best Practice #4: Enable Team Collaboration with User Permissions and Projects

Every VLA solution offers the ability to specify user access levels and permissions.

Typically an administrator will have access to the entire lab, team leads have the ability

to create new projects and environments and individual testers work as part of a project

and have access to only the resources they need.

447

Once user access control has been specified, administrators and team leads can

enable or restrict access to resources through the virtual lab user interface. This is

especially useful for projects where outsourced vendors are utilized. A project can be

created with the environments to be tested and outsourced testing professionals can be

given access only to the resources required for a given test run. If an organization is

using a hosted lab, it’s easy to ensure the test environment is isolated from the

corporate network.

Now environments are stored in a configuration library, replication of defects becomes

much easier as both development and test teams are sharing the same environments

on the same virtual infrastructure.

Common Pitfall: Not Restricting Access to Master Configuration Images

There will be a set of master (or ‘Gold’) configuration images that are commonly used to

create environments. These include standard desktop images, application builds and

server images. It’s important to ensure these images can only be accessed by a lab

administrator and not accidentally modified by a developer or tester.

Best Practice #5: Obtain Team Buy-In With High Impact, Low Effort Changes

Once implemented, training your staff about the use of a VLA solution is the first step to

encourage adoption. However, demonstrating how it will help make their jobs easier is

equally important. By choosing a few high impact areas to focus on and securing some

quick wins to improve productivity, you team is much more likely to adopt the new

solution.

One of the most obvious areas to focus on is populating the configuration library. If you

have chosen a hosted VLA solution, this will be pre-populated and you will only need to

update base virtual machine images to match corporate images. This will enable IT

operations and QA leads to very quickly assemble and deploy new environments,

dramatically cutting down the ‘time-to-test’ and simplifying environment configuration.

Another high impact, low effort change is to ensure snapshots of virtual machine

configurations are captured for new defects. This will enable testers to more easily

communicate defects (some have called it a ‘screenshot on steroids’) and developers to

isolate problems in a fraction of the time it previously took.

Common Pitfall: Inadequate Training of Outsourced Test Teams

Organizations will typically roll-out training programs to their staff, but may forget to do

this for outsourced test teams, especially when new service providers are added after a

VLA implementation. Conducting short training sessions using a Webinar solution will

ensure outsourced teams are equally productive with a VLA solution.

448

Summary

As part of evaluating approaches for adopting virtualization in your development and

testing organization, we recommend the following steps:

1. Determine the Capabilities Your Organization Needs

Build a requirements matrix and determine the types of testing and usage patterns

typically seen in your organization. Consider operating platforms and hypervisor

vendors used in your environment as well as the current skills of your IT operations and

QA team.

2. Explore the Potential Solutions

Evaluate an in-house package and using a hosted virtual lab service.

3. Evaluate Total Cost of Ownership (TCO)

Build a Total Cost of Ownership model. Be sure to include software, hardware,

implementation, and administration costs. Also try to estimate the indirect costs

associated with each option.

4. Conduct a Trial Project

Conduct a proof-of-concept or trial project using your short-list of solutions.

5. Implement Solution and Refine Your QA Process

Once you’ve tested and implemented your solution, we recommend evaluating your

current test practices, updating these to reflect the new virtual lab capabilities and

investing in training your team before rolling out the solution broadly.

449

450

Proceedings Order Form

Pacific Northwest Software Quality Conference

Proceedings are available for the following years.

Circle year for the Proceedings that you would like to order.

2008 2007 2006 2005 2004 2003 2002

To order a copy of the Proceedings, please send a check in the amount of $35.00

each to:

PNSQC/Pacific Agenda

PO Box 10733

Portland, OR 97296-0733

Name___

Affiliate__

Mailing Address__________________________________

City______________________State_____Zip__________

Phone_________________________

Using the Electronic Proceedings

Once again, PNSQC is proud to produce the Proceedings in PDF format. Most of

the papers from the printed Proceedings are included as well as some slide

presentations. We hope that you will find this conference reference material

useful.

Download PDF – 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000,

1999

The 2008 Proceedings will be posted on our website in

November 2008.

Copyright

You can print articles or slides for your own private use, but remember they are

copyright to the original author. You cannot redistribute the Acrobat files or

their printed copies. If you need extra copies of the printed or electronic

Proceedings please contact Pacific Agenda at tmoore@europa.com.

