PROCEEDINGS

PACIFIC & NORTHWEST

TOOLS
FOR
SOFTWARE
QUALITY

September 27,1985
Red Lion/Lloyd Center
Portland, Oregon

1985 Pacific Northwest Software Quality Conference

TABLE OF CONTENTS

Chairman’s MesSage v ¢t v v i v e e e e e e e e et e e e e e e e e e e e e e e iv
Organizing Committee v i i i i e v
- ¥ 14 Vo) < vi
EXhibitors e e e e e e e e e e e e e e e e e e vii
Keynote (Abstract and Biography) i i i i e e e e e e e e e e viii
Session 1. Methodologies e e e e e 1
“Extending Structured Analysis to Become a Design Tool”
Walter Webb, Rainer Wieland, & Chris Olson, Tektronix, Inc. 3
“Implementing the Software Review Process”
David Kerchner, Floating Point Systems, Inc..c.... 24
“Software Configuration Management: A Tool for Software Quality”
George Tice, Jr., Tektronix, Inc. i i ittt it e ittt e 56
Session 2. Metatools e e e e e e e e e e e e e e e 77
“Reduced Form for Sharing Software Complexity Data”
Warren Harrison and Curtis Cook, Oregon State University. 79
“A Practical Guide to Acquiring Software Engineering Tools” :
Tom Milligan, Tektronix, INC. i i i i i i i i i it e et e e et e e e u 97
“The Use of Software Metrics to Improve Project Estimation”
Bob Grady & Debbie Caswell, Hewlett Packard Co. 107
Session 3. Panel: “The Pros and Cons of Rapid Prototyping”. 139

Moderator: LeRoy Nollette, Tektronix, Inc.
Panelists; Rick Samco, Mentor Graphics Corp.
Robert Babb, Oregon Graduate Center
Will Clinger, Tektronix, Inc.
David Kerchner, Floating Point Systems, Inc.

Session 4. Testing and Problem Reporting, I 143
“A Tool for Analyzing the Logic Coverage of Source Programs”
Arun Jagota, Intel Corp. e e e e e e e e e e e e e e e 145
“TCAT/C: A Tool for Testing C Software”
Edward Miller, Software Research Associates. ¢ v v v v v v v v v v v v 169
“A Unix Based Software Development Problem Tracking System”
Gordon Staley, Hewlett Packard Co.. @ i i i ittt ie et e 195
Session 5. Development Tools 215
“Software Design Using BCS Argus”
Bill Hodges, Boeing Computer ServiCes v v v v v v v v et e et e e e 217
“The System Engineering Environment PROMOD”
Peter Hruschka, Promod, Inc. @ i i i i i i i it it e e e e e e 235

“Locating Suspect Software and Documentation by Monitoring Basic Information
about Changes to the Source Files”

David Vomocil, Hewlett Packard Co.t iinnennen. 263
Session 6. Testing and Problem Reporting, II 277
“A Software Test Environment for Embedded Software”
David Rodgers and Ralph Gable, Boeing Commercial Airplane Co.. 279
“CLUE--A Program and Test Suite Evaluation Tool for C”
David Benson, BENTEC i i i i ittt it ettt e e e e e e e 321

“Tools for Problem Reporting”
Susan Bartlett, Metheus-CV, INC. i i i i i i e e et e e e e e e e 359

CHAIRMAN'S MESSAGE

Ronald K. Swingen

Welcome to the Third Annual Pacific Northwest Software Quality Conference. We are pleased
that you took advantage of this opportunity to share knowledge and ideas on “Tools for
Software Quality.”

The requirements for producing high-quality software have never been greater than they
are today. Our *“computer industry” is under extreme pressure to be profitable and
productive. We cannot meet these requirements merely by working harder. We must avail
ourselves of every opportunity to leverage our efforts--hence, the importance of software
tools.

The Proceedings contains 15 papers from software engineers and managers who responded to
our Call for Papers. One of these will be reproduced in a future issue of IEEE Computer.
This year’s Conference includes a new element--exhibits by selected vendors who offer
products related to our theme. A listing of those vendors is included for your reference.

Watch for an announcement of the Fourth Annual Software Quality Conference during the

summer of 1986. We welcome your comments on this year’s Conference and your suggestions
for the 1986 program.

iv

ORGANIZING COMMITTEE

1985 Pacific Northwest Software Quality Conference

Chairman:

Ronald K. Swingen
Mentor Graphics

8500 S.W. Creekside Place
Beaverton OR 97005
503/626-7000

Program:

Monika Hunscher

Floating Point Systems, Inc.
P.O. Box 23489, MS S-150
Portland OR 97223
503/641-3151, x1516

Sue Bartlett
Metheus C-V, Inc.
P.O. Box 959
Hillsboro OR 97123
503/640-8000, x231

Chuck Martiny

Tektronix, Inc. MS 50-487
P.O. Box 500

Beaverton OR 97077
503/627-6834

Dale Mosby

Sequent Computer Systems, Inc.

14360 N.W. Science Park Drive
Portland OR 97229
503/626-5700

LeRoy Nollette

Tektronix, Inc. MS 78-528
P.O. Box 500

Beaverton OR 97077
503/627-5012

Committee

Exhibits:

Richard A. Martin

Intel Corporation, EY2-01

5200 N.E. Elam Young Parkway
Hillsboro OR 97124
503/681-2246

Treasurer:

Kenneth P. Oar

Hewlett Packard Co.
Portable Computer Division
1000 N.E. Circle Blvd.
Corvallis OR 97330
503/757-2000, x 4248

Steve Shellans

Tektronix, Inc. MS 50-487
P.O. Box 500

Beaverton OR 97077
503/627-4954

Janet Sheperdigian

Intel Corporation EY2-01

5200 N.E. Elam Young Parkway
Hillsboro OR 97124
503/681-2284

Sue Strater

Mentor Graphics

8500 S.W. Creekside Place
Beaverton OR 97005
503/626-7000

George Tice

Tektronix, Inc. MS 92-525
P.O. Box 500

Beaverton OR 97077
503/629-1310

AUTHORS

1985 Pacific Northwest Software Quality Conference

Ms. Susan Bartlett
Metheus-CV

P.O. Box 959
Hillsboro OR 97123

Dr. David B. Benson
BENTEC

NE 615 Campus St.
Pullman WA 99163

Ms. Deborah Caswell
Hewlett Packard
3500 Deer Creek Rd.
Palo Alto CA 94304

Dr. Curtis Cook

Oregon State University
Computer Science Department
Corvallis OR 97331

Mr. Bob Grady
Hewlett Packard

3500 Deer Creek Road
Palo Alto CA 94304

Mr. Warren Harrison
University of Portland
5000 N. Willamette Blvd.
Portland OR 97203

Mr. William H. Hodges
Boeing Computer Services
P.O. Box 24346

Seattle WA 98124-0346

Dr. Peter Hruschka
Promod, Inc.

22981 Alcalde Dr.
Laguna Hills CA 92653

Mr. Arun Jagota

Intel Corporation

5200 N.E. Elam Young Parkway
Hillsboro OR 97124

Mr. David J. Kerchner
Floating Point Systems
P.O. Box 23489, MS S-150
Portland OR 97223

Dr. Edward Miller

Software Research Associates
P.O. Box 2432

San Francisco CA 94126

Mr. Tom Milligan
Tektronix, Inc.

14460 N.W. Hunters Dr.
Beaverton OR 97006

Mr. Chris Olson
Tektronix Inc.

P.O. Box 4600 MS 92-525
Beaverton OR 97075

Mr. David A. Rodgers

Boeing Commercial Airplane Co.
12707 N.E. 120th, Unit B3
Kirkland WA 98034

Mr. Gordon Staley

Hewlett Packard Co.

1000 N.E. Circle Blvd., P.C. Div.
Corvallis OR 97330

Mr. George D. Tice, Jr.
Tektronix, Inc.

P.O. Box 4600 MS 92-525
Beaverton OR 97075

Mr. David Vomocil
Hewlett Packard Co.
1000 N.E. Circle Blvd.
Corvallis OR 97330

Mr. Walter Webb
Tektronix, Inc.

P.O. Box 4600 MS 92-525
Beaverton OR 97075

Mr. Rainer Wieland
Tektronix, Inc.

P.O. Box 4600 MS 92-525
Beaverton OR 97075

EXHIBITORS

1985 Pacific Northwest Software Quality Conference

Database Design, Inc.
Contact: Kim Frazier
2006 Hogback Rd.
Ann Arbor MI 48104
313/971-5363

Higher Order Software
Contact: Robert S. Dane
2067 Massachusetts Ave.
Cambridge MA 02140
214/257-3758

Interactive Systems Corporation
Contact: Kristie Korte

2401 Colorado Ave., 3rd Floor
Santa Monica CA 90404
213/453-8649

Productivity Products International
Contact: Chet Wisinski

27 Glen Road

Shady Hook CT 06482
203/426-1875

Promod, Inc.

Contact: Thomas L. Scott
22981 Alcalde Dr.

Laguna Hills CA 92653
714/855-8560

Software Research Associates
Contact: Dr. Ed Miller

580 Market St., Suite 350
San Francisco CA 94104
415/957-1441

Teledyne Brown Engineering
Contact: Rusty Bynum

300 Sparkman Dr.

Huntsville AL 35807
205/532-1661

Wiley Learning Technologies
Contact: Jacqueline Philpotts
605 Third Avenue

New York NY 10158
212/850-6000

vii

KEYNOTE
Adversaries in Software Development

Dr. Richard Hamlet
Professor of Computer Science
Oregon Graduate Center for Study and Research

Although designers and programmers want to make their software work well, the
pressure of circumstances can compromise a project. An independent quality
assurance (QA) group can defend standards, but only if there is agreement about
measures of software quality. Unfortunately, our understanding of how to
measure quality is still very poor.

A careful look at a number of accepted quality measures shows that each can
be subverted. That is, software may be given the appearance of quality
(accidentally or on purpose) without having the substance. For the measures
to have meaning, software developers must cooperate with QA in their
application, observing the spirit rather than the letter of the law.

Biography

Dr. Richard Hamlet has had a distinguished career in higher education as
teacher and researcher. In the last 20 years he has taught at the University
of Washington, University of Maryland, and University of Melbourne, and since
1984 has been Professor of Computer Science at the Oregon Graduate Center.

Dr. Hamlet also has had practical experience as systems programming director
of a university computer center and a commercial timesharing service bureau.
He has rewritten and maintained a commercial operating system, and written
several production-quality compilers. He is the author of a textbook on theory
of computing and is working on two other texts, one on theory, and the other
(with Harlan Mills and others), an introduction to programming from a
mathematical point of view.

viii

Session 1

METHODOLOGIES

Titles and Speakers:

“Extending Structured Analysis to Become a Design Tool”
Walter Webb, Rainer Wieland, and Chris Olson, Tektronix, Inc.

“Implementing the Software Review Process”
David Kerchner, Floating Point Systems, Inc.

“Software Configuration Management: A Tool for Software Quality”
George Tice, Jr., Tektronix, Inc.

Extending Structured Analysis to Become a Design Tool

Walter Webb
Rainer Wieland

Chris Olson

Software Development Products Division
Tektronix, Inc.

ABSTRACT

This paper presents an extension of the Structured Analysis method of writing
specifications. Data flow diagrams previously defined using interactive graphics
tools directly dictate the architecture of the program. The software design is the
requirements definition, bypassing the traditional structured design step. Conse-
quently, the resulting program closely reflects the Structured Analysis document.
This approach was successfully employed in building a software product at Tek-
tronix.

July 2, 1985

Extending Structured Analysis to Become a Design Tool

Walter Webb
Rainer Wieland
Chris Olson

Software Development Products Division
Tektronix, Inc.

Introduction

In July, 1984, Tektronix began selling software tools (SA Tools) which aid a software engineer in
using Structured Analysis.! The tools themselves were specified with Structured Analysis. The
resulting specification showed all processes and their data interfaces down to the mini-specification
level. The next step was to develop a structured design by the application of transform and tran-
saction analysis on the structured specification. This procedure, however, is ill-defined.

When you carry out transform analysis, remember that it is a strategy. You cannot unthink-
ingly follow its steps as you could those of an algorithm. From time to time, to stay on the
right track, you must bring to bear your knowledge of what the system is supposed to accom-
plish. And, when you derive your first structure chart, you must use all the design criteria you
have learned to improve it.

One day, transform analysis may become an algorithm. But if it does, the structure chart will
disappear and the DFD will be implemented directly, for a machine can obey an algorithm
much better than can a human being. . . . perhaps, we shall see DFDs being executed on a
horde of dvnamically reconfigurable microprocessors.2

At about this time, the project team was exposed to the Large-Grain Data Flow technique.? With
this approach, the data flow diagrams (DFDs) directly dictate the architecture of the program.
Contrary to the popular convention of developing structure charts from the DFDs, structure charts
are never drawn. This technique was adapted by the project team in designing the software.

A New Model for Program Design

Processes in a DFD are defined either by a lower level DFD or by a mini-specification (mini-spec).
The DFDs exist in a hierarchical tree structure where the mini-specs arc the leaves on the tree. A
mini-spec contains a structured English description of a primitive process.

The new program design model is based on the DFD: only mini-spec processes do any work (are
executable) and they may execute in parallel. In addition, all data flows are thought of as being
single-entry queues that are either full or empty. The essential question is “"When should a mini-
spec (module) be activated?”. This question is answered as follows.

Control of Module Execution

A module is able to perform its task when all of its input queues are full and when all of its output
queues are empty. The destination of some output data flows is external to the system. Their
queues are fixed as always being empty. This approach is similar to techniques propcsed by

others.45 Some modules do not need all of their inputs to be present or all of their outputs to be
consumed. Such modules require state memory to track which data flows are present or which

have been used.

Each module is responsible for filling its output queues and for emptying its input queues. Failure
to do so results in a static (or deadlocked) system. In this manner each module can be executed
indcpendently based on the state of its inputs and outputs. If no queues change state (are emptied
or filled) after all modules have executed, the entire program is done and halts. A single main
program controls the execution of all modules.

This model is implemented by associating a boolean flag for each queue. A queue is full if its
corresponding flag it set, empty if its flag is clear. The setting and clearing of these flags is per-
formed using compile-time macros.

The specific application of this model to develop a program is described in the subsequent sections.

Remove
High Level
Datz Flows
2

Build
Programs
.5

Code
Modules
maln 7
MS-
files
Add n -
Argument AM_ Or
Processing M:h"’
9

6/26/85-rainerw
DFD 0 - Convert Data Flow Diagrams to Code

Figure 1

From Data Flow Diagrams to Code -- an Overview

It is assumed that one starts from a structured specification consisting of data flow diagrams,
mini-specs, and a data dictionary. It is also assumed that these documents are consistent and
correct. The following examples and descriptions are based on the use and output of Tektronix’

SA Tools.

These tools are grouped into five categories: graphics editing tools, evaluation tools, correction
tools, display tools, and auxiliary tools. The cumbersome task of drawing, correcting, and verify-
ing the data flow diagrams is simplified by using these automated tools.

To produce high-level code (C in this case) from the data flow diagrams the steps shown in Figure
1 are followed. Figure 1 is itself shown as a DFD with circles, representing automated steps and
rectangles representing manual steps. The steps are outlined in the Table 1.

Table 1

Step

Description

Extract Data Flow Names

The data flow names are extracted from all DFDs, sorted
and saved in the file types.

Remove High Level Data
Flows

The data flow names not attached to a mini-spec are
deleted. The output data flows that terminate on the
boundary of DFD 0 (the top level DFD) are also deleted.

Declare C Types

The C language declarations for the remaining data flows
are defined.

Extract Mini-spec Info

The mini-spec body is converted to C language comments.

Records indicating the name and type of each data flow
and the names and parameters of each module are
created.

The main program containing the code to call each mini-
spec, the data declarations for all data flows with their
associated queue states, and the module stubs containing
the parumeter declarations and mini-spec body as com-
ments are all created.

The module stubs are split into separate files,

The mini-spec inserted as comments into each module is
converted to code.

This step is optional. It consists of adding logical "or"
conditions to the "if" statements preceding a module’s call
from the main program.

This step is optional. It consists of adding code to process
any command line parameters that are needed by the pro-
gram.

Build Programs

Make Module Stubs
Code Modules

Add "Or" Conditions

Add Argument Processing

An Example

The above technique was used to produce the SA Tools. Each DFD and mini-spec must be in a
separate file. A directory must be created containing only those DFDs and mini-specs that are
directly involved in the code generation. For this example the files for the SA Tools’ lookdd com-
mand are in the current directory:

dfdo dfd2 dfd9 dfdo.1 ms2.1
ms9.1.1 ms9.1.2 ms9.1.3 ms9.1.4 ms9.1.5

To generate code for one of the other list commands, a different set of lower level DFDs and
mini-specs would be used with thie same top level DFD, The leveled DFDs for the lookdd com-
mand are shown in Figures 2 through S.

Figure 2 is the top level DFD for the SA Tools’ list commands. It contains no mini-specs and ends
up with no executable modules.

Diher SA
Tooh

ad_
interasl external

6/26/8S-rainerw
DFD 0 - SA Tools lissdf, listpnn, and lookdd commaznds

Figure 2

Figure 3 contains the input modules for the three types of files supported by the SA Tools. Once
created, these modules serve as library modules for all of the tools. The DFDs are thereby used to
define modules which are common to several individual programs. The program lookdd only
needs the mini-spec 2.1 to read the data dictionary. The other processes in Figure 2 will not con-
tribute to the code.

dd_

internal

dd_

external

dfd_

ms_
internal

external 6/26/85-rainerw
DFD 2 - Get dd, dfd, or ms

Figure 3

Figure 4 shows the list commands as separate entities. None of the processes in this figure are
mini-specs. Only the mini-specs under process 9.1 (the lookdd command) will expand into code.

Get process

names and

oumbers

{liatpnn emd}
]

flows and
storea
{listdf emd)
2

/ 6/26/85-rainerw
DFD 9 - List SA doc part

Figure 4

Figure 5 shows all of the processes that comprise the lookdd command. Each process is a mini-
spec and will have a corresponding code module.

deeper
entries

Gret

eatry
from DD

dd_
internal

Extract
oames from
definition

Determine if

further levels

cf definitions

required
2

6/26/85-rainerw
DFD 9.1 - Look up dd entries (lookdd cmd)

Figure §

From Data Flow Diagrams to Code -- Step by Step

The automated steps are composed of standard UNIX* commands, SA Tools’ commands, and spe-
cial programs developed to support this code generation technique. The manual steps are per-
formed using a text editor.

Step 1 - Extract Data Flow Names

This step consists of the command sequence:
listdf dfd* | sort | uniq > types

Data flow names are extracted from all the data flow diagrams (listdf dfd*), sorted by name
(sort), duplicates dropped (uniq), and saved in a file (> types).

Performing this step on the DFDs in Figures 2-5 results in a list of all of the data flow names used
in the diagrams. The contents of the file types are show below:

dd_definition dd_entry_to_get
dd_id dd_internal
dd_return_code dd_silent_flag
def_level dfd_external
entry_level error_dialog

formatted_df_part formatted_pnn_part

gdd_id
input_source
list_df_request
list_request
ms_external

gdfd_id
lhs_dd_entry
list_dialog
look_dd_request
ms_internal

dd_external
dd_level
deeper_entries
dfd_internal
formatted_dd_part
formatted_sa_part
gms_id

lhs_level
list_pnn_request
more_input
requested_dd_entry

sa_id

Step 2 - Remove High Level Data Flows

This step consists of deleting all data flow names that do not flow into or out of a mini-spec. Since
only mini-specs are executed the intermediate level data flow names can be discarded. The data
flow names that are outputs (terminate on a boundary point) of the top level DFD must also be
deleted. Such outputs are not cleared by the modules in the current program since they are con-
sumed external to this system.

Step 3 - Declare C Types

In this step, the designer specifies the C data declarations for the remaining names in the file types.
If the data dictionary was constructed correctly, this information should be readily available. The
results of this step are shown below:

dd_definition char *
dd_entry_to_get char *
dd_id char *
dd_internal struct dd
dd_level int
dd_return_code int
dd_silent_flag int
gdd_id char *
look_dd_request char *

requested_dd_entry char *

Step 4 - Extract Mini-spec Info
This step consists of the following command sequence
dfdtolist dfd*

This step and the next two are usually performed together from a UNIX shell script for ease of
use. We normally put the following into a shell script called dtoc:

dfdtolist dfd* | awk -f awk.script ; mkproc proc.c

The dfdtolist program uses the same DFDs as are used in the previous steps. The file types as well
as all of the mini-spec files for the DFDs are also required by dfdtolist. These files need not be
specified on the command line that invokes dfdtolist; the program accesses them directly. The out-
put irom this step consists of C comment blocks, dataflow records, and minispec records for each
mini-spec. The output is directed to standard output so that it can be piped to the next step.

The comment blocks indicate information derived from mini-spec such as author, date, parent
name, as well as the entire mini-spec body.

The dataflow record indicates the name and type of a data flow originating or terminating on the
mini-spec’s process bubble in the parent DFD. Each dataflow record has the format:

Idataf]ow [name [flag] C-typel

The name is the data flow name. The flag indicates whether the data flow is an input or an cutput.
Both fields are derived from the parent DFD. The C-type field is taken from the file types.

The minispec record indicates the name of a process and all of its required data flow names. All
fields are derived from the parent DFD. Each minispec record has the format:

| minispec | file-name | function-name | parameters |

file-name is the name of the file from which the mini-spec was read.

function-name is the name of the C function representing this mini-spec. Ideally, the name of the
mini-spec process would be the name of the function. However, compilers and linkers have severe
restrictions on lengths and of function names. Thus, the convention was adopted to name each
function with a p followed by the process number (periods being replaced by underscores).

parameters are the names of all data flows used by the mini-spec. Again, the name of the data
flow should become the name of the parameter. However, hyphens must be converted to under-
scores in order to disambiguate parameter names from arithmetic expressions.

A sample of the output from dfdtolist is shown below.
P

LR RS RS RS SRR R R R R R R s R a2 R R R R s R R R R R R R RS

L]

* DFD - 9.1 - Look up dd entries (lookdd cmd)
*MINISPEC -9.1.1

* TITLE - Get entry from DD

* AUTHOR - rainerw

“ DATE - 6/26/85

Shodkodk sk ok ok ek ok ko ok ok e e ok ok ok ok ok ok ok ok sl s ok ok ok ok s s ok ok ok ok sk sk s sk sk sk ok sk ok koo sk ook ok
*/

dataflow dd_id i char *

dataflow dd_entry_to_get i char *

dataflow dd_internal i struct dd

dataflow requested_dd_entry o char *

dataflow gdd_id o char *
minispec ms9.1.1 p9_1_1 gdd_id requested_dd_entry dd_internal dd_entry_to_get dd_id
ih

/
oo hesk sk ok ok sk ok shodko ok ok ok ok sk oo sk ok ok sk ok ok ok e ok sk ok shodk ok o dko ok ako sk ok ok 0k ok sk ko ok ok ok ok ok ok ok oo ook ook ok ok ok ok ok Geosko ook ok ook ok

10

-

* Get entry from DD
* rainerw

* 6/26/85

*9.11

-

* Repeat {
* if left hand side of dd entry != dd_entry_to_get {
skip this dd entry.
} else {
SET requested_dd_entry = right hand side of dd entry.
SET lhs_level = entry_level.
SET lhs_dd_entry = left hand side from a dd entry.
CLEAR dd_entry_to_get.
CLEAR entry_level.
Return.

} until the entire dd_internal has been read one time.

. % B B B OB 3 3 B B 8

* if (dd_silent_flag = FALSE) {

* print "Name <dd_entry_to_get> not found in DD <gdd_id>".
0,

* CLEAR dd_entry_to_get.

* CLEAR entry_level.

* Return.
»

LR SRR ERERRERRRE R R SRR R RRERRRR RS RRRRRERR R R R R RR R TR RE R)

*/

Step 5 - Build Programs

This step consists of an awk program that produces the main program and the module stubs from
the output of the previous step. The main program contains the data declarations for all data
flows, the data declarations for all flags associated with each data flow, and the main loop that
calls each mini-spec process in turn. The main program generated for the example is shown
below. The include file references were automatically generated for this application.

/‘

:/Main loop

#include "flag.h"
#include "io.h"
#include “error.h"”
#include "globals.h"

main (argc, argv)
int argc;
char *argv(];

FLAG loop_flag;
do {

loop_flag = 0;
if (IS_SET(Fdd_internal)) goto skip001;
if (IS_.CLEAR(Fgdd_id)} goto skip001;
p2_1();
loop_flag = 1;
skip001:
if (IS_SET(Fgdd_id)) goto skip002;
if (IS_SET(Frequested_dd_entry)) goto skip002;
if (IS_.CLEAR(Fdd_internal)) goto skip002;

11

if (IS_CLEAR(Fdd_entry_to_get)) goto skip002;
if (IS_CLEAR(Fdd_id)) goto skip002;
p9_1_1();
loop_flag = 1;

skip002:
if (IS_.CLEAR(Frequested_dd_entry)) goto skip003;
if (IS_SET(Fdd_definition)) goto skip003;
if (IS_SET(Fdd_return_code)) goto skip003;
if (IS_.CLEAR(Fdd_silent_flag)) goto skip003;
p9-1.2 ();
loop_flag = 1,

skip003:
if (IS_CLEAR(Fdd_definition)) goto skip004;
p9-1.3 ();
loop_flag = 1;

skip004:
if (IS_CLEAR(Flook_dd_request)) goto skip005;
if (IS_SET(Fdd_silent_flag)) goto skip00S;
if (IS_SET(Fdd_level)) goto skip005;
if (IS_SET(Fdd_id)) goto skip00S;
p9-1.4 ();
loop_flag = 1;

skip00S:
if (IS_SET(Fdd_entry_to_get)) goto skip006;
if (IS_.CLEAR(Fdd_level)) goto skip006;
p9-1.5();
loop_flag = 1;

skip006:

i while (loop_flag);

The include file flag.h contains the global data declarations for each data flow and its associated
queue state flag. All gueue states are automatically initialized to empty (FALSE).

FLAG Fdd_definition = FALSE;
FLAG Fdd_entry_to_get = FALSE;
FLAG Fdd_id = FALSE;

FLAG Fdd_internal = FALSE;
FLAG Fdd_level = FALSE;

FLAG Fdd_return_code = FALSE;
FLAG Fdd_silent_flag = FALSE;
FLAG Fgdd_id = FALSE;

FLAG Flook_dd_request = FALSE,;
FLAG Frequested_dd_entry = FALSE;
char *dd_definition = {NULL};

char *dd_entry_to_get = {NULL};
char *dd_id = (NULL};

char *gdd_id = {NULL};

char *look_dd_request = {NULL};
char *requested_dd_entry = {NULL};
int dd_level = (NULL};

int dd_return_code = {NULL};

int dd_silent_flag = {NULL};

struct dd dd_internal = {(NULL};

Each module stub contains the correct external data declarations for the data flows used by a
module, and the rudimentary C statements to make the file suitable for compiling. Even though
all of the data flows are global variables in this implementation, each module can only access those
data flows that are directly attached to its process bubble since other data flows are not explicitly
declared. The following is an example of a mini-spec stub.

#include "io.h"
#include “error.h"

12

BEGIN
STATE(STATED)
END

Step 6 - Make Module Stubs
This step consists of the following command sequence:
mkproc filename

The program mkproc splits up filename, the module stubs produced by the previous step, into
separate files. One file is created for each module. Having each module stub in a separate file
permits better management of the system components and lets the user take advantage of UNIX
utilities like make.

Step 7 - Code Modules

This step is the coding of the mini-spec from the algorithm described by the mini-spec body. The
body of the mini-spec has been put into each module file as a comment to aid in this translation

step.

In some instances the module for a mini-spec may have multiple internal states. The states are a
means of introducing control inside the module. The need for multiple states arises when a
module is used to control the sequence of execution of other modules. Macros are used to define
states and state transitions. This allows the source code to remain readable.

Step 8 - Add "Or" Conditions

This step is optional. Some modules must execute even if not all of their inputs are set. Such
modules must have their conditional invocation in the main program modified. These modifica-
tions consist of adding a logical "or" to the list of conditions preceding the module’s call.

Step 9 - Add Argument Processing

This step is optional. It is required if the main program must obtain user-supplied parameters
from the invoking command line. In this case, the designer must supply the code required to pro-
cess the command line.

Advantages of This Technique

Generating code from the DFDs ensures that the specification is very close to the final code in the
implemented product. If the specification is correct, the implementation will be correct.

The use of compile-time macros for the module entry, module exit, module state control, and
queue state control makes it easy to add (and subtract) debug hooks into various parts of the sys-
tem. The macros need simply be changed to include the desired debug print statements.

The conversion of DFDs to structure charts is skipped. This saves time. It also preserves the ori-
ginal information about the system. Usually DFDs are discarded after structure charts are drawn.
This does not happen here.

Disadvantages of This Technique

Reading the code without the original DFDs is difficult. You must have the specification to under-
stand the code.

13

#include "globals.h"
/ll

IR R RS R R R R R RRERRRRRRRRRRR R R R R Y
L]

* DFD -9.1 - Look up dd entries (lookdd cmd)
*MINISPEC -9.1.1

* TITLE - Get entry from DD

* AUTHOR - rainerw

* DATE - 6/26/85

IR FYERERREER SRR RS RS RERRRRSRERR R R R R E L]
.

/ll

* FLAGS

*/

extern FLAG Fdd_id;

extern FLAG Fdd_entry_to_get;
extern FLAG Fdd_internal;

extern FLAG Frequested_dd_entry;
extern FLAG Fgdd_id;

1L

* GLOBALS
L

extern char *dd_id;/*i*/

extern char *dd_entry_to_get;/*i */
extern struct dd dd_internal; /*i */
extern char *requested_dd_entry;/* o */
extern char *gdd_id;/*o*/

p9_1.10)
{

L
f
(ERRANER TR RSN AN R SERENRERRRESNRRISRESRES RSN ERRES RS RN R RN ESEN)

L]

* Get entry from DD
* rainerw

* 6/26/85

*9.1.1

*

* Repeat {

* if left hand side of dd entry != dd_entry_to_get {

* skip this dd entry.

* }else(

* SET requested_dd_entry = right hand side of dd entry.
* SET lhs_level = entry_level.

* SET lhs_dd_entry = left hand side from a dd entry.
* CLEAR dd_entry_to_get.

* CLEAR entry_level.

* Return.

-

} until the entire dd_internal has been read one time.

* if (dd_silent_flag = FALSE) {

* print "Name <dd_entry_to_get> not found in DD <gdd_id>".
L]

o}

* CLEAR dd_entry_to_get.

* CLEAR entry_level.
* Return.

LR RRRRRR R RN R R R R R R R R R R RRREEE L]

*/

The hierarchical nature of the DFDs is lost in the code. A flat, single-level DFD can be recon-
structed from the main program, but the result is messy (much like a flat, detailed structure chart).

As with all new techniques, people have to learn how to use it. Maintainers of the product
developed with this technique must understand SA.

Another disadvantage is that not all of steps are automatic. Thus, changes are still made to the
code rather than in the specification. If all steps were automated, changes could be made only in
the specification and the code would simply get regenerated.

Future Work

Many paths can be followed from here to extend the advantages and to reduce the disadvantages
of this scheme. Eliminating the manual steps from Figure 1 seems like an obvious next step. High
level data flows could be removed from the types without too much trouble. Data declarations, if
contained in the data dictionary, could be automatically extracted. If mini-specs were written in a
more structured way, the translation of mini-specs to code would be easier. "Or" conditions could
be placed directly into the DFD with a graphics editor permitting correct mini-spec invocation con-
ditions to be generated the first time.

Work has also been started on animating a DFD to monitor the execution of a program.

Summary

A technique used to build programs from data flow diagrams has been presented. Some of the
steps in the technique are automated while others are manual. The authors are currently working
on automating some of the manual steps.

There are significant implications for using this approach to develop programs for computers with
multiple central processors. It would be possible to have each module execute on a separate
hardware processor. In this way, CPU intensive programs could execute much faster.

References
1. DeMarco, Tom, Structured Analysis and System Specification, Prentice-Hall, Englewood Cliffs,
New Jersey, 1979.

2. Page-Jones, Meilir, The Practical Guide to Structured Systems Design, pp. 182-183, Yourdon
Press, New York, 1980.

3. Babb, Robert G. II, “Parallel Processing with Large-Grain Data Flow Techniques,” Com-
puter, vol. 17, no. 7, pp. 55-61, July, 1984.

4. Pcterson, J. L., Petri Net Theory and the Modeling of Systems, pp. 18-21, Prentice-H:i!, Engle-
wood Cliffs, New Jersey, 1981.

S. Pugh, J. R., “Actors Set the Stage for Software Advances,’’ Computer Design, vol. 23, no. 10,
pp. 185-189, Sept., 1984.

15

BIOGRAPHIES

Walter Webb, Rainer Wieland, and Chris Olson

Walter Webb is a software engineer manager in the Microprocessor Development
Products Division at Tektronix. He has been employed at Tektronix since 1982.
He is the project manager for the SA Tools Project. Previously he has worked
for Federal Electric Corp., Aerospace Corp., AC Electronics, and Autonetics.
He has an MS degree in systems management from the University of Southern
California, an MS degree in electrical engineering from the University of
California, and a BS degree in electrical engineering from the University of
Santa Clara.

Rainer Wieland is a senior software engineer in the Microprocessor Development
Products Division at Tektronix. He joined Tek in 1978. He is the project
leader for the SA Tools Project. Earlier Mr. Wieland was a systems programmer
with Motorola Microsystems. He has a BA degree in astronomy from Brown
University.

Chris Olson is a software engineer in the Microprocessor Development Products
Division at Tektronix. He started working with Tektronix immediately after
receiving his bachelor’s degree in computer science from Washington State
University in 1983. For the past two years Mr. Olson has been a member of
the team developing Structured Analysis Tools.

16

DFD-
files

LT

files

kemove |
////_\\\\ Hign Level
/ l \
Extract Data Flows
Data Flow c
Names

Dec lare
C Tgpes

Extract
Mini-spec
Info

v Modules
main 4
-///;7—““$
Add \\\\\\
Argument Add "Or"
‘Processing Condgflons
i 9

67/26785-rainerw

DFD 8@ - Convert Dota Flow Diagraoms to Code

but ssadoud QuaunJbo PPY I8

SUOTATPUOD |, U0, PRY 3
S MPOU 007 M/%
SIS a1NPaW SxaL| 1t

2007 07 S(14(] WO

18

-~om UrUs to Code

W Extroct doto flow nomes
W Remoue high leuvel flouws
W Declore C types

W Extract mini-spec info

W Build progroms

New Mode |l for Progrom Design

W Stote memory Lrocks
QUEUE USCIOE

0¢

w s
W Prac

0 O

contral oun gueues

rom 1s done wnen
UEeUeS Chonge stote

N10We Sanano 1NonNo x
[1N] S3Nano 1Ndut a2 :

LUSUM SUNG g NPoW H

UOTS3(] WoJbou] JOT 1200, M3

AN

JUrd =S4 9 | O JInoys usyn

U0T1S3N0 [0TIU3SS3 ay|

22

- UOTSO(] WoJboUd JOJ 13p0,] May

New Model tor Progrom Design

¢ BRased on the DFD

w Unly Mos do work
¥ MS5s run 1n porollel

w Uoto 1lows ore
I-entry gueues

IMPLEMENTING THE SOFIWARE REVIEW PROCESS

David J. Kerchner

Floating Point Systems, Inc.
P. 0. Box 23489
Portland, OR 97223

ABSTRACT

Estimates as high as 40 to 60 percent of a software project's total lifecycle
budget being spent for software maintenance are not uncommon. But effective
implementation of the review process throughout the computer industry to help
forestall the expense of this maintenance is not as widespread as one might
believe.

The review process has been documented through many case studies, the results
of which point to the fact that their effectiveness in helping reduce the
number of software errors found during the pre-release software development
phases cannot be ignored. The benefits to an organization far outweigh any
possible negative aspects that software developers, from programmers to
managers, perceive as being reasons for not using this readily available
process.

Further, the review process is an invaluable tool for management to monitor the
software development effort with a minimum amount of effort and cost to the
organization (compared to today's software maintenance costs!). Moreover, it
enhances interpersonal communication between developers, it's an excellent
educational tool, and of course it helps produce better quality software.

The purpose of this paper is to examine the software review process and to
outline the important steps that a QA group should take when implementing the
software review process in order to reduce testing and post-release maintenance
costs.

INTRODUCTION

A critical issue facing software developers is whether or not their products
will meet the users' quality criteria (see BOE76, BOE78, POD85). In the past,
software deficiencies could be covered up by the maintenance and support areas.
Today's users are smarter. When offered a wide selection of available
applications and systems, they invest their dollars in software that works.

Numerous QA standards may be written, but unless there's some mechanism to

monitor their application and the developer's adherence to them, such standards
are for all practical purposes useless. But if developers don't use quality

24

standards from the beginning, there's no assurance the final product will have
any quality. So how does one ensure that quality, as predefined by the
developer, is built into the software?

A proven and effective method for ensuring that quality objectives are
addressed is the review process. QA should provide an objective viewpoint,
through the review process, to bring into focus the predefined quality
objectives.

THE REVIEW PROCESS

What is the review process?

The software development effort may be described as a multi-phased set of
operations or functions, each operation or function resulting in a
deliverable(s) for that phase. The review is that process by which each
deliverable(s) is judged to be in conformity with a set of predetermined
quality objectives.

Whether one uses the inspection, the structured walkthrough, the walkthrough,
the review, and so forth, may be a matter of choice and practicality (or may be
dictated by outside requirements). Each differs in its formality of approach
and in the amount of quantitative data that can be extracted from the results.
Generally speaking, the inspection method is the most formal, and most
effective, method. But the others may be effective depending upon their
implementation, application, or the deliverable under review. Each method can
be tailored to a specific deliverable, or any one type may be applied to all
project deliverables.

Excellent discussions regarding the definitions of the review process may be
found in a number of works (e.g., YOU78 and FRE82), and a reader unfamiliar
with the process is urged to do further research. These works cover the review
process in detail with guidelines for its design and implementation, and just
as importantly they consider the human element.

The characteristics which define the successful review program are organization
and planning for each review conducted. Generally, all of the review processes
incorporate the same ideas and procedures to some extent, but one, such as the
inspection method, might stress them more explicitly than another, such as the
walkthrough process. To illustrate this, Table 1 lists six explicitly defined
steps which make up the inspection method.

When the inspection method is wused, there is a strong dependency on role
playing by the participants. On the other hand, a less formal peer review does

not rely on such strict role playing for conducting the review session. In
general, there are certain guidelines which should be followed to ensure that
whichever type of review is held, it will be as successful as possible. We

shall describe the more formal inspection process to illustrate the general
procedure for conducting a review.

25

Table 1. Six Steps in the Inspection Process.

) °
| Step Participant(s) Objectives
E
I
1 Planning the Moderator Schedule review
Inspection Distribute materials
2 Product overview All participants Familiarize inspection

team with materials

Preparation against checklists
4 Inspection/review All participants Error detection
5 Product rework Product Designer Correct errors in product
6 Inspection Moderator/Designer Ensure defects corrected
Follow-up Feed-forward education

1
I

1

1

|

|

|

|

I

|

|

|

3 Pre-inspection Each participant Examination of materials |
I

I

|

|

l

|

I

|

Error analysis |

I
|

Planning the inspection

Entrance criteria for the review must be defined; for example, a scheduled
deliverable must be completed, such as a design specification. The completion
of this deliverable serves as a trigger mechanism to initiate the review
process. Other triggers might be a project manager's request to hold a review
or a client's request.

Once triggered, the inspection moderator, ideally a member of the Quality
Assurance group, assumes responsibility for scheduling and organizing the
review and, with the designer's assistance, selects the other review
participants. The number of reviewers may vary depending on circumstances such
as the particular deliverables to be reviewed. Also, if any reviewer doesn't
have the proper training in the review process, it's the responsibility of the
QA group to provide such training.

The time and place for the inspection are set. It's important that the review
be conducted in a room isolated from outside disturbances, that it be
comfortable, and that it be adequately supplied with the proper blackboards, AV
facilities, etc., necessary for the designer's overview presentation and for
the inspection meeting itself. Also, it should be scheduled for a convenient
time for all participants, and not, for instance, one hour before quitting
time.

The moderator ensures that all deliverables to be reviewed are distributed to
the inspection team several days before the review and that checklists and

26

reporting sheets are also distributed. It must be emphasized that any software
code to be reviewed should already have been clean compiled; it's a waste of
human resources to do the compiler's work. If a less formal review method is
used, the moderator's responsibilities generally fall on the designer and/or
other review participants.

Product overview

An overview of the deliverable(s) should be scheduled before the inspection
meeting. This provides each reviewer with an understanding of the product and
its intended function(s). It's essentially an educational session for the
inspection team and it is usually conducted several days before the actual
inspection. Less formal peer reviews may incorporate an overview into the
actual review meeting to briefly familiarize the reviewers with the product,
but its effectiveness at that time is questionable.

Pre~inspection preparation

Between the time of the overview and the inspection meeting, each reviewer
examines the deliverables, evaluates them against the checklists provided, and
makes notes regarding errors found so that these may be recorded in the
inspection meeting. Reviewers should not attempt to provide solutions to
errors discovered; that's the work of the designer and other software
engineers. An advantage of checklists is that they provide objective criteria
to evaluate the product. Otherwise, each reviewer is left to his or her own
intuitive feeling as to what to 1look for in the product. If review
participants are unable to prepare themselves ahead of time, they should excuse
themselves from the review, and the review should be rescheduled, if necessary.

Inspection/review

At the beginning of the inspection the moderator should explicitly state the
objectives for that particular inspection, and present the inspection agenda
describing the sequence of events in the meeting. Since reviews/inspections
may be tailored to a particular company's needs, there are variations to this
process: a reader might be selected from among the reviewers to present the
material rather than the designer, the designer might be the review moderator,
checklists might not be wused, and so forth. Generally, key guidelines to
follow in conducting any type of review include:

o Optimum review duration is one hour, two hours maximum

o Unprepared reviewers should be excused and the review
rescheduled, if necessary

o Focus on error detection, NOT error correction

o Review the product, not the person

o Record ALL errors/discrepancies

o Avoid discussions unrelated to the product under review

o Determine reviewers consensus for reinspection

Product rework

Whenever possible, the moderator should issue a report to the designer within

27

one working day of the inspection. This report 1lists the errors and
discrepancies found during the review and their categorization with respect to
the severity of impact on the reviewed product. The designer can then make the
necessary changes to the product while the information is still fresh in
his/her mind.

Inspection follow-up

In cases where a reinspection has not been scheduled, the moderator verifies
that the proper changes have been made, and if satisfied, gives formal approval
allowing the project development to continue. If the moderator feels the work
should be reinspected, another inspection session may be scheduled. Continuing
analysis of the error data can take place, and the results can be compiled to
provide a future database of statistics regarding the software development
process. Completion of all rework and follow-up activities define the end of
one review cycle; the process is repeated when re-triggered.

In less formal reviews, the formal rework and follow-up work processes are
generally omitted; it's assumed the designer will make the necessary
corrections to the reviewed items. Also, the authority to schedule
reinspections or to reject the rework does not usually exist within the less
formal review processes.

Why the review process?

Project management requires there be some form of control over a software
project's development effort (e.g., MET81). The review process gives
management this needed control (FAG76, GLA84) over product quality much earlier
in the project's lifecycle (Figure 1). Each scheduled review becomes a project
milestone that must be passed, thus ensuring that the product's development is
closely monitored and corrected, when necessary.

oumnnnn| Design |
I Code |
[Toet [=>
Henl Geantizotive indinstine
Schadul of Gusliny = Fram Tos: Ronuhy l
Nu-u-munl
| I
I l l Toot o>
Mm.' First Voot Bagahne
s
‘“M‘h.-—ﬂl'lw
Y IR | 1|0 1

¢ Poim of Sgnt. Camvel Over Gualivy b Boves By Bugd osth B Sobuinbs
o Gsver Qowar® At This Lovel Is 1700 Ae Eapumive

Figure 1. Enhanced Project Management Control (from FAG76).

28

The objective of the review is to find errors in the deliverable item(s) or
product(s) being reviewed. Even after the review process, some errors may
still be found. However, those errors detected at the earliest possible phase
in the project's lifecycle will reduce the subsequent cost of testing the
software before its release and the inevitable cost of its post-release
maintenance. (It's not uncommon to hear numbers such as 40 to 60 percent of a
project's total lifecycle budget being spent on maintenance.)

Many people still have the misconception that reviews are needed only for the
actual software code, and programmers are too often blamed for the errors when
the requirements and/or initial designs were really at fault. Yet problems
arise in all phases of the development cycle (see HUG77). For example:

o Immature, incomplete, or unvalidated requirements
o Lack of traceability from requirements to operational software
o Incomplete functional specifications, incomplete detail
data dependencies not defined
o Logic errors, unstated assumptions
o Poor documentation
o Changes in specifications

It is QA's responsibility to persuade management, project members et.al., of
how effective reviews can be (CON85 and POD85). Logic, as well as simple
economics, strongly suggest that a project be reviewed at all critical points
and milestones in its lifecycle, not just during the coding phase (Figure 2).
No matter what an organization/project defines its deliverables to be, (as
commonly outlined in standard methodologies, DOD standards, IEEE standards,
et. al.) each should be subject to review for conformance to the
organization's quality standards. Otherwise, the proverbial wheel will
continue to be reinvented!

Figure 2. Relative Cost to Fix Defects by Project Phase.

29

Effectiveness studies

Studies done using the review process at a variety of companies point out some
of the benefits of its use. For instance, at IBM (FAG76), one study project
showed a 23 percent increase in productivity of the coding operation as
compared to a control sample project. After conducting testing comparable to
that done on a project of similar scope on which less formal walkthroughs had
been used, the inspection project contained 38 percent fewer errors. The
inspection method is in standard use there.

A case study conducted at Sperry-Univac recorded similar findings (HAR82). The
project covered a period of one and a half years and involved writing 23,000

source statements in 165 code modules and 180 data modules. Strict adherence
to one standard type of review was not followed; they used structured
walkthroughs and later round-robin reviews as their schedule tightened. Yet

the 90 percent of the product they reviewed accounted for only 25 percent of
the significant error reports, whereas the 10 percent of the total (comparable)
code not reviewed amassed 75 percent of the error reports.

IMPLEMENTATION OF THE REVIEW PROCESS

It's the responsibility of the Quality Assurance organization to oversee the
review process implementation and to provide effective leadership for the
review program (CON85). Commonly, the software development project teams are
often in control of the review process. However, to provide that strong, yet
objective voice to focus on quality issues during development, the QA group
should ideally be in charge of this process. Therefore, to successfully
establish a QA review process or to enhance an already existing one, the
strategy should include certain key activities (ACK82, FRE82, YOU78).

o Management must decide to commit project resources in support of the
review process and they must solidly support QA's efforts to implement
the review process

o QA must plan the installation, execution, and evaluation of the review
process

o QA must provide training to convey skills, technical information, and
provide motivation for using the process

o The review process must be applied in a consistent, sustained effort
Although it's been said quality is free, every manager must allocate sufficient
project resources for conducting the reviews that will ultimately further the

program's success. If the commitment is there and reviews are scheduled as
deliverable items or milestones themselves, then reviews will be respected.

30

Reviews become all the more effective as their visibility in the project
increases.

Quality Assurance must decide which method, e.g., inspection, is most suitable
for the company's purposes. The method selected must be clearly outlined as a
company standard or guideline that has the full support of management as well
as the software development teams.

Failure of the review process can frequently be attributed to a lack of
understanding of the goals and methods of the process itself. The key to
eliminating this problem is proper education of all project personnel. And
although management doesn't normally participate in most reviews, they too
should be educated as to the purpose and impact of the review process.

The objective of the review process is to enhance the development process
itself and reduce the overall costs incurred during product development and
maintenance. Furthermore, the review process allows management the opportunity
to evaluate the quality of the product much earlier in its development cycle.
In order to accomplish these objectives, the review process must be applied to
the selected project(s) in a systematic, sustained fashion. There should be no
special cases where deliverables are skipped over for review because of
schedules, personal reasons, and so forth. To be truly effective, all
deliverables must be reviewed.

The review process enhances and reinforces the idea in every software
engineer's mind that quality is everybody's job. But when it comes to
reviewing our own work, we tend to become overly protective, and therein lies
an important source of resistance to the review process. Reviewing one's own
work exposes it to others for constructive help, not destructive criticism. QA
must ensure that reviews are ‘'egoless' and don't jeopardize the personal
feelings of those whose work is under scrutiny. Once people perceive this,
they tend to become more receptive to the review process and view it not as an
outside imposition on them, but as a valuable tool.

To judge the effectiveness of the review program, QA must evaluate the
efficiency and effectiveness of the review process itself. Feedback from
project personnel and management will help to refine the process and correct
any deficiencies. As statistics are gathered, they should be made available to
the project and can serve as a basis for reviewing and evaluating the direction
of future projects.

RESULTS

Preliminary results of using the review process at Floating Point Systems (FPS)
are encouraging. Peer code walkthroughs have been the unofficial standard
practice for some development groups and QA specification reviews have been
conducted. Neither relied on checklists or other objective criteria to
ascertain if quality objectives and issues were being addressed (the
specifications were reviewed against existing standards).

31

On the project this writer was supporting, suggestions were made to improve the
efficiency and effectiveness of the code reviews. An educational session was
developed which would convey these ideas to all of the software engineers on
the project and provide the necessary information needed to conduct effective
reviews. (A number of these presentations have been given to other development
groups as well).

Since most of the code had already been written for this project, the reviews
conducted numbered only four. But 34 subroutines (approximately 4200 lines of
code) were reviewed, and 237 items were recorded as possible discrepancies. Of
these discrepancies, 156 were related to documentation problems and
non-adherence to standards. The number of errors due to conflict with the
existing programming standard emphasized the need to complete this standard's
revision, which was already in progress. The remaining 81 discrepancies were
addressed by the engineers and either corrected as errors or investigated
further (not all turned out to be errors).

Some observations were made regarding these reviews. As one might expect, the
more senior team members were far more knowledgeable and better prepared to
participate in reviews, primarily because of their higher level of expertise;
junior members were 1less 1likely to have review experience, and their
contribution was perhaps less. In both cases, however, neither group, plus QA,
could independently find all the defects (see an interesting study by Myers,
MYE78). Checklists would help in this process. They can also help to define
more specifically the types of errors to look for and to record and report the
ones that were found. Yet even with their shortcomings, the reviews greatly
enhanced each participant's understanding of both the product and the review
process.

In addition, the manner in which software engineers design and develop software
may be in conflict with the existing company standards (enforced by QA). In
the case of the programming standard, what works best for the engineer was in
conflict with the existing standard, so QA worked in harmony with the project
to revise that standard. The point is that standards should be living
documents; they too should be reviewed and updated as needed.

The review process at FPS is progressing and is currently in its second
iteration. It's become apparent that a more formal approach should be taken in
handling the review process, more along the lines of the inspection method. A
review standard is being written, and in conjunction with this, checklists will
be devised to make the review process more objective. It's felt this approach
will give more quantitative results from the reviews and provide more precise
definitions of the types of defects being reported. The educational process
will also continue, helping to pave the way for general acceptance of the
review process within the company. A real need, however, will be to have
resources allocated from the beginning of a project for the purpose of
conducting these reviews.

CONCLUSIONS

Because of the limited application of these reviews, the results achieved to

32

date have not been dramatic (considering the project's scope). On the other
hand, any one of the errors detected could potentially have stopped the
programs. Since only these few code. reviews were held, they were not the most
cost effective as far as the review program goes, but they set the future
direction and hone the method. Greater benefits will result only from the
systematic application of the review process over the complete development
cycle of the software; management must realize this.

In summary, the review process should aid, not inhibit, the software
development effort. An effective review program gives the Quality Assurance
function a high degree of visibility that reinforces the concept of building
quality into the product. Reviews serve as a positive standards reinforcement
tool that will ensure uniformity during the development process (which later on
eases maintenance problems). Further, reviews introduce the software engineers
to the concept of software reviews, their importance in the development
process, and the realization that quality is everyone's responsibility, not
Quality Assurance's or one or two key project members. Finally, through an
effective review program, management has a better assurance that quality issues
have been addressed and that the final product will be as error free as
possible.

"Quality doesn't happen, it's planned"

REFERENCES

ACK82 Ackerman, F., and Ackerman, A. "A software Inspection Training
Program." Proceedings of COMPSAC, 1982

BOE76 Boehm, B., Brown, J., and Lipow, M. '"Quantitative Evaluation of
Software Quality." Proceedings, 2nd International Conference on
Software Engineering, 1976

BOE78 Boehm, B., Brown, R., Kaspar, H., Lipow, M., MacLeod, G., and Merritt,
M. "Characteristics of Software Quality." TRW Series of Software
Quality, Vol 1, North Holland Publishing Co., 1978

CON85 Connell, J., and Brice, L. "Practical Quality Assurance." Datamation,
March 1985

FAG76 Fagan, M. "Design and Code Inspections to Reduce Errors in Program
Development.”" IBM Systems Journal, Vol 15, No 3, 1976

FRE82 Freedman, D., and Weinberg, G. "Handbook of Walkthroughs, Inspections,

and Technical Reviews." Little, Brown and Company, Third Edition, 1982
GLA84 Glaser, G. '"Managing Projects in the Computer Industry." Computer,

October, 1984

33

HAR82

HUG77

MET81

MYE78

POD85

YOU78

Hart, J. "The Effectiveness of Design and Code Walkthroughs."
Proceedings of COMPSAC, 1982

Hughes, J., and Michtom, J. "A Structured Approach to Programming."
Prentice Hall, Inc., 1977

Metzger, P. '"Managing a Programming Project." Prentice Hall, Inc.,
Second Edition, 1982

Myers, G. "A Controlled Experiment in Program Testing and Code
Walkthroughs/Inspections.”" Communications of the ACM, Vol 21, No 9,
September 1978

Podolsky, J. "The Quest For Quality." Datamation, March 1985

Yourdon, E. "Structured Walkthroughs." Prentice Hall, Inc., Second
Edition, 1978

34

BIOGRAPHY

David Kerchner

David J. Kerchner is employed by Floating Point Systems of Beaverton, Oregon
as a supervisor in the Methods, Standards, Quality Assurance department. He
has earned both BA and MS degrees from Northwestern University in astronomy.
He taught at two universities before continuing studies including computer
science. He was employed by the McDonnell Douglas Automation Company of
St. Louis, Missouri before coming to FPS. '

35

9¢

IMPLEMENTING THE SOFTWARE
REVIEW PROCESS

BY

DAVID J. KERCHNER

FLOATING POINT SYSTEMS, INC.

SOFTWARE QUALITY CHARACTERISTICS TREE

DEVICE INDEPENDENCE

/

PORTABILITY ~—
SELF-CONTAINEDNESS

ACCURACY

/ COMPLETENESS

REUABLITY —

;—ls unurv\ CONSISTENCY

____ —» ACCOUNTABLITY

GENERAL EFFICIENCY
UTILITY
DEVICE EFFICIENCY

HUMAN ENGINEERING — ACCESSIBLITY

TESTABILITY —— . SELF-DECRIPTIVENESS

MAINTAINABILITY STRUCTUREDNESS

UNDERSTANDABILITY CONCISENESS
LEGIBILITY
MODIFIABILITY ———— AUGMENTABILITY

FLOATING POINT SYSTEMS, INC. 37

REVIEW TYPE DIFFERENCES

o FEEDBACK/FEEDFORWARD o QA/PROJECT DIRECTED
o CHECKLISTS o FORMALITY

° o ERROR ANALYSIS o ROLES
o SIGNOFFS o REPORTS

FLOATING POINT SYSTEMS, INC.

INSPECTION PROCESS

1. PLANNING
2. OVERVIEW

3. PRE-INSPECTION

4. INSPECTION

5. PRODUCT REWORK

6. FOLLOW-UP

FLOATING POINT SYSTEMS, INC.

"MODERATOR - SCHEDULE/DISTRIBUTE

ALL PARTICIPANTS FAMILIARIZATION

EACH PARTICIPANT EXAMINE MATERIALS

ALL PARTICIPANTS ERROR DETECTION

DESIGNER CORRECT ERRORS

MODERATOR ENSURE CORRECTIONS
DESIGNER EDUCATION

ERROR ANALYSIS

ov

FLOATING POINT SYSTEMS, INC.

1. PLANNING

o SCHEDULE OVERVIEW & INSPECTION

o SELECT & NOTIFY PARTICIPANTS

0 ENSURE ACCEPTABLE ENVIRONMENT

o DISTRIBUTE INSPECTION DELIVERABLES

o DISTRIBUTE CHECKLISTS & FORMS

HIMSNVY ¥ NOLLSIND TVYINIO ©

NOISS3S TYNOILYONAI MIIAHIAO ©

M3IIAH3IAO °¢C

DN ‘SWALSAS INIOd DNUVO

41

v

FLOATING POINT SYSTEMS, INC.

3. PRE-INSPECTION

o REVIEW DELIVERABLES

o RECORD DISCREPANCIES

137

FLOATING POINT SYSTEMS, INC.

4. INSPECTION

0 STATE INSPECTION OBJECTIVES

"0 PRESENT AGENDA

o SELECT READER

o ENSURE PARTICIPANTS PREPARED

o ERROR DETECTION, NOT CORRECTION
0 REVIEW PRODUCT, NOT PERSON

o RECORD ALL ERRORS

o AVOID EXTRANEOUS DISCUSSIONS

o DETERMINE SUBSEQUENT ACTION

o PARTICIPANTS SIGNOFF

7474

FLOATING POINT SYSTEMS, INC.

5. PRODUCT REWORK

o CATAGORIZE ERRORS
0 INSPECTION REPORT

o MONITOR REWORK

<)%

FLOATING POINT SYSTEMS, INC.

6. FOLLOW-UP

o VERIFY CHANGES

o SCHEDULE RE-INSPECTION
o FEED FORWARD EDUCATION
o ERROR ANALYSIS

o STATISTICS

0 FINAL INSPECTION SIGNOFF

DN ‘SWILSAS INIOd DNULVOH

"eaubdng Ty DLJ| 51 980T BN DY WOy L] @
“NAPIIS ¥) SN NI BN} PENEYY 1 ALEND A0 1951083 Jadyg |8 ey @

00} 3_2 £t 1+ 1
M-
iip-_...lla"-_-c..o....d.-i
[¥
v :
AdgnD) 9 venenpuy
E...o......—.-o!u* \u . u...
&1 ™1 i : “ _
[] -
| spe] "
i ubtag |
“U HMIVONEY MIN
- L R
MY 150 WOI4 = Asneap) 3—
VENENPU] SANMNVEND i8S
0 Inapng (= ey]
|)]
| uno |
‘T HIVONSIY G0

TOHLNOD LNIWIODVNVIN LO3r0Hd A3DONVHNI

46

DEVELOPMENT PROBLEMS

- 0 IMMATURE, INCOMPLETE, OR UNVALIDATED REQUIREMENTS

o LACK OF TRACEABIUTY

o INCOMPLETE FUNCTIONAL SPECIFICATIONS

LY

o LOGIC ERRORS

- 0o POOR DOCUMENTATION

o CHANGES IN SPECIFICATIONS

FLOATING POINT SYSTEMS, INC.

"ONI ‘SW31SAS INIOd DNLLVO!

NOLL VIO SONVIIEIIW ANDRMANVIAN IO ISR ELMENI N ND I

I r 1T 1 T vo

-1 wouws
x4

-{g MU

0al

dSVHd 103rodd A8 S10343a Xid Ol 1S0J JALLY13Y

48

EFFECTIVENESS OF THE PROCESS
o IBM

0 23% CODING PRODUCTIVITY INCREASE

o INSPECTIONS 38% FEWER ERRORS THAN WALKTHROUGHS

. 0 SPERRY-UNIVAC
o 165 CODE MODULES, 180 DATA MODULES
o 23,000 SOURCE STATEMENTS = (1 1/2 YR PROJECT)
o 90% PRODUCT REVIEWED — 25% ERRORS

o 10% PRODUCT NOT REVIEWED — 75% ERRORS |

FLOATING POINT SYSTEMS, INC.

REVIEW IMPLEMENTATION

o MANAGEMENT SUPPORT/PROJECT RESOURCES

- 0 REVIEW PROCESS IMPLEMENTATION

- 0 REVIEW PROCESS TRAINING

0S

- 0 CONSISTENT, SUSTAINED REVIEW APPLICATION

FLOATING POINT SYSTEMS, INC.

FPS REVIEWS

o 34 SUBROUTINES (4200 LINES OF CODE)

o 237 POSSIBLE DISCREPANCIES

o 156 DOCUMENTATION ERRORS

1S

o 81 OTHER ERRORS

o (OTHER REVIEWS NOT INCLUDED)

FLOATING POINT SYSTEMS, INC.

OBSERVATIONS

o SENIOR MEMBERS MORE EXPERIENCED
o TRAINING BENEFICIAL TO PARTICIPANTS
o NO CHECKLISTS REDUCED EFFECTIVENESS

o ERROR ANALYSIS DIFFICULT

4

o STANDARDS NOT ADHERED TO
o STANDARDS NEEDED REVISION

o QA ENHANCED REVIEW PROCESS

FLOATING POINT SYSTEMS, INC.

FUTURE DIRECTIONS

o FORMAL COMPANY REVIEW STANDARD

o USE OF CHECKLISTS

o CONTINUED EDUCATIONAL EFFORTS

€S

o PROJECT RESOURCE ALLOCATION

FLOATING POINT SYSTEMS, INC.

174

SUMMARY

o REVIEW PROCESS AIDS DEVELOPMENT EFFORT

o QA HAS HIGH DEGREE OF VISIBILITY

o POSITIVE STANDARDS REINFORCEMENT TOOL

o QUALITY IS EVERYONE’S RESPONSIBILITY

o PROJECT MANAGEMENT HAS BETTER QUALITY CONTROL

o QUALITY PROJECTS/PRODUCTS

FLOATING POINT SYSTEMS, INC.

"DNI ‘SW31SAS INIOd DNLLYON

55

A3aNNVd S,.1 ‘N3ddvH LNS30d ALMVYNO

Pacific Northwest Software Quality Conference

Paper Abstract

George D. Tice, Jr.
Tektronix, Inc.
P.O. Box 4600 (M/S 92-525)
Beaverton, Oregon 97075
(503) 629-1310

Software Configuration Management:
A Tool for Software Quality

Software configuration management is the software quality
activity through which the products of the software development
process are identified, labeled, controlled and accounted for.
The four major functions of software configuration management
involve:

- identifying the software product which includes the
computer program, its documentation and associated
data

- controlling changes to the software product

- reporting the status of the software product and
all changes to it

- auditing the software product prior to release for
production or delivery to a customer

This paper will present software cenfiguration management
as an important factor in the development of a quality software
product. It will provide the reader with:

an discussion of the need for software configuration
management

- a definition of the functions of software configuration
management

- an introduction to the techniques for performing software
configuration management

- a summary of several standards for the practice of soft-
ware configuration management

The underlying theme for the paper is that software
configuration management as a major software quality activity
is an important "tool" in the development of a software product
within the management constraints of cost, schedule and
per formance.

56

Software Configuration Management:
A Tool for Software Quality

George D. Tice, Jr.
Tektronix, Inc.
P.O. Box 4600 (M/S 92-525)
Beaverton, Oregon 97075
(503) 629-1310

Introduction

Software configuration management is the software quality
activity through which the products of the software development
process are identified, labeled, controlled and accounted for.
The four major functions of software configuration management
involve:

- identifying the software product

- controlling changes to the software product

- reporting the status of the software product and
all changes to it

- auditing the software product prior to release for
production or delivery to a customer

This paper presents software configuration management
as an important factor in the development of a quality software
product. It provides the reader with:

- a discussion of the need for software configuration
management

- a definition of the functions of software configuration
management

- an introduction to the techniques for performing software
configuration management

- a summary of several standards for the practice of soft-
ware configuration management

The underlying theme for the paper is that software
configuration management as a major software quality activity
is an important "tool" in the development of a software product
within the project management constraints of cost, schedule and
per formance. (1)

The Need for SCM

The goal of software configuration management is to be
able to reproduce the complete software configuration of a
system for any specified version at any point in time starting
with masters of all modifiable elements and specified rules of
assembly. This goal reflects the needs of the various views of
the software world depending on one's distance from the software
development effort. This distance ranges from that of corporate
or other upper level management through project management to
the technical level of the actual software development team.

57

At the corporate or upper management level the primary
concern is productivity. At this level software is considered
a corporate asset to be kept, maintained and reused. Software
configuration management is a tool which provides for the
indexing, protection and availability of this software asset.

Project completion is the basic concern of project manage-
ment. This involves the control of the products at each phase
of the software life cycle. These products represent the what,
the how, the answer, the evaluation and the changes of the
software product. In other words, the products reflect the
value added or resources expended at each phase of the soft-
ware life cycle. Software configuration management is a tool
for the protection of the value added to the software product.

At the technical level the software developer's concern
is for the day-to-day job of creating the software product.
This involves the generation of and changes to numerous soft-
ware development documents and to the actual source code. It
is at this level where the concerns for productivity and
project completion are resolved. Software configuration manage-
ment provides the software developer with the tools to achieve
both software-engineering productivity improvement and software
product integrity and quality. This is achieved through
the control of the tapes, the disks, the listings and the
documents produced by the software development team. This is
accomplished on a day-to-day basis by the software development
team. The success of the software configuration management
effort is directly dependent on the ability to meet these real
needs of the software development team.

Frequently these needs for software configuration manage-
ment are unclear due to the transparency of the software itself
as it passes through the software development process. An
analogy may be made to the development of a more visible product -
a new automobile. Consider the Ford Motor Company 1960 era
development of the new Mustang moving from a concept to some
418,812 vehicles delivered to customers during the first year
of production. Prior to the actual production the Mustang
development team stated and restated the requirements for the
new sports car. Once approved the requirements were expressed
by Ford designers in a series of clay models which were reviewed
by upper management. Selected designs were incorporated into
a series of prototype vehicles which were subjected to both
engineering and marketing tests. Only after the final design was
selected and approved was the commitment made for the expensive
retooling for the manufacturing capacity to mass produce the
Mustang. It is at this point that the final configuration of
the Mustang permitted creation of the necessary machine tools
and assembly lines plus the training of people to enable
profitable manufacture and marketing.

A software product's travel from concept to production is
similar. Like the Mustang a software product will benefit from
configuration management. This will permit the computer software
reuse and increased productivity corporate management desires.

58

The Functions of SCM

Software configuration management is a four step process
dasigned to meet the needs of corporate, project and technical
managers. First the configquration items in a system must be
identified and defined. This is followed by the control of
the release and change of these items throughout the system
life cycle. Concurrently, the status of configuration items
and change requests must be recorded and reported. Finally
the correctness and completeness of configquration items must

be verified. Thus, the four functions of software configuration

management are:

- configuration identification

- configuration control

- configuration status accounting
- configuration audit

Configuration identification is the process of designating
the configuration items in a system and recording their
characteristics. For the uninitiated a configuration item is
a collection of hardware or software elements treated as a unit
for the purpose of configuration management. Characteristics
include the identification of the person responsible for the
configuration item, its logical contents, its physical and
control identification, and any special relationships. In
addition to the code the configuration item must include the
approved documentation that defines the configuration item
and the approved technical documentation as set forth in
specifications, drawings or associated lists.

Configuration control is the process of evaluating,
approving and cocrdinating changes to configuration items

after formal establishment of their configuration identification.

This formal establishment of the ccnfiguration identification

is typically accomplished by a configuration' change board (CCB).

The CCB normally is chaired by the program or project manager
and has a membership which represents all the vested interests
in the configuration item. At a minimum the CCB should include
software development, quality assurance, maintenance, manuals,
mariufacturing and configuration management representatives.

CCB approval or acceptance of the initial configuration and
changes thereto establishes a baseline for the configuration
item. This function is not meant to prevent or even inhibit
change. Rather in recognition that there will always be change
the intention is to provide for both orderly change and for
integrity in the configuration item as value is added during
each step of the software development process.

The configuration status accounting function provides
for the recording and reporting of the information that
is needed to effectively manage a configuration. This
must include a listing of the approved configuration identifi-
cation, the status of proposed changes and the implement-
ation of approved changes. This information must be provided
to every person with an interest in the configuration.

59

The configuration audit is the process of verifying that
all required configuration items have been produced, that the
current version agrees with specified requirements, that the
technical documentation completely and accurately describes
the configuration items and that all change requests have
been resolved. In-process audits may be conducted during the
software development process. At project completion both
functional and physical audits are conducted. These check
that the software product meets requirements and has all of
its physical elements present.

The Activities of SCM

Software configuration management is performed throughout
the software life cycle from project preparation through software
maintenance. These activities involve product management - the
control of the software product through its evolution and mainten-
ance. They are not project management - the control cf the organ-
ization which develops the software product. They are not support
management - the control of the process which is used to develop
the software product. These activities can be viewed from either
the software configuration management function or a software life
cycles perspective.

From the perspective of each of the software configuration
management functions, activities are either planned or conducted.
The following list includes both the planning and conducting
activities for each of the four software configuration management
functions:

Configuration Identification

Plan
- establish rules for titling, labeling, numbering,
cataloging
- define baselines to be established and their
documentation

- establish procedures for preparation, approval,
control and maintenance of all software code
and documentation

Conduct

- label all SCI documentation and code

- define and update the set of SCI's

- identify and record all SCI dependencies
- 1list SCI's in a baseline

- 1list current software configuration

60

Configuration Control

describe level of authority for change approval

in each life cycle phase

define methods and procedures for processing change
proposals

define role for each CCB and other change manage-
ment bodies

state methods to be used for configquration control
of interfaces with programs and projects

state the control procedures for associated special
software products in support and/or vendor

software

Conduct

evaluate and record changes

assure all required changes are implemented
propagate changes throughout the software
configuration

Configuration Status Accounting

delineate how information on status is to be
collected, verified, stored, processed and
reported

identify the periodic reports to be provided
state what or establish query capabilities
describe any special status accounting require-
ments specified

Conduct

record the establishment of each SCI
record the establishment of each baseline
record changes to SCI's and baselines
track and report change request processing
track and report the status of all SCI's

Configuration Audit

- identify the review (internal/formal) and audits
to be held during the life cycle

- define SCM's role in reviews and audjits

identify the confiquration items and associated

documentation and/or software to be covered in

each identified audit

- establish the rules for audit and review agenda,
action item reporting and follow-up by SCM

61

Conduct

- approve baseline composition and functionality
- determine differences between baselines

The software life cycle permits a somewhat different
view of software configuration management activities. This
list includes the activities performed during each phase of
the software life cycle:

Concept Exploration (Project Preparation)

- determine scope of SCM for project
- establish project documentation scheme
- create SCM plan

Requirements Phase

- establish control procedures and organization
- prepare the project master data base and tools
- acquire project plans

- acquire systems requirement documentation

Design Phase

- save and distribute system requirements
documentation

- control updates

- acquire system architecture documentation
including inter face and data base specifications

- begin project system structuring

- acquire system test documentation

Implementation Phase

- save and distribute system architecture
documentation

- control updates

- acquire module design documents

- complete product system structuring

- acquire code and unit test documentation

Test Phase

- save and distribute code for product system
versions

- control updates

- acquire system test results

Maintenance Phase
- save and distribute product system versions
- control updates

- acquire system enhancements in documents,
code and data

62

The desired result of the total software configuration
management effort as represented by the above lists of activities
is an environment which makes the overall software development
process more stable by establishing baselines and controlling
change. This will enhance the probability of delivering a
quality software product on time and within budget.

The Implementation of SCM

In those instances where software professionals and
managers must initiate software configuration management
an implementation approach must be selected. Organizations
which have specific standards and/or guidelines specified
in contracts or similar requirements have the relatively
easy task. They can, and most likely must, follow the process
and procedures stated in the contract and the specified
standards and/or guidelines. For those organizations that
lack this luxury the following is a suggested approach to
implement software configuration management:

- define a long term goal

- define the environment

- select a project for trial

- train a team

- implement the trial project

- measure and evaluate the results

Mandated or not, software configuration management should
be able to stand the test of making a positive contribution
to both the software project and the software product.

When there is no mandate it is critical that a long term goal
for software configuration management be established. This
goal should reflect both project management concerns for
cost, schedule and performance and upper management concern
for the bottom line. Therefore a software configuration
management goal should be stated in terms of specific contri-
butions to both software projects and products. This goal
should be measurable in terms of cost (budget), schedule,

per formance (functionality and quality) and return on investment
(ROI) .

It is essential that the environment for software develop-
ment be defined. Caution must be taken to avoid situations
where software configuration management is being looked upon
as a miracle cure for an otherwise unenlightened software
devel~pment environment. In such a situation even the best
implementation of SCM is unlikely to succeed. Should such
an environment be discovered every effort should be made to
upgrade the overall environment. Otherwise it is best
to seek a better situation for the initial SCM effort.

If one must continue to work in an unenlightened environment
the situation should be reflected by stating very conservative
long term goals.

63

The next step is to select the candidate software project
for trial. The selected project will determine both the schedule
for the project and for implementing SCM. It will also determine
the staff who will participate in the SCM trial and therefor
must be trained. If there is an option the selected broject
should be one with good opportunity for successful cofpletion
within a year. It should also be staffed with software develop-
ment personnel who are ready to accept software configuration
management contributions to their project effort. In any event
project selection is a major factor in the success or failure
of the SCM trial and should be handled with due care and consider-

ation.

Once the project is selected the next task is to train the
team with the software configuration management background
appropriate to each individual job. In addition to sharing
SCM knowledge this training must get the entire team involved
to the extent that each person knows what is expected, why it
is expected and what is in it for him/her. This should result
in the team's '"buy in" to the SCM trial. The training should
be selective in timing, subject, detail and audience.

The actual implementation one the selected project
should come just after the selective training and with
consulting support to the project team. Remember, it is
the project schedule that will drive the SCM trial not
vice versa.

In order that the SCM trial can be adequately evaluated
statistics on effort, dates and benefits must be kept through-
out the trial. At appropriate times during and on completion
of the trial these statistics should be evaluated to determine
if the trial has been successful. To be successful the SCM
trial must indicate a measurable improvement to the process -
that is: SCM's contribution to the product and the project must
be quantified and should result in savings greater than
cost.

Standards for SCM

At this writing that are two sources of general standards
for software configuration management. They are the numerous
directives and standards issued by the U. S. Department of
Defense (DoD) and the IEEE Standard 828-1983, IEEE Standard
for Configquration Management Plans.

The recently issued DoD Software Development Standard
(DoD-STD-2167) deals with specific software configuration
management issues. By reference, it also invokes several
other general configquration management directives and
standards. These include:

64

DoD-D 5010.19 - Confiquration Management: directk

the implementation of CM in the DoD and DoD agencles
Configuration Management - Joint Regulation Navy
NAVMATINST 4130.1A, AF-AR 65-3, ARMY AR 70-37, NSA

CSS 80-14, MCO-4130.1A, DCAC 100-50-2, DNAINST 5010.18,
DSAR 8250.4: a joint policy on configuration management
that defines CM and its role throughout contractual
phases and requires implementation of CM by DoD services
and components on contracts.

DoD-STD-480 - Engineering Changes, Deviations and
Waviers: provides direction for dealing with engineering
change proposals (ECP), waviers and deviations.

MIL-STD-483 (USAF) - Configuration Management Practices
for Systems, Equipment, Munitions and Computer Programs
provides for a configuration management plan which is

adaptable to hardware and software application and contains
guidance relative to configuration items (CI) and computer
program configuration items (CPCI). (This standard is being

updated to incorporate changes necessary to support DoD-
STD-2167.)

MIL-STD-1521 (USAF) - Technical Reviews and Audits for

Systems, Equipment and Computer Programs: provides

detailed guldance for the conduct of reviews and audits
(This standard is being updated to incorporate changes

necessary to support DoD-STD-2167.)

The IEEE Standard 828-1983, IEEE Standard for Software
Configuration Management Plans is one of the series of I1EEE
Software Engineering Standards being developed by volunteers
under the auspices of the Technical Committee for Software
Engineering in the IEEE Computer Society. As with all IEEE
standards this standard is voluntary and is invoked only as
desired by the organization doing the software development.
However at such time that compliance with the standard is
declared the directives of the standard become mandatory.
IEEE Standard 828-1983 provides for the development of a
software configuration management plan with the following
outline:

Introduction

Purpose

Scope

Definitions and acronyms
References

65

Management

Organization

SCM responsibilities

Inter face control

SCMP implementation

Applicable policies, directives and procedures

SCM activities

Configuration identification
Configuration control
Configuration status accounting
Audits and reviews

Tools, techniques and methodologies

Supplier control

Records collection and retention
Conclusion

Software configuration management is not merely a
collection of specified tasks assigned to a few clerks.
Rather, it is a way - a tool - for all project team members
to develop a software product that is complete in its parts,
and consistent in and traceable through all representations.
To this end, software configuration management provides
visibility of the evolving software product to both the
entire software development team and the customer.

References

----- . IEEE Standard 828-19893, IEEE Standard for Software
Configuration Plans, IEEE T

Buckle, J. K. Software Configuration Management, MacMillan
Press Ltd, 1982

Bershoff, Edward H., Vilas D. Henderson & Stanley G. Seigel
Software Configuration Management, Prentice-Hall,

(1) This paper is an overview of a portion of a book

1980

entitled "Software Quality Control - Practices and Procedures"

in preparation for publication by Prentice-Hall.

66

BIOGRAPHY

George Tice, Jr.

George D. Tice, Jr. is a senior software engineer in the Micro-Computer
Development Products Division of Tektronix. He is preparing a software
development methodology to support MDP’s software and microcomputer development
products, and is involved in numerous software quality and productivity
improvement projects. Prior to joining Tektronix he managed software quality
control projects at the Naval Ocean Systems Center in San Diego, California.
Mr. Tice is Chair of the IEEE Computer Society Software Engineering Standards
Subcommittee. He received his BS degree from Pennsylvania State University
and an MPA degree from San Diego State University.

67

GOAL OF SCM

To reproduce the complete SOFTWARE
S CONFIGURATION of a system

- for any specified version
- at any point In time
Starting with
- masters of all modifiable elements
- methods of construction

THE NEED FOR SCM

Corporate Management

— Productivity
Project Management

—= Project Completion
Technical

——— Day-to-Day Job

WOS ——

FNEVUVAY -
pejoajoud -

pexepu) -
3q 1sNW s}asse asemjos ayL

0

lllg §

3253 <

G2 """ o

I"IE L 0

°g 8 =2
-)

g |

5 0

g o)

2 O

S ' @

=

]

3

o

Q

o

3

o

=

. WHY SCM — Project Management

'PHASES

PRODUCTS

DEFINING]

DESIGNING

)

IMPLEMENTING

]W

TESTING

~jQ the ANSWER

~

> j Q the EVALUATION

MAINTAINING

——“jO The CHANGES

' What snd where are all of the product pleces on which we spent

' our resources?

69

o

WHY SCM — Technical

Q

TAPES DISKS LISTINGS

Where's the source?

Is this the right listing for that file?

Did you have a backup copy of that program
somewhere?

Where are the build instructions?

Why are all the function library routines marked as
“missing externals”™?

THE FOUR FUNCTIONS OF SCM
* Configuration Identification
« Configuration Control
e Configuration Status Accounting

e Configuration Audit

—

CONFIGURATION ITEM

A collection of hardware or software elements treated
as a unit for the purpse of configuration management.

CONFIGURATION IDENTIFICATION

(1) The process of designating the configuration items
in a system and recording their characteristics.

(2) The approved documentation that defines a

configuration item

]
(3) The current approved or conditionally approved
" technical documentation for a configuration item as
set forth in specifications, drawings, or associated
lists, and documents referenced therein.

CONFIGURATION CONTROL

(1) The process of evaluating, approving or
disapproving, and coordinating changes to
configuration items after formal establishment of
their configuration Identification

(2) The systematic evaluation, coordination, approval or
disapproval, and implementation of all approved
changes In the configuration of a configuration item
after formal establishment of its configuration
identification. (DOD STD 480 A)

CONFIGURATION STATUS
ACCOUNTING

The recording and reporting of the Information that is
needed to manage a configuration effectively, including
a listing of the approved configuration Identification,
the status of proposed changes to the configuration,
and the implementation status of approved changes.

(DOD STD 480 A)

CONFIGURATION AUDIT

The process of verifying that all required configuration
items have been produced, that the current version
agrees with specified requirements, that the technical
documentation completely and accurately describes
the configuration items, and that all change requests
have been resolved.

' SCM ACTIVITIES THROUGH

_THE LIFE CYCLE

CONFIGURATION IDENTIFICATION
CONFIGURATION CONTROL
CONFIGURATION AUDIT

73

CONFIGUHATION STATUS ACCOUNTING

»

CW
- FUNCYIONS

SCM Is
product management - controlling the software
product through its evolution
N and maintainance

NN

not project management - controlling the organiza-
tion which develops the
software product

not support management - controlling the process
which Is used to
develop the software
product

IMPLEMENTING SCM

¢ A change In how the Organization works affects
everyone and everyone needs to “Buy In” to the
change '

¢ Change invoives
- Defining long term goal
- Defining present or should be environment
- Select trial project
- Train feam
- implement trial
- Evaluate SCM Program

MILITARY STANDARDS

DOD-D 5010.19 — CONFIGURATION MANAGEMENT

CONFIGURATION MANAGEMENT — JOINT

REGULATION NAVY—NAVMATINST 4130. 1A, AF-AR

65-3, ARMY AR 70-37, NSA CSS 80-14 MCO-4130.1A,
5 DCAC 100-50-2, DNAINSTY 5010.18, DSAR 8250.4

DOD STD 480 — ENGINEERING CHANGES

DEVIATIONS AND WAIVERS

MIL STD 483 (USAF) (NOTICE-2) —
CONFIGURATION MANAGEMENT PRACTICES FOR

SYSTEMS, EQUIPMENT, MUNITIONS AND

—_— Y — " T) T Ty NN

COMPUTER PROGRAMS.

MIL STD 1521 (USAF) — TECHNICAL REVIEWS AND
AUDITS FOR SYSTEMS EQUIPMENT & COMPUTER
PROGRAMS.

IEEE Standard for
Software Configuration
Management Plans

OUTLINE

(1) introduction
(a) Purpose
(b) Scope '
(c) Definitions and scronyms
(d) References

(2) Management
(a) Organization
(b) SCM responaibilities
(c) Intertace control
(d) SCMP impiementation
(e) Applicable policies, directives and pracedises

(3) SCM activities
(a) Configuration identification
(b) Configuration control
(c) Configuration status sccounting
(d) Audits and reviews

(4) Tools, techniques, and methodologies
(5) Supplier control
(6) Records collection and refention

9L

SOFTWARE CONFIGURATION
MANAGEMENT

e provides visibility of the evolving software product
to the entire project development team
to the customer

o assures that each successive refinement of the
software product Is
complete with all of its configuration tems
consistent between all of its configuration items

Session 2

METATOOLS

Titles and Speakers:

“Reduced Form for Sharing Software Complexity Data”
Warren Harrison, University of Portland, and Curtis Cook, Oregon State
University

“A Practical Guide to Acquiring Software Engineering Tools”
Tom Milligan, Tektronix, Inc.

“The Use of Software Metrics to Improve Project Estimation”
Bob Grady and Debbie Caswell, Hewlett Packard Co.

REDUCED FORM FOR SHARING SOFTWARE COMPLEXITY DATA

Warren Harrison

Curtis Cook

One of the most important aspects of program quality is how
easy it 1is for a programmer to understand a program. Software
complexity metrics are a method of quantifying the
understandability (of lack thereof) of a program. The goal of
researchers in this area is to develop measures that can assist
in estimating the difficulty of a programmer performing a task on
the software such testing or maintenance.

In order to study and compare the performance of measures,
researchers need data from "real world" software systems.
However, industrial and business organizations are often
reluctant to provide the needed data. They are especially
reluctant to provide researchers with copies of their source code
because they have a considerable investment in the code and the
obvious security problems. Unfortunately, this data is essential
to the work of the software complexity researcher.

The Reduced Form of a source program provides the researcher
with information about the characteristics of the code without
disclosing the code. For each subprogram, the Reduced Form
provides a 1list of the program characteristics that are of
interest to complexity researchers. The actual program cannot be
reconstructed from this information because the operands and
operators in each statement and the order of the statements
cannot be inferred from the information.

Programs that automatically generate the Reduced Form for
several high level languages have been developed. In addition to
providing a relatively secure method of sharing data, the format
of the Reduced Form makes it <trivial to compute most of the
common metrics such as McCabe's V(g) and Halstead's E. We hope
that the use of a convenient tool such as the Reduced Form will
contribute greatly to the development and encourage the use of
software complexity metrics.

79

SUME. RESULTS FROM USING
A REDUCED FORM FOR SHARING
SOFTWARE COMPLEXITY DATA

Warren Harrison
University of Portland
Portland, OR 97203

Curtis Cook
Oregon State University
Corvallis, OR 97331

1. Introduction

Only recently, has the importance of writing understandable
software been acknowledged to be as important as program
efficiency. This importance stems from the high cost of
software maintenance (estimated to consume up to 78% of the
total amount spent on software) and the great amount of time
spent on testing (estimated to be up to 58% of software
development time) [1].

Software complexity metrics are one approach to an objective
measure of the understandability of a piece of software.
These metrics are based on the hypothesis that the
difficulty of understanding a piece of software depends on a
set of characteristics of the software, and the degree to
which these characteristics are present. For example, it is
widely believed that a large number of IF statements make a
program more difficult to understand than a similar program
with fewer IF statements. Unfortunately, there is no
consensus as to exactly which characteristics contribute
most to software complexity. As a result, many software
complexity metrics have been proposed over the last several
years,

Some of the more popular metrics include the Cyclomatic
complexity of McCabe [2] and Halstead's software science

[(3].

In order to validate a complexity metric (ie, find out if it
really '"works'") one must determine if a particular
characteristic or set of characteristics which the metric
measures actually has an effect on program
understandability. Typically, one of two approaches are
taken in the validation of a metric:

(1) Controlled Experimentation

(2) Field Studies

In controlled experimentation, two or more versions of the
same program are prepared, each with differing degrees of

80

the characteristic being studied. For example, one version
might use detailed comments while the other version may
contain only high-level comments. A number of subjects are
recruited and asked to perform some programming task that is
thought to be affected by understandability, such as
correcting an error or answering some questions about what
the program does. The subjects' performance on the task (eg,
time required to fix the error, or number of correct
answers) is then analyzed to assess which version was easier
to work with., If the metric is a true measure of software
complexity, it should agree with the observed outcome of the
experiment.

Controlled experimentation possesses some major weaknesses.,
To allow the subjects to complete the experiment within a
reasonable amount of time, only small programs can be
studied. Often, the programs used contain less than 50
lines, and usually perform fairly trivial operations (eg,
finding a mean). More importantly, since most experiments
are performed at universities, students are most often used
as subjects. It is not clear that the results of such
experiments can be generalized to large software systems
written by professional programmers.

In field studies, data is collected from one or more '"real
world" systems and analyzed. The data includes software
characteristics and the degree to which they occur, as well
as performance measures of programmers doing typical tasks
such as debugging, testing or maintenance. The analysis
attempts to determine significant relations between the
software characteristics and the performance measures.

While field studies have a few weaknesses, such as
difficulty in finely controlling the variables being
studied, results tend to be more generalizable to industrial
applications, and more credible to programming managers than
small, academic experiments. Unfortunately, the major
difficulty in field studies is obtaining accurate data -
both program characteristics and performance measures.

2. Acquiring Field Data to Validate Metrics

Many organizations are reluctant to allow access to their
code systems by '"outsiders"., This is understandable since it
would entail circulating copies of source code which may
have taken them thousands of man-hours to develop. Even
though the researcher may not provide the source code to
others, the mere distribution of the code to researchers
outside the organization could jeopordize any "trade secret"
protection it, or algorithms and formulas it contains may

81

possess [4].

In a recent survey of approximately 4@ industrial
organizations, only 35% of the respondents felt their
organization would share actual source code with researchers
(see Table I). Obviously, this would make obtaining
industrial data quite difficult for academic researchers who
are not affiliated with any industrial organization.

To overcome this problem, we have recently proposed a
Reduced Form which provides information on the software
characteristics of interest to metric researchers, but which
prevents the reconstruction of the original source program
[(S]. A example of this Reduced Form for C is shown in
Figures 1 and 2.

In [5], we present evidence which suggests that while most
current metrics can be obtained from the Reduced Form, it is
all but impossible to reconstruct the original source code
from the Reduced Form. Seventy percent of the respondents in
the previously mentioned survey would be willing to share
field data in its Reduced Form, or double the number who
would be willing to provide the actual code (see Table 1I).

The Reduced Form we have developed should be viewed as a
prototype of a more refined version which will be developed
in concert with other researchers. In addition to developing
a more refined version of the Reduced Form, we must also
address the need for a similar device to allow programmer
performance data to be distributed to researchers. We plan
to focus our efforts on this, once we have developed a more
refined version of the Reduced Form.

3. Results of a Study Using the Reduced Form

In early 1984, we implemented a prototype version of a
Reduced Form generation tool which worked for programs
written in C. A number of organizations expressed interest
in participating in our study, but for various reasons, we
decided to limit our initial study to a single project
within a single organization. The project we decided to
study involved a major compiler development effort involving
about 39,0P@ lines of C code, and approximately 2@ logically
identifiable modules.

In addition to providing us with the Reduced Form data for
the 2@ modules, the organization also agreed to provide

performance data in the form of error reports identifying
the number and type of errors associated with each module.
Approximately 275 errors were logged for the 2@ modules in

82

our study, with from 1 to 35 errors associated with each
module.

The Reduced Form data was used to calculate six metrics:

(1) OSL - Simply the total number of lines in the
module. This is the most easily obtained metric
use, which is perhaps why it is the favorite of
both researchers and practitioners.

(2) PRC - The number of function definitions within
each module. This is almost as easy to obtain as
total lines of code, and provides an alternate
measure of software '"size'".

in

(3) E - Halstead's Effort measure [3)]. Calculation of E
involves obtaining the software science measure of

"Program Volume':

V = N(log2 n)

where N is the total number of tokens used in the

program, and n is the number of unique tokens us
in the program (the calculations we used, assume

ed
d

that a particular token was unique only within its

module definition, and the use of that token, or

token with the same identifier in another function

definition was yet another unique token). As wel
as the software science '"Program Level'" measure:

L =vVvx / V

1

where V is the software science Program Volume and
V¥ is the software science "Potential Volume" (the

volume the program would possess if it were

implemented as a simple procedure call, calculated
as: (2+n2%)log2(2+n2%), where n2% is the number of
Input/Dutput variables to the program). Effort is

then calculated as:

E = V/L

(4a) VG - Which is a measure of the '""control flow
complexity'" of a piece of software. VG is
calculated by summing the number of decision
points in the program and adding one. We
considered the following to represent decision
points in the code: FDR, IF, ELSEIF, WHILE, CASE
BREAK and EXIT.

83

(5)

(8)

HARR - A new metric developed in [6] which measures
the '""macro-~complexity'" of a piece of software (ie,
entire system complexity as opposed to the
complexity of a single piece of software in
isolation). HARR is calculated as:

System Complexity % average(Module Complexity)

Where the average module complexity is the average
VG measure for all the function definitions within
the module, and System Complexity is:

modules

2 [Glob(i)*(#modules-1)]+[Param(i)*(1-0I(i))]
i=1

Where:

Glob(i) - number of times global variables are
used in function definition i

Param(i) - number of times parameters are used in
function definition i

DI(i) - a "documentation index'" for module i,
which is a measure of the quality of internal
documentation within a function definition.
We calculated it as:

0I(i) = (osL(i)-NCSL(i))/DSL(1i)

where DSL(i) is the total number of lines in
function definition i, and NCSL is the number
of non-comment lines in function definition
i. In essence, our calculation provides the
percentage of comment lines in function
definition i.

HNK - The macro-complexity measure by Henry and
Kafura [7]. Limitations of the Reduced Form would
not permit the exact calculation of the HNK metric
suggested by Henry and Kafura (it was not clear
which parameters are simply used and which ones
were actually changed - this is necessary to
prevent reconstruction of the code - thus, it is
not clear if an item is a FanIn or a FanDut). The
calculation we used was:

84

(FanIn + FanOut)*%2 % DSL

where FanIn and FanOut are the number of
information flows into and out of each procedure
(Henry and Kafura suggested FanIn and FanOut be
multiplied). This was obtained by simply summing
the number of unique parameter usages, global
variable usages and function calls over all the
function definitions and multiplying by the total
number of lines of code in the module.

In order to see if any of the metrics were related to the
number of errors observed in each module, we performed a
simple correlation analysis, the results of which are shown
in Table II. As can be seen, the HARR metric and total lines
of code were most closely related to number of bugs
attributed to each module, followed closely by VG. These
three correlations were significant at the .081 level (ie,
there is a .@@1 chance that the correlation observed was due
to chance and that the true correlation is actually @.¢0@).

4. Conclusions

The major goal of this paper was to illustrate the
usefulness of the Reduced Form. While the Reduced Form
described in this paper can hardly be considered anything
more than a prototype (more input from other metric
researchers will be needed before the final version of the
Reduced Form can be established), it does show that:

(1) A Reduced Form can aid in obtaining data for metric
studies

(2) Many current metrics can be easily calculated using
the Reduced Form

(3) The Reduced Form can be used to develop and study
new metrics

The results of the study suggest that perhaps the most
reasonable metric to use in assessing software complexity is
simply number of lines of code in the program. While some
other metrics may work just as well, or even better in some
cases, lines of code is almost trivial to obtain, in
relation to some of the other metrics (eg, E, HARR, and
HNK) .

85

However, one must be careful about drawing sweeping
conclusions about which is the best software complexity
metric from only one study. It is difficult to estimate the
influence of the programming language (C in our study) or
the type of software project (a compiler in our study).
Thus, the conclusions reached from this work are highly
tentative. One battle does not win a war, and one study does
not settle the software metric controversy. However, it is a
step in the right direction. Before more definite
conclusions can be reached, software written in other
languages and for other applications must be analyzed.

We hope to be able to continue our work in this area, and
encourage others, both academic and practitioner, to become
involved by developing new metrics, investigating proposed
metrics, and most important of all, providing data for
researchers.

5. Acknowledgements

We would like to express our appreciation to Nancy Currans
for her assistance during this work.

6. References

(1] Zelkowitz, M., A. Shaw and J. Gannon, Principles of
Software Engineering and Design, Prentice-Hall,
Englewood Cliffs, New Jersey, - 1979,

(2] McCabe, T., "A Complexity Measure'", IEEE Transactions on
Software Engineering, December 1976, pp 3@8-320.

[3] Halstead, M., Elements of Software Science, Elsevier,
New York, 1977,

(4] Graham, R., "The Legal Protection of Computer Systems",
Communications of the ACM, May 1984, pp 422-426.

[5] Harrison, W. and C. Cook, "A Method of Sharing
Industrial Software Complexity Data', ACM SIGPLAN
Notices, February, 1985, pp 42-51.

[6] Harrison, W., "A Study of Macro Level Complexity
Metrics", PhD Dissertation, Department of Computer
Science, Oregon State University, July, 1985.

[7] Henry, S. and D. Kafura, "Software Structure Metrics

Based on Information Flow", IEEE Transactions on
Software Engineering, September 1981, pp 510-518.

86

Percent of respondents whose organizations would share
source code with researchers 35%

Percent of Respondents whose organizations would not
share their source code,but would share the Reduced
Form with researchers 35%

Percent of respondents whose organization would share
performance data with researchers S7%

Percent of respondents whose organization would not
share any data describing their code systems with

researchers 28%

Table I. Major results of the survey.

Metric Bugs

HARR «7538%%

HNK .6231%

DSL « 76@@ %%

VG e 739@%%

E « 6919%%

PRC .6493%

% Significance < .01 %% Significance < .0@1

Table II. Correlation of metrics with bugs.

readfile (fname)
char *fnamej; {
register FILE *f = fopen (fname, '"r'");

if (F==0) {
error ("Can't read %s'", fname);
return;

}

erasedb ();
while (fgets(line,sizeof line,f)) {
linelim = @;
if (line(B] !'= '#') yyparse ();
}
fclose (fF);
DBchanged
linelim = =1

"
T SY

}

Figure 1. Sample C Program.

87

PROCEOURE readfile()
DCLS

FILE 1
char 1
register 1
CONSTANTS
CONP@@Q@20
CONP@BP21
VARIABLES
VAROBG3131
VAR@@@128
VAR@@@A127
VARQPA@A129
VARP@Q2QA8
STRINGS
STRP@APAA7
STRPPPA46
STRPPP@A48 1
FNCALLS

erasedb() 1
error() 1
fclosel() 1
fgets() 1
fopen() 1
yyparse() 1
OPERATORS

t= 1

e

1 1

-

unknown unknown

FILE local

FILE formal parameter
unknown unknown

int global

N WwbHH >

- -

LENGTH 16 16

Figure 2. Reduced Form for C subprogram in Figure 1.

88

BIOGRAPHY

Warren Harrison and Curtis Cook

Warren Harrison is an Assistant Professor of Business Administration at the
University of Portland. He holds a BS in accounting from the University of
Nevada, an MS in computer science from the University of Missouri, and is a
PhD candidate in computer science at Oregon State University. He has worked
as a computer scientist at Bell Telephone Laboratories in New Jersey and
Lawrence Livermore National Laboratory in California. His research interests
include software metrics, decision support systems, and software project
management and estimation.

Curtis Cook is Professor of Computer Science and Acting Chairman at Oregon
State University. He earned a BA in mathematics from Augustana College, and
an MS and PhD in computer science from the University of Iowa. His research
interests are software complexity metrics, graph theory applications in
computer science, minimal perfect hashing functions, and formal languages.

89

SCME RESULTS FROM USING
A REDUCED FORM FCR SHARING
SCFTWARE COMPLEXITY DATA

WARREN HARRISON
THE UNIVERSITY OF PORTLAND
PorTLAND, PR 97203

CurTis Cook
CREGON STATE UNIVERSITY
CorvAaLLIs, OR 97331

90

PROGRAM MATNTENANCE

- MODIFICATIONS MADE TO SOFTWARE AFTER COMPLETION - VERY
EXPENSIVE

- THREe PHASES:
1. UNDERSTANDING THE SOFTWARE
? 2, MODIFYING THE SOFTWARE
2. PETESTING THE SOFTWARE
- FRrROGRAM UNDERSTANDABILITY HAS AN EFFECT ON PROGRAM QUALITY

- USEFUL TO BE ABLE TO ASSESS PROGRAM UNDERSTANDABILITY

91

SOFTYARE COMPLEXITY METRICS

- MEASURE DEGREE TO WHICH PROGRAM CHARACTERISTICS THAT DETRACT
FROM UNDERSTANDABILITY (”"CoMPLEXITY CHARACTERISTICS”) EXIST
IN CODE,

- DEVELOP SET OF CONSISTENT, OBJECTIVE RULES TO ASSESS DEGREE
TO WHICH COMPLEXITY CHARACTERISTICS EXIST IN SOFTYARE, AND
WEIGHT THEIR PRESENCE,

- ArLLow CONSISTENT RANKING OF PROGRAMS BASED ON THEIR COMPLEXITY

- (CouLD BE USED AS A FEEDBACK TOOL FOR PROGPAMMERS, PERSONNEL
SCHEDULING TOOL FOR MANAGERS

- [DIFFERENT IDEAS CN SET OF VARIABLES TO CONSIDER AS COMPLEXITY
CHARACTERISTICS AND THEIR WEIGHTING

= METRICS INCORPORATING VIRTUALLY EVERY MEASURARLE CHARACTERISTIC -
WHICH ONE(S) WORK?

92

VALIDATICN PF METRICS

- FInD ouT IF THEY “VoORK"
- Two APPROACHES:
1. CONTROLLED EXPERIMENTATION
0 FPuILD TvO VERSIONS OF SAME PROGRAM

0 RECRUIT LARGE NUMBER OF SUBJECTS AND HAVE HALF PER-
FORM SAME PROGRAMMING TASK OMN CNE VERSION OF THE
PROGRAM, AND THE OTHEP HALF PERFORM THE SAME.TASK
CN THE OTHER VERSION

0 COMPARE THE PERFORMANCE CF THE TWO CROUPS

0 ATTRIBUTE THE DIFFERENCES IN PERFORMANCE TO THE
DIFFERENCE IN COMPLEXITY CHARACTERISTICS OF THE
THO PRCGRAM VERSIONS

2. F1eELD STuDIES
0 COLLECT DATA FROM "REAL WORLD"” PROJECTS

0 MEASURE PERFORMANCE OF PROGRAMMERS CARRYING OUT
CERTAIN TASKS ON PROGRAMS

0 C(CoMPARE PERFORMANCE OF PROGRAMMERS CN DIFFERENT
PARTS CF THE PROJECT

0 MTTRIBUTE DIFFERENCES IN PRCGRAMMER PERFORMANCE TC
DIFFERENCES IN PROGRAM CHARACTERISTICS

93

REDUCED FORM

PROBLEM: RESEARCHERS NEED DATA FROM ACTUAL PROJECTS, BUT IN-
DUSTRY FEARS TPADE SECRETS WiLL BE COMPROMISED.

SoLUTION: [EXTRACT IMPORTANT CHARACTERISTICS OF THE CODE, WITH-
OUT PROVIDING ENOUGH INFORMATION TO RECONSTRUCT THE
PROGRAM AND/OR FORMULAS,

94

ANALYSIS CF A PROJECT

30,000 Lines oF ‘C’ cope AND 20 LOGICAL MODULES

275 ERROR REPORTS

METRICS CALCULATED:

1. Lines oF cope

2. MUMEER OF PROCEDURES

3. SoFTWARE SCIENCE 'E’

i, CvycLomaTiCc comPLEXITY, VG

5. HENRY AND KAFURA'S INFORMATION FLCW METRIC
6. HARR, A MEASURE OF GLOBAL COMPLEXITY

- PREsuLTs:
COPRELATION WITH

METRIC Bues
HARR . 7538
HNK : €231
LOC .7€00
VG .73°0
E €919
PRC . 6493

95

CONCLUSIONS

PEDUCED FORM CAN SCLVE DATA COLLECTION PROBLEMS:
- MAKE CRGANIZATIONS LESS RELUCTANT TO SHARE DATA
- CAN CALCULATE MANY CURRENT METRICS USING REDUCED FORM

- PEDUCED FORM CAN BE USED TO DEVELOP AND STUDY NEW
METRICS

MANY METRICS ARE HIGHLY RELATED TO PROGRAMMER PERFQRMANCE
MEASURES (EG, ERRORS), BUT LINES OF CODE SEEM 'BEST’

MEED ADDITIONAL DATA FOR FOLLOWING STUDIES
- PEDUCED FORM DATA

- ProcrAMMER PERFORMANCE DATA

96

A Practical Guide to Acquiring Software
Engineering Tools
Tom Milligan
Software Center Tools Support Group

Software Center
Tektronix, Inc.

Abstract

In the last few years an increasing number of software vendors are providing tools to
address the needs encountered in the Software Engineering Process. Unfortunately, the
targeted audience for these tools (engineers) are not traditionally educated nor experi-
enced in the techniques for acquiring software tools. This paper will present a method
for identifying and then acquiring useful software engineering tools from third-party ven-
dors. This method has been developed and is in use at Tektronix, Inc. by a corporate
group of software engineers who are acquiring an integrated set of software engineering
tools for use throughout Tektronix. While the method was derived and is tuned for use
in a central group doing corporate tools acquisitions, the sub-methodologies described are
discrete. Parts not appropriate for other types of acquisitions can easily be deleted from
the overall method without threatening the overall structure of the process. The outlined
method is straightforward, thorough, and tested. It addresses the following topics:

Purchasing a tool.

1 Assessing needs for tools.

2 Finding tools to meet the defined need.
3 Evaluating a prospective tool.

4 Selecting a vendor.

5

6

Supporting a tool.

97

A Practical Guide to Acquiring Software
Engineering Tools

Tam Miltigan

Software Center
Tektronix, Inc.

Most of us readily admit that significant productivity gains can be achieved through the prudent
introduction of software tools into a software engineering environment. What most of us don't
know is how to approach that word “prudent”. This paper will present a practical set of methods
for intelligently selecting and introducing software tools into an engineering environment. [t
will deal with how to determine what tools are needed, how to find needed tools, how to evaluate
prospective tools, how to select a vendor for tools, then how to purchase tools, and finally how to
go about supporting tools.

Assessing Needs for Tools

While we may all agree that we need tools, we should also understand that not just any tools will
do. We don't want to solve nonexistent problems, nor do we want to let a critical need go
unanswered because we are off dealing with a not-so-critical one. So, how do we determine
where we are to exert our efforts in acquiring tools? One method is to ask the people who would
be using them. In particular, ask them to describe what they do, how they do it, and finally how
they would like todo it. This will give you an idea of the problems you are trying to solve, and
will give the would-be users a chance to define their own problem. A word of caution is in order
here: when you ask these questions, beware of the answers. Typically answers like "I need more
computing power."” or “| need a faster something else.” abound. This is not what you are looking
for. The answer lies not in making machines or even tools “faster”, the answer lies in making
people faster.

Another technique for determining which tools to pursue lies in your imagination, use it. Put
yourself in the shoes of those you are trying to help. If you have worked in that environment
before you may find this task easier, but beware of the limitations this “advantage” puts on you.

Specifically you may find yourself bound to what you believe is current technology. If you are
gaing ta use your imaginatian, then dan't bind it. Imagine the ideal tocls for the job, then lank
for them.

One of the most important aspects of assessing tools needs is to be able to distinguish between
“tools” and “toys”. At the most abstract level, a tool is a useful instrument in doing a particular
job, while a toy is something to play with. [t should be clear that we desire to find tools, not
toys. Some distinguishing characteristics of tools and toys are give below.

98

Distinauishing Character istics of Tool

A tool typically aids in doing a discreet part of of a larger process.
A tool typically does only one or two functions, but does them well.
It is easy toquantify time savings that will result from the use of a tool.

Distinouishing Chacecter istics of T

A toy may replace an already satisfactory tool, but not deliver any significant productivity
gain.

The driving factor for wanting a toy will typically be personal preference.

Toys are typically touted as "more convenient” than an existing tool.

It is difficult to quantify time savings that will result from the use of a toy.

People who want toys are upset when told that they can’t have them.

After you have assessed what tools are needed in a particular environment, the task becomes one
of finding tools to fit those needs.

Finding Tools

A number of sources are available in which to look for software tools. Trade Publications are
rife with reports and advertisements for all kinds of tools. Some of the most useful are

Computerword, £lectrical Engineering Times, Electronics Week, InfoWorid, and if the tool s to
run on a Personal Computer, one of the myriad of magazines dedicated to that particular PC.

Another good source of information on tools is the trade conference. For UNIX-based tools,
Uniforum and Usenix are the primary trade conferences. Typically Uniforum has a wide variety
of software tool vendors displaying their wares, while Usenix may have more intense technical
sessions relating to new tools development.

Also, many catalogs exist that list and summarize features provided by a wide variety of
software tools. These catalogs are published by the federal government, by operating system
vendors, by computer vendors, and by independent organizations. Some of these are even
available in machine-readable format, allowing a computerized database of software tools to be
compiled. A list of software tools catalogs, as well as their publishers are given in Appendix A of
this document.

Evaluating Prospective Tools

After determining what tools exist that address a defined need, you will need to evaluate whether
the tools address the problems correctly, and possibly which tool among many appears to be the
best for your particular environment. In addition, at the same time, you will be evaluating
prospective vendors for a tool. A number of approaches are possible, depending upon time and
other resources available for the evaluation.

99

One of the fastest ways to evaluate a prospective tool is to talk to current users of that tool. Most
vendors are happy to give you company names as well as the names of individuals within those
companies who are using a particular tool. Call these people, and ask them the following
questions:

"What do you like about the tool?”

“What don't you like about the tool?”

"What would you change about the tooi?"

"How much time does it save you?"

"How well does the vendor respond to your problems?”

ANbUNN —

The answers to these questions will tell you a lot about both the tool and about how well the
vendor responds to its customers. This will aid you in both in selecting a tool and in selecting a
vendor.

After the contacts with current users of the tool, you will probably want to evaluate the tool for
yourself. Contact an appropriate vendor and tell them that you are interested in the tool. Then
ask if you can have an evaluation copy of the tool for a specific period of time. Typically 2 weeks
to a month is an reasonable period of time for an in-depth evaluation. Most vendors are
prepared to honor this request. Some vendors may want to offer you a demonstration of the tool
on one of their machines through the use of 8 modem and phone lines. In general this is not an
acceptable way to evaluate a tool. Don‘t buy a tool unless you have the opportunity to try it out
in your environment to determine its usefulness to you.

Once the tool is in-house, you will want to give it a cursory acceptance test. Factors to consider
in this initial evaluation include ease of installation, simple invocation without traumatic
side-effects, and general good behavior. After this initial test move on to more in-depth testing.

There is no better in-depth test for a software tool than to “drop” it into the type of environment
that the tool will eventually be used. When placed into these environments, the tools are used in
exactly the manner that is appropriate for your organization. Any deficiencies in the tool that
relates to the way your software development environment operates are readily apparent.
Another useful piece of information available from this type of evaluation relates to how readily
the tool will be accepted into your software development environment. If youare unable tofind a
software development group into which to place the tool, then maybe that tool is not appropriate,
or perhaps its time has not yet come. After your evaluation is complete, give the information on
the tool, its weaknesses and its strengths, to the vendor. Be candid but fair, and give the vendor
achance to fix the problems.

Anote is in order regarding relations with vendors. The principles are honesty and fairness. Be
straightforward with a vendor, telling them your concerns about the tool, and then let them
answer. Assure them that you will not steal their software and then make sure you and everyone
else in your company adheres to that promise Don’t adopt an “us against them” mindset. Be
prepared to pay the vendor a fair sum for the tool. If the tools is a good one, it is worth it, and

100

usually the vendor doesn't “owe" you a bargain.
Selecting a Yendor

Beyond simply evaluating how the tool works, you also need to evaluate and select the tool
vendor. There are many types of software vendors, value added resellers (VARs), simple
distributors, developers, etc. The type to select depends on the applicability of the tool across
different environments, and your needs for support.

Value added resellers buy a tool from a developer, add some value to it, and then resell it. This
added value can be in the area of support, or in added functionality. The disadvantages to VARs
lies in their distance and independence from the original developer of the software. Their
changes or enhancements to the software may not track subsequent releases from the developer.
if the developer stops supporting the software however, this independence can be a positive
attribute.

Simple distributors are “front ends” to developers, and are typically better able to deal with
customers than are the developers. Distributers, however, are typically not prepared to
support or enhance the software on their own, depending on the developer for those functions.
This could mean some delays in getting bugs fixed or in an inability to get answers to highly
technical questions regarding the tool.

Developers of software are able to respond quickly to requests for bug fixes or enhancements,
but are typically not able to deal effectively with customers wanting only one or two copies of a
tool, preferring instead to OEM their software to another distribution agent.

Things toconsider in selecting a vendor are how many copies of software you anticipate needing,
how much money you have to spend for an acquisition, and how well the vendor can respond you
your request for support, enhancements and bug fixes. An important, often overlooked aspect of
acquiring software is ongoing support for that software. Just because you have purchased a
license for a particular software tool does not mean you are entitled to help, consultation, bug
fixes, enhancements, or automatic updates to the tool. These considerations are usually
negotiated and purchased seperately in a support contract with the tool vendor.

Purchasing a Tool

The most important aspect of purchasing a tool is to clearly define your needs. Define them in
terms of how many copies of the tool you need, what kind of support you need, and which vendor
seems best able to fulfill those needs. When these aspects of acquiring a tool are answered, you
are ready to meet with your corporate purchasing agent and contracts administrator. Meet with
each of these people and clearly outline your needs and give them whatever information you have
that is relevant to the purchase of the tool. Included in this information should be the fol lowing:

1. A document clearly outlining how many copies of the tool you want to but, along with
where the tool will reside, and who will be responsible for them

101

2. The name, address and phone number of the vendor .

3. Acopy of the vendor's pricing policy.

4. A copy of the vendors appropriate software purchase contract.
S. Acopy of the vendors appropriate software support contract.

If they need further information, they will tell you. When you meet with the contracts
administrator, you should plan to go over the contract item-by-item to determine whether
changes are necessary. Your contracts administrator should be an attorney or some other person
versed in legal terminology and, hopefully, software law. You can use the contracts
administrator to translate the legal jargon into english. Be aware that terms of contracts and
prices are negotiable, as was mentioned above however, work with and be fair to the vendor.
When you have received this information from the vendor and have passed it on to the purchasing
agent and the contracts administrator, it is time to turn all of these people 100se on each other.

Supporting a Tool

After you have successfully purchesed a tool there are only few other details to attend to in
supporting that tool. First, you must install the software. If the software is meant for one
machine, this should be straightforward. If, however, the software is destined for more than one
machine, you will have to decide on an appropriate mechanism for the installation. One option is
to simply follow the installation procedure for a single machine on each separate machine that
the software is to reside. At Tektronix, we have a very efficient computer network whereby
every engineering computer in the company is directly accessible by every other engineering
computer. Thus, it is possible to install the software once on one computer, and then
automatically ship the software in the correctly installed configuration to all of the other
computers who are to receive it. This has the advantage of reducing a8 30 minute installation
procedure to about 6 minutes.

After the software is installed, you should have some mechanism set up toanswer user questions
about the software. These questions can range from highly detailed technical questions, to very
simple invocation inquiries. |deally, one person can be designated as the contact for a particular
tool, and this person would process most inquiries. An important factor toremember is that the
contact person for a particular tool does not need to know everything about the tool, but rather,
they need to know where they can find the answers. '

Invariably some bugs will be found in the software. You should have a mechanism for accepting
bug reports on the tool, for analyzing them as to their validity, for organizing bug reports so
that you can tell if a given bug has been reported before, and finally for reporting bugs back to
the vendor. The contact person for the tool is usually the focal point for this bug activity.
Tektronix has developed a fairly thorough and extensible bug-tracking system for system
software bug reports. This extensibility has made it possible to include bug reporting for
software tools into the tracking system.

Finally, you will need a mechanism for distributing subsequent software releases to users of the
tool. Most often, this can be accomplished through the same process as the initial installation.

102

At Tektronix, we maintain a database relating software tools to machines. Tektronix hes
developed a software distribution system that queries the dstabase whenever a new release of
some software is available, and which then distributes it to the appropriate places
automatically. This approach, however, has met with some resistance from local system
administrators who object to having their machines changed without their knowledge.

Conclusion

Thus we have seen a practical, tested methods for identifying needs for tools, for finding needed
tools, for evaluating tools, for selecting vendors for tools, for purchasing tools, and finally for
supporting software tools. This methodology has been tested in practice and works. In addition,
the outlined sub-methodologies are discrete and inappropriste segments cen be deleted as
available resources dictate.

103

Appendix A
Software Tool Guides and Catalogs

Publications from the Federal Government

COSMIC Software Catalog

NASA's Computer Software Management and Information Center
112 Barrow Hall

The University of Georgia

Athens, BA 30602

Software Development Tools
Raymond C Houghton, Jr. - Author
US Government Printing Office
Washington, DC 20402

Office of Software] ing Center,
Software Tools Survey

Federal Software Testing Center
Office of Software Development
Two Skyline Place, Suite 1100
5203 LeesburgPike

Falls Church, VA 22041

Yendor Publications

CALM Softwars Beferral Catalog

Digital Equipment Corporation

Computer Aided Engineering and Manufacturing
Two Iron Way

MR0O3-1/E8, Box 1003

Marlboro,MA 01752

£nqineering Anplications Graphics Referral Catal
Digita! Equipment Corporation

Engineering Systems Group

Mariboro,MA 01752

Enat ing App licat ions Saff Referral Catal
Digital Equipment Corporation

Publishing and Circulation Services

10 Forbes Road

Northboro,MA 01532

104

Intel Yetlow Pages Software Directory
Intel Literature Department
3065 Bowers Ave.

SantaClara, CA 95051

US Chapter DECUS Program Library Softwars Abstracts
Digital Equipment Corporation
Marlboro,MA 01752

Independent Catalogs
Ihe.S catalog. Sci E nainger

Elsevier Science Publishing Co., Inc.
S2 Vanderbilt Ave.
New York,NY 10017

Unix* Applications Softwace Directory
Onager Fublishing

6451 Standridge Court

SanJose, CA 95123

Unix* Soft Direct
Onager Publishing

6451 Standridge Court
SandJose,CA 95123

Unix* Soft To0ls Direct
Reifer Consultants, Inc.
2550 Hawthorne Blvd., Suite 208
Torrance,CA 90505

3o W
Reston Documentation Group

Reston Publishing Co., Inc.
Reston, YA 22090

*Unix is a trademark of ATT Bell Laboratories

105

BIOGRAPHY

Tom Milligan

Tom Milligan graduated from the University of Oregon in 1978 with a BA in
computer science, secondary emphasis in mathematics. He has worked as a
software engineer developing embedded systems, as a technical writer, as a
software evaluation engineer, and most recently has been project leader for
Tektronix Software Center Tools Support Group. The Tools Group is a corporate
entity, composed of software engineers, whose purpose is to identify, acquire,
and support software engineering tools, as well as to put those tools together
into an integrated development environment for use by software engineers at
Tektronix.

106

P _

THE USE OF SOFTWARE METRICS TO
IMPROVE PROJECT ESTIMATION

Bob Grady and Debbie Caswell
Hewlett-Packard Company
Software Engineering Lab
Corporate Engineering

ABSTRACT

In 1983, a company-wide program was initiated to measure and improve the process of developing
software at Hewlett-Packard. One of the objectives of this program was to use measurements to achieve
immediate short-term improvements in productivity and quality. This paper reviews various efforts
during the first year of measurements which led to significant development process changes and a greater
awareness of which elements to monitor.

BACKGROUND

Hewlett-Packard designs and manufactures scientific instruments, small to medium-size computers, and
medical and analytical instruments. During the past fifteen years these components have been
increasingly designed for and used in systems which solve complex problems. In the forty-six years since
its founding, HP has grown until today its annual sales are in excess of six billion dollars and research and
development for new products is carried on in twenty-five decentralized laboratories scattered
throughout the U.S., Europe, and Japan.

The first HP computers were introduced in 1966 and 1967. The HP2116A computer and the HP9100A
desktop computer (or calculator as it was initially referred to) were designed for totally different markets
and produced by two geographically separate divisions. Each contained HP’s first substantial efforts in
the software engineering field and characterize how rapidly the breadth of HP’s software production
developed. Today, the majority of the software produced in HP is only loosely coupled among any set of
divisions, even though the systems nature of HP’s products suggests the need for tight coupling.

Types of Software

Softwarc at HP is created for a wide spectrum of applications and customer types. For !lie sake of
convenience, though, the applications can be reduced to four major types: firmware, systems, applications,
and end user. Firmware consists of software generally designed to execute from ROM (read only memory)
under control of a microprocessor. Examples of divisions designing firmware are those producing
instruments and computer peripherals. Systems software consists of software generally decsigned to
execute from the memory of mini-computers. It functions as the framework for developing and
executing other software. Examples of divisions designing systems software include divisicns directly
involved in producing computers, network software, languages, and data bases. Applications consist of
soft ware that operates on top of and using systems software. Applications software also zenerally solves a
generic class of problems for a narrow set of customers and needs. Examples of divisions designing
applications software include those dealing with manufacturing, medical, and financial customer
solutions. End-user software at HP consists of software which generally doesn’t fit the other three
categories. In many cases end user software as defined here operates on top of or. in addition to,

*** COPYRIGHT HEWLETT-PACKARD COMPANY ***
1-2 107

applications software, instruments or systems. Examples of end-user software include electronic data
processing and software done by such groups as Production Engineering and Quality Engineering.

Table | illustrates some characteristics of these four categories of software. Because each of these types
has different driving characteristics, discussions among the many R&D groups concerning software
encounter difficulties when people try to compare methods, tools, priorities, and estimates.

HP SOFTWARE DEVELOPMENT ENVIRONMENTS
INFLUENCING SOFTWARE
FACTORS MICROPROCESSOR SYSTEMS APPLICATIONS END-USER
TEAM SIZE Small Large * Large * Small
MARKET SIZE + Small —> Large Large Large Small
LANGUAGE Asmb.Pascal C/PascaV'SPL High-level All
USER Single Multiple Heavy, multiple Single
TIMING Important, Critical Mild importance Varles In
sometimes critical importance
METHODOLOGY Few standards Control-oriented Data-oriented Varies
COST OF CHANGE Large —> Huge Large Moderate Small
AFTER RELEASE
MAJOR APPUCATION Timing of Process interaction Data integrity, Single problem
CONCERN ext, processes peripheral generality, user interface, oriented
recovery portability
* Project sizes not large, but generally aggregates of projects are large,
+ As measured in number of customer sites.

Table 1

%* COPYRIGHT HEWLETT-PACKARD COMPANY *

108

1-3

Focus on Customer Satisfaction

The one topic which all HP divisions can agree upon is that the final test of a product’s worth is measured
by customer satisfaction. This can be characterized in a number of ways, but one early method which was
established at HP in 1979, was to methodically record and analyze reports of defects and enhancement
requests from customers. A customer with a software problem contacts the field service organization
which verifies that the problem is indeed a defect. The field submits a service request to the factory via a
system called STARS (Software Tracking And Reporting System).

In the factory, the marketing organization assigns a priority to fixing it. Next, the lab diagnoses the
problem. Diagnosing and fixing the problem are two distinct steps and might or might not occur at the
same time. After a fix is produced, it must be integrated into a product update and tested before it is
released to customers.

Each month, a centralized support division publishes graphs by product line showing the number of
defects reported but not diagnosed, the average amount of time a defect waits to be diagnosed, the number

of critical and serious unresolved defects, and the mean time to fix a critical or serious defect (refer to ,
Figure 1).
INCOMING SERVICE REQUESTS SOFTWARE MAINTENANCE PROCESS
i Unclassified
1 UNCLASSIFRED
!t SEAVICE < Service
- . _REQUESTS Regquests
MARKETING AND Mean Time
LAB CLASSIFICATION ... To Classify
Service Requests
- Dupficate Critical and Serious
'Ci""ott = Open Known
Duplicate
- Awating Problem Reports
Data
- Qther Mean Time To Fix

r - - Critical and Serious

. Known Prablems

OOD =

INTEGRATION RELEASE

Figure 1

+ COPYRIGHT HEWLETT-PACKARD COMPANY #*#+
1-4 109

The monthly reports give a written analysis of trends indicated by the graphs. Their intent is to raise
awareness of the amount of time it takes to get a software problem resolved from the customer’s point of
view. They also attempt to give information about the responsiveness of the factory maintenance teams.

These graphs have been very successful at focusing top management’s attention on the customer
satisfaction issue. Since managers know that every month the whole company will know their
maintenance status, they make an effort to bring their defect backlog under control.

ESTABLISHING PROCESS METRICS

While the consistent reporting of defects and enhancement requests provided HP with a measure of its
success, it fell short of providing an effective method for understanding the development process and
accurately predicting results. What was needed was a common set of terminology and measures for the
process of software development that could be used throughout HP early enough in the development
process to affect change. A group of twenty software managers and developers from thirteen divisions
were invited to establish an HP Software Metrics Council. These representatives were chosen on the basis
of software experience, software management experience, interest, and prior work in software
measurement and/or influence within their organizational entity to implement the council’s decisions.
Personal commitment and enthusiasm were also important. In addition, developers of all the various
classes of software were represented.

The objective of the first meeting of the council was:

To gain agreement on a set of software measurement criteria which managers feel are
nreaningful, reasonable to collect, and can be used to measure progress and predict results.

Explanation of HP Metrics

The result of the first meeting was agreement to collect metrics for five categories of information. Forms
were created to ensure consistency and to facilitate collection of the data. They are reviewed and
updated at the end of each phase, and the completed forms are collected at a central point upon product
release. The data is then added to a database and used to compare data at a high level. Within a year of
the initial agreement to metrics, over 100 projects had measured or were in the process of measuring these
metrics. The standard metrics are explained below.

SIZE - The standard metric for size is NCSS (non-commented source statements). This means that the
source code, not the object code, is used. Compiler directives, data declarations, and executable lines are
counted, but not blank lines or whole comment lines.

In keeping with our "reasonable to collect” objective, it is assumed that an automatic line counter is used.
In the absence of such a counter, the size is approximated. An educated guess is better than nothing.

PEOPLE/TIME/COST - The standard metric for cost is the engineering month. It is important to notice
that it is defined as "40-50 hours per week with no compensation for vacation or sick time." Therefore,
every engineer who works 80 hours a week for one month has contributed 2 engineering months in one
calendar month. Not compensating for vacation or sick days is in line with our "reasonable to collect"
objective. Also, time project managers spend managing is not included

+* COPYRIGHT HEWLETT-PACKARD COMPANY #*#
110 1-5

DEFECTS - A defect is a problem or an error: anything that appears in the output of the software process
which would not appear if it were perfect. Defects can occur at any life cycle stage. Right now, there is
no attempt to distinguish severity. All defects are equal.

difficult. The number is determined by filling in a questionnaire and inputting the responses to a
program called SOFTCOST. The questionnaire asks about stability of requirements, experience of
personnel on the project, familiarity with the type of software and development environment, access to
needed hardware, and many other general project questions. In addition to generating the difficulty
factor, the questionnaire helps to qualify productivity numbers which are computed.

COMMUNICATIONS - The number of interfaces that the lab project team has is the standard metric.
The intent is to quantify constraints on the project team due to dependencies with entities politically and
physically distant. If this metric were thought out at the beginning of the project it:

1. Could influence the partitioning of the task to minimize necessary interfaces.

2. Would raise awareness of who the suppliers and customers are for the project.

PROCESS IMPROVEMENTS

One of the most important results of the use of standard metrics was that many divisions went beyond
the standard metrics to understand why certain results were occurring. The results of these more
detailed studies encouraged other groups to leverage off these experiences and extend them in ways
appropriate to their own development needs. The remainder of this paper reviews some of these
studies, including how they have led to better understanding of the tasks being done and how long the
tasks should take.

An Example of Statistical Quality Control

One experiment, which actually began before the definition of the HP metrics, used the techniques of
statistical quality control (SQC) which HP has used effectively for several years throughout our
manufacturing areas. This entity believed that by focusing on defects, the causes of the defects could be
discovered and permanently removed.

The software studied in this case was a series of applications packages designed for internal company use
in support of purchasing and vendor analysis. This type of package is ultimately implemented in over
fifty divisions which operate in a relatively consistent fashion, so development of such systems is typically
done in partnership with several divisions. A prototyping approach was chosen to maximize the feedback
from the customer divisions and avoid some types of problems which had typically appeared in the past.
It was also believed that analysis of defects which appeared in each prototype could lead to elimination of
those defects in subsequent prototypes.

The first step was to prepare a list of defects which applied to the type of software they were producing.
Figure 2 shows that they grouped defects into three principal categories [1]. It is important to note that
these definitions and categories are relatively wunique to this particular type of application and
development environment. In a later discussion in this paper, we will see a similar approach taken
with quite different prevalent defects.

*** COPYRIGHT HEWLETT-PACKARD COMPANY #***
1-6 111

CATEGORIES OF SOFTWARE DEFECTS

A. USER INTERFACE/INTERACTION

1. User needs additional data fields

2. Existing data needs to be organized/presented differently
3. Edits on data values are too restrictive

4, Edits on data values are too loose

5. Inadequate system controls or audit trails

6. Unclear instructions or responses

7. New function or different processing required

B. PROGRAMMING DEFECT

1. Data incorrectly or inconsistently defined
2. Initialization problems
3. Image processing incorrect
4, View processing incorrect
5. Incorrect language instruction
6. Incorrect parameter passing
7. Unanticipated error condition
8. MPE file handling incarrect
9. Incorrect program control flow
10. Incorrect processing logic or algorithm
1. Processing requirement overlooked or not defined
12. Changes required to conform to standards

C. OPERATING ENVIRONMENT

1. Terminal differences

2. Printer differences

3. Different versions of systems software

4. Incorrect JCL

5. Incorrect account structure or capabilities
6. Unforeseen local system requirements

7. RAPID problem

Figure 2

A Pareto analysis was then done to identify the most frequently occurring defects. In this case
over one-third of the defects corresponded to categories A7, A2, and Al from Figure 2. The probable
causes of these defects were then determined using SQC, and changes were instituted into the
development process.

The second series of software was completed using the modified prototyping development process. As was
desired, the results showed that instead of these major defect categories appearing after release to the
internal customers, they now appeared much earlier in the process during the several prototyping stages.
In fact, categories A2 and A7 accounted for over fifty percent of the pre-release defects recorded.

***fi%PYRIGHT HEWLETT-PACKARD COMPANY #*#**
1-7

Predicting the Testing Process

Another division develops firmware used in communications applications. Their projects are typically
short (less than six months) but the type of application and the number of installations is such that the
final quality of their product is very critical. Because their product line is reasonably repeatable and
their development cycle short, they were able to characterize parts of their process relatively
quickly. They determined that their average coding rate was 670 NCSS/programmer month (NCSS is
non-commented source statements) and that their average pre-release defect density was 9.6
defects/1000 NCSS. (Note that any defect rate is entirely dependent upon how a given organization
defines defects. Our early experience shows variation of up to a factor of 200 in defect density among
different entities depending upon how defects are defined and recorded.) Using these averages they
were able to make their process more predictable.

They focused their attention particularly on the testing cycle. Using the model defined in Figure 3, they

started predicting how long the testing phase should take as well as recording and categorizing defects in
detail.

DEFECT DISCOVERY SCHEDULE

25% of defects are found in 2 hours/defect (rate of .50 defect/hour)
50% of defects are found in 5hours/defect {rate of .20 defect/hour)
20% of defects are found in 10 hours/defect (rate of .10 defect/hour)
4% of defects are found in 20 hours/defect (rate of .05 defect/hour)
1% of defects are found in 50 hours/defect (rate of .02 defect/hour)

Figure 3

*** COPYRIGHT HEWLETT-PACKARD COMPANY #*#*#*

L 1-8 113

Figure 4 shows the predictive model of a typical project and the actual rate of defect discovery and
completion. As can be seen from this example, the amount of testing required to achieve a desired level of
quality can be predicted reasonably well.

100

DEFECT RATE
RATE AND 3 WEEK AVERAGE

TR A

Cal
Defect Rate Model W
Defect per 1000 Hours
e,
A
A S
~
N
L AN
AN
A S
~
~
AN
L. A S
A S
~
AN
/> ™
- ,”\/\ \\
s \“w’\x‘%f\ \\\\\
= ‘“..—‘L-r_\:‘-:x \--..\
..................... TN ..
“~
4 1 1] [] | 1 [1 1 1 1 1 1 l-‘—-—ll
wWK3 WIS WK’ wKe WKt WKi3 WK15 WK7 WKN
Logged QA Week
Figure 4

*** COPYRIGHT HEWLETT-PACKARD COMPANY #***
114 1-9

In addition to predicting and monitoring defects during the testing process, this division also made an
effort to categorize the defects by severity to use as an aid in project tracking. They used the same
severity categories described earlier that HP uses for reporting defects after a product is released.
Displaying these defects in the form of a stacked bar chart (Figure 5 shows defects for the same project
displayed by Figure 4) on a weekly basis then shows not only the downward trend of defects toward
project completion, but also flags the presence of major problems past the point when they might be
expected.

DEFECTS
Minor Serious Major Hardware
/77 RXXX) 772 |
so X8 and Frequenoy
“..
o
w..
'-
N L
R :E:
o B9 I K4
PS5 B 1
] g% v
ot _' 7 L/ [/
\BPEUONGY A0 8 e U n e
WKI O WKI WKE WU WK WKH WKI3 WKIB WKI7 WK
Looped QA Weak

Unlike the applications environment discussed earlier where the primary source of defects was in the
user interface specifications, this division found their major source of defects was in the implementation
of algorithms. Figures 6 and 7 show the breakdown of defects by project phase and classification. These
measurements and analyses have not only made their process more predictable, but they have pointed
out the primary areas where effort can be focussed to improve the process.

*** COPYRIGHT HEWLETT-PACKARD COMPANY #*##
1-10 115

SOFTWARE METRICS

Figure 6

Figure 7

*** COPYRIGHT HEWLETT-PACKARD COMPANY #***
116 1-11

Using their technique to predict testing time and effort necessary, they are routinely predicting the
testing phase within ten percent of the actual times spent now. For three products which have been
released long enough to accurately draw conclusions, they have seen a total of only one defect after this
testing process has been completed.

Project Prediction and SQC at a Systems Division

A third division produces systems and software used to develop firmware applications. They have a large
team of software developers with projects of varying size which primarily fall into operating system and
compiler software, but also include firmware and applications as well. Their productivity has been quite
respectable, but they felt that their ability to predict project completions was poor and that they really
didn’t have good understanding or control over defects in their process. Their pre-release defect densities
have varied from .4 to 6 defects/1000 NCSS. Figure 8 shows a graph of the accuracy of their project
estimates.

SOFTWARE PREDICTABIUTY

Development Effort

Achml/Predicted
s Rutio
78 L o ¢

© 4

¢

K ; 3 . 3 r

Project Number
Figure 8

By initiating measurements in all areas of development, they hoped to improve their ability to
estimate projects. In addition, by focusing heavily on defect analysis they felt they also had the best
chance of improving their process. They used techniques similar to those described in the previous
two divisions. Figures 9 and 10 show categorization of defects for one of their development areas. One
of the most interesting results of these measurements was that in the category of detailed design defects,
the largest category, over half of the reported errors occurred during redesigns. During redesigns they
typically did not have formal review mechanisms in place to ensure top quality. These measurements, of
course, led to the introduction of such reviews.

*** COPYRIGHT HEWLETT-PACKARD COMPANY #**%
1-12 117

COMPILER DEFECTS

0

sl
|
o |
0ol

0 Deteted Caavg Dwlect imprementation Arcioctins
Design Defoct Dafact Owect
Dufect Type
Figure 9
COMPILER DESIGN DEFECTS

Pagalne Tuigmt Poar

Figure 10

*** COPYRIGHT HEWLETT-PACKARD COMPANY **#
118 1-13

As was pointed out earlier, it can be seen from all three examples that the detailed definition of defects
was not consistent from division to division, yet in each case significant understanding and progress was
made in eliminating the causes of defects from the development process.

One tool which was used to identify problem causes was the "fishbone" diagram. A high-level
analysis of the primary defect category, detailed design defects, is illustrated in Figure 11. This type
of analysis is suitable for creating change at the lab level. A similar diagram was done for register
allocation defects and some of the others. These led to actions within smaller areas of the lab, since
they represented subsets of the overall problem category.

CAUSE/EFFECT DIAGRAM

- | METHODS [

MANPOWER | Tralning
inexperienced
designers Incomplete (——L Methodology
design
., Detoiled
Troining design -
defect
Mther
Systern preduct
interactions intwrfoces |
Meos nquoge
sys Emulotors Comgpllers N_ot enough
/ tUme
/s Proceuc:/\ Redesign
Proceasor Poaor
Hmotes
Complexity o1
/
Sde Schedule
effects
Praduct

Ho toals prossure
s
intergctions - Nat documented
Ruused
Didn*t

Designers
code Original
Code Incomplete take designers
knowledge tUme don‘t know
MATERIALS
Figure 11

We have seen that for different software development environments, the primary defect categories are
significantly different. The techniques for identifying defects involve discipline in recording defects
during the software development process. Once the primary defect categories are identified, the causes of
defects can be determined and permanently removed, and defects are one of the primary factors which
contribute to our inability to accurately estimate.

*** COPYRIGHT HEWLETT-PACKARD COMPANY #*#*%
1-14 119

A Tool for Project Estimation

A fourth division develops communications software which operates very closely with the operating
systems software used by all of HP’s computers. Their interest in metrics is driven by the need for project
control, which includes predictability of schedules and staffing.

This division’s first attempt at cost estimation modeling was to lease a software package which implements
a model discussed much in the metrics literature. This model was studied in terms of its accuracy and
assumptions concerning the development process. A major problem with it was the ease with which
managers could manipulate the inputs to the model to get virtually any answer, realistic or unrealistic.
Also, the high leasing price made the prospect of developing an in-house tool cost-effective for this
division.

The in-house tool, SOFTCOST, was based on a paper written by Robert Tausworth of the Jet Propulsion
Laboratory (2). Here is a description of SOFTCOST’s functionality:

1. Estimates project size and difficulty. The Difficulty Factor provided by SOFTCOST is based on
various aspects of the project environment, such as product complexity, staff experience, support of
the programming environment, etc.

2. Estimates development resources. SOFTCOST approximates the total amount of engineering effort,
time, and staffing required for development of the project (from Internal Design through
Manufacturing Release).

3. Allows arbitrary resource budgets and performs tradeoffs between time and effort. SOFTCOST
allows the user to specify certain budget constraints, and shows what the time/effort/staffing
tradeoffs are.

4. Generates a staffing schedule. For large projects, effort is applied in a predictable way, following
what is known as a Rayleigh Curve.

SOFTCOST'’s goal is to provide Project Managers with a valuable comparison between their expectations of
a project’s behavior and industry-based statistical expectations of that project’s behavior. It provides an
additional basis for budgeting project time and effort to a project based on estimated confidence limits for
the project’s successful completion. Further, continued use of this estimation tool can aid in developing an
information base of productivity factors which are candidates for improvements.

The model uses some very complicated mathematics. An HP engineer ported the public-domain BASIC
implementation into HP-portable PASCAL. The submodels that compose SOFTCOST are each calibrated
to certain non-HP data, and the sum total of the models does not reflect a single set of industry data. HP
had no data and no instructions for customizing the data file.

After a year of using the first version of SOFTCOST, enough information had been gathered concerning
its usability and functionality. HP then created the second major revision, which included a total rewrite
of the user manual.

The metrics data collected has shown that for a small number of the division’s projects, SOFTCOST
predicted the duration within 20 percent and the effort within 30 percent when correction factors were
used. These results are shown in Figures 12 and 13.

+* COPYRIGHT HEWLETT-PACKARD COMPANY *
120 1-15

SOFTCOST ESTIMATE OF
PROJECT DURATION

Figure 12

SOFTCOST ESTIMATE (CORRECTED)
DEVELOPMENT EFFORT

s 8 83 8

Figure 13

*** COPYRIGHT HEWLETT-PACKARD COMPANY #***
1-16 121

The use of SOFTCOST has spread. Another division doing firmware development found SOFTCOST’s
estimates to be far too optimistic. However, it was consistently wrong by the same relative amount such
that modified SOFTCOST estimates are good predictors. (Again, a limited number of projects have been
used. For four projects, an offset factor of 2.5 appeared good.) The need to calibrate the model for a
specific development environment gives projects an incentive to collect accurate data for local calibration.
It is used as a check against a manager’s own expert judgement. In at least two cases, schedules have been
revised as a result of the large discrepancy between the managers’ initial estimates and the estimates
produced by SOFTCOST. SOFTCOST’s biggest advantage, however, is reminding the project manager in
the investigation phase of most of the factors that affect a project’s schedule.

The next step is to study the model itself and try to understand how to make it more responsive to factors
which have a big impact on project schedules in the HP environments. As data is collected on projects
producing different software types, the model will be calibrated to give more accurate estimates in each
software environment.

CONCLUSION

Probably the most remarkable aspect of the Software Metrics Program at HP has been how quickly
measurable results have been attained. Some aspects of measurements have spread to virtually all
software development labs within the company, and from the examples included in this paper it can be
seen that significant changes have been achieved in a relatively short time, particularly in understanding
defects in all of the major development categories. In some cases measurements are limited to individual
projects in a lab, but in many cases the process is now virtually across entire labs.

The original metrics accepted by the HP Software Metrics Council are internal standards now, subject
to growth and change over time as various experiments define new needs. The paper forms
originally created over a year ago have been supplemented by some tools which meet collection and
presentation needs. In addition, A set of three high-level management graphs, based upon data from
the standard metrics, have been accepted as the basis for evaluating software quality and productivity
throughout HP at the division level. These graphs (scattergrams) portray productivity, pre-release
quality, and post-release quality.

Finally, the major issue of predicting software development costs and schedules is being addressed by
both measurements to help calibrate our ability to estimate, as well as tools, to help standardize and
ensure completeness. In some HP environments, the time necessary to achieve desired quality goals
can be computed today so that the necessary resources can be allocated. This predictive ability must be
extended to other parts of the development process and the accuracies of prediction must continue to
improve until software development is really a predictable engineering discipline

BIBLIOGRAPHY
1. C. Sieloff, "Software TQC: Improving the Software Development Process Through Statistical Quality
Control," HP Software Productivity Conference Proceedings, (April, 1984).

2. R. C. Tausworth, "Software Specifications Document, DSN Software Cost Model," Jet Propulsion
Laboratory, Pasadena, CA, 1981.

*** COPYRIGHT HEWLETT-PACKARD COMPANY #***
122 1-17

BIOGRAPHIES

Bob Grady and Deborah Caswell

Bob Grady manages the Software Engineering Lab of Hewlett Packard Company.
SEL is a Corporate Engineering function responsible for software tools
development environments, and metrics. During his 15 years with HP, he has
managed software development projects in the areas of compilers, measurement
and control systems, firmware development and manufacturing automation.
Mr. Grady holds a BSEE from MIT and MSEE from Stanford University.

Deborah Caswell is a software development engineer for the Software Engineering
Lab of Hewlett Packard Company. She was instrumental in initiating and
coordinating the software metrics effort at HP. During the three years she
has been with HP, Ms. Caswell has developed automated testing programs and
other software engineering tools. She has a BA in computer science from
Dartmouth College and is pursuing an MSCS at Stanford University.

123

I4At

HP SOFTWARE DEVELOPMENT ENVIRONMENTS

INFLUENCING
FACTORS

e e

TEAM SIZE
MARKET SIZE +
LANGUAGE
USER

TIMING

METHODOLOGY

COST OF CHANGE
AFTER RELEASE

MAJOR APPUCATION
CONCERN

SOFTWARE
MICROPROCESSOR SYSTEMS APPUCATIONS END-USER
e e — |
Small Large # Large # Small
Small —> Large Large Large Small
Asmb.Pascal C/Pascal/SPL High—level All
Single Multiple Heavy, muitiple Single
important, Critical Miid importance Varies In
sometimes critical Iimportance
Few standards Control-oriented Data-orlented Varles
Large —> Huge Large Moderate Small
Timing of Process Interaction Data integrity, Single problem
ext. processes peripheral generality, user Interface, oriented
recovery portabiiity

#* Project sizes not large, but generally aggregates of projects are large.

+ As measured in number of customer sites.

INCOMING SERVICE aeoueij SOFTWARE MAINTENANCE PROCESS

fi'::'-i'm:;:'m‘ Unclaselfied
iL___REGUESTS Requests

[]
MARNETING AND . Mean Time
LAB CLASSIFICATION il To Classity
Service Requests

TAl

Critical and Serlous

<—— Open Known
Problem Reports

r-----

Meean Time To Fix

o r--- Critical and Serious
) o {------- - i Known Problems

CATEGORIES OF SOFTWARE DEFECTS

A. USER INTERFACEANTERACTION

L User needs aiitiaral data fleids

2 Bxisting data needs to be organized/presanted differently
3. Edits on data veluss are t00 restrictive

4. Edits on data waluss are t00 loose

S inadoquate system contrals or eudit tralls

6. Unclear hetuctions or responaes

7. New function or dfferet processing required

8. PROGRAMMING DEFECT

1 Data incormectly or inconsistently defined
2 tiaization problems

3. image processing ncarvect

4. View processing incarvect

S Shcomect lenguage instruction

€. ncomect parameter passing

7. Umanticipated ermor condition

8. MPE file haofing incarmect

9. Incorrect program control flow

0. Incorrect processing logic or algorithm
L Processing requirement overicokad or not defined

€. Changes required to aanform to standards

C. QFERATING ENVIRONMENT

L Terminal differences

2. Printer @fferences

3. Different versions of systems software

4. noxrect JCL

5. Incorrect account structure or capabilities
6. Unforeseen local system requirements

7. RAPID problem

126

LZ1

DEFECT DISCOVERY SCHEDULE

25% of defects are found In 2hours/defect (rate of .50 defect/hour)
50% of defects are found in § hours/defect (rate of .20 defect/hour)
20% of defects are found In 10 hours/defect (rate of .10 defect/hour)

4% of defects are found In 20 hours/defect (rate of .05 defect/hour)

1% of defects are found In 50 hours/defect (rate of .02 defect/hour)

XM VO pebbo]

O SHIM SDIM DM OIM DM DM BIM i

.l-..._l_ [B S | ¢ | | | | ! | ™

?I.ﬂ,.l.::ll._nl .\0.“'./0)_

LY - - - &".!ﬂ‘yll’

ccccc /\/\...VG.A..// 100

R R \.
T N / {oos

R RV
N\
Y
A
. {008
\
N\
N\
I’
. Hoor
\
\
\
\
N\

*Joos
000

®noH 0001 J0d 198j8Q

PO &»« E 09y 108jeQ
JOVNAAY JEEM € GNY 3NN
divd 104430

128

DEFECTS

Meréwere
P

10 Ir” and Fmﬂqy_—__—_—

Majer

Serioue
B

Minor

V.

0
N
AN

*»> 09094
Pe%0% % %

. 9.9.0.0.4
%6%%%%%"\

335 NN
SN
7 NV NN W

N\ 0t NN
NN 000000000055 NN m

DM sz sis N
e e NN

e !."..- .”...’.
b I . " x w

|
o @ ® © « = 1

) noged QA Week

esuyd 100joud Aq 8199)6Q

% 6c

% ot
wel

Alsuwling 108/8q sJemyog
SOILEN SMYMLL08

130

(1] o)

% €U
NI ed MON

008 AQ vopsuewedw] u) s1oeieq
SONLEN BVYAMLIOS

131

ORUU POIOIPeId/INNIOY

HOH T W]
ALNIaViold3dd HYMLL0S

Pejeg e 199}eQ uliseg

OTe0l0s000%%
0207020 %% 0%
020262 % % %%
25258555858
5505858585885
020202020 %%%
Z52585RRRXY
258585858585
olelelelele %%
0200020 % %0 %%
etere e oo el
0000 0% %%
Lodedelelede%
0000000 %0% %%
00ee00% %%
0202027 %%%!
020000020 %%
02020 %0%0% %%
250585058
02020202620 %%¢
020020 %% %%
RRRRRR
o000 %0 % %%
02626202020 %¢%!
02030202026 %e%
026262020 % %%
02000 % 0%
020202020 % %%
0200600 0%0%%
020 20%0%%%%?
2005058505855
02020202 % %%
020 2020%% %%
020002020 %0% %
06060 %
290585858585
elele¢ %%
0202020 %50 %0%
Pete%e20%2%%
250585855
Ret020%0%% %%
02000203020 %%
o202 %0 %% %%
olelelelee%e%?
2ede%0%0% 202
29853901

02020 %0%%
olele%ed0%0%
oteteleleledede
020le% 000 e%0%
Retetele% 0%
etede 202020 %%
0700707 % %%

o
Q
4
5
5
*

X
5
X

Qp
058
50

oY

NN NN AN R AR,)
0,000 00 00
0.0.0.020.02020 24

(/
L2

.

()

(/)
-

/)
()

>
)

)
L)

X
m@f”

L4

o

»

02000700 0% %
202000 e 0 0% %
2RRRRRRN
120%0%6%%6% %%
20K
ete %% %% %%
020202020 %%2%2
e 2020202 %%
L3I
0%070%%%%%*

XK
()

()

&

N/

¢

&
-

L)

N/

NN/

"\
L)

w

v
&

N/

£

()

$1034340 HI1IdNQO

133

COMPILER DESIGN DEFECTS

B 7

.??ééd&&d&dddéé&éﬁ??%
&

Register
Pairs

1%6%6% %% %% %% %%
0767620 %0% %% %% %
126%6% %% % %% % %% I
00650%0 %% % %% %% PR
19667626 % %% % % %% KR~
02600707 %% %% %% IR
20707 0 %0 0 e % % o K
ISRIERRR & &
' 90%% %% % % %% %'
D5292505258525052505)

2000000000 0 20002000 20202020 %%
0005020 %6%6%6°6%6%6%6% %% % %%
20%0% %% %% %% %% %% %"
900 ¢ 0092006900000 0.9
2020000000767 % %0 % %0 % % %%
02056 7670%0%6%0 %% % %% %:%% %
I I I 3 I W WX
0002020 %0%0%6%6 %0 %% % 2% % %%
2020000760700 %% %% % %% %"
20%0% %66 %6%%0%6%6 %626 %% % %%
Y o o O X X Y X Y XYY Y X X))

Poor

Documentation
Defect Type

500200070 %020 267026 % %% %% %% %% %% B 1
0002026767622 %6626 %626 %6% %% %% I
50000 020700020 %6 %0202 %0 %% % % % % % % B B
00000207000 %020 %0 % %0 % % %0 e % 2% % % I
5000000007026 %070 %026 %0 %6 %0 %6 %% %% %% B3
07020767626 %0%0% %076 %% % %% %% % %! It
02000500 % 20 %0% % %6 %6 %% %% % % % %% K-
0000000060 0 00 %0 %0 0 00 2 %0 %0 % 2 % %0 e %
0.0.0.0,.0.0.90.9.4.9.0.0.0,.0.0.90.0.0
- c
© O
>~ &
N «
Mm
=
<

lllllllllllllllllllllllllll

”Numborofbohch

134

GE1

CAUSE/EFFECT DIAGRAM

METHODS |

MANPOWER Tralning
inexperienced
designers Incomplete \«< " Methodology
design
Traini Detalled
rain’ng design
defect >
Other

System product
y interactions Interfaces | gnauage
eas

sys Emulators Compliers Not .enough
/ time
o/s Processor " Redesign
Processor Poor
Gomplexity eetimates Schedule
Side
offects No tools pressure
Product
\/ Iinteractions Not documented
Designers € ~————— Reused
code
Didn“t Original
Code Incomplete take designers
knowledge time don’t know
MATERIALS
HEWLETT—PAOND

@ 1984 Q510432

T T S{IUOW

NOLLV¥NG 103MOud
40 34iVNILE8E 18001J0S

syjuopy Bujeeu|buz

0se 002 oSt 001 0S 0
i I I ¥

| 1 L 1 I 1 1

ANOdda LNANGOT3A
(G31034WO0) 2IVHILET 18004408

o

Session 3

PANEL SESSION

“The Pros and Cons of Rapid Prototyping”

Panelists:

Rick Samco, Mentor Graphics

Robert Babb, Oregon Graduate Center

Will Clinger, Tektronix, Inc.

Dave Kerchner, Floating Point Systems, Inc.

Moderator:
LeRoy Nollette, Tektronix, Inc.

Overview Prepared by Will Clinger, Tektronix, Inc.

139

OVERVIEW OF RAPID PROTOTYPING
by William Clinger
TEKTRONIX, INC.

Rapid prototyping 1is a technique used in the early stages of
software development. The prototype is an executable software
specification. In many cases the prototype is obtained by tran-
slating an existing specification into a programming language,
but in some cases the prototype is itself the first specifica-
tion. The prototype is developed relatively rapidly and cheaply
by using a high level programming language, by using existing
code where possible, by using simple but inefficient data struc-
tures and algorithms, and by ignoring frills.

Rapid prototypes help to catch specification errors early, before
they waste much programming effort. For example, the specifica-
tion for a numerical calculation can be tested by translating it
into APL. Specifications expressed in a functional language such
as lambda calculus can be translated into Lisp. Specifications
expressed using first order logic can often be translated into
Prolog.

Unfortunately, most specifications are informal and imprecise.
In such cases the rapid prototype serves as the first formal
specification of the software to be built. The prototype can
even be used to develop requirements. Though it is difficult to
specify an interactive user interface that makes significant use
of graphics, for example, a prototype written in Smalltalk can be
used to explore the possibilities.

Given enough care, rapid prototypes can also be used to explore
the feasibility of novel implementation strategies. Such proto-
types can be thought of both as specifications and as simulators
for the final software product.

Oonce the rapid prototype is complete, it should remain as an
important component of the design documentation. To be most
useful, rapid prototypes should be written and commented as
carefully as any other software.

Rapid prototypes are rapid and cheap only by comparison with the
software development process they support. The final product is
more expensive to build than the prototype because it must have
better performance, more extensive features, and better documen-
tation for its intended users.

Rapid prototyping should not be confused with sloppy programming,
poor internal documentation, and buggy code. Sloppy programming,
poor internal documentation, and buggy code should be confined to
the later stages of software development, where they are cheaper

141

to fix. The purpose of rapid prototyping is to remove sloppy
thinking and buggy specifications from the early stages of soft-
ware development, where mistakes are most expensive.

Rapid prototyping is not always cost-effective. A software pro-
ject that begins with a detailed formal specification that is
known to be correct does not need a rapid prototype, and it would
be a waste of time and money to construct one. Most projects, of
course, begin with a detailed informal specification that is be-
lieved to be correct. In such cases a rapid prototype can in-
crease confidence, but the prototype must be weighed against its
cost. The worst possible thing to do in such a situation would
be to construct a prototype, but to construct it hurriedly and
sloppily in order to hold down costs. A sloppy and hurried
prototype is all cost and no benefit.

To make best use of rapid prototyping, programmers need to be
trained in the use of formal specifications and should understand
the principles of programming language semantics and program
verification. Programmers must understand and use abstract data
types to separate the objects that appear in the specification
from their inefficient implementations in the prototype. Final-
ly, programmers need to learn about the software development
process, lest they view the prototype as a quick and dirty throw-
away implementation, undertaken perhaps for practice; many pro-
grammers will think enough of their talents to believe they can
get it right the first time.

Rapid prototyping should be supported by an excellent interactive
programming environment so the prototype can be developed as
quickly as possible. The basic tool is an executable specifica-
tion 1language or a programming language whose semantics is clean
enough to be used as a specification 1language. The language
should supply a convenient means of synthesizing new abstract
data types, predefined modules for the most common data types and
operations, facilities for reading and printing objects of all
types, automatic storage management, and a convenient I/O package
that includes support for graphics displays. In general, the
programming environment should minimize the amount of new code
that must be written to develop the prototype, and should make it
easy to debug whatever new code is written.

Among well-known programming languages, APL, Lisp, and Smalltalk
are the best for rapid prototyping. Prolog is also good, but the
currently available Prolog programming environments are primi-
tive.

The hardware required to test rapid prototypes may have to be
faster than hardware used to run production software, both be-
cause rapid prototypes are very slow and because the prototype
testing time is usually on the software project's critical path.

142

Session 4

TESTING AND PROBLEM REPORTING, I

Titles and Speakers:

“A Tool for Analyzing the Logic Coverage of Source Programs”
Arun Jagota, Intel Corp.

“TCAT/C: A Tool for Testing C Software”
Edward Miller, Software Research Associates

“A Unix Based Software Development Problem Tracking System”
Gordon Staley, Hewlett Packard Co.

143

A Tool For Analyzing The Logic Coverage Of Source Programs

Arun Jagota

Oregon Micro-proccessor systems
Intel Corporation

This paper describes a software tool which can aid in analyzing the logic coverage of source programs.
The first section explains what logic coverage is and how it can be done. The next section gives an over-
view of the tool and shows how it can be used. The final section presents a general strategy for its use and
a summary of results and observations from my experience in using the tool.

1. What Do We Mean By Logic Coverage?

It is a measure of how well the internal control flow logic of a source program has been exercised. The pri-
mary goal is to find errors in the program’s logic. One simple form of logic coverage is to check if all
statements in a program can be executed at least once. Consider the following example.

X=Y;
if X > Y then S1
else S2;

It is obvious that S1 can never be executed. This form of coverage is called statement coverage. Now, is
statement coverage sufficient for detecting all kinds of logical errors? No, and the following example
should show why not.

X=Y;
if X =Y then S1;
S2;

There is an obvious error in the program due to the fact that the conditional expression in the IF state-
ment can never take the false value. Yet, statement coverage would not detect this error because both
statements are executed. Hence, to detect such errors, we would need to cover both the branches of IF
statements (and other two-way decisions). This kind of coverage is known as branch coverage. Again, is
branch coverage sufficient for detecting all kinds of logical errors? No, and the following example should
again show why not.

X=Y,;
if (X = Y) and (Y > 2) then S1
else S2;

Again, there is an obvious error in the progam which is due to the fact that the first condition in the IF
statement is always true. But, this error cannot be detected by branch coverage because we can cover
both branches of the IF statement by running the program twice with Y = 2 and Y = 3. How do we

detect such errors then? We need to cover both values (TRUE,FALSE) of each condition in the IF state-
ment. But, simply doing this does not guarantee branch coverage. Consider the following IF statement.

IF C1 and C2 THEN —

Suppose that it’s execution history shows the following coverage.

145

(1) CI is false and C2 is true.

(2) C1is true and C2 is False.
Each condition (C1 and C2) individually takes on both the values (TRUE,FALSE) at least once. Yet the
THEN part of the IF statement is never executed.

So, what we really need to do is to cover all combinations of outcomes of each condition in an IF state-
ment, and in two-way decisions, in general. This is known as multi-condition coverage [1]. A condition is
defined as a relational expression separated from other conditions by the logical operators AND, OR or
XOR. NOT is the only logical operator allowed as part of a condition.

1.1. What about multi-way decisions?

So far, we have confined our decision to two-way decisions, in particular IF statements. In addition to
such decisions, most programming languages allow multi-way decisions, for example Pascal case state-
ments. For such decisions, we need to ensure that each branch (case alternative) is executed at least once.
This is known as case coverage.

1.2. How can we automate the process of multi-condition and case coverage?

For each two way decision in the program, we need to insert hooks for monitoring the run time values of
all its conditions. For each case statement in the program, we need to insert a hook to monitor the values
of the associated case expression. The range of values that needs to be monitored depends on the number
of case alternatives in a case statement. The number of hooks that need to be inserted is not astronomi-
cally large since the number of decisions in a program is bounded by its size.

2. Overview of the Logic Coverage Tool

The logic coverage analyzer is targetted for PL/M source programs. PL/M is an Intel developed language
which supports three kinds of Pascal like control flow statements which are IF .. THEN, DO WHILE ..
and DO CASE .. . The analyzer performs multi-condition coverage on IF and DO WHILE statements. A
DO WHILE statement is interpreted as having two branches-execute the loop or skip it. It performs case
coverage on DO CASE statements. It can handle the most complicated forms of nesting of IF, DO WHILE
and DO CASE statements. It can also handle very complex boolean expressions in [FF and DO WHILE
statements.

The Analyzer is partitioned into three parts-Preprocessor, Monitor and Reporter. The preprocessor inserts
the hooks for IF, DO WHILE and DO CASE statements. The modified program can then be linked in
with the second part, the MONITOR. It can then be executed with any set of test data. The monitor uses
the run time values supplied by the hooks to perform the multi-condition and case coverage. At the end of
a session, the monitor writes its coverage status onto a file. This makes it possible to run the subject pro-
gram in multiple sessions and use the MONITOR to accumulate coverage data. The third part, the
reporter, interprets the contents of the coverage file to produce a coverage report.

2.1. Implementation
The Preprocessor

The preprocessor is coded in standard Pascal. It uses a recursive descent LL1 grammar for parsing IF, DO

WHILE and DO CASE statements. The basic processing algorithm is shown below. There is a look ahead
of one symbol everywhere except for DO WHILE and DO CASE statements.

146

The algorithm is fully recursive.

Pae i NSERT PRocESS
PRoOCESS IPECLAR, PRoGf AM

QTHER
PROCES GET
PRoGRA TOKEN

The preprocessor can process multiple PL /M modules together. The only condition is that the first one of
the multiple modules should be the main module. This is because the main module is treated differently as
shown below.

Main Module
Main: do;

éall Inlt; --Initialises the MONITOR

éall Savelnfo; --Saves the Coverage into a flle
End Main;

The first executable statement should be a call to a MONITOR routine which initialises the MONITOR.
The last executable statement should be a call to a MONITOR routine which saves the coverage results in
a file. The preprocessor inserts these calls into the main module at the appropriate places.

The Monitor

The monitor is written in PL/M. It can process a maximum of 200 statements for multi-condition cover-
age (IF + DO WHILE statements). If there are more such statements, then their coverage is ignored. The
maximum number of conditions in each statement can be six. Any more conditions are ignored. The moni-
tor can also process a maximum of 200 case statements. There can be a maximum of 32 case alternatives
in each case statements. Anything exceeding these limits is ignored similarly.

The information that needs to be recorded, especially for multi-condition coverage can be very large. In
the maximum case, for instance, we need to record 12,800 boolean values (200 * 26). A unique scheme is
used to represent this much information in just 1600 bytes.

l | BEE
| R

164 bits

200

147

The maximum number of possible combinations for doing multi-condition coverage of one statement is 64
(26). Hence, we use 64 bits for the multi-condition coverage of each statement. Each combination is asso-
ciated with a particular bit. A 0 for that bit indicates that the combination hasn’t been covered. A 1 indi-
cates that the combination has been covered.

The Reporter

It is also coded in PL/M. It interprets the logic coverage data from the coverage file and creates a report
in the following format.

Multi-Condition Coverage

Statement Type Line No No Of Conditions Condition Combinations
Not Covered
IF - - -
WHILE - - --
Case Coverage
Line No No Of Cases Cases Not Covered
3. Example

The following example illustrates how the three parts of the logic coverage analyzer can be used together.

The original program is:

read(a,b);
IF (a>2) AND (b<1) then <S0>;

After preprocessing, the subject program looks like this:

DECLARE c array(8) BYTE EXTERNAL;
—c is used to pass condition values to if probe.
read(a,b);
DO;
c[l] = (a>2);
efz] = (b<1);
CALL ifprobe(1,2);
IF c[1] and c[2] then <S0>;
END;

The array c is declared in the MONITOR and is used to pass the condition values to it. "ifprobe” is the
MONITOR hook which processes these values. Its first parameter indicates the index of the ”if” statement
being processed. The second parameter indicates how many conditions the ”if” statement contains. Now,
let us run the altered subject program with the following test data.

148

w

W w

We can now invoke the reporter to show us the current level of coverage.

Statement Type I_Jlne No No Of Conditions Combinations Not Covered
IF 2 2 False False
False True

The report clearly shows that we have not completely exercised the logic of the IIF statement. Specifically,
we can see that the following situations have not been covered.

(1) a<=2and b>=1
(2) a<=2and b<1

4. Summary of usage

Originally, this tool was implemented for analyzing single PL/M modules. It was tested with quite a few
single module PL/M programs (less than 100 lines each). But once it was ready, and I decided to test a
large PL/M program, I realised that the preprocessor had to be modified to process multiple modules.
Once this was done, the PL/M program was preprocessed. There were 56 IF and DO WHILE statements
and 18 DO CASE statements (The preprocessor gathered this information). The program spanned two
modules. But, when I tried to execute it I ran into a problem. I had assumed that the program had a sin-
gle exit point (the last statement of the main module) and this is where I inserted CALL SAVEINFO. But,
evidently, PL/M allowed the program to exit from any point under certain conditions. Since my prepro-
cessor had not made such allowances, I had to manually insert CALL SAVEINFO s at all such points.

Once this was done, I executed the program and it worked perfectly. Test data was fed interactively and
the coverage was seen to correspond to it. In fact, even with very limited test data, I succeeded in detect-
ing a program error- a WHILE loop which would never be entered.

5. A testing strategy based on analyzing logic coverage

The source program should be driven with test data derived solely through its functional specifications, in
other words with Black box test data. This will make it easier to correlate the internal control flow logic
of the program to its specifications. The analyzer will detect which logic has not been excercised so far.
There could be three reasons why the logic wasn’t covered.

(1) The test data was insufficient.
(2) There were logical errors in the program.
(3) Some combinations in multi-condition coverage were not intended to be covered. An excellent
example of this is
if (X = 1) and (X = 2) then S1;

It should be obvious that both conditions cannot be true at the same time.

Close inspection of the source code will usually give us a clue as to which reason applies to individual
cases of incomplete logic coverage.

Let us examine the role of an analyzer in selecting additional test data. Analyzing logic coverage is one of

149

the best ways of receiving feedback on how exhaustive test coverage has been. The primary reason for
this is that the functional specifications of a program are usually not detailed enough to cover all the
program’s logic and hence test the program under all possible situations. This fact is especially true for
"memory” programs - that is programs whose output is dependent not only on its input, but also on the
state of the environment at that time. Such programs have control flow logic which takes care of environ-
mental factors. The functional specifications, usually do not cover such logic too well and hence monitor-
ing this logic through a logic analyser provides a very useful insight into how well it has been exercised,
and hence, how well this part of the program has been tested.

In conclusion, then, logical coverage analyzers can serve two functions. They can detect logical errors and
they can aid us in estimating how complete our coverage has been. To do these optimally, we should use
a logic coverage analyzer as a feedback element in a testing loop (as shown below).

Fia ERRoRs | L €
S0 URCE o 9
S ¢
R ud] sy wl \ R I
. NE ¢ X
DR HICH
TES DA
Gonn 1 |
ERROAS
N PROGRAM ouTPL T
/ TEST panp T

8. Additional uses-Measuring control flow complexity
The preprocessor, in addition to its normal function, gathers the following statistics. It indicates the total
lines of code, the number of IF statements, the number of WHILE statements, the number of CASE state-

ments and the average number of conditions in IF and WHILE statements and the average number of
alternatives in CASE statements.

7. References

1. Myers Glenford J, 1979. The Art Of Software Testing. John Wiley & Sons.

150

BIOGRAPHY

Arun Jagota
Arun K. Jagota is a software engineer at Intel Corporation in Hillsboro,
Oregon. He holds an MS in computer science from the University of Kansas and

a BTech electrical engineering degree from the Indian Institute of Technology
in Delhi.

151

A Logic Coverage Analyzer of
Source Programs

Testing tool —
152
Al 1l 8 JULY 85

What is Logic Coverage

® A measure of how well the internal control flow
logic of a program has been exercised

® The goal is to find logical errors
® Statement Coverage - A Form of Logic Coverage
*kkxamplex*x
X=Y;
if X > Y then S1;
else S2;

® Sl is never executed

— Testing tool —

Al: 2 8 JULY 85

-contd-
® [s statement coverage enough?
No. Why not?
okkFxamplekk
X=Y;
if X=Y then S1;
S2;
® Statement coverage is complete but there is still a
logical error
® What is the solution? Cover both the branches of
the decision. This is known as branch coverage.

Testing tool —
4
AlJ: 3 15 8 JULY 85

-contd-
® Is branch coverage enough?
No. Why not?
*kkFxamplex*x
A=B;
if (A=B) and (B > 2) then SI;
else S2;
® =2 and B=3 will guarantee that both branches
are covered. Yet we see a logic error in the pro-
gram
® What is the solution?
® Cover all combinations of outcomes of each con-
dition
® This is known as multi-condition coverage
Testing tool —
Al 4 155 8 JULY 85

What about multi way decisions?
® Excercise all possible branches of the decision

® This is called case coverage

Testing tool —
156
AJ: S 8 JULY 85

Is it easy to automate multi-
condition and case coverage?

® Yes

® For every two-way decision, we need to insert
hooks for monitoring the boolean values of all its
conditions

® For every multi-way decision, we need to insert
hooks for monitoring the values of the case ex-
pression

® The number of decisions in a program is bounded
by its size

— Testing tool —
AlJ: 6 8 JULY 85

Overview of the Logic Coverage
Analyser - Features

® [t is targetted for PL/M source progams

® [t performs multi-condition coverage on two-way
decisions (IF and WHILE statements)

® A WHILE statement has two branches-execute

the loop or skip it

It performs branch coverage on CASE statements

® It can handle very complex nestings

Testing tool —

158
AT : 8 JULY 85

Overview - Implementation
It is subdivided into three parts

Preprocessor, Monitor and Reporter

® The preprocessor inserts hooks into the

source program to monitor
case expression values

condition and

® The modified program is linked and exe-

cuted with the monitor which keeps track

of the actual logic coverage

® The monitor stores the results in a per-

manent file

® The reporter interprets the data in the file

to produce a coverage report

Al: 8

159

Testing tool —

8 JULY 85

Implementation- Preprocessor
® It is coded in standard Pascal and runs on RMX

86

® Uses a recursive descent LL1 grammar

® Can process more than one PL/M module

® The source program should be error free. It can-
not recover from syntax errors in the source

® The basic processing algorithm is shown below

Testing tool —

PRE INSERT PROCESS @
PROCESS DE CLAR PROGRAM
oTHER
"eo . G eT WHILE
PROG roxe r
g
IF
zus_élm
<F
MO K
Pﬂgéﬁss
Bo
160

8 JULY 85

-contd-
The main module requires special treatment

Main: do;
CALL INIT; --Initialises the monitor

CALL SAVEINF O; --Saves the coverage into a file

end Main;

— Testing tool —
Al: 10 8 JULY 85

The Monitor
It is coded in PL/M
Maximum number of (IF + WHILE) statements
that can be covered = 200
Maximum number of allowable conditions in each
statement = 6
In the maximum case, we would need to record
12,800 condition values (200 * 2)
A special scheme allows the monitor to use only
1600 bytes to represent all of them
Maximum number of Case statements that can be
covered = 200
Maximum number of allowable cases in each case
statement = 32

Al: 11

162
8 JULY 85

Testing tool —

How it represents a Max of 76,800
condition values

I IJI_I

200

C |

® Each condition combination is represénted by a
particular bit

® A 0 for that bit indicates that the combination
hasn’t been covered

® A 1 indicates that it has been covered

e Testing tool —
AJ: 12 8 JULY 85

The Reporter

® It is coded in PL/M 86
® The coverage data in the file is stored in the
internal format
® The Reporter translates the data into a report
showing logic coverage
MULTI CONDITIOR COVERAGE
conND\T\ON
STATEMENT TYPE LINe pNo NO ©OF CONDPITONS :&"‘:&Tﬂws
IF - — N —
WHILE
CASE COVERAGE
LINE ND o OF cAsSEs! cpsEs ROT coOVERED
Testing tool —
164
AJ: 13

8 JULY 85

A strategy for optimally using a
logic coverage analyser
The source program should be driven with test
data derived solely through it’s specifications
(Black box)
The analyser will detect which logic hasn’t been
excercised
There are three possibilities here
® Testing was incomplete. This helps in
selecting more tests
® There are logic errors in the program
® The program logic was designed to be
incomplete |
® An example of this is -- if (X=1) or
(X=2) then S1;
Logic coverage serves a dual purpose.
® Find errors
® Select additional test data

Al: 14

Testing tool

165 8 JULY 85

Example

The Original Program:
read(a,b);
IF (a>2) AND (b<1) then <S0>;

After preprocessing;:

DECLARE c array(10) BYTE EXTERNAL;
--c is used to pass condition values to if probe.
read(a,b); |

* DO; *

* c[1] = (a>2); *

* ¢[2] = (b<1); *

* CALL ifprobe(1,2); *

IF ¢[1] and c[2] then <S0>;

* END; *

—— Testing tool —
AlJ: 15 8 JULY 85

Example -contd-
Run the altered program with the following test
data.

3,b=23
3,b=20

a
a

b

(Call the reporter. It prints the following report.
Type| Line No

IF 2 2 False False
False True

A mi e i ab S TR e e

Ty

— Testing tool —
Al: 16 ' 8 JULY 85

Other uses - Measuring control flow
complexity

The following statistics are gathered

Total Lines of code

Number of if statements

Number of while statements

Number of case statements

Average number of conditions in if statements
Average number of conditions in while statements
Average number of alternatives in case state-
ments |

Testing tool —

Al 17

168
8 JULY 85

TCAT/C: A Tool For Testing C Software TN-1183

TCAT/C: A Tool for Testing C Software

Edward Miller
Technical Director

July 1985

TN-1183/1

@ Copyright 1985 by Software Research Associates

ALL RIGHTS RESERVED. No part of this document may be repro-

duced in any form, by photocopy, microfilm, retrieval sys-

tem, or by any other means without written permission of
Software Research Associates.

Software Research Associates
P. O. Box 2432
San Francisco, CA 94126 USA

Phone: (415) 957-1441 --

Telex: 340-235 (SRA_SFO)

169
Software Research Associates

San Francisco, California

TCAT/C: A Tool For Testing C Software TN-1183

TCAT/C: A Tool for Testing C Software

Dr. Edward Miller
Technical Director
Software Research Associates
P. O. Box 2432
San Francisco, CA 94126

(415) 957-1441

ABSTRACT

SRA has developed a sophisticated test coverage analysis
tool for software written in "C", TCAT/C. The TCAT/C system
operates under VAX/Unix and supports automatic instrumenta-
tion, runtime support, and coverage analysis.

TCAT/C applies to unit-testing, sub-system testing and to
system testing. 1In operation, TCAT/C introduces minimum
system overhead and provides for a high level of convenience
in use of the tool.

Reports produced by TCAT/C show the impact of testing on a
system that has been processed by the TCAT/C instrumenter in
two ways: (1) by identifying the complete extent of exer-
cise of the program, and (2) by identifying the set of logi-
cal elements in the code that are NOT yet exercised by the
current set of tests.

In practice, the TCAT/C system lends itself very easily to
systematic testing. 1In several SRA projects TCAT/C has been
used as the basis for completeness testing, with very good
effect. SRA estimates that, with TCAT/C in use and with ap-
propriate levels of test coverage obtained, the error rates
in treated software drop by a factor of at least 10:1. Such
improvement values easily justify TCAT's moderate cost and
use overheads.

The TCAT/C product has been developed as part of SRA's long
term strategy for developing an integrated collection of
test support tools. TCAT's are already implemented for PAS-
CAL, BASIC, COBOL and several types of assembly language.

170
Software Research Associates San Francisco, California

BIOGRAPHY

Edward Miller

Dr. Edward Miller is technical director of Software Research Associates of
San Francisco. He specializes in advanced technology for software engineering
management, software testing, software maintenance, and automated tool design.
Previously Dr. Miller was Director of the Software Technology Centre, Science
Applications, Inc., and Director of the Program Validation Project at General
Research Corporation. He has lectured at the University of California at Santa
Barbara and at the University of Maryland, where he received his PhD.

171

AVAILABLE SOFTWARE TESTING TOOLS AND TECHNIQUES

REQUIREMENTS BASED TESTING

PLACK-BOX TEST PLANNING
EQUIREMENTS LINKING
STRACTION APPROACHES

INSPECTION AND REVIEW METHODS

DES1GN REVIEWS

ODE REVIEWS
EST PLAN REVIEWS

STATIC ANALYSIS

CONTROL- FLOW ANALYSIS
ATA FLOW ANALYSIS
NTERFACE ANALYSIS

UN1T (DEVELOPMENT., MODULE) TESTING

WHI1TE-BOX (STRUCTURAL) TESTING
INTERACTIVE TEST BED SYSTEMS

SUBSYSTEM TESTING

AUTOMATED TEST SCENARIOS
AUTOMATED TEST DATA GENERATION SCHEMES
INTERFACE TESTING

INTERFACE & INTEGRATION TESTING

INTERFACE CHECKING
COMPILER-ASSISTED TESTING

SysTEM (FUNCTION) TESTING

BLACK-BOX FUNCTIONAL TESTING
OVERAGE ANALYSIS
RAY BOX TESTING

FSM-BASED TESTING

REGRESSION TESTING
HANGE CONTROL

OVERAGE ANALYSIS
MODIFICATION ANALYSIS

QA-SRA-0.1

€LT

COCOMO DATABASE REPRESENTATION OF COST-TO-FIX OR CHANGE SOFTWARE THROUGHOUT LIFE CYCLE

1000

1 | I 1 t
Larger software projects
™ a I IBM-SSD 'f
o I GTE 7]
80% L — 7]
i Medisn (TRW survey) 7 i
20% o]

° ° © SAFEGUARD

< b
4

Smaller softwere ;roltctl
() - (Boshen, 1980)

I 4 i

SOURCE: Boehn,

—

Requirements

Design Code Developmant Acceplance

tonl test
Phase In which error was detected snd corrected

Software Engineering Economics,
Prentice-Hall, 1081,

Operation .

7 QA-2-18.1-a

(SOFTWARE

RANGE OF SOFTWARE QUALITY LEVELS

METRICS USED
-1000’s OF LINES OF CODE
Derects Per 1000 Lines oF cope (KLOC)
NORMAL quaL1Ty .
r DEFECTS LESS THAN 60 (+30 -20) per KLOC

NORMAL PROGRAMMING PROCESS, NO SPECIAL
QUALITY MANAGEMENT METHODS

GOOD quALITY
Derects LESS THAN 10 per KLOC
BASIC QUALITY MANAGEMENT ACTIVITY:
NSPECTION/REVIEWS
EFECT TRACKING
SIMPLE COVERAGE ANALYSIS
HIGH auaLiITY
Derects LessS THAN 1 per KLOC
INTERMEDIATE QUALITY MANAGEMENT ACTIVITY:
EORMAL TES TPLANNING

NSPECTION/REVIEWS
1 COVERAGE ANALYSIS

HIGHEST auaLi1TY
Derects LEss THAN 0.1 per KLOC
ADVANCED QUALITY MANAGEMENT ACTIVITY:
FORMAL TEST PLANNING
NSPECTION/REVIEWS

T COVERAGE ANALYSIS
YMBOLIC EVALUATION

QA-SRA-0.2

SOFTWARE

174

Oh! Now,

there’s an affordable way to make
sure software you're writing in
"C" is thoroughly tested.

Software Research Associates introduces the TCAT/C test coverage
verifier, a sure, low-cost way to make effective, measurable quality
assurance a reality in your laboratory. TCAT/C analyzes your "C"
program, gauges its internal structure, and sets it up so that the
quality and effectiveness of the tests you run can be measured
directly. Better yet, TCAT/C gives you simple, easy-to-read reports
that can be used as part of your formal software acceptance process.

What does this mean for software authors, managers, and
publishers? It means SRA’s new TCAT/C product provides:

0 Meaningful, quantitative quality assurance

O A sure "feedback loop" for knowing how much testing you've
done and how much you've left to do

O A method to minimize the amount of re-testing you have to do
O Protection for your product'’s reputation

Besides its system for the "C" language, SRA has similar capabilities
for your programs written in BASIC, or PASCAL, or... you name it!

SRA is a pioneer in software quality assurance, serving business,
research, and governments around the world. The introduction of
this product represents an affordable delivery of our unique
technology into the PC field.

Interested? Call or write SRA today for more information.

Software Research Associates, Attention: PC Test Group,
580 Market Street, San Francisco, CA 94104, (415) 957-1441.

175

TCAT/C: A Tool For Testing C Software TN-1183

/*** Reference listing for SRA C instrumentor

instr. version 1.9 -e; 1.10 statistics ***/
/* Copyright (c) 1984 by Software Research Associates.
All Rights Reserved. */

int c; /* ¢ is column count to skip empty columns */
GetName (line, name)
char line[), namel]:

char token([20), buf([80];
static char affixm[MAX] = "a" ;
/** Begin module GetName: segment 1 **/

1 GetToken(line, token); /* Returns token from line */
if (strcmp(token, "SUBROUTINE") == 0 ||

2 strcmp (token, "FUNCTION") == 0) /**2 if**x/ |
GetToken(line, name);
.strcpy (name, buf);

3 4 else /**3 else**/ if (strcmp(token, "BLOCK") == 0)
[**4 ifkx/ {
catstr ("blkdat.", affixb, buf);
affixb[0) = affixb[0)+1;

5 6 else /**5 else**/ if (strcmp({GetToken(line, token)),

"FUNCTION") == 0) /**6 if**/
GetToken(line, name);
strcpy (name, buf);

7 else /**7 else**/ |
strcpy(name, "main.f");
printf(": %s : main program0, name);

/* Total of 18 statements and 12 segments */
/* Total of 263 tokens in 39 lines. */

176
Software Research Associates San Francisco, California

TCAT/C: A Tool For Testing C Software

Coverage Analyzer,

Version 1.8 (80 Column)

TN-1183

(c) Copyright 1984 by Software Research Associates

I N N NS S ey S e el sl e el il e e e e e e R R R R B R R R N NI N I I

I

+

I

Module Number Of I
Name Segments: I
................................... +
SCN_BUFI 11
get_cell data 11 I
do_parm_type_chk 15 I
set_source_ptrs 71
TEST_BREAK 9 I
POINTER_ON 23 1
look_up 71
UPDATE ROWS 71
SET_RULER 31
NEXT ROW 13 1
Get_mem_blk 11
D1 CTL_PAGE_DOWN 71
DET FORMAT ~ 15 I
eval 17 1
decide_exe_mode_for_E 41
CHANGE_KBD 4 1
RULER 11 I
do_asg 30 1
SET_STATUS_LINE 31 1
RESET_GLOB_VARS 71
RESET_DATA_WDS 11
ROW_STATUS 51
analyze_source 29 I
DET DIRECTION 107 1
perform 11 I
RESET_PDATA_ AREA 11
find_element 71
POINTER OFF 51
Initialize_mx 9 I
NEXT_RIGHT 29 1
get_nxt_row_ 51
parse 301
D1_HOME 71
do_eval 27 I
Totals 1192 1
177

Software Research Associates

Number Of Segments Percent
Invocations Hit Coverage

N

=

[

Number Of

[

52.17
85.71
57.14
66.67
23.08
100.00
42.86
80.00
70.59
75.00
75.00
54.55
56.67
61.29
71.43
100.00
80.00
31.03
14.95
63.64
100.00
28.57
60.00
77.78
6.90
60.00
50.00
42.86
10 37.04

.

=
WU WNNWOHNOAOVBHUTONIAWWRNNWHEWN® NN I

[
+H+FHHHMHHHHHHHHHRHHRHHHHRHAHRHHAHAHHS S H$ HHSRHRd$H3+$

San Francisco, California

TCAT/C: A Tool For Testing C Software

Coverage Analyzer, Version 1.8 (80 Column)
(c) Copyright 1984 by Software Research Associates

+
I

+

I

I Module Number Of
I Name: Segments:
+

I SCN_BUFI 1
I get_cell_data 11
I do_parm_type_chk 15
I set_source_ptrs 7
I TEST BREAK 9
I POINTER_ON 23
I look_up 7
I UPDATE_ROWS 7
I SET_RULER 3
I NEXT_ROW 13
I Get_mem_blk 1
I D1_CTL_PAGE_DOWN 7
I DET _FORMAT 15
I eval 17
I decide_exe_mode_for_E 4
I CHANGE_ KBD 4
I RULER 11
I do_asg 30
I SET _STATUS_LINE 31
I RESET GLOB_VARS 7
I RESET DATA_ WDS 1
I ROW STATUS 5
I analyze_source 29
I DET DIRECTION 107
I perform 11
I RESET_PDATA_AREA 1
I find_element 7
I POINTER OFF 5
I Initialize_mx 9
I NEXT RIGHT 29
I get_nxt_row_ 5
I parse 30
I D1_HOME 7
I do_eval 27
+

I Totals 1192
+

Software Research Associates

San Francisco, California

TN-1183

This Test I Cumulative Summary

________________________ L Ty p——

No. Of I No. Of

No. Of Segments C1l% I No. Of Segments Cl$%

Invokes Hit Cover I Invokes Hit Cover
0 0 0.00 I 4 1 100.00
0 0 0.00 I 19 7 63.64
0 0 0.00 I 2 7 46.67
0 0 0.00 I 2 6 85.71
0 0 0.00 I 5 2 22,22
0 0 0.00 I 22 12 52.17
0 0 0.00 I 2 6 85.71
0 0 0.00 I 3 4 57.14
0 0 0.00 I 1 2 66.67
0 0 0.00 I 8 3 23.08
0 0 0.00 I 4 1 100.00
0 0 0.00 I 1 3 42.86
0 0 0.00 I 5 12 80.00
0 0 0.00 I 5 12 70.59
0 0 0.00 I 5 3 75.00
0 0 0.00 I 1 3 75.00
0 0 0.00 I 1 6 54.55
0 0 0.00 I 5 17 56.67
0 0 0.00 I 22 19 61.29
0 0 0.00 I 1 5 71.43
0 0 0.00 I 1 1 100.00
0 0 0.00 I 17 4 80.00
0 0 0.00 I 2 9 31.03
0 0 0.00 I 11 16 14.95
0 0 0.00 I 9 7 63.64
0 0 0.00 I 1 1 100.00
0 0 0.00 I 8 2 28.57
0 0 0.00 I 33 3 60.00
0 0 0.00 I 1 7 77.78
0 0 0.00 I 1 2 6.90
0 0 0.00 I 7 3 60.00
0 0 0.00 I 5 15 50.00
0 0 0.00 I 1 3 42,86
0 0 0.00 I 5 10 37.04
0 0 0.00 I 397 454 38.09
178

TCAT/C: A Tool For Testing C Software .TN-1183

Coverage Analyzer, Version 1.8 (80 Column)
(c) Copyright 1984 by Software Research Associates

Cl Not Hit Report.

Module: SCN_BUFI ~-- All Segments Hit. Cl = 100%
Module: get_cell data -~ Segments Not Hit:
2 4 6. 9
Module: do_parm_type_chk -~ Segments Not Hit:
4 5 6 8 9 10 11 12
Module: set_source_ptrs R Segments Not Hit:
4
Module: TEST_BREAK -- Segments Not Hit:
2 3 4 5 6 7 8
Module: POINTER_ON -~ Segments Not Hit:
2 5 10 12 14 15 16 17 18 22
23
Module: look_up -~ Segments Not Hit:
7
Module: UPDATE_ROWS -- Segments Not Hit:
2 3 4
Module: SET_ RULER -- Segments Not Hit:
2
Module: NEXT ROW -- Segments Not Hit:
4 5 6 7 8 9 10 11 12 13
Module: Get_mem_blk -~ All Segments Hit. Cl = 100%

Module: D1 _CTL_PAGE_DOWN -~ Segments Not Hit:

3 4 5 7

179
Software Research Associates San Francisco, California

TCAT/C: A Tool For Testing C Software TN-1183

Coverage Analyzer, Version 1.8 (80 Column)
(c) Copyright 1984 by Software Research Associates

Segment Level Histogram for Module: animal

I Logarithm of Executions, Normalized to Maximum
I (Maximum = 296 Hits)
Segment Number Of I
Number Executions I------------ l--—-—-——-- 10----- 20----30---40--80-100
_____________________ S
I
1 2 T XXXXXXXXXXXXXXXXXX
2 2 I XXXXXXXXXXXXXXXXXX
3 ¢ I
4 2 T XXXXXXXXXXXXXXXXXX
5 * I
6 14 T XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
7 2 T XXXXXXXXXXXXXXXXXX
8 2 T XXXXXXXXXXXXXXXXXX
9 * I
10 * I
11 2 T XXXXXXXXXXXXXXXXXX
12 * I
13 2 T XXXXXXXXXXXXXXXXXX
14 20 T XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
15 * I
16 44 T XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
17 * I
18 20 T XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
19 * I
20 44 T XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
21 ¢ I
22 * I
23 8 I XXXXXXXXXXXXXXXXXXXXXXXXXXX
24 4 T XXXXXXXXXXXXXXXXXXXXXXX
25 4 T XXXXXXXXXXXXXXXXXXXXXXX
38 8 I XXXXXXXXXXXXXXXXXXXXXXXXXXX
39 8 I XXXXXXXXXXXXXXXXXXXXXXXXXXX
40 16 T XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
I
_____________________ T LT T,
(* = Zero Hits)
Average Hits Per Executed Segment: 18.3860
Cl Value for This Module: 65.7895 %

180
Software Research Associates San Francisco, California

TCAT/C: A Tool For Testing C Software TN-1183

Coverage Analyzer, Version 1.8 (80 Column)
(c) Copyright 1984 by Software Research Associates

Segment Level Histogram for Module: animal

I Number of Executions, Normalized to Maximum
I (Maximum = 296 Hits)
I (Scale: .338 Xs = One Hit; Each X = 5.920 Hits)
Segment Number Of I
Number Executions I l------- 20--====-- 40----=--- 60--===--- 80--===—- 100
_____________________ +—-—-----------—-—_---_------——-—-----—------_-_----
I
1l 2 IX
2 2 IX
3 * I
4 2 IX
5 * I
6 14 I XX
7 2 IX
8 21X
9 * I
10 * I
11 2 IX
12 * I
13 2 IX
14 20 I XXX
15 * I
16 44 T XXXXXXX
17 * I
18 20 I XXX
19 * I
20 44 I XXXXXXX
21 * I
22 * I
23 81IX
24 4 I X
25 4 I X
38 8 IX
39 81X
40 16 I XX
I
--------------------- +---——--———-————————--————-—-—---—-——-—---———-—-----
(* = Z2ero Hits)
Average Hits Per Executed Segment: 18.3860
Cl Value for This Module: 65.7895 %
181

Software Research Associates San Francisco, California

TCAT/C: A TooL For TesTine C SoFTWARE TN-1183

S-TCAT/C FEATURES

SYSTEM TEST VERSION ofF TCAT/C -- S-TCAT/C

SIMILAR TO TCAT/C FOR SINGLE/MULTIPLE
MODULE

SLANTED TO NEEDS OF INTEGRATION/SYSTEM
TESTING

S1 METRIC
ALL CALLER-CALLEE PAIRS EXERCISED
STRONGER THAN "EVERY MODULE CALLED”
MEASUREMENT TECHNIQUE
SEMI-INVASIVE INSTRUMENTATION
RUN-TIME PACKAGE
TRACEFILES
“STANDARD"” COVER ANALYZER
SPECIAL INTERACTIVE UTILITIES

ADDITIONAL REPORTS
FULL CALL-PAIR ANALYSIS
COMPLETE CALLING TREE
SYSTEM STRUCTURE STATISTICS
IMPLEMENTATION BASE
UNIX ENVIRONMENTS
BErRKELEY UN1x
ATRT Unix
XENIX
PC-DOS

SoFTWARE RESEARCH ASSOCIATES SAN FrANCISCO, CALIFORNIA

TCAT/C: A TooL For TESTING C SnFTWARE

STRUCTURAL TEST PLANNING -- ADVANCED TECHNIQUES

BASIC APPROACH
PROGRAM FLOWCHART == DIGRAPH
PROGRAM SECTOR GRAPH
HIERARCHICAL DECOMPOSITION
SUCCESSION
IF ELSE END
WHILE END WHILE
LOOP ENUMERATION
PATH REPRESENTATION

TECHNICAL LIMITS
NON-PURE-SP PROGRAMS
COMBINATORICS
PATH COMPLEXITY

OPPORTUNITIES FOR AUTOMATION
FINDING NEXT USEFUL TEST
SELECTING "RELIABLE” TEST VALUES
INTERACTION WITH DEBUGGER

CONVENTIONAL LEVEL
ADVANCED LEVEL

183
SoF TWARE RESEARCH ASSOCIATES

TN-1183

SAN FRANCISCO, CALIFORNIA

SRA APPROACH TO SOFTWARE QUALITY MANAGEMENT

RECOGNITION OF REALITIES OF PROBLEM
KNOWLEDGE OF TECHNOLOGY
AVAILABILITY OF INFORMATION
RESEARCH AND DEVELOPMENT CAPACITY

COGNIZANCE OF CLIENT NEEDS AND WANTS
BUDGET CONSTRAINTS
PERSONNEL 1SSUES

TRUST

A CONFIDENTIALITY

J PRODUCTIVITY GAIN THROUGH AUTOMATION
RECORDKEEPING

TEST PLANNING

‘ COVERAGE ANALYSIS
Re-TESTING (REGRESSION)
ELECTRONIC COMMUNICATION

QUALITY GAIN THROUGH AUTOMATION

INTERACTIVE INSPECTIONS

! AUTOMATED STATIC ANALYSIS
AUTOMATED UNIT TESTING

H COVERAGE ANALYSIS

QA-SRA-0.6

. Oh! Now,

there’s an affordable way to make
sure software you're writing in
"C" is thoroughly tested.

Software Research Associates introduces the TCAT/C test coverage
verifier, a sure, low-cost way to make effective, measurable quality
assurance a reality in your laboratory. TCAT/C analyzes your "C"
program, gauges its internal structure, and sets it up so that the
quality and effectiveness of the tests you run can be measured
directly. Better yet, TCAT/C gives you simple, easy-to-read reports
that can be used as part of your formal software acceptance process.

What does this mean for software authors, managers, and
publishers? It means SRA’'s new TCAT/C product provides:

O Meaningful, quantitative quality assurance

O A sure "feedback loop" for knowing how much testing you've
done and how much you've left to do

0 A method to minimize the amount of re-testing you have to do
O Protection for your product’s reputation

Besides its system for the "C" language, SRA has similar capabilities
for your programs written in BASIC, or PASCAL, or... you name it!

SRA is a pioneer in software quality assurance, serving business,
research, and governments around the world. The introduction of
this product represents an affordable delivery of our unique
technology into the PC field.

Interested? Call or write SRA today for more information.

Software Research Associates, Attention: PC Test Group,
580 Market Street, San Francisco, CA 94104, (415) 957-1441.

185

TCAT/C: A Tool For Testing C Software TN-1183

/*** Reference listing for SRA C instrumentor

instr. version 1.9 -e; 1.10 statistics ***/
/* Copyright (c) 1984 by Software Research Associates.
All Rights Reserved. */

int c; /* ¢ is column count to skip empty columns */
GetName (line, name)
char line[]), namel];

char token[20]), buf[80]);
static char affixm[MAX] = "a" ;
/** Begin module GetName: segment 1 **/

1 GetToken(line, token); /* Returns token from line */
if (strcmp(token, "SUBROUTINE") == 0 |

2 strcmp (token, "FUNCTION") == 0

GetToken(line, name);

strcpy (name, buf);

; J**2 if**/ {

3 4 else /**3 else**/ if (strcmp(token, "BLOCK") == 0)
/%4 if*x/ |
catstr ("blkdat.", affixb, buf);
affixb[0] = affixb[0]+]1;

5 6 else /**5 else**/ if (strcmp({GetToken(line, token)},
"FUNCTION") == 0) /**6 if**/
GetToken(line, name);
strcpy (name, buf);

7 else /**7 else**/ |
strcpy(name, "main.f");
printf(": %s : main program0, name);

/* Total of 18 statements and 12 segments */
/* Total of 263 tokens in 39 lines. */

186
Software Research Associates San Francisco, California

TCAT/C: A Tool For Testing C Software

Coverage Analyzer,

TN-1183

Version 1.8 (80 Column)

(c) Copyright 1984 by Software Research Associates

e et e e E e S L L L L PR e P T Pt +
I I (Archived) Past Tests I
+ e e L L +
I I Number Of I
I Module Number Of I Number Of Segments Percent I
I No. Name Segments: I Invocations Hit Coverage I
e ————— e L e e +
I 1l: SCN BUFI 11 4 1 100.00 I
I 2: get_cell data 111 19 7 63.64 I
I 3: do_parm_type_chk 15 1 2 7 46.67 1
I 4: set_ source_ptrs 71 2 6 85.71 I
I : TEST BREAK 91 5 2 22,22 1
I 6: POINTER ON 23 1 22 12 52.17 I
I 7: look_up 71 2 6 85.71 I
I 8: UPDATE ROWS 71 3 4 57.14 1
I : SET_RULER 31I 1 2 66.67 I
I 10: NEXT ROW 13 1 8 3 23,08 1
I 11: Get_mem blk 11 4 1 100.00 I
I 12: D1 CTL PAGE __DOWN 71 1 3 42,86 I
I 13: DE?_FORMAT 15 I 5 12 80.00 I
I 14: eval 17 1 5 12 70.59 I
I 15: decide_exe_mode_for E 41 5 3 75.00 I
I 16: CHANGE KBD 41 1 3 75.00 I
I 17: RULER 11 1 1 6 54,55 1
I 18: do_asg 30 1 5 17 56.67 I
I 19: SET STATUS_LINE 31 1 22 19 61.29 I
I 20: RESET GLOB VARS 71 1 5 71.43 I
I 21: RESET DATA __WDS 11I 1 1 100.00 I
I 22: ROW_| STATUS 51 17 4 80.00 I
I 23: analyze source 29 1 2 9 31.03 I
I 24: DET DIRECTION 107 1 11 16 14,95 I
I 25: perform 11 I 9 7 63.64 I
I 26: RESET_PDATA_AREA 11 1 1 100.00 I
I 27: find_element 71 8 2 28.57 1
I 28: POINTER OFF 51 33 3 60.00 I
I 29: Initialize_mx 91 1 7 77.78 1
I 30: NEXT RIGHT 29 1 1 2 6.90 I
I 31: get_nxt_row_ 51 7 3 60.00 I
I 32: parse 30 I 5 15 50.00 I
I 33: D1_HOME 71 1 3 42.86 1
I 34: do_eval 27 1 5 10 37.04 1
e e e e et e e e L +
I Totals 1192 I 397 454 38.09 I
e ————————— +
187

Software Research Associates

San Francisco, California

' TCAT/C: A Tool For Testing C Software TN-1183

Coverage Analyzer, Version 1.8 (80 Column)
(c) Copyright 1984 by Software Research Associates

e el el i e e R e e e e e e e R e e R R R e R e e e e e M R N e W B N N B I

I This Test I Cumulative Summary

R e e L Lt

I No. Of I No. Of
Module Number Of I No. Of Segments Cl% I No. Of Segments C1%
Name: Segments: I Invokes Hit Cover I Invokes Hit Cover
SCN_BUFI 11 0 0 0.00 I 4 1 100.00
get cell data 11 1 0 0 0.00 I 19 7 63.64
do_parm_ type chk 15 I 0 0 0.00 I 2 7 46.67
set_source_ptrs 71 0 0 0.00 I 2 6 85.71
TEST BREAK 9 I 0 0 0.00 I 5 2 22,22
POINTER_ON 23 1 0 0 0.00 I 22 12 52.17
look_up 71 0 0 0.00 I 2 6 85.71
UPDATE_ROWS 71 0 0 0.00 I 3 4 57.14
SET_RULER 31I 0 0 0.00 I 1 2 66.67
NEXT _ROW 13 1 0 0 0.00 I 8 3 23,08
Get_mem_blk 11 0 0 0.00 I 4 1 100.00
Dl CTL PAGE DOWN 71 0 0 0.00 I 1 3 42.86
DET FORMAT 15 1 0 0 0.00 I 5 12 80.00
eval 17 I 0 0 0.00 I 5 12 70.59
decide_exe_mode_for_E 41 0 0 0.00 I 5 3 75.00
CHANGE_KBD 4 I 0 0 0.00 I 1 3 75.00
RULER 11 1 0 0 0.00 I 1 6 54.55
do_asg 30 1 0 0 0.00 I 5 17 56.67
SET_STATUS_LINE 31 1 0 0 0.00 I 22 19 61.29
RESET_GLOB_VARS 71 0 0 0.00 I 1 5 71.43
RESET DATA_WDS 11 0 0 0.00 I 1 1 100.00
ROW_STATUS 51 0 0 0.00 I 17 4 80.00
analyze_source 29 1 0 0 0.00 I 2 9 31.03
DET DIRECTION 107 I 0 0 0.00 I 11 16 14.95
perform 11 1 0 0 0.00 I 9 7 63.64
RESET_PDATA_AREA 11 0 0 0.00 I 1 1 100.00
find_element 71 0 0 0.00 I 8 2 28.57
POINTER OFF 51 0 0 0.00 I 33 3 60.00
Initialize_ mx 91 0 0 0.00 I 1 7 77.78
NEXT_RIGHT 29 I 0 0 0.00 I 1 2 6.90
get_nxt_row_ 51 0 0 0.00 I 7 3 60.00
parse 30 I 0 0 0.00 I 5 15 50.00
D1_HOME 71 0 0 0.00 I 1 3 42,86
do_eval 27 1 0 0 0.00 I 5 10 37.04
Totals 1192 1 0 0 0.00 I 397 454 38.09

188
Software Research Associates San Francisco, California

TCAT/C: A Tool For

Coverage Analyzer,
(c) Copyright 1984

Cl Not Hit Report.

Module:

Module:

Module:

Module:

Module:

Module:

Module:

Module:

Module:

Module:

Module:

Module:

Software Research Associates

SCN_BUFI
get_cell data
2 4 6

do_parm_type_chk

4 5 6

set_source_ptrs

4
TEST BREAK

2 3 4
POINTER_ON

2 5 10
23

look_up
7

UPDATE_ROWS

2 3 4
SET_RULER

2
NEXT_ROW

4 5 6

Get_mem_blk

D1_CTL_PAGE_DOWN

3 4 5

12

Testing C Software

All Segments Hit.

Version 1.8 (80 Column)
by Software Research Associates

Segments Not Hit:

Segments
10 11

Segments

Segments
7 8
Segments

15 16

Segments

Segments

Segments

Segments

9 10

Not Hit:

12

Not Hit:

Not Hit:

Not Hit:

17 18

Not Hit:

Not Hit:

Not Hit:

Not Hit:

11 12

All Segments Hit.

Segments

189

Not Hit:

San Francisco, California

Cl =

Cl 1008

22

13
100%

TN-1183

TCAT/C: A Tool For Testing C Software TN-1183

Coverage Analyzer, Version 1.8 (80 Column)
(c) Copyright 1984 by Software Research Associates

Segment Level Histogram for Module: animal

I Logarithm of Executions, Normalized to Maximum
I (Maximum = 296 Hits)
Segment Number Of I
Number Executions I------------ lececceeee- 10-=-=-- 20----30---40--80-100
_____________________ T T LT T T e
I
1l 2 I XXXXXXXXXXXXXXXXXX
2 2 T XXXXXXXXXXXXXXXXXX
3 * I
4 2 I XXXXXXXXXXXXXXXXXX
5 * I
6 14 I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
7 2 I XXXXXXXXXXXXXXXXXX
8 2 I XXXXXXXXXXXXXXXXXX
9 * I
10 * I
11 2 I XXXXXXXXXXXXXXXXXX
12 * I
13 2 I XXXXXXXXXXXXXXXXXX
14 20 I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
15 * I
16 44 T XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
17 * I
18 20 I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
19 * I
20 44 T XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
21 * I
22 * I
23 8 I XXXXXXXXXXXXXXXXXXXXXXXXXXX
24 4 T XXXXXXXXXXXXXXXXXXXXXXX
25 4 T XXXXXXXXXXXXXXXXXXXXXXX
38 8 I XXXXXXXXXXXXXXXXXXXXXXXXXXX
39 8 I XXXXXXXXXXXXXXXXXXXXXXXXXXX
40 16 T XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
I
————————————————————— +-———-——————----—---—-—————-.——---———————————------——
(* = Zero Hits)
Average Hits Per Executed Segment: 18.3860
Cl value for This Module: 65.7895 %
190

Software Research Associates San Francisco, California

TCAT/C: A Tool For Testing C Software TN-1183

Coverage Analyzer, Version 1.8 (80 Column)
(c) Copyright 1984 by Software Research Associates

Segment Level Histogram for Module: animal

I Number of Executions, Normalized to Maximum
I (Maximum = 296 Hits)
I (Scale: .338 Xs = One Hit; Each X = 5.920 Hits)
Segment Number Of I
Number Executions I l------- 20-======- 40--===-=-- 60-=====-- 80-====-- 100
--------------------- +-_-----_-----_-—---—-—--————-—-——-—-——---——-——----—
I
1 2 IX
2 2 IX
3 * I
4 2 IX
5 * I
6 14 T XX
7 2IX
8 2 IX
9 * I
10 * I
11 2 IX
12 * I
13 2 IX
14 20 I XXX
15 * I
16 44 T XXXXXXX
17 * I
18 20 I XXX
19 * I
20 44 I XXXXXXX
21 * I
22 * I
23 8 I X
24 4 1 X
25 4 1 X
38 8 1IX
39 81X
40 16 I XX
I
..................... L T T T L L Tt T
(* = Zero Hits)
Average Hits Per Executed Segment: 18.3860
Cl Value for This Module: 65.7895 ¢

191
Software Research Associates

San Francisco, California

TCAT/C: A TooL For TesTING C SoFTwARE TN-1183

S-TCAT/C FEATURES

SYSTEM TEST VERSION oF TCAT/C -- S-TCAT/C

SIMILAR TO TCAT/C FOR SINGLE/MULTIPLE
MODULE

SLANTED TO NEEDS OF INTEGRATION/SYSTEM
TESTING

S1 METRIC
ALL CALLER-CALLEE PAIRS EXERCISED
STRONGER THAN "EVERY MODULE CALLED”
MEASUREMENT TECHNIQUE
SEMI-INVASIVE INSTRUMENTATION
RUN-TIME PACKAGE
TRACEFILES
“STANDARD"” COVER ANALYZER
SPECIAL INTERACTIVE UTILITIES

ADDITIONAL REPORTS
FULL CALL-PAIR ANALYSIS
COMPLETE CALLING TREE
SYSTEM STRUCTURE STATISTICS
IMPLEMENTATION BASE
UNIX ENVIRONMENTS
BERKELEY UNIx
ATRT Un1x
XENTX

PC-DOS

192
SoFTWARE RESEARCH ASSOCIATES SAN FrRaNcisco, CALIFORNIA

TCAT/C: A TooL For TesTING C SnFTwARE

STRUCTURAL TEST PLANNING -- ADVANCED TECHNIQUES

BASIC APPROACH
PROGRAM FLOWCHART == DIGRAPH
PROGRAM SECTOR GRAPH
HIERARCHICAL DECOMPOSITION
SUCCESSION
IF ELSE END
WHILE END WHILE
LOOP ENUMERATION
PATH REPRESENTATION

TECHNICAL LIMITS
NON-PURE-SP PROGRAMS
COMBINATORICS
PATH COMPLEXITY

OPPORTUNITIES FOR AUTOMATION
FINDING NEXT USEFUL TEST
SELECTING "RELIABLE” TEST VALUES
INTERACTION WITH DEBUGGER

CONVENTIONAL LEVEL
ADVANCED LEVEL

TN-1183

SoFTWARE RESEARCH ASSOCIATES 193 SAN FrRANCIsco, CALIFORNIA

SRA APPROACH TO SOFTWARE QUALITY MANAGEMENT

RECOGNITION OF REALITIES OF PROBLEM
KNOWLEDGE OF TECHNOLOGY
-AVAILABILITY OF INFORMATION
RESEARCH AND DEVELOPMENT CAPACITY

COGNIZANCE OF CLIENT NEEDS AND WANTS
BUDGET CONSTRAINTS
PERSONNEL 1SSUES
TRUST
CONFIDENTIALITY

PRODUCTIVITY GAIN THROUGH AUTOMATION
RECORDKEEP ING
TEST PLANNING
COVERAGE ANALYSIS
Re-TESTING (REGRESSION)
ELECTRONIC COMMUNICATION

QUALITY GAIN THROUGH AUTOMATION
INTERACTIVE INSPECTIONS
AUTOMATED STATIC ANALYSIS
AUTOMATED UNIT TESTING
COVERAGE ANALYSIS

QA-SR A- 0. 5

A UNIX BASED S8OFTWARE DEVELOPMENT PROBLEM TRACKING SYSTEM

Gordon Staley
Software Quality Engineer
Portable Computer Division

Hewlett Packard

ABSTRACT

As more software development is being done in Unix

environments, the need for a Unix based problem tracking
system has come about.

This paper addresses the approach taken to set up an on-line
software tracking and reporting system for use during the
development of products; and discusses the potential areas
for improvement and expansion in the future. The goal in
developing this system was to improve productivity of the
development and test engineers by providing an on-line
problem tracking system that gave them easy access to
problem information and status. PCD software engineers are
currently using the first implementation on a widespread
basis.

195

1. INTRODUCTION

During the testing phase of software development there is a
need to have a reporting and tracking system for software
problems encountered in the product. Often these inputs
come from individuals in organizations other than the
development organization, and in some cases from individuals
at remote locations with respect to the development
organization. Additionally, the development may Dbe
supported by individuals in different 1locations and in
different organizations.

As the testing phase continues there is a need to track the
progress of the action taken on reported problems. This
status information is often needed on an on-demand basis
(e.g. has problem X been fixed in the new release?).

As the project nears completion there is a need to evaluate
the current risk of the code. This requires the extraction
of information from data collected to date concerning
problems.

Prior to the implementation of the Unix problem tracking
system, most problem tracking was done manually. This
resulted in some problems not getting formally reported due
to extensive administrative overhead. This in turn caused a
possible understatement of the true 1level of problem
detection occurring in a project. Additionally, any status
of the current reliability of the product had to be manually
generated. These factors reduced the productivity of the
testers, developers and software quality engineers, as well
as making the assessment of the reliability of the code for
the product difficult at best.

2. GOALS

The need for a system that would automate the software

development reporting and tracking of problems was

identified. The system needed to meet the following goals:
® provide easy access for testers and developers

allow for easy problem information entry and retrieval

allow for better risk assessment data

able to be run on any multi-user system supporting Unix

less than four weeks total development effort

196

3. B8OLUTION

After an investigation, the solution that appeared to meet
all of the goals was to highly leverage the existing
software available on the Unix systems. By so doing, the
development effort could be minimized and the result would
be as supportable as possible given the tight schedule
constraints.

The solution implemented made use of three different
features of Unix, the notes system, shell scripts and the
lexical analysis preprocessor (lex).

3.1 Unix Notes

Part of the solution was to use the Unix "notes" system to
collect the raw data from the tester and developer. The
notes system allows a user to place information on an
electronic bulletin board. This electronic bulletin board
is sub-divided into separate topic areas commonly referred
to as notes groups. In our solution separate notes groups
were used for different parts of different projects (e.g.
o/s, BASIC). This made it easier for the different
developers to keep track of the problems that applied to
them and not have to wade through reports of problems that
had no bearing on what they were doing.

The Unix notes system provides for an administrator
(director) that can edit and delete notes and change the
access controls for the particular notes group. This
feature allows the director to 1limit the access of a
particular notes group to only the developers or any group
of users that might be desired. This can ensure that only
the developers are entering solution data into the system.

3.2 8hell Script

In order to provide some control on the data being entered,
a '"script" (system program) was written to provide a
consistent structure to the input. This script
automatically enters the current date and time and prompts
the user for the information needed to reproduce the
problem. This script also placed consistent flags in the
data to allow for programmatic extraction of key information
by a lexical analysis preprocessor.

3.3 Lex

Programs were then written in a lexical analysis
preprocessor language (lex) to extract pertinent summary and
management data from the submitted notes. The output of the
lex preprocessor is a compilable C program. Lex allows for
embedded C commands in the lex source, making it easier to
customize the extraction of the data, and reduces the effort
to generate a one-time report. This extracted data allows
anyone involved with the project to have current information
on the status of any particular release.

3.4 Basic Use of Ssystem

When a user detects and wishes to post a problem into the
system, they run the script called bugs. This script
prompts them for the information needed to reproduce and
troubleshoot a particular problem. The system is flexible
enough to allow the different projects being tracked to ask
for different information or to put various input
restrictions on the information. The Unix system provides
some of the desired information (current date, unique
tracking number), with the balance being supplied by the
user (see exhibit 1 at the end of this paper for a sample
problem input).

A public account was provided for those potential users of
the system that did not have a regular account on a computer
that supported the problem tracking system. This proved to
be particularly useful for the testers that were in other
organizations or different geographical locations.

The notes system allows for notes files to be "networked".
This way users on multiple Unix systems can track the status
of software under development.

The developer responsible for a reported problem submits a
response to the problem report (responses are built-in
feature of the notes system) outlining the corrective action
taken, if any (see exhibit 2 at the end of this paper for a
sample response input). The absence of a response to
problem report would flag the project manager that a
solution has not yet been found to a particular problem.

This information can then be viewed by developers and
testers to keep up on problems discovered and their current
status.

The software quality engineer uses this system to generate
summary reports for the project leader (see exhibits 3 & 4

198

at the end of this paper for sample reports). These reports
detail the problems into four areas:

1. problems that do not have a response posted yet
(exhibit 3)

2. problems that are under investigation

3. problems where no change action was taken (duplicate,
user misunderstanding)

4. problems where corrective action was taken (exhibit 4)

Exhibit 4 is based on actual data with the names changed and
descriptions deleted. The bug number is a unique number
assigned to a problem report. This is done to allow for
tracking of problems across notes systems, as notes usually
do not have the same note number on all systems. The SEV
column represents the severity of the problem discovered
(one # being trivial, four # being critical). CLS refers to
classification (totals shown at the bottom of the page).
The DATE is date the problem was reported. The version of
the software that the problem was found in is under VER.
The last two columns indicate the level of difficulty of the
repair, and the lines of code required to make the change.

4. RESULTS

The tracking system has been in place for 18 months. In
that time it has been used to track five different projects
at Hewlett Packard's Portable Computer Division. There has
been widespread acceptance of the system in the division.
We have seen interest in the system from other HP divisions
and other companies in the Northwest.

The system had enough acceptance that Manufacturing set up
the same system that contains the information on problems
discovered. In addition they chose to add problems reported
from the field to yield a current problem database for the
released product.

There have been a number of benefits identified since the
first implementation. The rapid implementation was very
beneficial in that we were working on a fast-track project
and did not have a 1lot of time to spend developing an
automated tracking system.

The system really encouraged good communications between the
developers, testers and Quality Department. The current

199

status of a particular problem was more visible than it had
ever been before. Anyone with access to the machine with
the tracking system on it could read about <the known
problems and the current status of the fix. This led to
less confusion about the current status of the code.

By allowing for multiple responses to a particular report
the testers were more likely to add amplifying information
to the original reports. This feature was also used by the
developers to acknowledge that a particular problem was
being addressed, although not yet fixed. An initial "under
investigation" response would be filed, and later a final
response would be filed.

With all of the data being in a machine readable form, we
were able to generate data for risk analysis much more
quickly than we had been able to in the past. Initially
there were many challenges here as a lot of the data was
entered in free form. As we needed more statistical data
from the system it became necessary to restrict some of the
input to allow for programmatic extraction of this data. 1In
later versions we would ask for input from a menu of
selections. One selection "other" would allow for free form
input in a case where none of the menu items were
appropriate.

The only major drawback to the system is that of
maintenance. The source has been modified by 6 different
authors. Any time a new version of one of the projects
needs to be tracked the source must change. To add a new
project the source must change. With support for so many
projects and having so many authors the modifications are
likely to cause a problem in the systen. There have been
some occasions where the user is mysteriously dropped out of
the system. A solution to this drawback is discussed in the
next section.

In spite of the problem listed above the system has been a
success. This early version has been a good prototype to
get usage information from, but now needs to be upgraded to
a fully documented and supported system.

200

5. IMPROVEMENT/EXPANSION

As with any system developed in a short period of time there
is much room for improvement. Many details have been
resolved by use of early versions of the tracking systemn.
The following is a list of the known areas that could use
improvement in this system:

® Convert the shell scripts to programs written in a more
supportable and faster executing high level language.

® Allow for easier update to the list of products (and
their modules) that are being tracked at any point in
time.

® Preprocess input data to prevent > 80 character lines.

® Provide a facility that directly posts a response to a
problem report (now manually done by the developer).

® Provide editing capabilities for public access users
that may not be familiar with a particular editor.

® Allow for on-line access to summary status information.

® Have as many inputs as possible converted to menu
prompting for inputs rather than requiring free form
input.

® Add a usage tracking system, something that allow

testers to easily enter their testing
hours/module/configuration.

201

BIOGRAPHY

Gordon Staley
Gordon Staley is a software quality engineer with Hewlett Packard in Corvallis,
Oregon. He has been with HP for six years, the last two in the Software

Quality department. His educational background includes a BS in computer
science from the University of Utah and an MBA from the University of Oregon.

202

BExhibit 1. Sample Completed Problem Report

<< PROBLEM ID >>

5068

<< REPORT DATE >>

Fri Jun 7 08:32:16 PST 1985

<< PROBLEM DESCRIPTION >>

The software test (for compatibility) includes a test for the
Non-maskable interrupt by doing the instruction: INT 2. On
the target machine, this function does an iret. On XXXXXXXX,
since there can never be a hardware Non-maskable interrupt, this
instruction sends the unit into never-never-land.

<< REPORT SUBMITTER >>

Annie

<< SYSTEM IDENTIFICATION >>

PP

<< SYSTEM CONFIGURATION >>

any

<< SOFTWARE VERSION >>

QA2

Exhibit 2. Sample Completed Problem Response

<< LAB ENGINEER ASSIGNED >>

Annie
<< PROBLEM CLASSIFICATION >>

1 - New problem (design)
<< PROBLEM SEVERITY >>

4 - Trivial
<< AFFECTED MODULE(S) >>

interr.asm
rombios.asm

<< PROBLEM WORKAROUND >:>

do not enable those interrupts without taking over their interrupt
vectors.

<< SOFTWARE VERSION FIXED >>
QA3
<< FIX DESCRIPTION >>

At boot, these interrupts will point to a routine that will clear
any interrupts that come in on these lines.

<< REPAIR DIFFICULTY >>
1 - Simple
<< TYPE OF ERROR >>
6 - Error condition not trapped
<< NUMBER OF LINES OF CODE CHANGED >>
10
<< FIX VERIFICATION >>

tested on the 64000 & traced on the interrupts being cleared.

204

BExhibit 3. Sample No Response Problem Summary

Fri Jun 7 05:07:39 PST 1985

BUGS WITHOUT RESPONSES

BUG# ENGINEER SEV CLS DATE SUBMITTER
13 850603 Howard
25 850607 Howard

5028 850623 Eric
42 850625 Joni
62 850706 Joni
94 850720 Ken

109 850722 John
5043 850725 Phil
124 850727 Joni
125 850728 Joni
128 850801 Joni
127 850801 John
141 850805 Jim
140 850805 Howard

5057 850806 Jim

5062 850806 Bill

5063 850806 Bill

5061 850806 Craig

5058 850806 Annie

5059 850806 Annie

5060 850806 Annie

142 850807 Jim
143 850807 Joni
144 850807 Joni
5065 : 850807 Annie
5066 850807 Annie

Total Number of unanswered bugs = 26

205

VER
LP3
LP3
LP4
LP4
LP3
QAl
QAl
QAl
QAl
QAl
QAl
QAl
QA2
QA2
QA2
QAl
QAl
QA2
QA2
QA2
QA2
QA2
QA2
QA2
QA2
QA2

NOTE#
15
32
95
66
86

122

138

144

161

166

170

169

185

184

186

191

192

190

187

188

189

194

197

198

195

196

Exhibit 4. Sample Fixed Problem Summary
Fri Jun 7 05:07:39 PST 1985

BUGS WITH ACTION TAKEN

BUG# ENGINEER SEV CLS DATE SUBMITTER VER NOTE# DIF LINES
5032 Phil # 0 850625 Phil LP4 65 1l 5
101 Allyn ## 0 850721 Ken QAl 130 1l 5
105 Jim ### 0 850721 Jim QA1 134 1 10
5051 Annie # 0 850728 Annie QAl 163 1l 5
134 Allyn ## 0 850804 Ken QA2 177 1l 3
5002 Leon ## 1 850602 Leon LP3 3 2 15
5019 Leon # 1 850610 Leon LP3 36 1l 1
61 Phil ## 1 850706 Joni LP3 85 1l 4
5038 Allyn ### 1 850713 Annie QA1 100 2 40
81 Phil #### 1 850717 John QAl 110 2 10
115 Phil ### 1 850726 Ken QAl 152 3 20
5048 Annie # 1 850726 Annie QAl 150 1 2
131 Leon ## 1 850804 John QA2 174 2 16
3 Allyn ## 2 841113 Ken LP3 1 1 1
5003 Phil ## 2 850602 Leon LP3 4 1l 2
17 Allyn # 2 850604 Jim LP3 18 1l 5
18 Allyn # 2 850604 Gwen LP3 41 1 1
21 Allyn #%# 2 850607 Dan LP3 42 1 5
36 Annie ####% 2 850618 Eric LP4 53 1l 6
5029 Leon ### 2 850623 Annie LP4 59 1l 1l
5031 Phil ## 2 850625 Phil LP4 64 1l 1l
48 Allyn ## 2 850630 Mike LP4 73 1l 1l
50 Allyn ### 2 850631 Mike LP4 76 1l 10
54 Allyn ##4# 2 850704 Karen LP4 79 1 10
69 Allyn ## 2 850707 Eric LP4 93 1l 1l
5035 Allyn # 2 850707 Leon LP4 89 1l 1l
72 Allyn ##4 2 850712 John LP4 98 1 6
73 Leon ##4# 2 850713 Andy LP4 103 2 10
76 Allyn ## 2 850713 Ken LP4 106 1l 1l
5040 Annie ##%# 2 850713 Annie QAl 102 1 2
83 Annie ## 2 850719 Jim QAl 112 2 1l
107 Allyn # 2 850722 Jim QAl 136 1l 1
111 Allyn # 2 850724 John QAl 140 1l 1
117 Allyn ###% 2 850726 John QAl 154 1l 1
5045 Annie ### 2 850726 Annie QAl 147 1 2
119 Jim ### 2 850727 Jim QAl 156 1l 3
138 Allyn ## 2 850804 Ken QA2 181 1l 1
92 Phil #### 3 850720 Sherry QAl 120 1l 5
133 Leon ###%# 3 850804 Jennefer QA2 176 3 20

Total number of new requirements discovered in the design = 5
Total number of new problems discovered in the design = 8
Total number of new problems found in the code = 24

Total number of side effects of previous changes = 2

206

A UNIX BASED

SOFTWARE DEVELOPMENT

PROBLEM TRACKING

SYSTEM

m PORTABLE COMPUTERS —j

207

-

THE NEED:

- SYSTEM FOR REPORTING PROBLEMS

- SYSTEM TO TRACK STATUS OF PROBLEMS

- ACCESS SUMMARY DATA

208

f

m PORTABLE COMPUTERS J

4 A

THE GOALS:

- EASY ACCESS FOR TESTERS AND DEVELOPERS

- EASY PROBLEM INFORMATION ENTRY AND
RETRIEVAL

- BETTER RISK ASSESSMENT DATA

= ABLE TO RUN ON LAB DEVELOPMENT/SUPPORT
SYSTEM

- LESS THAN FOUR WEEKS TOTAL DEVELOPMENT
EFFORT

\ m PORTABLE COMPUTERS _/

209

2 N

THE SOLUTION:

- UNIX NOTESFILES (DATABASE)

- SHELL SCRIPT (USER INTERFACE/DATA
STRUCTURE)

- LEX (DATA EXTRACTION)

\ PORTABLE COMPUTERS J

210

\ PORTABLE COMPUTERS J
211

Ve

THE RESULTS:
- ACCEPTED BY LAB

- IMPROVED COMMUNICATIONS
- DEVELOPERS

- TESTERS
= QUALITY DEPARTMENT

- IMPROVED PROBLEM STATUS ACCESS
- IMPROVED DATA FOR RISK ANALYSIS

- A GOOD ONE TO THROW AWAY

@ PORTABLE COMPUTERS J

212

4 N

ROOM FOR IMPROVEMENT:

= CONVERT TO HIGH LEVEL LANGUAGE

- ALLOW FOR EASIER UPDATE OF PRODUCTS
BEING TRACKED

- PROVIDE EDITING CAPABILITIES FOR PUBLIC
USERS

- ADD MORE STRUCTURE TO RESPONSES TO
ALLOW FOR EXTENDED DATA ANALYSIS

= ON-LINE ACCESS TO PROJECT SUMMARY
INFORMATION

\ m PORTABLE COMPUTERS J

213

Session 5

DEVELOPMENT TOOLS

Titles and Speakers:

“Software Design Using BCS Argus”
Bill Hodges, Boeing Computer Services

“The System Engineering Environment PROMOD”
Peter Hruschka, Promod, Inc.

“Locating Suspect Software and Documentation by Monitoring Basic Information
About Changes to the Source Files”
David Vomocil, Hewlett Packard Co.

Copyright © 1985 The Boeing Company. All rights reserved.

SOFTWARE DESIGN USING BCS-ARGUS

William M. Hodges

Boeing Computer Services Company
P.O.Box 24346
Seattle, Washington 98124

The paper, “Software Design Using BCS-ARGUS”, describes the use of a Boeing
developed set of tools that aid in the specification and design stages of
software projects. The process of using an architected set of mechanized tools
is described with a number of major advantages highlighted. A brief
discussion of the underlying architecture reveals the ease with which new tools
can be added to mechanize more of the software development process.

Background

BCS-ARGUS is the code name for a tool under development at Boeing
Computer Services. It is implemented as a desktop environment intended to
mechanize and integrate many of the activities performed during the software
life cycle by analysts, designers, programmers, and managers. This activity is
considered proprietary at this time. However, it is expected that it will be
packaged as a commercial offering in the future.

The heritage of BCS-ARGUS lies in Boeing research into software metho-
dologies that started as early as 1974. These research activities produced two
distinctly different prototypes intended to support the specification phases of
the software life cycle.

One prototype is called SWIFT. SWIFT is functionally similar to PSL/PSA in that
it uses specification language to capture system specifications. Like PSL/PSA,
SWIFT can be regarded as a data dictionary system with added features. Key
elements of its architecture include the following:

® A universal SWIFT language whose sublanguages include syntactic meta-
language, a specification language, a PDL or pseudocode, and a relational
query language.

° A user interface from which software tools can be invoked via commands
or menus.

° A set of modular software tools accessing a central data store through a
retained relational query language called SQL.

° A carefully structured relational data base supported by a full-function
DBMS.

217

® A report capability for tabular and indented tree reports.

The second prototype is called ARGUS. It partially automates software
development activities spanning the entire application life cycle. Through a
sophisticated set of menus, users can:

® Enter software specifications in graphical (data flow diagram) or textual
form from an on line terminal into a set of UNIX files. Some of these
files comprise a relational data base.

® Create and update specially formatted UNIX files, including phone lists
and schedules.

° Invoke basic UNIX functions for file control and document preparation.
® Connect to various host computers as an intelligent terminal.

® Produce high-quality plotter output of data flow diagrams.

° Perform analyses specifications captured in the data base.

ARGUS has been ported from the ONYX-based UNIX System 3 to DEC VAX
systems running Berkeley 4.2 and System 5 UNIX systems. It is currently used
by several Boeing projects.

BCS-ARGUS Overview

The experience gained since 1974 has allowed Boeing to develop BCS-ARGUS
which exploits current hardware and software capabilities to produce a
software development capability on the IBM PC/XT and PC/AT. BCS-ARGUS
provides consistency of environment, user interface, and methodology
regardless of the type of host system, implementation language or type of
application, (i.e., real time or IMS COBOL). (The real time constructs for the
methodology and the VAX VMS host capability is planned to be available in
1986).

The theory underlying BCS-ARGUS is that software is developed in stages, with
each stage describing the software in more detail than the previous stage.
Each stage culminates in a document expressing the design. The document is
then reviewed to evaluate the completeness and adequacy of the design. The
theory further assumes that the design documents will be updated to reflect
the current software implementation throughout the life of the software.

The architecture of BCS-ARGUS allows systems to be specified, designed, and
created on it and be implemented on some other host. The design of BCS-
ARGUS allows a large project to centralize its specifications and integrated
data dictionary on a large-scale host. Specifications may be checked out to
the PC or checked in to the host as required. The host may also provide
language processors and a test environment for the developed systems.
Functions supported on the host include:

218

® Work package management

° Relational data base management
] Report generation

o Document generation

BCS-ARGUS hardware features a three-button mouse, an IRMA board, and a
multi-function card incorporated on an IBM PC/XT or PC/AT. Color or mono-
chrome monitors are supported. BCS-ARGUS tools include a data flow
diagram editor, a commercial word processor to produce documentation, an
SPF look alike editor to capture code, and a relational data base to tie every-
thing together. An SNA communication capability provides the tools necessary
to receive work packages from the host and return completed ones.

This unique architecture allows projects that are too large to run on the PC to
be completed in parts and assembled on the host. Traceability and audit-
ability of requirements are supported throughout the two-level data base
imp}emdentation, thus allowing the completeness of an allocated baseline to be
verirtieqa.

The current version of BCS-ARGUS is intended to be used either in a stand-
alone configuration or connected to an IBM mainframe via an IBM 3274 tele-
communications controller.

Work Package Initiation

The remaining discussion will assume that a systems analyst who currently uses
an IBM 3278/9 terminal, supplemented with data flow diagrams for software
design, decides to change to a PC/XT equipped with BCS-ARGUS. He would
plug his existing coax cable into his PC/XT, then log in to a password-
protected ARGUS account when the UNIX log-in prompt appears.

After logging in, our hypothetical syst\ems analyst finds himself in the BCS-
ARGUS top-level menu. At this level he can do a number of things, in any
sequence, capture a specification or design for a work package:

o He may connect to the host to download data dictionary entries or
requirements paragraphs from a higher level document.

° He may enter the documentation system to prepare portions of his
document.

° He may enter the specification system via data flow diagrams or mini-
specification data.

Communications

If the systems analyst chooses to communicate with the host, he can either
request a complete package to be transferred from the host or log on to TSO

219

on the host and query the data base, depending upon the data that he
wants. He can use these capabilities in whatever sequence he chooses.

Documentation

If the analyst chooses to enter the documentation system, he can use the
WYSIWYG (what you see is what you get) word processor to prepare a section
of his document. He can specify that pages containing data flow diagrams be
included at certain points in the text. Likewise, if he were documenting after
the construction of the data flow diagrams and mini-specifications, he could
specify that analysis reports be included at certain positions.

Specification Entry

When the analyst constructs a data flow diagram, he can use the mouse to
interactively position symbols depicting processes, interfaces, and data stores
on the 132-by 60-character virtual screen. Once the entries are positioned and
annotated with their descriptions, he can add the data flows and their labels.

At any time during this process, the analyst can selectively enter a mini-
specification for any one of the entities that have been placed on the screen.
Mini-specifications specify attributes, as follows:

o For a process

Siblings

Long description

Procedural descriptions of algorithms and/or transition logic
Etc.

° For an interface

o Description

o Data items

° Edit requirements
° Etc.

° For a data store
o Component of
o Contains
L Description

° For a data flow

o Component of
o Contains

L Description

° Etc.

220

Analysis

If mini-specification data are entered at each level, the balancing activity will
be accomplished as each successive level is defined during the decomposition
process.

Once the specification is complete, the following reports can be produced for
the design using the local data base:

° List

° Structure

° Analysis

] Dictionary

° Attributes

° Data Flow Diagram

° Requirements traceability

These reports will help assess the completeness and consistency of the current
design.

Work Package Completion

If a particular software development task is a one-person task, the facilities on
the IBM PC/XT workstation are adequate to do the complete job. If the task
is @ part of a larger task, it may be necessary to check in the portion of that
design from the PC/XT to the BCS-ARGUS system on the host computer.

On check in, the host software will load the relational data into the relational
data base on the host and prepare them for subsequent processes. The same
set of analysis reports available on the IBM PC/XT workstation can be
accomplished across the integrated database.

Benefits

In addition to intangible benefits resulting from the availability of data on
the desktop and the responsiveness of the local capability on the PC/XT, BCS-
ARGUS increases productivity throughout the software lite cycle. It improves
the response time of the system, captures data the first time they are keyed,
provides aids for completeness and consistency checking, and allows errors to
be detected early in the life cycle. The impact of these benefits is determined
by the number of people on a project, the life of the system, and the way an
organization did the job before BCS-ARGUS

During the early stages of the life cycle, BCS-ARGUS will dramatically reduce
the time required to capture a design and refine it. (Studies have shown that

221

each data flow diagram in a system specification undergoes a range of 9 to
22 modifications). In addition, the system will ease the «creation and
production of documentation. Last but certainly not least, it will provide
analysis techniques to ensure the accuracy of a design.

BCS-ARGUS editors will aid in the production of code in the latter portions of
the software development life cycle. An on-line data dictionary will also aid
in code production. Furthermore, the documentation and analysis tools
described earlier will be available to support the later stages.

The maintenance stage of the life cycle will be aided by the existence of con-
sistent, error-free documentation. Documentation and code are tied together
via the relational data base, which will make it easier to identify areas related
to each other by function or data. With this identification, it will be a
straightforward task to isolate bugs, provide a complete and consistent fix,
and identify the impact of proposed changes.

Later versions of BCS-ARGUS will provide an integrated project management
system as well as a comprehensive configuration management systems. These
systems will span all stages of the project life cycle.

Shown below is a typical breakdown for the life cycle cost of a large formal
project that has a long life. This table also shows the estimated improve-
ments that BCS-ARGUS is expected to provide.

% Life Cycle Improvement %
Requirements 1" 50
Design 11 50
Construction 10 20
Testing 18 20
Maintenance 50 40

These estimates are probably conservative, since there are currently no data
available to determine the synergism that will result from having a single set
of integrated tools operating on a common data base throughout a system’s
life. Furthermore, they do not include the reduced training costs resulting
from the use of a consistent workstation on all projects.

Clearly, BCS-ARGUS would provide significant productivity gains and a
shortened development cycle to its users.

222

BIOGRAPHY

William H. Hodges

William H. Hodges holds a bachelor’s degree in mechanical engineering from
Oklahoma State University and his MS in administration from Wichita State
University. He has been employed by the Boeing Computer Services Company since
1965, serving in various capacities of mechanical engineering, operations
research, and software engineering roles. In the last two years that he has
been in the Software Engineering Support Center, he has directed the ARGUS II
Product Development activity. In addition, he has established directions for
the Company relative to UNIX and IBM PCs.

223

BOEING COMPUTER SERVICES ARGUS
FROM A
SOFTWARE
QUALITY
PERSPECTIVE

THIRD ANNUAL PACIFIC NORTHWEST
SOFTWARE QUALITY CONFERENCE
27 SEPTEMBER 1985
W. HODGES
BOEING

BCS ARGUS

® OVERVIEW OF BOEING COMPUTER SERVICES
SOFTWARE QUALITY PROGRAM

® OVERVIEW OF BOEING COMPUTER SERVICES
ARGUS

Gze

e IMPACT OF BOEING COMPUTER SERVICES ARGUS
SOFTWARE QUALITY

e SUMMARY

BCS ARGUS
OVERVIEW OF BCS SOFTWARE QUALITY OBJECTIVES

9¢¢

® OBTAIN QUALITY OBJECTIVES FROM USER
REQUIREMENTS

® CONTINUAL ASSESSMENT OF PROGRESS

BCS ARGUS
OVERVIEW OF BCS SOFTWARE QUALITY OBJECTIVES

LZ¢

IMPLEMENTATION CONCEPTS

® SQA PLAN

® DISCIPLINE EMBEDDED IN PROCESS

e |DENTIFY AND MONITOR SQA ACTIVITIES

® DELINEATE TASKS IN COST - EFFECTIVE MANNER

e [NDEPENDENT EVALUATIONS

OVERVIEW OF BCS SOFTWARE QUALITY OBJECTIVES

8¢¢

ACQUISITION
CONCERN

PERFORMANCE --
HOW WELL DOES
IT FUNCTION?

DESIGN --
HOW VALID IS
THE DESIGN?

ADAPTATION --
HOW ADAPTABLE
IS IT?

USER ISSUE
HOW WELL DOES IT UTILIZE A RESOURCE?
HOW SECURE IS IT?

HOW WELL WILL IT PERFORM UNDER ADVERSE
CONDITIONS?

HOW EASY IS IT TO USE?

WHAT CONFIDENCE CAN BE PLACED IN
WHAT IT DOES?

HOW WELL DOES IT CONFORM TO THE
REQUIREMENTS?

HOW EASY IS IT TO REPAIR?
HOW EASY IS IT TO VERIFY ITS PERFORMANCE?

HOW EASY IS IT TO EXPAND OR UPGRADE ITS
CAPABILITY OR PERFORMANCE?

HOW EASY IS IT TO CHANGE?

HOW EASY IS IT TO INTERFACE WITH
ANOTHER SYSTEM?

HOW EASY IS IT TO TRANSPORT?

HOW EASY IS IT TO CONVERT FOR USE IN
ANOTHER APPLICATION?

APPLICABLE

QUALITY FACTOR

EFFICIENCY
INTEGRITY
SURVIVABILITY

USABILITY
RELIABILITY

CORRECTNESS

MAINTAINABILITY
VERIFIABILITY
EXPANDABILITY

FLEXIBILITY
INTEROPERABILITY

PORTABILITY
REUSABILITY

BCS ARGUS
__——QVERVIEW OF BCS ARGU

CORPORATE
SYSTEMS

PLANNING
CONTROLLING
CHANGE BOARD

6Z¢

TIME CARD

® WORK PACKAGE STATUS

WORK PLAN PLAN

ORK PACKAGE DELIVERABLE
HOURS WORKED

-

ALTERNATIVE ANALYSIS
SYSTEM SPECIFICATION

N
WORK
DEFINITION ARGUS
| CENTRAL
DATABASE

MANAGEMENT

DOCUMENTS
REPORTS

VERSION CONTROL
CONFIGURATION

TEST PLAN
TEST CONDUCT

PRELIMINARY DESIGN
DETAIL DESIGN

PROGRAMMER

INTEGRATION TEST

CODING
UNIT TEST

BCS ARGUS

OVERVIEW OF BCS ARGUS

IBM PC/XT XENIX

IBM MVS HOST

DATA FLOW
DIAGRAM EDITOR

FORMS

EDITOR
ARGUS |=

PROCESSOR

MENU BASED
MOUSE
GRAPHICS
QL DBMS DOCUMENT
FORMS INPUT PROCESSOR
WORD
PROCESSOR
SPREADSHEET

COMMUNICATION
MANAGER

TEXT
EDITOR

C-INTERFACE
COMMON

Z.| DB

INTERFACE

SNA

MISTRESS

PROJECT
DATABASE

SNA EMULATION

INTERACTIVE TSO TOOLS

N

DB INTERFACE

CENTRAL

MINISPEC

BCS ARGUS
OVERVIEW OF BCS SOFTWARE QUALITY OBIJECTIVES MINISPEC
DATASTORE
PROCESS 3 INTERFACE 2
PROCESS 2 MINISPEC
-1 I-1 MINISPEC INTERFACE 1
LEVEL 0 ¢ A LE R rl (:LOW E
) B r- D (— FLOW D
I N A e S EN N [Flowc
ol VA {‘\c SRR SN FLOW B
0 s e NSRRI RN MINISPEC
A | \} ROREY U T FLOW A
LEVEL A N
. ‘ R : \ > > BTN T~ S
o ¢ \ A B
- B adRE 13 PN] 2 P22 PPes |) >
l \\‘ l';‘ :; \‘l “ \“ * C \\\ \§ \\\\\\“1.. \\\\
\“"’ r: “\ \ S“FOHE \\\ \\\\\\\ A . \\\\\
!; ! ..\\ ']‘\ ‘\ - \ \‘: AN \\‘) AN SO
MINISPEC LEV’EL;‘? \ ‘\\ \ ‘\\ \\\ \\ . \\ A . s
MINISPEC 2-3 FLOW C VAL
| MINISPEC 2-2 MINISPEC ;o AR
MINISPEC 2-1 FLOW B ;o SR
MINISPEC — — SR N ; .
FLOW A \
MINISPEC
DATASTORE \

BCS ARGUS
OVERVIEW OF BCS ARGUS

INTER-

ORGANIZATION

PROCESSING -

INTRA-

ORGANIZATION

PROCESSING

PERSONAL

PROCESSING

“COORDINATION BETWEEN WORK GROUPS”

FRONT - END
PROCESSOR

BRIDGE

“COORDINATION

WITHIN WORK GROUP”

e LOCAL AREA NETWORK

CLUSTER _
CONTROLLER 4 AR \

4 AN \

-
Ao,

o

“SUPPORT FOR END - USER FUNCTIONS"”

BCS ARGUS

IMPACT OF BCS ARGUS ON SOFTWARE QUALITY

€€

QUALITY FACTOR

R C M Vv E
E (0) A E X
L R | R P
| R N | A
A E T F N
B C A | D
BCS ARGUS ATTRIBUTE BB R
L N N B B
| E A | |
T S B L L
Y S | | |
L T T
| Y Y
!
Y
CONSISTENT METHODOLOGY X X
DATA DICTIONARY X X X X
CONSISTENTLY/COMPLETENESS CHECKING X X X
EMBEDDED DOCUMENTATION X X X
REQUIREMENT TRACIBILITY X X

BCS ARGUS
SUMMARY

vee

BOEING COMPUTER SERVICES ARGUS CURRENTLY
SUPPORTS SOFTWARE QUALITY

BOEING COMPUTER SERVICES ARGUS WILL ADDRESS
MORE FACTORS

BOEING COMPUTER SERVICES ARGUS WILL
INCORPORATE SQA METRICS

The System Engineering Environment PROMOD

Peter Hruschka

Promod, Inc.

Abstract:

During the 1last years GEI developed a system engineering
environment called PROMOD, (short for: project model). PROMOD
comprises a set of wellknown techniques and methods (Structured
Analysis, Modular Design, Pseudocode,) to guide developers
from problem analysis to acceptance test, and it comprises
effective 1interactive tools to give immediate feedback at every
stage of the development of systems. Errors are detected and
reported as early as possible; various reports can be generated
according to the specific needs in every phase of the project.
Although oriented towards modern programming languages PROMOD is
language independent.

About 100 different 1licenses in the U.S5., 1in Germany, the
Netherlands and Great Britain are proving daily that PROMOD can
improve the quality of a delivered system, can save delelopment
time and money and increase productivity.

The environment PROMOD is constantly enhanced to cover more and
more areas and thus successfully helping to improve the quality
of system development.

1. Introduction

PROMOD is a system engineering environment developed to serve as
the natural equipment of any system developer. It is applicable
for any kind of system - hardware, software or organisational
sytems, or any combination thereof.

PROMOD follows a life cycle oriented approach, offering tools for
different phases during the creation of a new system or the
improvement of an existing system. The major phases supported
are:

- the analysis and definition of the requirements for a system
(the analysis phase)

~ the definition of the architecture of the system
(the system design phase)

— the definiton of the detailed programs of a system
(the program design phase)

235

For each phase PROMOD supports selected structured methodologies,
all of which have been proven successfully in many large,
industrial projects. DeMarco's STRUCTURED ANALYSIS [/1/ is
supported for the analysis phase, MODULAR DESIGN /2/,/3/ helps in
finding the solution for a given problem and PSEUDOCODE /4/.,/5/
is used for specifying the system in detail.

Studies have shown that using structured methodologies, i.e.
obeying a set of rules during the analysis, design and
implementation phase of a project, can double the productivity.
The major reason is that the rigor of these methodologies allows
errors to be found earlier and corrected immediately, before they
become significant cost factors in the project.

The costs for finding and correcting an error that occured in the
analysis phase might be one Dollar if it is corrected
immediately, it might be $10, if you only find it in the
architectural design phase; it is already $100 if you encounter
it in detailed design, $1000 during coding and may even be $10000
if only recognized in the systems test and integration phase.

Other studies have verified that productivity can again be
doubled by using tools supporting modern methodologies. One major
drawback of methodologies usually is, that the analyst and the
designer still manually create and update their documents, which
is time comsuming and boring; another major drawback is that the
principles of structured methodologies work fine as long as the
sheer amount of information (in number of pages or number of
documents) does not overwhelm the project team.

Both drawbacks can be overcome by effective tools, wutilizing
computer power where manpower is not as efficient. PROMOD takes
over all the clerical work in a project associated with updating
documentation and keeping track of changes. Management and
technical staff may auvtomatically produce a wide variety of up-
to-date reports at any time and in any project phase they need
them.

So, PROMOD helps in two ways to improve productivity in projects
and ensure high quality of systems: it helps analysts and
designers to "stick to the methodology”, thus preventing errors
to be propagated and it helps management cutting the costs for
implementation, test, integration and maintenance by providing
solid documentation, updated reports and cross references.

In the following the methodogies supported are sketched and the
tools of PROMOD are discussed in detail.

236

2. Analysing Requirements

Many engineering disciplines emphasize the importance of
establishing models before really developing products, e.g.
models of new cars, hnew bridges, new towns, etc.. Structured
Analysis applies this principle to the development of systems.
These system models consist of 3 major components:

Data-flow diagrams give a graphical representation of the major
functions of the system and their interconnections (i.e. the
information or data flowing between the functions). The diagrams
are organized in a hierarchy to display the system on different
levels of abstraction and to limit the amount of information that
has to be perceived at one time to a reasonable size for humans.

The data dictionary gives more detailed explanations about all
the data wused in the diagrams; about their structure, their
components, their size, their usage and any other information
that is relevant for the system.

Mini-specs give detailed descriptions of the functions drawn in
the diagram. Since the diagrams decompose a large system into a
set of well defined smaller systems, mini-specs (usually half a
page to a page of text) can now be written instead of the
traditional victorian novel style specifications for complete
systems.

The following figure shows the components of a system model and
the relation between them.

. Dara FLow
Drackam

MINI-sPec N3

T
DATA DICTIONARY o

i

Fig. 1l: A Structured Analysis System Model

237

PROMOD help in various ways preparing a system model according to
Structured Analysis.

To draw the data-flow diagrams a graphic editor is at the users
disposal. The analyst may flexibly draw nodes (functions), data-
stores, terminators and data-flows, change such digrams by moving
around components or changing their names, deleting objects,
zooming into different levels (i.e in other diagrams) etc. During
editing and before storing such diagrams in a central project
library PROMOD checks the rules defined in Structured Analysis.
E.g. 1t is verified that each node at least has one incoming and
one outgoing data-flow, that no data-flow is drawn between two
data-stores without going through a node, that every data flow
has a proper name, etc. Thus PROMOD helps to follow the rules of
the methodology.

For writing entries into the data dictionary and for writing
mini-specs PROMOD offers syntax directed text editors. Also with
these editors immediate local checks on the edited objects are
per formed.

The most powerful tool to assist in developing a system model is
the SA-Analyzer. This analyzer checks for the global consistency
and completeness of all analysis data collected in the project
library (or of selected subparts of it). It makes sure that the
hierarchy of diagrams is balanced, i.e. that inputs and outputs
on one level are consistently refined at the next 1level and
nothing has been added or missed. It also checks that all data
used in diagrams or mini-specs are well defined 1in the data
dictionary. And you receive warnings if your mini-spec
descriptions do not conform to the information in the diagrams
(e.g. you tried to access a data element, which is not input or

output of the corresponding node in the diagram). Many more
checks are performed to ensure that the model is consistent and
complete. If the hierarchy of diagrams has only 3 to 4 1levels

this task would already be very time comsuming for humans and
because of the constant changes occuring during the collection of
requirements it is nearly impossible to do it without computer
aid.

The analyzer can print a variety of documents, thereby generating
automatically a table of contents, the system hierarchy including
the numbering scheme, cross reference listings for all data,
complete tree 1lists of all data refinement ever done 1in the
analysis phase, error lists, etc.

The amount of documentation can be chosen, so that you can get
more redundant documents for reviews (e.g. all the local data
printed immediately after each diagram) or minimal documents for
final versions (just one alphabetically ordered data dictionary
at the end of the document).

238

3. sketching the architecture of a system

After defining a given problem using the modeling techniques of
Structured Analysis the solution under given constraints has to
be found. Such constraints most often are resource 1limitations,
e.g. predefined hardware, 1limited budgets, existing staff, ...
PROMOD helps in suggesting the architecture for the solution by
automatically transforming the systems model into a hierarchy of
modules and functions. This hierarchy is built obeying criteria
as suggested by Parnas and Liskov /2/,/6/. Usually - after a well
done analysis phase this suggestion only has to be augmented by
additional functions as needed during the design process.

The major building blocks a system designer is dealing with 1in
this phase are modules, functions and subsystems.

Modules are program units responsible to solve a given part of

the problem. They contain a collection of functions and local
module data, which deliver specified results to their "boss"
whenever they are asked to do it. Delivering results to a module
module. Whenever necessary modules also factor out work to other
(subordinate) modules; i.e. they ask a module further down in the
hierarchy to do certain functions. This is called importing

functions from other modules.

Export and import definitions make up the module's interface
specification. These interface specifications are sufficiently
detailed to allow cooperation of analysts, designers and users in
this phase. The inside knowledge about modules is not necessary
to make decisions about the structure of the system in the large.
Many important questions about the suggested solution of a system
can be discussed looking at the interface specifications only.

So, in other words, a module can be considered as a fence around
a group of related functions and data. It is the systems
designers job to describe that fence; the program designer later
on will step into the modules and describe the functions in more
detail.

Occasionally designs become so large that the module hierarchy

can no longer be easily understood. PROMOD offers an additional
structuring facility called subsystems to do this. You can
combine any number of modules into a subsystem, thereby

introducing higher levels of abstraction. Besides introducing
higher 1level abstractions these subsystems can also be used for
additional purposes, e.g. to combine the modules of a certain
release, or to combine all module specifications written by one
person, and many more. '

The tools supporting this phase are similar to the tools for

requirements engineering. Interactive, syntax directed editors
are available to edit modules with their interface definitions

239

and subsystems. Again 1immediate checks are performed on the
correctness of these descriptions. PROMOD warns you if you try to
define functions 1in multiple ways, if your module data 1lists
contain errors, etc.. The data dictionary of the requirements
phase has been transformed into a data type dictionary for the
design phase. These data types - simular to modern programming
languages - allow for additional ways of expressing design
constraints thus enabling PROMOD to perform additional checks on
the validity of parameters of functions, the scope of data, the
access to data elements and many more.

The more powerful checks are done by the Modular Design analyzer.
It checks for interface consistency over larger parts of the
system design or the overall system design. It finds
contradictions between exports and imports, e.g. 1f somebody
tries to call functions which are not defined and exported by
another module; it also finds discrepancies in parameter lists of
functions.

hc.€r074L7 Of:
modu&S

moJu’e I-n fOCC
.s,oea.'f-'c ahbon

Fig. 2: The Architectural Design Model

These high 1level interface checks are very important, since
systems design is usually done by different persons or different
teams, all working at the same time on the same system. The
system design analyzer is the tool to ensure, that everybody has
the correct interface specifications, that others are informed
whenever changes occur, and that the overall architecture is a
clearly defined hierarchy. The analyzer offers a wide variety of
reports at different levels of detail, generates a table of
contents, the module's hierarchy, many different cross reference
lists, tree 1lists (call hierarchies) for functions, refinement
structures of data and data types, and others. Everywhere in the

240

documents you find generated hints on where to find more detailed
information, where to read on, 1if you are interested in special
parts. These generated references make it very easy to review and
discuss the documents.

4. Designing the details

After defining the overall design structure of a system, the
details have to be specified. PROMOD uses the well known
principle of top down decomposition of function and data /4/, /S5/
to describe algorithms and data structures. This is not only done
for all the functions already specified 1in the module's
interfaces but also for newly introduced internal functions of
modules, which are factored out of export functions to keep the
function body short and understandable.

Algorithms are described using a simple pseudocode notation. This
pseudocode expresses sequences of statements, loops and decision
statements, function calls and extensive natural language text.

FUNCTION bathe
(IN pet; OUT clean_pet);

B PURPOSE

. Determine if pet is dog or cat and send
to appropriate function for bathing.
ENDPURPOSE

. 1 IF spet = cat THEN
2 bathe_cat (pet, clean_pet) ---> 2
ELSE
3 bathe_dog (pet, clesan_pet) ---> 13
ENDIF

. == " ""| FUNCTION bathe_cat
......) (IN cat; OUT clean_cat);

PURPOSE
Bathe the cat and output a clean cat.
ENDPURPOSE

. 1 DO catbath (cat);
el 2 UNTIL clean
T. ENDDO;
) 3 dry (cat);

Fig. 3: The detailed design model

PROMOD again helps 1in this phase by offering an interactive
pseudocode editor. While you describe a function the keywords of
the pseudocode are recognized and the logical structure of the
function is visualized by intending nested statements, aligning

241

keywords, and formatting the informal texts. Of course, if there
are errors in your pseudocode structure PROMOD immediately
reports these errors and allows you to correct the statements.

The analyzer for the program design phase - as its two
predecessors - performs more global checks. It makes sure, that
function calls within function bodies refer to defined functions,
that the parameter lists conform in number and type, that all the
data wused in a function are accessible there and well defined,
and many more. When printing documents of the detailed design,
the pretty printed pseudocode is not only indented according to
the logical structure; statement numbers are added, references to
the pages of the document where you find the refinement of a
function are generated and a variety of cross reference lists is
available, e.g. for functions, data, data types, parameters. The
hierarchical structure of the function calls can be generated, as
well as hierarchies for the data and data types. Any deviation of
the module hierarchy or any contradiction to the interface
specification 1is reported to supply the designer with the
information necessary for the next walkthrough or review meeting.

Over years pseudocode has proven to be a superb medium for
naturally and easily expressing detailed designs for easy
communication between designers and programmers. Pseudocode can
help explain these details to non-EDP persons thus keeping the
information exchange going that started in the analysis phase and
insuring that the detailed program specifications still conform
to the orignal requirements.

S. Implementing and testing a system

The detailed program specification in pseudocode is the basis for
implementing a system in any chosen 1language. Since the
pseudocode is a very detailed description on the one side it is
very easy, hearly mechanical work to translate it into a
programming language; on the other side the pseudocode is still
general enough to allow translation in many different programming
languages, from assembler to very modern languages like Ada. The
checks that have already been performed in the detailed design
phase nearly eliminate all errors in the coding phase with the
exeption of trivial syntax errors that are easily caught by the
compilers. In this phase the work previously done really pays off
in time saved for testing.

Testing 1is additionally supported by the clearly defined func-
tions of the system, small units allowing efficient separate
tests to establish their correctness. The documentation supported
for the test is mainly based on the user's input of the require-
ments, and on automatic transformations. Especially the data
dictionary of the system model allows for a systematic generation
of test data which are related to the original requirements from
the user, and not to the defined solution of a programmer.

242

The systems integration phase can be a routine job, since PROMOD
guarantees already since the architectural design phase, that the
interface definitions between the larger units of the system (the
modules) are correct and checked.

Especially for the maintenance of a system or the post-acceptance
test evolution, which naturally comes about in every large system
because of ever changing requirements, the documentation of
PROMOD is very helpful. Since there are up-to-date models
available of the requirements and the design it 1is easy for
maintenance programmers to locate the parts of the system where
changes or amendments are necessary. It is also easy to integrate
these changes because of the information hiding principle used in
the design phase. This principle allow to change single modules
or functions in modules without effecting other parts of the
system.

6. Integration - the key to success

The power of proMod lies in its integration. All the single tools
like the DFD-editor or the pseudocode processor are powerful on
its own. However, by utilizing information generated 1in one
phase as input and basis for the next phase an optimum on
integration 1is achieved. The project library - PROMOD's central
database -~ is not only the repository of all information
collected 1in a project, the individual objects in it also know
about each other, are related in many different aspects, and
therefore changes or amendments to one objects very often result
in automatic changes and updates for other objects. Thus, a major
portion of «clerical work, which is usually 1loaded onto the
developer, is easily done by PROMOD.

The requirement collected and modeled with Structured Analysis
are used as basis for the suggested system architecture.
Especially the hierarchy of diagrams is evaluated to suggest the’
hierarchy of modules, the files in the data dictionary are used
to create abstract data types and the appropriate access
functions a la Parnas /2/ or Liskov /6/; the nodes (or bubbles)
of the diagrams are used to create functions of modules and the
informal mini-spec texts are already in the right place as
purpose descriptions for functions so that the designer easily
can translate these texts into more formal pseudocode. Any change
made to a data element in the data dictionary is automatically
reflected everywhere the data element is used, e.g. in data-flow
diagrams as an arc connecting nodes, or in other elements of the
data dictionary or in the informal mini specs describing the
tasks of the system. Changing parameters in a function results in
an automatic update of the interface description of a module,
changing a function's name automatically changes all the calls of
that function.

243

These elegant and powerful features assist the system developer
in that kind of work, that usually is not only laborious but also
the source of many errors and troubles. The tools of PROMOD help
the developer to concentrate on his or her most important job: to
be creative.

7. Summary

PROMOD has been developed by a group of practical people to serve
their own needs in system development support as well as the
needs of their company. The internal goal was to provide adequate
means ensuring the high standard and quality of systems and
software developed by GEI . Because of its internal success it
has been productized and is now available to help all systems
analysts and designers. In many small, medium and very large
projects PROMOD guided systems developers through the life cycle,
showing them errors, suggesting solutions and preparing documents
for reviews and presentations.

Literature:

/l/ T. DeMarco
Structured Analysis and System Specification
Yourdon Press, 1979

/2/ D.L. Parnas
On The Criteria To Be Used In Decomposing Systems Into
Modules
CACM, Vol.5., No.12, Dec. 1972

/3/ G. J. Myers
Reliable Software Through Composite Design
van Nostrand Reinhold, 1975

/4/ N. Wirth
Algorithms + Data Structures = Programs
Prentice Hall, 1976

/5/ S. H. Caine, E. W. Gordon
PDL: A Tool For Software Design
in: AFIPS, Proc. NCC, Vol. 44, 1975

/6/ B. Liskov, S. Zilles

Programming with Abstract Data Types
ACM Sigplan Notices, Vol. 9, No. 4

244

BIOGRAPHY

Peter Hruschka

Peter Hruschka received his degrees in computer science from the Technical
University of Vienna, Austria. He started working in the field of programming
languages, participating in the definition, standardization, and implementation
of the German real-time language PEARL. In 1979 Dr. Hruschka became Training
Director at GEI Systems, mainly teaching seminars on software engineering and
project management. During this period he developed the design tool DARTS
(Design Aid for Real-Time Systems) and the concepts of the System Engineering
Environment ProMod. Since 1982 he has been Product Manager for Promod, Inc.

PROBLEM
STATEMENT

USER
REQUIREMENTS

NEW

REQUIREMENTS
REQUIREMENTS ANALYSIS

OPERATIONS
SYSTEM
MODEL

ARCHITECTURAL DESIGN

FINAL
PRODUCT

SYSTEM TEST & DEBUG

SYSTEM
SPECIFICATIONS

DOCUMENTED
PROGRAM DESIGN
FUNCT ION Register _Guest;

PROGRAM
IMPLEMENTATION PURPOSE
' Distinguishes between a guest with
a &reservation and one requesting

aroom.
- ENDPURPOSE ;

PROGRAM
SPECIFICATION

!

246

WHAT IS IT?
>> INTEGRATED SYSTEMS ENGINEERING ENVIRONMENT
>» A SET OF COMPUTER DRIVEN TOOLS
> REQUIREMENTS ANALYSIS
> ARCHITECTURAL DESIGN
> PROGRAM DESIGN

>>CONTROL PROJECT DESIGN
> CENTRAL DATA BASE MANAGEMENT

> DATA DICTIONARY
> INTERACTIVE TEXT & GRAPHICS EDITORS
> IMMEDIATE & GLOBAL ANALYZERS
> REPORT GENERATORS
> DOCUMENTATION & SPECIFICATIONS

247

|

=MOD

WHERE DID IT COME FROM?

>> AN INTERNAL TOOL FOR G. E. I.
> MULTI-NATIONAL ORGANIZATION
> LEADING SYSTEMS & SOFTWARE HOUSE
> HEADQUARTERED IN WEST GERMANY
> CURRENTLY 400 EMPLOYEES, $30M REVENUE

>> THE PRODUCT HISTORY
> CONCEPTUAL DESIGN IN 1980

> INTERNAL TOOL IN 1981
> COMMERCIAL PRODUCT SINCE 1983

> CURRENTLY AVAILABLE ON VAX & IBM-PC

FRTMOD

248

il

=5MOD

WHO SUPPLIES IT?

>> PROMOD INC.
> HEADQUARTERED IN LOS ANGELES

> CUSTOMER SUPPORT GROUP
> DEVELOPMENT ACTIVITIES
> SALES & MARKETING

249

L

=SMOD

WHO USES IT?

>> INTERNATIONAL CUSTOMER BASE
> DIGITAL EQUIPMENT
> BOEING
> TELEDYNE
> PHILIPS
> SIEMENS
> UNITED STATES NAVY
> GRUMMAN

250

l
I

.||=

SMOD

WHY USE PROMOD?

>> INCREASED PRODUCTIVITY

>> IMPROVED PRODUCT QUALITY
>> CURRENT & CONCISE DOCUMENTATION

251

-

SSMOD

REQUIREMENTS ANALYSIS

STRUCTURED ANALYSIS -- YOURDON

_

DATA FLOW
DIAGRAMS

DATA MINI-
DICTIONARY|&———— ! SPECS.

e e

%

252

—_:
-

REQUIREMENTS ANALYSIS
THE TOOL SET

“>» INTERACTIVE SYNTAX DIRECTED TEXTUAL &

GRAPHICAL EDITING
>> IMMEDIATE CHECKS FOR SYNTAX & MEANING

>> GLOBAL ANALYSIS FOR CONSISTENCY &

COMPLETENESS

253

3

=GMOD

REQUIREMENTS ANALYSIS BENEFITS
>> GUIDED TOUR THROUGH THE ANALYSIS PHASE
> PREDEFINED PROCEDURES & PRODUCTS
> WELL KNOWN & ACCEPTED METHODOLOGY

>> SHORTER, MORE PRECISE SPECIFICATIONS

>> STRUCTURED & VERIFIED DOCUMENTATION

PEGMOD

254

ARCHITECTURAL DESIGN
MODULAR DESIGN -- PARNAS

b ek

MODULAR
HIERARCHY —{ EXPORT H
INTERFACE
& — DEFINITIONS
— IMPORT [~

H ~{ IMPORT

— 5
DATA

/ DICTIONARY

255

I

=SMOD

ARCHITECTURAL DESIGN
THE TOOL SET

>> AUTOMATED TRANSITION FROM REQUIREMENTS
ANALYSIS

>> IMMEDIATE LOCAL CHECKS OF INTERFACE DEFINITIONS
>> GLOBAL CHECKS FOR CONSISTENCY OF INTERFACES

>> STRUCTURED, CONCISE REPORTS

EEGMOD

256

I

SMOD

ARCHITECTURAL DESIGN BENEFITS

>> WIDELY STANDARDIZED
>> PRECISE HIGH LEVEL INTERFACES

(DISTRIBUTION OF WORK)
>> INFORMATION HIDING (BLACK BOXES)
>> INCREASED FLEXIBILTY IN MAINTENANCE PHASE
>> SMALL COMPREHENSIBLE UNITS

>> ADA COMPATIBLE

257

i

=SMOD

PROGRAM DESIGN
PSEUDOCODE -- CAINE & GORDON, WIRTH

MODULAR :(E\m

HIERARCHY

NARE

258

I

SSMOD

PROGRAM DESIGN
THE TOOL SET

>> PROVIDES RECOGNITION OF KEYWORDS IN PSEUDOCODE

>> VISUALIZATION OF LOGICAL STRUCTURE

>> IMMEDIATE LOCAL CHECKS OF LOGICAL STRUCTURE

>> GLOBAL CONSISTENCY CHECKS WITH INTERFACES

>> STRUCTURED & CONCISE REPORTS

259

i

=SSMOD

PROGRAM DESIGN BENEFITS

>> IMPROVED COMMUNICATION BETWEEN ANALYST & USER
>> CHANGES AND AMENDMENTS EASILY INCORPORATED

>> STRUCTURE IMPOSED ON NATURAL LANGUAGE WHILE
ALLOWING ADEQUATE ROOM FOR CREATIVITY

>> EASY TO LEARN

260

!

SMOD

INTEGRATED SYSTEMS ENGINEERING ENVIRONMENT
>> EASY TO INTRODUCE

> WELL KNOWN, WIDELY USED METHODS

> BASED ON HUMAN UNDERSTANDING

> IMPROVED MAN/MACHINE INTERFACE

>» EASY TOTEACH & LEARN
> PRECISE METHODS & PROCEDURES
> STANDARDIZED SCHEMAS

>»> EASY TO USE
> UNIFORM TOOL INTERFACES
> MNEMONIC COMMANDS
> SELF EXPLANATORY MESSAGES
> EARLY ERROR DETECTION

=25MOD

261

......
slniziiliium
...............

.......

TiriiiiniiinalTy
.............
.....

-

CreTaTitaTet
.....
i titiriiele

...........

L.

REQUIREMENTS ANALYSIS
TRUCTURED ANALYSIES

TRANSFORMER

to.lm

LIBRARY

ARCHITECTURAL DESIGN PROGRAM DESIGN
PSEUDOCODE

DATA FLOW DIAGRAMS

262

O

Locating Suspect Software and Documentation by Monitoring
Basic Information About Changes to the Source Files

| Dave Vomocil

July 31, 1985

We can gain useful insights about the status of software

| projects by monitoring relatively basic items. An

: instrumented source editor can be used to record module size
at times of change, the number of lines added, the number of
lines deleted, and other basic information items. When this
data is tabulated or plotted against time, it becomes
relatively easy to spot suspect modules.

The hypothesis is that a file, source or documentation,
should undergo an increasing amount of change during the
implementation phase. Then the rate of change should
decrease and remain small relative to the size of the file.

This paper discusses the theory and how to implement it in a
unix development environment.

263

Locating Suspect Software and Documentation by Monitoring
Basic Information About Changes to Source Fiies

Dave Vomocli
Hewlett Packard, Corvallis, Oregon

1.1 INTRODUCTION

This paper intends to present a metric for locating problem modules and to demonstrate how easily this
metric can be implemented in a unixl programming environment. The metric graphically points out
modules that are receiving an inordinate amount of attention, and statistics from it have been successfully
used to argue that particular modules need to be rewritten. In addition, after the metric has been used
for some time the results can be characterized and used to predict program size and release date. The
paper presents some history, the ideas behind the metric and, primarily, what standard unix tools can be
used to apply the metric in a software development environment.

We can improve quality control:

e without imposing time consuming and frequently inaccurate data entry requirements on
engineers,

e without requiring an understanding of complex software metrics, and

e without building or buying expensive software tools.

1.2 HISTORY

The impetus for this work came from a paper presented in 1984 by Dan Lundberg of Hewlett Packard at
Hewlett Packard’s annual Software Productivity Conference. His paper discribed three ideas that had
been studied by a Japanese company desiring improved statistical quality control.

The Japanese company looked first at program size as a metric to predict both release date and quality at
release. They found, as many others have, they were unable to accurately predict program size early
enough in the development phase to make the predictions valuable.

Secondly, the firm studied the effect of reusing tested modules. As a result of this study, they were able
to develop tables allowing them to predict at release time (with reasonable confidence) the quality of the
released product based on the percentage of the product that was reused code.

To facilitate these two studies they developed an instrumented editor and project management package

lunix is a trademark of Bell Labs.

264

that recorded vital statistics associated with programs. These statistics included a 1) history of module size
and 2) history of modifications made to the module. For example, a statistics record would include date
information, module size information, and a measure of the amount the module was changed. By plotting
either of these items, size or amount of change, against time the final size of a program could be predicted
at a reasonable time in the development phase. Additionally, these statistics were used during the support
phase to indicate which programs needed complete rewrite.

To become able to predict program size and release

date they first had to characterize the shape of the Cumemuistive Updetes or Piie Size
curves generated when either program size or vs. Time
cummulative changes were plotted against time.

The technical content of a module determined the - .-

characteristic shape of the family of S-curves
associated with the module. Once the curves had -
been characterized, they were able to predict final
program size and quality at release time early in
the coding phase.

A
T Acoumulated Updates or
Fle size

0 2 0 ©
Time leg. weeks)
Figure |

As an additional benefit, the statistics could be reset at release time. The statistics would then accumulate
during the support phase. The charts produced from the activity during the support period were used to
detect problem modules and argue successfully for rewrite of particular modules.

1.3 SCOPE OF THIS PAPER

In the past, engineers have been required to complete logs to supply data for use with statistical models.
This data acquisition process was inherently inaccurate since it had little relation to the engineer’s
progress on his assigned project. Then the questionable data is piped into statistical model, and
questionable conclusions are generated.

The Japenese used an instrumented editor to gather the data more accurately. Additionally, the statistical
model used with this data is very easy to understand. Therefore, we wanted to test it in our environment.

Initialy we were frustrated because we did not have an instrumented editor, and we did not want to invent
or buy one. After we moved to HP-UX, Hewlett Packard’s unix operating system, we found that the
Source Code Control System (SCCS) provided an excellent tool to collect the data. awk, another tool
provided with HP-UX, could be used to extract the data from the SCCS files. A short C program was
written to massage the output from the awk script. These steps leave the data in a form most chart
presentation packages can use. The application of these standard unix tools to support the gathering and
preparation of data for the metric is discussed in the remainder of this paper.

It should be pointed out that once the software engineering team has moved to a unix environment the
tools needed are readily available. All of the parts can be mastered and implemented in a few days.

265

1.4 THE INSTRUMENTED EDITOR - SCCS

The first step is to collect the data. In many older software engineering environments, including our past
environment, automating the data collection meant a major programming effort or a major purchase.
Neither the effort nor the purchase was justified for an unproven tool. After adopting a unix engineering
environment, we found the Source Code Control System (SCCS) could be used to collect the data. The
Revision Control System (RCS) from Purdue could most likely be used just as well. We chose SCCS
because it was readily available and running on our engineering machines.

SCCS is a standard unix tool that manages multiple versions of a text file with a single file. An example
is provided in table 1. The left column of the example contains three versions of a short text file, the
original version and versions that result from two short editing sessions. The right column contains the
three respective SCCS files. (The third SCCS file has been truncated to keep the example on one page.)

The lines in the SCCS files prefaced with an 's’ specify the number of lines that have been added, deleted,
and unchanged respectively. The line following each 's’ line (prefaced with a 'd’) contain date information
indicating when the edited version was checked into the SCCS file.

The SCCS system is documented in most unix reference manuals. Basic use of the system involves
mastering three commands.

1) admin =i<file> s.<SCCS file name>
The admin command is used set up the initial SCCS file.

2) get —e 5. <SCCS file name>
The get command with the '-e’ option is used to check out a version for editing.

3) delta s. <SCCS file name>
The delta command is used to check in an edited version.

266

Source Files and SCCS, File - Table 1

This is line 1
This is line 2
This is line 3
This is line 4

h14141

s 00004 /00000/00000
dD1.185/06/0513:10:32davev1 0
c created 85/06/05 by davev

4~ eco

11
This is line 1
This is line 2
This is line 3
This is line 4
E |

This is line 1
After line |

This is line 2
This is line 3
This is line 4
End first edit

h30168

s 00002/00000/00004

dD 1.2 85/06/05 13:17:30 davev 2.1
¢ Result of first editting session.

e

s 00004/00000/00000
dD1.185/06/05 13:10:32 davev 1.0
c created 85/06/05 by davev

This is line 1
12

After line 1
E 2

This is line 2
This is line 3
This is line 4
12

End first edit
E2

E 1

Delete and add.

This is line 1
After line 1

This is line 3
This is line 4
End first edit
One last line

H50689

s 00002/00001/00005
dD1.385/06/05 13:20:31 davev 3 2
¢ Result of second editting session

e

s 00002/00000/00004

dD 1.2 85/06/05 13:17:30 davev 2 1
¢ Result of first editting session.

267

1.5 EXTRACTING THE DATA - AWK

The second step is to extract the data from an SCCS file. As explained above, only the 's' and 'd’ lines
contain needed data. awk can be used to extract the data from those lines.

awk is a standard part of a unix environment. This programming language allows users to manipulate text
and data. An awk program expects lines of input from standard in (usually a file), processes the line (eg.
does arithmetic), and generates output. The output, which can optionally be formatted, is posted to
standard out. Both standard in and standard out can be redirected to reference files. awk is documented
in most unix reference manuals.

awk programs I have used to extract data from SCCS files are included below.

** the extract script **

** the first awk program -- awk1 **

$1 ~ /s/ {x = $2}
$1 - /d/ {printf "%8s/%17s\n", $4, x)
$1 ~ Ju/ {exit)

** the second awk script == awk2 *#
{ printf "%2s%2s%2s %S5s %5s %5s\n", $1, $2, $3, $4, $5, $6)

The above contains three items. The first is a script which invokes awk twice, and the second and third
are the awk programs. The first invocation of awk applies the first awk program directly to the SCCS
file.

The three things it accomplished by the first invocation are:

e Anytime a line with starting with an ’s’ is found, the second item in the line is stored in the
variable x. The second item in such a line is the number of lines added, number of lines deleted,
and number of lines remaining unchanged. Since the default delimiter is a space and these
counts are delimited by '/’, the three counts are considered one item.

e Anytime a line starting with a ’d’ is found, the second item is printed followed by a ’/>. Then
the information extracted from the previous ’s’ line, contained in the variable x, is printed. In
this context printed means written to standard out.

e Finally the program exits if a line starting with a ’u’ is encountered. This merely keeps the
program from searching through the body of the SCCS file.

268

The output from the first invocation of awk is 'piped’ 2 into the second invocation of awk; then the second
awk program is applied. The -F option on the second invocation sets the field delimiter to ’/’. This
second awk program merely formats the fields and separates them with spaces, i.e. makes them easier for
a person to read.

Data Flow During awk Extract

SCCS File
The last file from the previous table is used.

v

[$awk -f awid <SCCS.file |

! | standard out

85/06/05/00002/00001/00005 §'
85/06/05/00002/00000/00004| <
85/06/05/00004/00000/00000; ©

8 standard in

[Sawk -F / -f awk2 |

Vi

850605 00002 00000 00005
850605 00002 00000 00004
850605 00004 00000 00000

Figure 2

2The vertical bar "|" bewteen the two invocations of awk causes the output from the first to be used as
the input for the second. This feature of unix, i.e. to be able to ure the standard output of one program
as the standard input of a second, is referred to as a pipe.

269

1.6 SORTING THE DATA

The awk scripts leave the data in the same order it appears in the SCCS file. That is, the first record
contains the most recent information and the last record contains the oldest information. Most chart
presentation packages will want the information in the reverse order. The unix sort utility will easily
solve this ordering problem.

The output from the awk programs is what needs to be sorted. The lines of the output need to be sorted
in ascending order based on the dates. Example output is given in the bottom of figure 3. The date is in
the first field on each line. By default, the unix sort program uses the first field and sorts the lines in
ascending order. Therefore, we can merely apply the sort program with no parameters to the output of
the awk programs.

As with the two invocations of awk, a unix pipe can be used with the sort program. That is, we can
actually combine the two previous awk calls with a call to sort, as pictured to the right, and get all the
work done in one step. The SCCS file has been edited again for this example. In particular, the dates
have been modified to give the sort program something to do.

h50689

s 00002/00001/00005

d D 1.3 85/06/05 13:20:31 davev 3 2

¢ The result of the second editting session.
e

s 00002/00000/00004

d D 1.2 85/06/04 13:20:31 davev 2 1

¢ The result of the first editting session.
e

s 00004/00000/00000

d D 1.1 85/06/02 13:20:31 davev 10

¢ created 85/06/02 by davev

e

u ..etc.

¥

[sawk -f awkl <SCCS | awk -F/ -f awk2 | sort >outputﬂ

O

850602 00004 00000 00000
850604 00002 00000 00004
850605 00002 00001 00005

Figure

270

1.7 COUNTING THE DAYS - A C PROGRAM

The data is now extracted and sorted. If SCCS is used religiously once a day and every day, the data could
be handed to a chart presentation package in its present state. The remaining problem is that SCCS is
frequently not used this regularly, and one of the motivations behind this scheme is to not make such
demands on the engineers. Therefore, to be able to place the data points correctly on the graph, the
number of days between each datapoint needs to be calculated. Since many chart presentations packages
cannot make such conversions, a C program was written to make the calculations. A copy of the C
program is included in the appendix.

As before, this step can merely be added to the pipe. As is indicated by the flow diagram in figure 4, the
C program adds a column of data in which each entry is the number of days since the beginning of the
project. In addition to calculating the number of days between each datapoint, the program summarizes
activity if there are multiple datapoints on a single day. You are referred to the C program for specifics
on how the summary works. By reviewing the C program you might also appreciate the ease with which
the summarizing could be customized.

h50689

s 00002/0000¢00005

d D 1.3 85/07/21 13:20:31 davev 3 2

¢ The result of the second editting session.
]

s 00002/00000/00004

d D 1.2 85/06/06 13:20:31 davev 2 1

¢ The result of the first editting session.
e

s 00004/00000/00000

d D 1.1 85/06/02 13:20:31 davev 10

c created 85/06/02 by davev

e

u ..etc..

&

$awk -f awki <SCCS | awk -F/ -f awk2 | sort | daycount >file

Y

850602 00004 00000 00000 00000
850606 00002 00000 00004 00004
850720 00002 00001 00005 00049

Figure 4

271

1.8 THE FINAL STEP - PRESENTING THE DATA

The data the above described procedures generates can be most easily interpreted when it is presented as a
line graph. Most chart preparation packages (eg. Lotus/123, Picture Perfect, DSG/3000, to name a few)
will accept the resultant file, that is the file created as output by the procedures described above, as input
for creating a chart. Since the chart preparation tools available at different locations vary considerably,
none is described in any detail here. At some sites a graphics package will be available on the host unix
systems, and at other sites users will need to move their data to a PC or other host computer. If you need
to move your data to another computer system to generate the charts, kermit is a reasonable tool to use;
and it is available on the unix notes network and from universities.

1.9 CONCLUSION

This paper has presented both a metric for identifying modules that need to be rewritten and has
described the standard tools available in a unix environment that can be used to implement the metric.
The metric has merit in that:

e the data is easily collected. The collection involves no extra work by the engineer.

e the data is automatically stored and is accurate. The system does not rely on engineers and/or
project managers remembering how much time was spent on various phases of the project.

e The metric is easy to understand and apply.

Equally important to this discussion is that the metric can be implemented with tools that are standard
components of an unix environment. Building a similar system in many older environments meant paying
for a medium to large project, and the results of many such past projects have been hard to use and nearly
impossible to modify. In a unix environment, the pieces can be put together by a project manager in a
short time., The resulting system is robust and easy to continue to modify.

272

1.10 APPENDIX - C SOURCE FOR DAYCOUNT

#include <stdio. h>

main()

{

int yr, mo, dy, ins, del, unch;

int yrl, mol, dyl, insl, dell, unchl;
int days, unchanged, status;

int day 1, day2, tins, tdel, tunch, tdays;

/* Determine initial conditions */
/* i.e. initial date and initial program size. */
scanf("%2d%2d%2d %5d %5d %5d",

&yrl, &mol, &dyl, &insl, &dell, &unchl);

/* Check for further activity on day one. */
scanf("%2d%2d%2d %5d #5d #5d",
&yr, &mo, &dy, &ins, &del, &unch);

while (yr == yrl && mo ==mol && dy ==dyl)

{

if (unch == 0 && del == 0) unchanged = ins;

scanf("%2d%2d%2d %5d #%5d #%5d",

&yr, &mo, &dy, &ins, &del, &unch);
}

printf("%42d %2d %2d 0 0%5d O\n"yrl,mol,dyl,unchanged);

/* Proceed with rest of days logged in SCCS file. */
tdays = 0,
day 1 = julian(yrl, mol, dy 1);
do
{
/* initialize for present day */
day2 = julian(yr, mo, dy);
yrl = yr; mol = mo; dyl =dy;
tins = ins; tdel = del; tunch = unch;

/*scan for more activity on present day. */
while (
(status = scanf("%2d%2d%2d #%5d %5d %5d",
&yr, &mo, &dy, &ins, &del, &unch)) = EOF &&
yrl == yr && mol == mo && dyl ==dy)
{
tins += ins; tdel += del;
if(tunch > unch) tunch = unch;

}

/* Compute days since last activity
allowing for change of years. */
if (day2 > dayl) days =day2 - dayl;

else

273

{
days=(366 - dayl) + day2;
if ((yr/4)*4 == yr)days -= 1;
}

tdays += days;

/* Post present day’s activity to standard out. */
printf ("%2d %2d %2d %5d %5d %5d % 5d\n",
yrl, mol, dyl, tins, tdel, tunch, tdays),
dayl = day2;
}
while (status != EOF);

}
julian(yr, mo, dy)

int yr, mo, dy;

{
static int months{] = {00,00,31,59,90,120,151,180,211,242,272,303,333};
int i, days;
days = months{mo] + dy;
if ((yr/4)*4 == yr) && mo > 2) days += |;
return(days);
}

274

BIOGRAPHY

David Vomocil

David Vomocil earned his BS in science and mathematics from Portland State
University in 1969 and his MS in computer science from Oregon State University
in 1975. After a year at Cornell University and some time with NCR in New
York, Mr. Yomocil came to work with Applied Theory Associates in Corvallis,
Oregon. He is now at Hewlett Packard, where he supervises the computer
services group for the Calculator Lab.

275

Session 6

TESTING AND PROBLEM REPORTING, II

Titles and Speakers:

“A Software Test Environment for Embedded Software”
David Rodgers and Ralph Gable, Boeing Commercial Airplane Company

“CLUE--A Program and Test Suite Evaluation Tool for C”
David Benson, BENTEC

“Tools for Problem Reporting”
Susan Bartlett, Metheus-CV, Inc.

277

A SOFTWARE TEST ENVIRONMENT FOR
EMBEDDED SOFTWARE

BY DAVID A. RODGERS AND
RALPH GABLE

BOEING COMMERCIAL AIRPLANE COMPANY
P.0. Box 3707
M/S 77-21
SEATTLE, WASHINGTON 98124-2207

ABSTRACT

A software test environment is described that supports the testing of
embedded, dual-dissimilar avionic control system software.

The environment design addresses the problems of testing a total software
system. The design frees the software tester from operational test
constraints (stop/start control, error introduction, etc.) often imposed by
the hardware surrounding the embedded software. The environment provides
input stimulus that is exact and repeatable for each operational cycle of
the software under test. The software overall response is measurable on a
cycle-by-cycle basis. The environment allows detailed monitoring of
internal software events, for analysis by software designers and verifiers.
The environment supports the dual-dissimilar nature of the software system
to be tested.

The environment is designed to interface with and be user friendly to system
engineers, who are cognizant of the fuctions to be performed by the software
under the test but who may not be skilled in software techniques themselves.

The environment's test procedures are written in English 1language-like
statements that use the terminology of the software system under test. The
procedures tend to be self documenting. Software system test scenarios may
be readily generated with economy of statements. Input test stimuli at bit
level is generally invisible to the test writer and its generation is
automated, providing reduced input errors. The environment can handle a
complex set of digital discretes, analog and ARINC-429 signals. Output
reports are generated that are readily interpreted by system engineers and
software engineers alike.

279

TEST SYSTEM REQUIREMENTS

The software test environment described was developed to meet these
requirements:

TABLE 1 - TEST ENVIRONMENT REQUIREMENTS

(1) It must support the verification of functional requirements of
integrated software that is part of a dual-dissimilar system (see fig.
1) and that would later be embedded. Once embedded, the precise
functional performance of the software would be difficult to verify due
to considerations of timing control, repeatability, sensitivity and
accuracy of hardware stimuli and measurement devices. ('Embedded'
software is that which is an integral part of a hardware/software
product and usually resides in ROM. 'Integrated' here implies the
software is in its load form, as it would appear in ROM).

(2) It must (a) simulate the hardware in which the software under test
(SUT) is to be later embedded (b) emulate the CPU on which it will be
executed, in the final product for data collection and recording and
(c) provide for data collection and recording. The input stimuli
mechanism must support (1) up to five ARINC-429 channels each carrying
up to five different labels, (2) five analog signals of up to twelve
bits per signal and (3) up to sixty discrete signals. A1l input
stimulus must be changeable at any and every basic cycle of the SUT.
(An ARINC-429 channel carries 32-bit serial data messages. Each is
comprised of an 8-bit label identifier, 2 bit status matrix, up to 21
bits of variable data and a parity bit). The host CPU emulator must
support an Intel Z80 or a Motorola 6802.

(3) It must relieve the test writer as much as possible from the
requirement for software skills. The writers must be given the
opportunity to develop functional test scenario procedures using
terminology that is familiar to the final product's system designers.

(4) The written procedures must be easy to interpret for audit and test
maintenance purposes. Their format must lend themselves to precise
expression of test stimuli, test operational steps and results
measurments. The procedures must bemachine readable. Clerical support
is to be minimized.

(5) Due to the number and complexity of test scenarios (over four hundred
distributed over four separate SUT systems, each of which will go
through four or five updates and each requiring verification), the
translation of the test scenarios procedures into a form suitable for
execution of the test , the test set operation and the formatting of
measured results into test reports must be error-free automatic
operations with minimal and simple manual intervention.

280

(6) The characteristics of the actual hardware/software interface of the
embedded software will change during normal product development,
forcing modification of the test environment's simulated hardware. The
design of the test environment must comprise simple modules to
accomodate these changes.

The Software under Test (SUT)

The software to be tested is dual-dissimilar (see fig.l). That is, the
primary functional outputs of the system are supported by one CPU, say CPU-
1, while the same functions are simultaneously generated by another CPU
(CPU-2) of dissimilar architecture. Each CPU monitors the other's
performance and each may individually disconnect the primary output in the
event of unacceptable performance. Ideally, the software design and its
implementation for each CPU are developed by separate design teams in order
to reduce the probability of a common (or 'generic') error at any step of
the software development process. Dissimilar CPUs are chosen to avoid
operational generic faults.

The software architecture of one CPU is similar to that given in fig. 2.
The foreground tasks are scheduled typically by two clock driven interrupts,
one of which has priority over the other. The interrupt clocks of CPU-1 and
CPU-2 run at the same frequency but are not synchronized. In real time the
basic cycle interrupt initializes the primary input-process-output functions
with the balance of the basic cycle time spent in background processing
which typically comprises continuous ROM and RAM checking.

Special fast processing may be necessary on several occassions during the
basic cycle. The fast process cycle 1is serviced by the higher rate,
secondary interrupt which is synchronized to the basic cycle clock.

The problem then, was to provide a useful test environment for the software
described and to meet the requirements of Table I.

TEST ENVIRONMENT OVERVIEW

The test system is shown in fig. 3. The system is comprised of two computer
environments, (1) a VAX 11/780 and (2) a Tektronix 8002 emulator linked by
a communication line.

Analysis showed that to verify the SUT's Tlogical performance it was not
necessary to execute the SUT in real time. Its logical performace could be
measured in non-real-time providing (1) the execution sequence of the SUT
was sufficiently similar to that experienced in real-time and (2) the SUT
experienced stimuli similar to real-time stimuli. Also, in this case of
dual-dissimilarity it was not necessary to verify each software system
(CPU1, CPU2) at the same time. Under normal, non-fault conditions the

281

output from each CPU on a dissimilar system will be identical. Thus, with
due regard to phase and polarity, a set of "pseudo" dissimilar CPU (say
CPU2) output signals may be generated from a single system SUT (say, CPUl).
The "pseudo" signals must be used as feedback input to the SUT itself,
delayed by one cycle. A single system SUT thus may thus generate its own
dissimilar channel inputs. This mechanism releives the test writer from
having to predict the proper input to the single CPU SUT from the dissimilar
channel. A means must however be provided to force 'incorrect' dissimilar
CPU signals to simulate fault conditions.

The SUT is then a set of single CPU software, loaded into the Tektronix
emulator memory and mapped into the same address space as when embedded in
the final product. Resident with the SUT in emulated memory are (1) input
stimuli data bases (one per hardware driver) derived from the input scenario
of the test procedure, (2) a set of simulated hardware drivers (ARINC,
analog and discrete) and (3) a special test operating system (Test 0/S).
The Test 0/S, the drivers and the SUT are configured such that control
passes first from the Test 0/S to the drivers to establish the first (or
next) cycle's input stimuli data at the SUT's hardware/software input
interface and, secondly, to the SUT itself which attempts to execute in a
normal manner. At the end of the cycle, in the background program, control
is returned to the Test 0/S. Output measurements are taken at the
hardware/software output interface and written to the emulator disk.
Optionally, the SUT software may be pre-modified to produce software
interrupts so that the Test 0/S records the value of some or all test
scenario RAM variables as they exist at the completion of execution of
previously specified SUT software modules. At test completion, the gathered
data on disk is returned to the VAX by communication line and formatted
(fig. 3) into a report.

INPUT DATA BASES

The input data is generated by the test writer in English language-like
statements. The statement syntax rules are designed to give the test writer
flexibility to express input stimuli in terminology used by the final
product's system designers. For example, a discrete may be set by the
statement:

HYD PRESS HIGH, HIGH, 1-29;
Here the Hydraulic Pressure High discrete is set to the "high" state (as
shown on system drawings) for iterations (basic cycles) 1 through 29. At
iteration 30 the discrete will be set to its default value.
The analog signal, Servo-Feedback, will be set to -2.98 degrees at
iteration 3 and will remain at that value until otherwise specified by the
statement:

SERVB = -2.98 DEGREES, 3;

The statement

282

RA, IRUC, 3.9, SM = NCD, P=B, 106;

will set the ARINC signal for RA (Roll Angle) on the IRUC (Inertial
Reference Unit, Center) to 3.9 degrees with the SM (Status Matrix) to NCD
(No Computed Data) with P (Parity) to the value B (Bad i.e. incorrect
parity) from iteration 106 inward until set otherwise by another statement.

Commentary statements may be entered anywhere in the input statement stream.
An example of a typical test procedure is given in fig. 4. Test control
specification is embedded in such statements as: ITERMX (number of
iterations this test), SELVAR (select variables to be measured), SELMOD
(select modules after whose execution variable values will be measured) and
NOMFIT (no measurements during iterations specified). Expected results are
entered in comment format.

Test scenario source code is passed to translators written in Pascal and
supported in the VAX environment. The translators produce compressed
scenario data bases, ready for download to the emulator environment.
Compression is achieved by only including data specifications at points of
change rather than explicitly specifying data for each and every software
cycle. An example of the data base format is given in fig. 5. The
translators provide extensive error checking of statement syntax. The SUT
linkmap, generated at SUT load generation time, its used both here and at
output report generation time to correlate the mnemonics referenced with
absolute SUT addressee.

THE SIMULATED HARDWARE DRIVERS

The drivers' function is to pass input scenario stimuli data from the
appropriate input data base to the SUT in appropriate format and in a manner
that sufficiently simulates the characteristics of the real
hardware/software interface. The drivers are written in assembly language
and are less than 1k bytes 1in size. Depending upon the SUT architecture,
the drivers are either designed to be called (1) by the Test 0/S, simulating
a mechanism that pre-loads the DMA (direct-memory-access) memory for later
access by the SUT or (2) by the SUT itself, simulating a mechanism that
acquires data from a hardware I/0 device using conventional I/0 handshake
protocol. In order to "hook" each driver into the SUT it is necessary to
modify the SUT code instructions that normally supported the real
hardware/software interface. In practice, such code corruption is minimal,
with only a few I/0 instructions being modified. The drivers are designed
to detect abnormal calls by the SUT and to post error codes to the Test 0/S.
The drivers have the ability (1) to repeat the input stimuli scenario when
the input data base is exhausted thus providing for stimuli with a cyclic
characteristic (sine wave, square wave, ramp) and (2) to operate the SUT
normally using default values..

283

THE TEST OPERATING SYSTEM

The function of the Test 0/S is to control the test environment within the
emulator. The Test 0/S 1is comprised of (1) emulator JCL (job control
language) procedures and (2) a Test 0/S controller written in assembly
language (3k-4k bytes in size) which interfaces with the SUT (again, with
minimum code corruption). The Test 0/S prepares the emulated SUT RAM areas,
loads (1) the SUT, (2) the simulated hardware drivers, and (3) the
downloaded test scenario data bases and test control requirements, ensures a
proper load by checksum technique, performs the test by passing control to
the Test 0/S Controller, collects the specified measurements from the SUT
and writes them to emulator disk, calls an on-line print driver that
provides continuous monitoring of the SUT hardware/software output buffer
(fig 6A) and provides the test set operator with continuous test status.
The captured measurements are uploaded to the VAX and processed into a
report (an example of which is shown in fig 6) and the actual results are
compared to the expected (circled in fig 4 and fig 6).

OPERATIONAL EXPERIENCE

Two different dual-dissimilar systems (i.e. a total of four SUTs) were
tested using the method described. A total of approximately four hundred
different test scenarios were executed, the majority of which were non-
trivial and often complex. During the test project, all four SUTs underwent
change resulting in new SUT versions. Each new version was completely
retested using, where necessary, updated test scenarios and Test 0/S support
software. The number of tests executed was in the order of two thousand.

It has been found that the advantages of this test system are: (1) the
reduced need for in-depth software experience on the part of the test
writer. The writer's experience can be primarily 'system' oriented. The
test set operator needs minimal engineering skill since the test process is
almost totally automated. Scarce software skill resources are directed to
test system development/maintenance which has a lesser total cost in this
case than that of test procedure preperation and results review. (2) Tests
can be early rerun on new software versions to ensure previous level of
confidence. (3) Tests can be quickly generated and de-bugged. (4) The test
procedures can be more readily understood project-wide. (5) The procedures
are self-documenting. (6) The test environment is modular indesign, lending
itself to work partitioning in the test system development and on-going
support phase. (7) During the development phase, once test procedure
formats have been specified test procedure development can begin even though
the test system is incomplete. The system is particularly useful in
supporting software testing when no hardware Tlaboratory facilities are
available. The disadvantages notes are: (1) a major commitment has to be
made for the test environment development, using skilled software personnel
and (2) the development has to be carefully planned in order to attain
timely delivery of the test results.

284

CONCLUSTON

In conclusion the test system described meets the requirements of Table 1
satisfactorily. Consideration of its use in the future may be given in
cases where precise and repeatable measurement of software response on a
cycle-by-cycle basis is required, 1in situations where hardware is
unavailable or where exact specification of signal acquisition is
unimportant but where software signal processing and effect may be of
interest. Clearly, the initial development cost consideration will be a
major factor until off-the-shelf systems of this type are available and lend
themselves to tailoring to individual needs. A business opportunity may
exist for the entrepreneur.

285

BIOGRAPHY

David A. Rodgers

David A. Rodgers has worked as a computer software engineer for 18 years.
His employers have included General Dynamics Corp., Infodata Corp., Xerox
Corp., and most recently the Boeing Company. He has been responsible for the
design, implementation and verification of real-time mini- and microcomputer
systems for in-flight avionic system support (both commercial and military),
commercial communications, and multi-program/multi-user order entry turnkey
systems. He has 30 years’ engineering experience, including work in England
and Canada. His degree is in electrical engineering (UK).

286

SERVO RESPONSE

/

HARDWARE /SOFTWARE

R I MARY INPUT

INPUT INTERFACE

HARDWARE/SOF TWARE

OUTPUT INTERFACE
/

CHANNEL - 1

.~ —

[

o0

~J)
PRIMARY
EXTERNAL e
INPUTS

—

/

CPU - 1 ¢
SOFTWARE SYSTEM [——™

i

é

+J

"1 oisconnecT
CONTROL

A

i CPU - 2 ¢ >
SOFTWARE SYSTEM

CHANNEL -~ 2

SERVO
DEVICE

PRIMARY

OUTPUT

"INTERNAL FEEDBACK;f'

FIG 1 DUAL-DISSIMILAR SYSTEM

88¢

INPUT PROCESS OUTPUT

FAST PROCESS LoOOP

SPECIAL FAST

PROCESS (NORMAL
INTERRUPT BACKGROUND
INPUT | PROCESS |___ .| ouTPUT 8ACKGROUND

BASIC CYCLE
MAIN PROCESS LOOP g |NTERRuP::

FIG 2 = SINGLE CPU SOFTWARE ARCHITECTURE

68¢

pa—
TesT SUT LINKMAP
—tnd PROCEOURE = FLOPPY FLOPPY
TRANSLATOR DISK - DISK 2
Y -
4 -
ARINC | | |
TRANSLATOR
‘ l ' L - aes o« SOFTWARE
y -———— ORIVER TEST 0’3
CONTROLS ' CONTROLLER
= SOF TWARE
UNDER buteut rerort
TEST (SUT) GENERATOR
ANALOG
TRANSLATOR - OATA LASES Iy
| Test +
DIRECTIVES
A ouTPUT
LTEST 0/S A REFORT
CONTROLLER
DISCRETE & ON-LINE = g ARINC
L. TRANSLATOR |-l PRINT HANOLER ;:!:c ORIVER
RS IMULATED BASE
ORIVERS
TEST SCENARIO/ (
TEST PROCEDURE
DATA ENTRY ANALOG
DATA ANALDS
™ pase ™ river T~
. SOFTWARE
\ J -3l amOLATOR PROBES
“/ : . * Y
VAX PASCAL ‘
o —————
COMPILER
DISCRETE
id DATA @] DISCRETE
BASE ORI VER SOFTWARE
URDER
I jrm (8T}
I o V4
FIG 3 - SOFTWARE TEST ENVIRONMENT I— — cm— e TEKTRON|X BOO2 EMULATOR ENVIRONMENT sumomsss mmvesms s e e

FIG 4 - EXAMPLE OF TEST SCENARIO PROCEDURE

KEXE eeeee BEGINNING OF TEST PROCEDURE ----- T
* TEST NUMBER: XG6PQ1DPP
19 TEST OBJECTIVE:

THIS TEST WILL VERIFY THE TRIM MODE PRIORITY LOGIC
* 2P TEST APPROACH RATIONALE"

* %

* THIS TEST WILL CHECK THE TRIM MODE PRIORITY BY
* SELECTING THE AUTO TRIM, MANUAL TRIM AND MACH/
* SPEED TRIM MODE AND DEMONSTRATE THAT AUTO TRIM
* SHALL OVERRIDE MANUAL TRIM.
* 21 TEST RESULTS/SUCCESS CRITERIA:
* RSC# ITER# ?Effgf SELFCC AUTENG CAUTVD LAUTVD AUTTUA AUTTDA CONMOD MANMOD
* 1 41 pé (o)
* 2 a2 (EE)
* 3 47 4]
*x
_:‘__——5-9/" _—-\"‘E}:
_ I I
* 29 160 pa pl)]
* 30 16l pa
SYSTEM = SAMARM; * Name of system.

FNAME: {XG6PR1DPR.TPK); * Name of procedure file.
LINKMAP: (DRCP: [KAT.CPVCM.TOOLSJARM1P1483.MTP); * Name of 1inkmap.
*

IFILES: ARINC = (XG6PP1DPP).ACK * Input scenario files.

AID = (XG6PP1DPP).IDK
ANALOG = (XG6PP1DPP) .ALK

OFILES: OUT1=(XG6PP1DPP.ACT); * Actual results file.
INTERMX=540: * Number of iterations, this test.
* 3P 'SELVAR', 'SELMOD' AND 'NOMFIT' STATEMENT TO HERE.
SELMOD: TRIM: * Select module "TRIM",
StLVAR: ARMODE ,SELFCC,AUTENG,CAUTVD,LAUTVD,AUTTUA,AUTTDA,

CONMOD ,MANMOD,VLDTDN,VLDTUP; * Measure these

variables.

NOMFIT: 1-39, 181-219,361-399; * No measurements for iterations specified.
jolalol IE PP END OF TEST PROCEDURE -----

KKK eeeee BEGINNING OF ARINC SCENARIQ -----
Fcc,Fccc,(TDA=P,TDC=P,AELS=P ,AERS=P,TUA=P,TUC=P,GRO=P,UNSCHD+p),1:
FCC,FCCLR,(TDA=p,TDC=p ,AELS=P,AERS=P,TUA=P,TUC=P,GRO=P,UNSCHD=P),1;
FCC,FCCLR,(TDA=1,TDC=1,AELS=1,AERS=1),4];

MC,DADCP,340,1; * Example: Set ARINC signal MC on

MC ,DADCS,340,1; * DADC Primary and Secondary channels to 340 millimach.
vC,DADCP,149,1;

vC,DADCS,14p,1; * Set ARINC signal AIRSPEED to 140 knots.

*

END;

AAEE - END OF ARINC SCENARIOQ -----

*

APL TYPE CODE - 9,1,1-18p; * Airplane type code.
APL TYPE CODE - 1,1,1-189

APL TYPE CODE - 2,p,1-189¢

APL TYPE CODE - P,1,1-18p;

*

APL ON GROUND - 2,IN AIR,1-41; * Put airplane in air.

APL ON GROUND - 182, IN AIR,1-41;
APL ON GROUND - 1, IN AIR,1-41;
*

»

VALID MANUAL COMD, MAN CMD, 8f; Start manual trim.
*

* MANUAL TRIM DOWN
*

TRIM DOWN ARM CMD,TRIM DN,8(-83; * Exercise TRIM command.
TRIM DOWN CONT COMD,TRIM DN,8¢-83,
TRIM UP ARM CMD,NO TRIM UP,8P-83,
TRIM UP CONT CMD,NO TRIM UP,8P-83;
-«

e
“AUTOTRIM ARM-C,DISARMED,361; * Exercise Autotrim.
AUTOTRIM ARM-C,ARMED,42p;
AUTOTRIM ARM-C,DISARMED,44p
AUTOTRIM ARM-C,ARMED,479;
AUTOTRIM ARM-C,DISARMED,49p;
*

END;
hkk _____ END OF AID SCENARIQ -----
faloded JSPSPRPEPS BEGINNING OF ANALOG SCENARIQ =-=----

* THIS SCENARIO PROVIDES THE ANALOG FEEDBACK OF

* RUDDER RATIO CHANGER FOR COINCIDENCE MONITORING
* OF CONTROL AND ARMS CHANNELS. STABILIZER
* POSITION IS SET AT P.p DEGREES & PROGRAMMED IN
* 'SIMULATE' MODE TO PROVIDE THE DYNAMIC ANALOG
FEEDBACK OF THE STABILIZER HYDRAULIC MOTOR.
STABPO=SIM:1P0OS=p ,MRATE=p.2,IRATE=P.P8 ,ITRIM=NO-TRIM,ISTATE=1,1;
PROVCA=TRACK-ON,1;

PROVCC=TRACK-ON,1;

END;

AR .o END OF ANALOG SCENARIOQ -----

»

j

FIG S

ANALOG INPUT DISCRETE DATA FILE FORMAT

Al A2 } ®_Pointer to Addr. (Hex. Al1A2A3A4) of start of data
A3 A4
Al A2 } @_Repeat of 1 above. May be changed durinq table use
A3 A4 as current data pointer.
} @—Reserved
1A2A3A4 — Imax (MS) @ Number of iterations through which the software under test
Imax {LS) } will perform before the data in this table is recalled
MS Byte from the beginning @
— Iteration # beginning at which the following data is
LS Byte ‘} @ to be providedgas chgnges S
1 g g @—(1) 4 Bits, Byte Index of I/0 word, starting at @
% 23 (2) 1 Bit, Value (1 or @)
1 7 3 (3) 3 Bits, Bit number in I1/0 word
1 2 3
1 2 3
| A 2 4
i~"3]
1 2 3 |ey
F F -—@—End of Data Marker, for iteration @ above
MS Byte
T B{rte }@—Next occasion of Data Changes, as (5) above
1 2 3 (6-1)—Similar to @ above
1 2 3 |
=y,
17 3]
1 2 3
1 2 3 |w
FF |—G=D—Similar to (7) above
MS Byt
e} &
I
"‘“1-"‘5"‘3—-‘ Similar to above
1 2 3
1 2 3ty
F F 1—GD
F
,f = } (8)— End of A1l Data

292

€6¢

1 CHANNEL : SAMARM VERSION:DRCO: (KAT.KATI191ARMIP1483.TEK 1
i TEST 0/S: V1@ 98 NOV 83 TEST CASE?! XG6001D00 PLACE OF TEST:EMDC2

; LINKMAP : DRCE: [KAT.CPVCM. TOOL SIARMI
[TERBEBI == == === - m oo o= o= e e e e e e e oo ooooooooooso--o-eee-

1/01IN 81
oLD
NEW

ITERGBAG ==~ - ommmmmm e e e oo cceeccee-c---eeeee-eemmmeeee————mmeeee—eemeeeeee———=-

TRIM #1ARMODE SELFCC AUTENG CAUTVD LAUTVD AUTTUA AUTTDA CONMOD MANMOD
oLD "}] o9 1) -] 1) 1) "} 28 o8
NEW a3 ') g1 ") -] g1 gl 23 gl

1/00UT @10PRTOAS OPRTA! OPRTH2 OPRTE3 OPRTH4 OPRTES OPRTE6 $SSTABP SSTA
oLD

NEW AE 74 68 DA 25 a3 66 EB8 49

R Y] B i = e e s
TRIM @IARADDE\ SELFCC 4 CAUTVD LAUTVD AUTTUA AUTTDA CONMOD MANMOD
oLD g3 'z} T 1] a1 1 83 g1
NEW 26 89 7] 7] g1 21 23 g1

1/00UT Q10PRTOQ OPRTA1 OPRT@2 OPRTA3 OPRTA4 OPRTAS OPRTA6 SSTABP SSTABP+1

NEW AE 74 68 DA 85 a3 9C ES8 48

ITERPBA2 === == -~ - e e e e cemcmcccmce—mccmccmem—memem—e e

TRIM P1ARMODE SELFCC AUTENG CAUTVD LAUTVD AUTTUA AUTTDA
oLD 26 ') ¥ "1 o8 a1 a1
NEW 26 -1’ "} J -])]) gl

- -----—.—-

MANMOD
a1

1/00UT Q10PRTER OPRTA1 OPRTE2 OPRTA3 NPRTH4
D

74 68 DA

FIG 6 - FORMATTED OUTPUT REPORT

[ATE:

0%:21PM

TIME:

XG6001000

T NUMPER:

TES

YSTEN:

INCHES)

|
|
!
(L)
H | o o=
]] °
"
] 1 .
v
[e | L]
G—
t = | .
-
= | O o=
1o L]
>
1 .
o
2 .
[=y | .
[ad u
VEE 1 - .=
[]
1€ .
¥ -y
o .
!] L]
|] .
L]
|

N I I I SR S S S S S A . e Ik T <

T T o @O U U rrrragT o T
LUl Lo L) Ll) Ly LA L L LU) L L L) L L)
A A A I T I CAC I AT T UL

PO I I K T IR T U S S G S A S G S e

>C>€ >€ >€ >€ > € >C P 3K 3T 2L PC>L >C € DL > ><

O D T I I O I i T e e I <

PE I S T S S e S A e I T o O

0900 <L L0 O O LO L 0000 L OO0 &
OO~ LD U OMM CIMIDOO L DO O
OB OHDICT M CICTIOIM I I NN TN

ey e e Gy P G el e G| oy G G G Gu Gl ounl Gy Qund Gt el

FIG 6A ON-LINE OUTPUT REPORT

....................

llllllllll
OOOOOOOOOOOOOOOOOOOOO
000000000000000000000

lllll

lllllllllllll

llllllllllllll

YWor-LDO-O0D O
&...J—.D.:J. (Ty)

G6c

A SOFTWARE TEST ENVIRONMENT

FOR EMBEDDED SOFTWARE

SEPTEMBER 27 1985

presented by:
David A. Rodgers and Ralph Gable

Boeing

Commercial Airplane Division
M/S 727-21 P.0O. BOX 3707
Seattle, Washington 98124 - 2207

WHAT IS TO BE PRESENTED

® A SOFTWARE TEST ENVIRONMENT FOR DUAL DISSIMILAR SOFTWARE
® THE PROBLEM
® THE SOFTWARE UNDER TEST

® THE SOLUTION CHOSED

96¢

® A TEST ENVIRONMENT OVERVIEW

- INPUT SOURCE PROCEDURES

- THE DATA BASES

- OPERATIONAL SUPPORT SOFTWARE
® OPERATIONAL EXPERIENCE

® CONCLUSIONS

uwL A

L6C

03tL A

THE PROBLEM

EMBEDDED SOFTWARE

DUAL - DISSIMILAR

PROBLEMS OF A PURE HARDWARE ENVIRONMENT

SIMULATION vs EMULATION

TEST SYSTEM REQUIREMENTS

86¢

SPECIAL FAST

PROCESS ouTPUT

FAST PROCESS LOOP

PROCESS (uonuu.
INTERRUPT BACKGROUND
INPUT PROCESS | .1 ouTPuT BACKGROUND

MAIN PROCESS LOOP QB?:Y':.:;%E

FIG 2 = SINGLE CPU SOFTWARE ARCHITECTURE

INPUT, EACH SUT

® INPUTS (AT HARDWARE / SOFTWARE INTERFACE)

® 5ARINC CHANNEL x5 LABELS/CHANNEL = 25 ARINC SIGNALS
- PARITY
- STATUS MATRIX
- DATA

INCLUDES AUTOMATIC FEEDBACK -
® 5 ANALOG CHANNELS } ® CROSS - CHANNEL FEEDBACK,

66¢

- 12 BITS/CHANNEL DISSIMMILAR CHANNEL
® 60 DISCRETES e ACTUATOR FEEDBACK

15a L A

OUTPUT, EACH SUT

® OUTPUTS

® AT HARDWARE / SOFTWARE INTERFACE

- 1 ARINC CHANNEL
- 2 ANALOG CHANNELS
- 30 DISCRETES

e WITHIN SUT

- 300 VARIABLES
- 100 MODULES

00€

:ALL OUTPUTS ARE TO BE MEASUREABLE AS SPECIFIED BY INPUT PROCEDURE STATEMENTS, :
! IF NECESSARY, AT EACH AND EVERY ITERATION. |

15bL A

T0€E

uiC L A

TEST REQUIREMENTS

® PRIMARY OBJECTIVE
- TO GENERATE A TEST REPORT THAT

1. DEMONSTRATED THAT THE TOTAL SOFTWARE HAD BEEN VERIFIED
WITH “WHITE” BOX CONSIDERATIONS AGAINST SYSTEM
REQUIREMENTS

2. WOULD WITHSTAND AUDIT
e IN ADDITION
® EASY TO GENERATE TESTS & TO OPERATE TEST RIG

-~ SYSTEM ORIENTED TEST WRITERS NOT SKILLED IN SOFTWARE
TECHNIQUES

® EASY TO REVIEW & UNDERSTAND RESULTS
® REPEATABLE RESULTS, MAYBE YEARS LATER
® EASY TO MODIFY DURING PRODUCT LIFE - CYCLE

SUPPORT RELATIVELY LARGE TEST VOLUME & SUT VERSIONS

(40}

UL A

PROBLEMS OF A HARDWARE TEST ENVIRONMENT

o 3
CONTROL OF EXACTLY WHAT CAPTURE OF
QUANTITY OF
SCENARIO YOU WANT > DATA IN
SAME EVENT
® REPEATABILITY y

® CONFIGURATION CONTROL

€0€

THE SOLUTION CHOSEN

TOTAL SOFTWARE ENVIRONMENT

ONE CHANNEL ONLY

® DISSIMILAR CHANNEL BECOMES A “PHANTOM” CHANNEL
® USE SUT's OWN OUTPUT TO GENERATE DISSIMILAR CHANNEL's SIGNALS

VAX PLUS TEKTRONIX 8002 EMULATOR, LINKED BY COMMUNICATION LINE
ENGLISH LANGUAGE INPUT

PASCAL TRANSLATORS WITH ERROR CHECKING IN OFF - LINE MODE

DATA BASE PLUS DRIVERS

TEST OPERATING SYSTEM (TEST O/S)

® TEKTRONIX JCL :
® TEST O/S CONTROLLER

LOCAL DATA STORAGE WITH ON - LINE CONTINUOUS OUTPUT PRINT
REMOTE OUTPUT REPORT GENERATION IN OFF - LINE MODE
VAX CONFIGURATION MANAGEMENT & SUPPORT

RESOURCE CONSIDERATIONS
(STORAGE, RUNTIME)

Po€E

LdAL A

SIMULATION vs EMULATION

®2 FACTORS IN THIS CASE

® CERTIFICATION AUTHORITIES REQUIRED USE OF A REAL CPU RATHER THAN A
SIMULATED CPU

® TIME TO EXECUTE FULL-UP SOFTWARE IS IN SIMULATOR ENVIRONMENT
MUCH LONGER THAN IN EMULATOR ENVIRONMENT

EMULATOR WAS CHOSEN

e e cmmmn e (§3MH0UIAYD NOLYIAND 2008 XINOULN)) @n e emm— ww— l_ ANINNONIAN 1831 JWVMLJ0S = € 914
—>— TAOANT OAESS ’
(1ng) 183 _
wisun
FwvnLdos

I

salu0
31233810

e
= vive ﬁl.
AN

. ¥314NH02
TVI8Vd XVA
.
L aNDN r N\ "\
JUYRLI0E -
>
’ vira [
. seivay ANING vivO
AMel1Iond 2531

Jotwmiat 151

N (= =11 = TS
,?\\. A HEF el e K

s/0 1821 v

83A14234110
1831+

(T AR ILLE YOLVISRVEL

i o
¥0LVEINIG (1n8) 1331 90VHY
180434 A0 2NY ¥aonn

39vn1408
4311041802 ' $1041003
/0 1831 0 WA Iu0 - ‘
WAL 406 o e an J

|
0AVISVY | ™
»ngio - e aaes — L- ' uz.sb

VA | 1
._ = _ Han *|_® Han — u...__“w.,..._!

"""l

JRaN I 16s

305

90¢

oSt A

TEST ENVIRONMENT OVERVIEW

® INPUT PROCEDURES
® TEST CONTROL

® SENARIO DESCRIPTION
- ARINC
- ANALOG
- DISCRETE

® TRANSLATORS
® DATA BASES
® HARDWARE DRIVERS
® TEST O/S
® REPORT GENERATION
® ON-LINE
® OFF-LINE

LOE

04BL A

WARNING

I..._._WARNmG_._._._._._._._._._._._._._._._.ﬂ

THE PROPOSED SOLUTION

® SUT WILL NOT FULLY BEHAVE, IN SOME DETAILS, AS THOUGH REAL
HARDWARE WERE ATTACHED (RELEGATE TO OTHER TEST PHASES)

® WILL NOT RUN IN REAL TIME
® USES A SMALL AMOUNT OF CODE CORRUPTION
® ONLY APPROXIMATES INTERRUPTS

Lttt e =

HOWEVER

— LOGICAL PERFORMANCE OF SOFTWARE WILL BE DEMONSTRATED
— THE ABOVE LIMITATIONS CAN BE RATIONALIZED

v 190

ATAN3IY4 YIINIONI WILSAS e

308

SLINN SNIYIINIONI ANV ADOTONIWYIL WILSAS 40 3ISN e

ONILNIWNOO0A 4135 @

S$34YNA3IO0d LNdNI

Y oo BEGINNING OF AID SCENARIO -----

* SET TYPE CODE FOR 747-2pp

*

APL TYPE CODE - 9,1,1-18p; * Airplane type code.
APL TYPE CODE - 1,1,1-189
APL TYPE CODE - 2,p,1-189

- p,1,1-18p;

APL TYPE CODE
*

»

APL ON GROUND
APL ON GROUND
APL ON GROUND
*

2,IN AIR,1-41;
182, IN AIR,1-41;
1, IN AIR,1-4]1;

Put airplane in air.

VALID MANUAL COMD, MAN CMD, 8p; * Start manual trim.
*
§ * MANUAL TRIM DOWN

*

TRIM DOWN ARM CMD,TRIM DN,8p-83; * Exercise TRIM command.
TRIM DOWN CONT COMD,TRIM DN,8p-83,

TRIM UP ARM CMD,NO TRIM UP,8p-83,

IRIM UP CONT CMD,NO TRIM UP,8p-83;

—

»

{ AUTOTRIM ARM-C,DISARMED,361; Exercise Autotrim.
AUTOTRIM ARM-C,ARMED,42p;

AUTOTRIM ARM-C,DISARMED,44p

AUTOTRIM ARM-C,ARMED,47p;

AUTOTRIM ARM-C,DISARMED,49p;
*

END;
*hkk oo END OF AID SCENARIQ -----
*EEE .. BEGINNING OF ANALOG SCENARIO -----

* THIS SCENARIO PROVIDES THE ANALOG FEEDBACK OF

* RUDDER RATIO CHANGER FOR COINCIDENCE MONITORING
* OF CONTROL AND ARMS CHANNELS. STABILIZER
* POSITION IS SET AT p.P DEGREES & PROGRAMMED IN
* 'SIMULATE' MODE TO PROVIDE THE DYNAMIC ANALOG

* FEEDBACK OF THE STABILIZER HYDRAULIC MOTOR.
STABPO=SIM:1P0S=p ,MRATE=p.2,IRATE=p.P8 ,ITRIM=NO-TRIM,ISTATE=1,1;
PROVCA=TRACK-ON,1;

PROVCC=TRACK-ON,1;

END;

KEAE e END OF ANALOG SCENARIO -----

) L

FIG 4 - EXAMPLE OF TEST SCENARIO PROCEDURE

AR e BEGINNING OF ,TEST PROCEDURE -----

* TEST NUMBER: XG6pP1DPP

* 1p TEST OBJECTIVE:

* THIS TEST WILL VERIFY THE TRIM MODE PRIORITY LOGIC
* 2P TEST APPROACH RATIONALE*®

* THIS TEST WILL CHECK THE TRIM MODE PRIORITY BY
* SELECTING THE AUTO TRIM, MANUAL TRIM AND MACH/
* SPEED TRIM MODE AND DEMONSTRATE THAT AUTO TRIM
* SHALL -OVERRIDE MANUAL TRIM.

* 21 TEST RESULTS/SUCCESS CRITERIA:

*

*

*

*

L]

1 41 26

RSC# ITER# ARMODE SELFCC AUTENG CAUTVD LAUTVD AUTTUA AU TDA CONMOD MANMOD
o)

et iy

2 42 Ces)
3 47 pp
& _-\3_1
TT39 160 pa 91 ~p1
*3p 161 pa
SYSTEM = SAMARM; * Name of system.

FNAME: {XG&PPLDPR.TPK); * Name of procedure file.
LINKMAP: (DRCP: T.CPVCH.TOOLi]ARHIﬂl483.HTP); * Name of linkmap.
*

IFILES: ARINC = (XG6PpP1DPP) .ACK * Input scenario files.

AID = (XG6pP1DPP).I1DK
ANALOG = (XG6PP1DPP).ALK

OFILES: OUT1=(XG6PP1DPP.ACT); * Actual results file.
INTERMX=540: * Number of iterations, this test.
* 3P 'SELVAR', 'SELMOD' AND 'NOMFIT® STATEMENT TO HERE.
SELMOD: TRIM: * Select module "TRIM".
SELVAR: ARMODE ,SELFCC,AUTENG,CAUTVD,LAUTVD,AUTTUA,AUTTDA,

CONMOD ,MANMOD,VLDTDN,VLDTUP; * Measure these

variables.

*kk¥k

----- END OF TEST PROCEDURE -----
A - BEGINNING OF ARINC SCENARIO -----
Fcc,Fccc,(TDA=p,TDC=p,AELS=P,AERS=P,TUA=P,TUC=p,GRO=P ,UNSCHD+p),1:

FCC,FCCLR,(TDA=p,TDC=p,AELS=P,AERS=p,TUA=P,TUC=P,GRO=P,UNSCHD=P),1;
FCC,FCCLR,(TDA=1,TDC=1,AELS=1,AERS=1),41;

NOMFIT: 1-39, 181-219,361-399; * No measurements for iterations specified.

pp

MC,DADCP,34p,1; * Example: Set ARINC signal MC on :
MC,DADCS,34p,1; * DADC Primary and Secondary channels to 340 millimach.
VC,DADCP,149,1;
VC,DADCS,14p9,1; * Set ARINC signal AIRSPEED to 140 knots.
x*
END;
AR - END OF ARINC SCENARIO -----
— e T —

ONDIDIHD ¥0YY3 e

YVINAON e

XVA NI QilVY¥3IN3D INN-440 e

SYOLVISNVYL

311

AN

NOILdO TVYIIT1DAD e

LVWYO4 @aXdovd e

SISv8 TYNOILISNVYL e

S3sve vivd

312

v 180

A1A2A3A4 — Imax_{MS

FIG 5 ANALOG INPUT DISCRETE DATA FILE FORMAT
Al A2 } (1) —Pointer to Addr. (Hex. A1AZA3A4) of start of data
A3 A4
Al A2 } @_Repeat of 1 above. May be changed durinq table use
A3 A4 as current data pointer.
} @—Reserved
@_~_Number of iterations through which the software under test
Tmax (LS) } will perform before the data in this table is recalled
MS Byte from the beginning @
. — [teration # beginning at which the following data is
LS Byte ‘} @ to be providedgas chgnges g
1 23 (6)— (1) 4 Bits, Byte Index of 1/0 word, starting at 9
: 3 (2) 1 Bit, Value (1 or §)
17 3 (3) 3 Bits, Bit number in 1/0 word
1 2 3
1 2 3
/J\z,)*
12737
1 2 3 ly
F F —@ — End of Data Marker, for iteration @ above
MS Byte
LS Bffte }@—Next occasion of Data Changes, as (5) above
i g g ' (6-1)—Similar to @ above
(17 3]
1 2 3
1 2 31y
F F |—@-D—Similar to (7) above
MS_Byte
LS Byte } @
3 E&D
""“1-’?"3-* Similar to above
1 2 3
1 2 3 |y
F_F |—@D
; E } —End of A1l Data

313

HARDWARE DRIVERS

e MODULAR
® SIMULATE ACTUAL HARDWARE
e OUTPUT

e DATA BASE DRIVEN

® OUTPUT DEPENDENT
HOOKS

b1g
L

e CODE CORRUPTION
® DESIGN

® CALLED BY TEST O/S

® CALLED BY SUT

® ASSEMBLY LANGUAGE
- CPU DEPENDENT
- SUT DEPENDENT

9L A

TEST OIS

® BASIC FUNCTIONS
® PREPARE RAM AREAS

e LOAD
- SUT
- DRIVERS
- D/B’'s

SIE

® CHECK PROPER LOAD

® PERFORM & CONTROL TEST
- CYCLE COUNT & ON - OFF MEASUREMENT SYSTEM
- COLLECT DATA
- KNOWLEDGE OF MODULE BEING EXERCISED
- VARIABLES TO BE MEASURED
- CONTROL ON - LINE PRINTER

® UPLOAD RESULTS

WL A

VERSION:DRCO: (KAT.KAT1101ARM191483.TEK;1

H CHANNEL : SAMARM

91¢€

TEST 0/S: Vi@ @8 NOV 83 TEST CASES XG6001D0O PLACE OF TEST:EMDC2

; L INKMAP : DRC@: (KAT.CPVCM.TOOLSJARMI
ITERIIP] == — o e e e e e e e e e e e e e e e e T S e eSS
1/0IN 21

oLD

NEW

EXP
ITERGA4G-~---=----ccccccc—ccccccc e e e e e e e e e e e —mce - ce---ccccccccco-=o
TRIM P1ARMODE SELFCC AUTENG CAUTVD LAUTVD AUTTUA AUTTDA CONMOD MANMOD

oLD 29 -] -} -] -] "} "]} 20 29

NEW 23 29 g1 -1 -1 g1 gl 23 g1

EXP

1/00UT @10PRTOO OPRTO1 OPRT@2 OPRTA3 OPRTR4 OPRTES OPRTA6 SSTABP SS5TA

oLD

NEW At 74 68 DA 25 a3 66 E8 7

EXP
IREAY) IR LT e L L D o e L L L L L PR et P L L LR e E L DL L
TRIM B 1AFAODE SELFCC AW CAUTVD LAUTVD AUTTUA AUTTDA CONMOD MANMOD

oLD g3 -] o9 1) a1 gl a3 g1

NEW 26) -] -1} g1 gl 23 g1

EXP

1/00UT @10PRTRAO OPRTA1 OPRTE2 OPRTA3 OPRTO4 OPRTRS OPRTE6 SSTABP SSTABP+1

oLD

NEW AE 74 68 DA a5 a3 1 E8 49

EXP

EXP

1/00UT @10PRTESQ
D

OPRTA1
74

OPRTE2
68

OPRTA3
DA

OPRTH4

ITERBPE2~mmmm=m - vw e vt mmmm e wwa i —————— T T T WSy
TRIM FIARMODE SELFCC AUTENG CAUTVD LAUTVD AUTTUA AUTTDA MANMOD
oLD 26 a8 29 o8 o8 g1 g1 a1
NEW 26 g9 89 o8 88 a1 g1 81

¢ 1101 A

ATE

[

Z1FPM

058

TIME:

XG6001D00

TEST NUMPER:

Lo r—aT
W< N

~

FROGRAMHED VC (UNITS

- e e» E e W o= @ @B B e @ @ em e

|
[L7X < Q- = L
oSIZ O -
rcaw
oo
—Z 0w
T IO O
T IO >
—r —3
<T w==
< p— o
Th— I~
STl
= — [« 4V p]
b =] VU | il =

LCOXEXED>O
—>< = ZZ I_
NIOID—
S>>

P I L L Y
- <r < <
wt w [FU]UN]
< (=& I
b b b A+ttt

€ >€ »€ >€ >€ > >€ >€ >C3C >C DL PC>C >C € >CI2C>C ><

PR TR Ok 2 I R e R A . i o

PUPYE I Ik 2 2 T S e T R

LINE OUTPUT REPORT

VOOV L OO O L OO OO DO O OOD O
NalaNo Wa N SEVEMEMTEIarlorN o lasENaE allls XV o] e N o Ny a N
MO CSIDICHI M COHCITIMM NMAICINI MMM &Y

o oud oud o G o=d T4 Tl T4 gul T4 S=) G =l e G T = S G=9

IG 6A ON

F

oooooooooooooooooooo
ooooooo
e & s » o ® @ ® o ®» s ® & = & & o & e
ooooooooooooooooooooo
ooooooooooooooooooooo
CNCIONIONCION N ONONTIMNN CdON I ON N ONT 0N O O
L L K K _F K K K E X N K K X N K X £ XK _K__]

ooooooooooooooooooooo
et Ot St ot Tt ot Tt o T o Tl Tt T) et T Tt T T ot et
Tt ot Tt Tt et g T Tt Tl T Tl T S) T T G Tt Td =t >t
e L e e R e L b R e b e)

ST I IN DO OONS = NNCHE U OP 0 O
444444444455555&5555.

317

OPERATIONAL EXPERIENCE

® 2 DUAL - DISSIMILAR SYSTEMS

e 4 INDIVIDUAL SUT's

81¢€

4 TRANSLATORS) PASCAL

4 TEST O/S

16 DRIVERS

4 ON - LINE PRINT
CONTROLLERS

® 400 TESTS

-

| ASSEMBLY
LANGUAGE

® 5-6 VERSIONS EACH SUT

- 2000 SETS OF PROCEDURES

® C-M SYSTEM

® TEST S/R SYSTEM

L A

ADVANTAGES AND DISADVANTAGES

ADVANTAGES FOUND

® LOW SOFTWARE SKILL, HIGH SYSTEM KNOWLEDGE SKILLS
® LOW ENGINEERING EXPERIENCE TO OPERATE TEST SET

® FAST TEST GENERATION & DE -BUG

® TEST PROCEDURES UNDERSTANDABLE PROJECT WIDE

SELF - DOCUMENTING

61€
o

® REPEATABLE
® MACHINE STORABLE
® TEST SYSTEM MODULAR IN DESIGN

DISADVANTAGES FOUND

® HIGH INITIAL INVESTMENT
® SPECIAL SKILLS TO DEVELOP & MAINTAIN TEST SUPPORT SOFTWARE

1MAL A

isn PRNLNY o

13N SINIWIYIND3IY TVILINI e

SNOISNTONOD

320

CLUE
a program and test suite evaluation tool for C

Dr. David B. Benson

BENTEC
NE 615 Campus Street
Pullman, Washington 99163

Abstract

CLUE is a statement count profiler for C programs in Unix (tm AT&T) environ-
ments. Statement count profiles are used in debugging and evaluating software
and determining the extent of code coverage by a test suite. CLUE instruments
C language source in a manner which does not change the functionality of the
software being evaluated. CIUE uses the C campiler available at the test
site. This means the same compiler used for design and coding is used in the
evaluation. CUE is easy to use, requiring minimal reading before starting.
The paper explains some of the uses of CLUE via an extended example, and gives
a detailed evaluation of CLUE.

Profiling for Evaluation

Profiling serves an important role in software quality assurance. Typi-
cally profiling is done for timing measurements. However, counting the number
of times lines, statements, or routines are invoked enables the evaluator to
determine the adequacy of the tests performed and the extent to which the pro-
gram is exercised by the test suite. The counts may be used to determine
whether the tests exercise all of the code, which portions of the program are
exercised at all, and whether the algorithms embodied in the code are perform-
ing as expected. Thus execution counts are used to evaluate the test suite and
the program at the same time.

Execution count profilers may count routines, lines, or statements. The
count of routine calls during test provide an overall coarse—grained view of
program execution. Routine call counts are an important tool for the software
designer and the software evaluator. The 'gprof' profiler available in Unix
bsd 4.2 provides call counts together with other information. Other aspects
of evaluation require a fine—grained view of program execution; the individual
statements forming the grain size. Line counts are adequate for the study of
small programs, but software engineering principles require the counts to be
accumulated for each statement, even if several statements are placed on the
same line of the source code. This requires reformatting the source code when
producing the report. C 1language routines need not return in the Unix
environment since the routine body may invoke exit(), _exit(), longjmp(), or
may fail, transferring to a signal processing routine. Therefore the line of

321

code
x = foo(x); y = foo(y);
in the source file needs to be displayed in the statement count report as

100 X
99 y

foo(x);
foo(y):

and in this hypothetical case, some call to foo() failed to return. CLUE pro-
vides a reformatted report so that each executable statement appears on its
own line with the count of the number of executions of that statement. The
source appearing in the report is beautified, to maintain or enhance the rea-
dability of the original source text.

The statement count profile report provides the basis for a number of
other reports useful to the evaluator. Code coverage is a basic measure of
the adequacy of the test suite used to evaluate the software. CILUE provides a
code coverage report by program, source file, and function. The evaluator is
also interested in code which has either unusually large or unusually small
execution counts. CUE provides a filter enabling the evaluator to easily
locate the statements reporting any percentage range of the total counts.
These and other report types are discussed in the sequel.

The evaluator typically uses the code coverage report to determine test
suite adequacy. If the test suite is inadequate, the report of code sections
not executed by the test suite aids the evaluator in devising additional tests
for the test suite. Of course, some code may not be executable by any test,
in which case the designer or coder needs to be informed. Code with large
statement counts is also to be viewed with suspicion.

If the software product is perfoming poorly, the algorithms may need
changing. Occasionally, large statement counts are simply the result of poor
or incorrect coding, even if the product meets the time performance specifica-
tion.

In addition, there are various standards checks which are based on the
statement counts. I give an example when discussing some evaluations based on
CLUE.

Using CLUE

One first must produce the instrumented program from the C source files.
Simply use 'procc' wherever ‘'cc' would ordinarily appear. For example, a
makefile may contain the CC macro format. The CLUE user can simply change
this line to

CC = procc

and then make the program in the usual way. If the makefile uses the .c.o
dependency it suffices to modify this line to read

322

.C.0: procc <whatever cc arguments already appear.>

If 'cc' is used for loading, the above changes will suffice in most
cases., If '1d' is used to produce the executable image, one must change the
occurrences of 'ld ...' to 'ld ... -lclue' to include the CLUE instrumentation
runtime support. If the makefile uses the ID form it is best to change this
line to

LD = procc
to avoid various confusions about the loader.

Occasionally one runs into problems with using a 1library containing
'main'. Since the CLUE runtime instrumentation support must be the first to
gain control, the libclue.a library contains a definition of 'main'. Therefore
it is necessary that -lclue appear before any other -1 flags to the loader for
libraries which contain a definition of 'main'. The cammand ‘'procc' places
-lclue last, so that all the .o files made by procc have the rest of the run-
time instrumentation linked in. These restrictions make it necessary to
directly invoke 'cc' or 'ld' to obtain the executable images. This annoyance
will be fixed in a later release of CLUE.

There are flags for procc so that only routines 1listed in the ‘'procc'
comand line are instrumented. Instrumented .o files may be linked with ordi-
nary .0 files in forming the resulting executable image. This feature results
in' smaller files, shorter reports, and faster execution times. The usual
evaluation practice is to instrument all the routines, selecting the desired
information from the resulting report.

Once the instrumented program has been made, there is a .i file in the
making directory for every .c file used in the make. The .i files have all
the preprocessor includes expanded, just in case there is any executable code
in the include files. All C source in the include files will appear in the
statement count report.

The instrumented program is now run on one or more test cases. The pro-
filing information is accumulated in a file named 'profile.lc'. This file is
highly condensed in order to save file write time. The information is
appended to the file, so that summary data from a test suite is particularly
easy to obtain. The CLUE user might wish to move the file after one series
before beginning another. The report generator has facilities to cope with
several files profiling information.

Finally, the CLUE user runs the report generator and filters. The report
generation cammand ‘'prolc' takes the statement count information from the
profile.lc file and the C source from the .i files to produce a report on the
files in which any function has been executed during the test run or runs. If
the information from several renamed profiling information files is desired,
the comand form is

prolc -d [file ...]

323

and the camand acts as if the files were concatenated. The statement counts
appearing in the report are the sums of the counts from all the listed files.

For evaluation one usually requires a report based on all the C files
comprising the system. For programs with only a few files one may simply list
all the .i files after the -f flag. For example,

prolc -f c.i d.i

will base the report on the files c.i and d.i, even if no routines in one of
the C files are executed in the course of the tests. Large systems require
too many C files to make the -f flag practical. CIUE enables the report to be
based on one or more "listfiles" via the -1 flag. The fomm is

prolc -1 listfile ...

A listfile is a list of .i file names on which the report is to be based.
Anything else may also appear in the listfile. A listfile is readily derived
from a makefile by replacing all occurrences of '.0' by '.i' within the
makefile. The Unix stream editor is quite useful here, allowing the listfiles
to depend upon all the makefiles in all directories defining a system.
Indeed, for large projects, we recamend that the listfiles be created in a
make which keeps track of the dependencies upon the entire collection of
makefiles defining the system.

A small example of a makefile appears in Listing 1. This makefile has
been set to use 'procc -C' via the CC line. The -C flag means that camments
will appear in the .i file and so also in the report. The makefile was edited
to produce a file named 'fnamesf', appearing in Listing 2. The only editing
was to globally replace '.0' by '.i'. This listfile is then used in the com-
mand

prolc -1 fnamesf
to define the C files comprising this system to the report generator.
$ cat makefile
CFLAGS =
CC = procc C
system: c.o d.o
${CC} c.o0 d.o -0 system
c.0: c.h
Listing 1.
The statement count report consists of several fields of information, one

row for each 1line of source in the defining .i files, and additional lines

324

$ cat fnamesf
CFLAGS =
CC = procc -C

system: c.i d.i
${CC} c.i d.i —o system

c.i: c.h

Listing 2.

whenever more than one executable statement appears on the same line of the .i
file. The first field defines the line type via the one character type key:

file name

text outside function definitions

beginning of function definition
nonexecutable text in a function definition
executable statement with non-zero count
executable statement with zero execution count

NXSHO™D™

The line type key makes special report generation easy. The second field
repeats the name of the function throughout the function definition. The
third field numbers each line in each function definition. The fourth field
is the execution count for executable statements. The final field is the
source text derived from the .i files. Examples of the report are in Listings
3, 7, and 8.

CWE includes several filters and generators to present particular infor-
mation from the statement count report. The most popular generator is 'lcp’,
which produces a code coverage report by system, by file and by function.
Listing 4 provides an example. The most popular filter is 'lcf', which easily
enables the user to reformat the statement count report, selecting information
of particular interest to present. The generator 'lch' generates histograms
of statement count data. The generator 'lct' provides statement count totals
by system and function. The filter 'lcr' enables the user to select a range
of counts for which the corresponding C statements are of interest.

Debugging Example

This example occurred when I was first preparing the next example for the
paper. I wrote the 1little program 'bad.c' and attempting to execute it in
preparation for running CLUE to produce the intended example. As Listing 3
shows, the program died with a bus error. My experience has been that I can
find the fault faster by using CLUE than by using a symbolic debugger.

First I removed 'profile.lc' just in case it was filled with information
from a previous use of CLUE. Then I ran 'procc -C' to instrument the program.

325

The —C option was included to keep the comments for the illustration in List-
ing 3. Ordinarily I do not use the -C option. I then ran 'prolc' to produce
the report shown in Listing 3. Notice that in routine 'main', lines 6 through
11 are the body of a for loop which obviously should be executed exactly 6
times. Clearly the bus error occurred during the sixth call to ‘'malloc'.
Inspection of the argument to 'malloc' shows that the argqument to 'sizeof'
returns the size of a pointer. This argument should be the size of the struc-
ture. Repairing this by removing the extraneous '*' results in a running pro-
gram, the basis for the next example.

Evaluation Example

This example results fram the evaluation of a useful software package. I
have reduced the problem to its essence to form the example, keeping the file
and program structure faithful to the original. The package involves many C
files, which I have reduced to two for the example. In addition there is one
header file included. The header file and the file 'c.c' are given in listing
4. The file 'd.d' is shown in Listing 5. The package ran correctly, but was
intolerably slow for long inputs. The example will show why. The evaluation
using CLUE begins by making a copy of all pertinent files in a directory for
the CWE evaluation. In this case I used the subdirectory 'example' of the
directory 'test'. I began by modifying the makefile to use 'procc -C'. The
resulting makefile is given in Listing 1. I then made the listfile named
'fnamesf' in Listing 2 by changing all occurrences of '.o' to '.i'. I next
instrumented and ran the program. The script is given in Listing 6. I keyed
the 'make system' and make responded with the invocations of 'procc'. I then
keyed 'mm profile.lc' to be sure that the standard statement count information
file was removed, since the instrumentation always appends to ‘'profile.lc'.
Finally, I keyed 'prolc | 1lcp' to obtain the code coverage percentage report
by piping the statement count report produced by 'prolc' directly into 'lcp'.

The report in Listing 6 shows a dismaying low percentage of code exe-
cuted. In the entire system, only 65 of the executable statements were exe-
cuted, the exact number being 13 executed and 7 unexecuted. In the first C
file, about 81 of the executable statements were executed. Within this file,
the routine 'process_node' had 2 statements unexecuted, the routine 'main' was
campletely executed, and the routine 'post_finish' was not executed at all.
In the second C file, there is only one routine, which was not executed. All
this suggests which routines to 1look for problems. The CWE filter 'lcf’
would enable one to look at one routine at a time. This example is short
enough, however, that I chose to look at the entire statement count report.
The report appears in Listing 7 and Listing 8. It has been split into two
listings since it is too long to fit on one page.

The routine 'main' begins halfway down Listing 7. The routine builds a
list of 6 nodes containing information. In this example the information is
simply the node number. In the system upon which the example is based, the
length and content of the list depended upon the input. At the end of 'main',
the routine 'process_nodes' is called. This routine appears in the top half
of 1listing 5. This routine was intended to process the information in each
node exactly once. However, the routine is recursively called, with a total

326

$ cc bad.c -0 ba
$ bad

Bus error (core
$ procc -C bad.c
$ m profile.lc
$ a.out

4
dumped)

CLUE: Abnormal termination with signal 10
Line counts saved.

$ prolc

F /users/dbenson/test/example/bad. i

c c@Plbad. i

c cPPlbad.i

c cPPlbad.i

c chPlbad.i

f process_nodes
n process_nodes
n process_nodes
n process_nodes
z process_nodes
z process_nodes
n process_nodes

*/

z process_nodes
n process_nodes
z process_nodes
z process_nodes
n process_nodes
z process_nodes
n process_nodes
f main

e
BWNMNHRBVLONYN AUVBLBWNHIWNHS

n main 1
n main 2
n main 3
X main 4
X main 5
n main 6
X main 7
(sizeof (struct node_list
x main 8
X main 9
X main 10
n main 11
n main 12
n main 13
Zz main 14
n main 15
z main 16
n main 17
Listing 3.

*))i:

struct node_list {
int node;
sj:truct node_list *next;
@ void
process_nodes (list)
struct node_list *list;

if (list==0)
return;
/* obtain information from node...

=

v{vhile (list->next!=0)
process_nodes (list->next) ;
list = list->next;

= m®

}

] return;
}
1 main() {
int i;
struct node_list * head, *cur;

cur = (struct node_list *) 0;
for(i=0; i<6; i+)

head = (struct node_list *) malloc
head->node

head->next
cur = head;

nu
-
<e°

cur;

(S NS, NS, (=] = =

}

/* other statements... */
B H

)] process_nodes (head) ;

327

$ cat c.h
#define NIL, 9
$ cat c.c
#include "c.h"

struct node_list {
int node;
struct node_list *next;

}:

void
process_nodes (list)
struct node_list *list;

if (list==NIL) {
post_finish();
return;

/* obtain information from node... */
while (list->next!=NIL) {
process_nodes (1list->next) ;
list = list->next;
}

return;

}

main() {
int i;
struct node_list * head, *cur;

cur = (struct node_list *) NIL;

for(i=0; i<6; i+) {
head = (struct node_list *) malloc(sizeof (struct node_list)};

head->node = i;
head->next = cur;
cur = head;

/* other statements... */ ;
process_nodes (head) ;

}

post_finish() {
remove_node_list () ;
}

Listing 4.

of 32 calls. Noting that 2**(6-1) = 32, we guess that the nodes are actually
visited as if they formed a binary tree. The problem is in lines 10 and 12 of
'process_nodes'. One designer had decided the routine should recursively
traverse the list while another had decided to iteratively traverse the list.

lists of length 8 or more.

$ cat d.c

struct node_list {
int node;
struct node_list *next;
}:

remove_node_list (head)
struct node_list * head;
{

struct node_list * next;

while(head!=0) {
next = head->next;
free (head) ;
head = next;
}

Listing 5.

$ make system

procc -C -C c.cC

procc -C - d.c

procc =C c.0 d.0o -0 system
$ m profile.lc

m: profile.lc nonexistent
$ system

$ prolc -1 fnamesf | lcp
Code Coverage x, 2z, X:(x+z)

/users/dbenson/test/example/c. i
process_nodes
main
post_finish
/users/dbenson/test/example/d. i
remove_node_list

Listing 6.

in line 10 by ‘if°.

329

VoUW

o HFRNDW ~

The result was the unbelievably slow performance of the actual system for
This problem is repaired be replacing the 'while'

There is another problem resulting from the structure of this routine.
Since the execution of the while loop is dependent upon the existence of

$ prolc -1 fnamesf

F /users/dbenson/test/example/c.i

c chflc.i e
c chflc.i 1
c chflc.i 2
c chflc.i 3
c chflc.i 4
f process_nodes 0
n process_nodes 1
n process_nodes 2
n process_nodes 3
X process_nodes 4
n process_nodes 5
z process_nodes 6
z process_nodes 7
n process_nodes 8
n process_nodes 9
X process_nodes 10
n process_nodes 11
X process_nodes 12
X process_nodes 13
n process_nodes 14
X process_nodes 15
n process_nodes 16
c chf2c.i 0
f main ()
n main 1
n main 2
n main 3
X main 4
X main 5
n main 6
X main 7
(sizeof (struct node_list));
X main 8
X main 9
X main 10
n main 11
n main 12
X main 13
X main 14
n main 15
c cPf3c.i e
f post_finish ()
z post_finish 1
n post_finish 2
Listing 7.

struct node_list {

int node;
?truct node_list *next;
;

32 void
process_nodes (list)
struct node_list *list;
{
32 if (list=0)
{
) post_finish();
(/] return;
/* obtain information from node... */
32 while(list->next!=0)
{
31 process_nodes (list->next) ;
31 list = list->next;
}
32 return;
}
1 main() {
int i;
struct node_list * head, *cur;
1l cur = (struct node_list *) 0;
1l for(i=0; i<6; i++)
6 head = (struct node_list *) malloc
6 head->node = i;
6 head->next = cur;
6 cur = head;
/* other statements... */
1 :
1 process_nodes (head) ;
}
@ post_finish() {
"] remove_node_list();
}

330

F /users/dbenson/test/example/d. i

c cPPs5d. i e
c cPhps5d. i 1 struct node_list {
c chPs5d.i 2 int node;
c cPd5d.i 3 struct node_list *next;
c cPpPsd. i 4 }:
c c@p5d.i 5
f remove_node_list /) @ remove_node_list (head)
n remove_node_list 1l struct node_list * head;
n remove_node_list 2 {
n remove_node_list 3 struct node_list * next;
n remove_node_list 4
z remove_node_list 5 0 while (head!=0)
n remove_node_list 6 {
z remove_node_list 7 () next = head->next;
z remove_node_list 8 0 free(head);
z remove_node_list 9 0 head = next;
n remove_node_list 10 .}
n remove_node_list 11 }
Listing 8.

another node in the list, 'process_nodes' is never called with an empty list,
so the routine 'post_finish' was never called on line 6 of 'process_nodes'.
The routine 'post_finish' is at the bottam of Listing 7. In the actual system
there was considerable cleanup activity. I have just shown the call to
'remove_node_list' in the example.

The routine 'remove_node_list' is shown in Listing 8. This routine sim-
ply frees the entire node list, preparing for another round of input. The
problems with 'process_nodes' meant that it was never called.

The problem of failing to free all dynamically allocated storage happens
in many software projects. It is a source of subtle errors as well as the
frustrating out-of -memory error. With the increasing use of virtual storage,
it is often difficult to detect this problem during evaluation. The CLUE
statement count report provides a simple means to assure that all dynamically
allocated storage has been freed. The idea is straightforward: Sum the counts
of all calls to 'malloc', sum the counts of all calls to 'free', and campare
the totals. Listing 9 is a sample shell script to do this. The statement
count reports are '.scr' files by convention, so the camand line input to
'balance' is just the project name. The shell script uses the stream editor
'sed' to select just the lines of the report in which 'malloc' appears, plac-
ing these in a '.malloc' file. The shell script uses 'awk' to campute the sum
of the statement counts in the '.malloc' file. The command file for 'awk' is
shown in Listing 10.

A similar process is carried out for lines containing ‘'free'. If the
totals are equal a pleasant message is printed and the extra files are

331

$ cat balance
: check that number of 'malloc' calls equal the number of 'free' calls.
sed -n -e /malloc/p $l.scr >$l.malloc
mallocs="awk -f awktotal $l.malloc’
echo "mallocs: Smallocs"
sed -n -e /free/p $l.scr >$l.free
frees="awk -f awktotal $l.free'
echo "frees: $frees"
if test Smallocs -eq $frees
then
echo 'number of malloc calls equals number of free calls'
m $l.mallocs
m $l.frees
else
echo Thkhkkhhkhkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkkkhkkhkkhkkhkkhkhkkhkkkhkkhkkkhkkhkhkkhkkkkkhkkkkkkkk!
echo 'STANDARDS VIOLATION: number of malloc calls and free calls differ'
echo '!
echo 'mallocs:’
cat $l.malloc
echo !
echo 'frees:'
cat Sl.free
fi

Listing 9.

$ cat awktotal
{ total = total + $4 }
END {print total}

Listing 10.

removed. If the totals are not equal, a less pleasant message is printed and
the two files are listed for the evaluator. Listing 11 shows the run of 'bal-
ance' on our example system.

The shell script 'balance' also illustrates the variety of tools avail-
able in Unix to process text files such as the CLUE statement count report.
We have included several filters and generators in the CIUE package, but urge
each evaluation group to develop additional generators such as 'balance'.
These are easily written with the Unix utilities such as 'sh', 'sed' and
'awk'. Widely used generators will be incorporated in subsequent releases of
CLUE.

The CWVE filter 'lcf' is used to select information from the statement
count report, reformat the statement count report, and change the type keys to

332

$ prolc >system.scr

$ balance system

mallocs: 6

frees: 0

KRR RRKRKRRKRRRKRKRRKkRAkkkhkkkhkkkhkkhkkkhkkkkkhkkkhkkkkkhkkkkkkkkkkkkkkkkkk

STANDARDS VIOLATION: number of malloc calls and free calls differ

mallocs:

X main 7 6 head = (struct node_list *) malloc
frees:

z remove_node_list 8 free(head);

Listing 11.

preferred characters. Listing 12 demanstrates these features. The camand
line selects just the routine 'process_nodes' via the -s flag. In addition,
we select just the type keys (ty), a blank (b), and the source line (sl) via
the -f flag. Finally, the type keys are translated via the -t flag. All the
type keys which type lines in a function definition are translated to blank,
except the 'z' type key which is translated to '*', The result is a code cov-
erage report in which the unexecuted statements are conspicuous.

$ prolc | 1lcf -s process_nodes -f ty b s1 -t f: n: x: 2z:*
void
process_nodes (list)
{ struct node_list *list;

if (list==0)
{
* post_finish();
* return;
}
/* obtain information from node... */
while(list->next!=0)

{
process_nodes (list->next) ;
list = list->next;

}

return;

Listing 12,

Additional reports may be obtained from the CLUE generators 'lct', 'lch’,
and the CQWE filter 'lcr'. When considering performance, we are partial to

333

reports which highlight heavily used statements. The filter 'lcr' selects a
range of counts, by percentage of the total counts, for highlighting. The
type keys within the range remain 'x' in the output of 'lcr' while the type
keys of executed statements outside the range are changed to 'p'. The result
is usually piped through 'lcf' to reformat before viewing.

In Listing 13 we have an example in which the most frequently executed
85% of lines are selected by 'lcr -1b 15' (the lower bound of the desired
range is 15%) and the result piped to 'lcf' In 'lcf' the selection is done by
the type keys via the -k option. The report keeps only the 'x' type lines.
In addition, the resulting report consists only of the function name field
(fn), a blank (b), and the source line (sl), on the camand line after the -f
flaq.

$ prolc | lcr -1b 15 | 1cf =k x -f fn b sl

process_nodes if (list=0)

process_nodes while(list->next!=0)
process_nodes process_nodes (list->next) ;
process_nodes list = list->next;
process_nodes return;

Listing 13.

Of course in our example, almost all executions occur in the function
'process_nodes'. All the remaining counts fall in the lowest 15% of all exe-
cutions and 'lcr' has converted the type key on these lines to 'p'. So the
selection in 'lcf' eliminates such lines fram the resulting report. In more
substantial programs, similar reports are often quite valuable and surprising.

Our last example is a call count report, given in Listing 14. Each type
'f' line in the statement count report begins a routine definition. Counts of
function entries reported on these lines. We select the file name 1lines and
the function header lines of the report via '-k F f' and reformat them as the
statement count (lc), a blank (b), and the function name (fn) after the -f
flag. Notice that the file name lines are not reformatted. The result is a
report of the number of times each routine was called, headed by the file in
which the routine is to be found.

$prolc | 1cf =k F £ -f 1c b £n
F /users/dbenson/test/example/c.i
32 process_nodes
1 main
@ post_finish
F /users/dbenson/test/example/d. i
? remove_node_list

Listing 14.

334

There are still more uses for a properly designed statement count report.
The CWE User's Manual describes several additional uses for the CLUE state-
ment count report in connection with the filters and generators. References
[1] and [2] present other uses of statement count profilers.

Design Criteria: Evaluation of CLUE

Foremost, a statement count profiler must provide accurate counts under
all conditions, while maintaining the functionality of the original code.
CLUE maintains the original function of the code with a few insignificant
exceptions: CWUE writes an additional file for the profiling information.
CLUE issues signals to trap all the terminating errors so that the profiling
information file can be written before program termination. Any signals
issued by the original code override the CLUE signals, so the original func-
tion of the signal processing routines in the instrumented code is maintained.
CLUE requires a working 'malloc' to provide storage for the count accumula-
tions. Thus the instrumented code uses more storage than the uninstrumented
code. If the original code functioned correctly only in isolation with its
own pattern of 'malloc' storage allocation calls, then it is unlikely to func-
tion correctly when instrumented by CLUE. I view this positively, since any
change to 'malloc' is likely to cause such a program to stop working. Such a
program is not robust.

CLUE provides accurate counts, again with a few minor exceptions: state-
ment counts of one billion (10**9) or more are reported as "infinity" in the
report. CIWUE uses the 'sigalrm' alarm clock signal to time writes to the
profiling information file in order to guarantee accurate counts for programs
which run a very long time. Each time the alarm goes off (currently set at 20
minutes) the counts are written out and the counts reset to zero. If the ori-
ginal program uses the 'sigalmm' signal, this protection is 1lost and the
counters could conceivably overflow, losing count accuracy. CWUE will report
counts of all forked processes provided all the descendant processes terminate
before the report generator is run. Finally, if CIUE is used to instrument
'malloc’', the counts will include the uses of 'malloc' by the instrumentation.
Similarly, if any of the other operating system services which CLUE requires
are instrumented, the counts will include the uses by CLUE. CWUE is designed
to function under the most stringent of conditions. The experience to date
suggests that it does.

The second design criterion for CIWUE was simplicity for users. While
simplicity is certainly a matter of individual judgement, we feel we have suc-
ceeded in making CLUE easy to understand and use. The software engineer
instruments programs by using 'procc' wherever 'cc' is ordinarily used to com-
pile C programs. After the executable image is run, the report is obtained by
invoking 'prolc'. This suffices to begin using CLUE. The additional features
can easily be acquired as one uses CIUE by reading the on-line manual pages
provided. The CWE User's Manual contains all the details, but like most
manuals, tends only to be consulted when unusual uncertainties arise. The
additional features are specifically intended for the professional evaluator.
As need for yet further features arise, we intend to add such to later
releases of CLUE.

335

Users have mentioned that the use of the .i files clutters their direc-
tories. A future release of CLUE will eliminate the .i files, simplif¥ing
CLUE at the expense of additional time to run the report generator, 'prolc'.

The last design criterion was speed. The instrumented code runs longer
than the original software. Long instrumented programs require about 120% of
the original time. Very short programs can take up to twice as long to run
when instrumented, as the profiling information file write time dominates.
The counts are incremented only once per "block" of straight-line code to cut
down on the excess time due to the instrumentation. This helps a bit, but C
code rarely has long sequences of statements without a function call, and we
begin a new block after each function call. The majority of the excess time
is the result of writing the profiling information file. Not much can be done
to improve the file write time while still maintaining the strict accuracy of
the statement counts, the simplicity of use, and the clean directories.

Instrumenting C source with 'procc' requires about two and one-half as
much time as just campiling via 'cc', running under bsd 4.2. The ratio is
better when running under Eunice (tm The Wollogong Group). We believe that
eliminating the .i file will improve the performance of 'procc’.

While speed is appreciated, robustness and simplicity are our primary
goals. The software designer and evaluator will have little difficulty in
using the tool and will have confidence in the results.

Other Evaluations of CLUE

CLUE is reqularly used to instrument itself. We have a regression test
suite of about 200 tests. Running the instrumented version of CLUE on the
regression test suite results in an eight megabyte 'profile.lc' file. We use
the statement count report to determine what portions of the code have not
been exercised by the regression test suite, and where the inefficiencies lie.
When a new release of CLUE is made, the regression testing statement count
report may suggest new tests to cover the revised code.

CLUE is reqularly used for much these same purposes by software engineers
in other organizations. In general it has performed well over the last twelve
months. The largest system that CLUE has instrumented to date, as far as I
know, is a 199,000 line software product. CLUE failed to instrument two of
the modules because the block nesting of these modules was already near the
limit of the compiler. CLUE adds additional levels of block nesting to main-
tain the original functionality of the C code. On the remaining modules,
CLUE provided the required information. Size is not an issue for CLUE, so
long as enough file space is provided.

A few faults with CLUE have been uncovered in the twelve months since the
conclusion of the beta testing. These have been reworked. Of course, test
cases for these faults have been added to the regression test suite.

Overall, the design seems to be appreciated by CWE users. CWE has
proved to be a robust and simple tool for debugging and evaluation. It is

336

well integrated into the Unix environment, incorporating the Unix style of
simple programs which do one thing well and which fit together easily. The
practicing software engineer and software evaluator will enjoy using CLUE and
have high confidence in the results.

Acknowledgements

I heartily thank Doug Gregory, Keith Koplitz, Craig Thamas, Brian Carlson, and
Clay Breshears for their work on CLUE. I sincerely appreciate the assistance
of Tektronics Logic Design Systems and DATA I/0 in the beta test, and thank
the software engineers at both organizations for their aid and suggestions. I
also want to thank Kelly Whitmill of Burroughs and Robert Wells of BBN for
suggestions and patience.

Availability

CLUE is currently available for the Unix operating system varieties
bsd 4.1
bsd 4.2
Eunice

on VAX (tm DEC) hosts. Object and source licenses may be obtained only fram
the distributor:

Oasys

60 Aberdeen Avenue
Cambridge, Massachusetts 02138.

References
[1] J. L. Bentley, Writing Efficient Programs, Prentice_Hall, 1982.

[2] L. R. Power, Design and use of a program execution analyzer, IBM Systems
Journal v. 22 (1983), 271-294.

337

BIOGRAPHY

David Benson

David B. Benson received his BS, MS, and PhD in engineering, science and
mathematics from the California Institute of Technology. He spent some time
in the defense industry designing information systems during this period.
Dr. Benson has taught at the University of North Carolina at Chapel Hill,
Washington State University at Pullman, the University of Colorado at Boulder,
and in 1983 was briefly at the University of Edinburgh in Scotland. Since
1979, David Benson has been Professor of Computer Science at Washington State
University. He has published over 30 professional papers and lectured in
Canada, Europe, Japan, and India. In 1984 he formed BENTEC, of which he is
a general partner, to provide high-quality software tools to the software
industry.

338

LUE

statement
count
profiler

NEG18Ca s STR
PULLMAN, WA 9916
(S09) 332-31684

339

CLUE

consists of

prolc
procc

and

Icf lcp

ich ler lct

procec

inst ruments,

compiles
using your
C compiler.

341

a.out

counts
appended to

profile.lc

342

prolc

statement
count
report

343 5

.i files

libclue.a
=lclue

NE G615 CAMPUS STREET
PULLMAN, WA 99163
BENTEC o

$ cat makefile
CFLAGS =
CC = procc =C

system: c.o d.o
${CC} c.o0 d.o -o system

c.0: c.h

$ cat fnamesf
CFLAGS =
CC = procc =C

system: c.i d.i
${cC} c.i d.i -o system

c.i: c.h

345

NEG15 CAMPUS STREET
PULLMAN, WA 991863
(S09) 332-3164

cc bad.c -o bad

bad

Bus error (core dumped)

procc —C bad.c

m profile.lc

a.out

CLUE: Abnormal termination with signal 10
Line counts saved.

prolc

F /users/dbenson/test/example/bad. i

c c@flbad. i) struct node_list {

c cPflbad. i 1l int node;

c cPhPlbad.i 2 struct node_list *next;

c cPPlbad. i 3 }:

f process_nodes) f void

n process_nodes 1 process_nodes (list)

n process_nodes 2 struct node_list *list;

n process_nodes 3

z process_nodes 4 () if (list=0)

z process_nodes 5) return;

n process_nodes 6 /* obtain information from node... */
z process_nodes 7 (] while (list->next!=0)

n process_nodes 8 {

z process_nodes 9 () process_nodes (list->next) ;
Z process_nodes 10 () list = list->next;

n process_nodes 11 }

z process_nodes 12 () return;

n process_nodes 13 }

f main (/) 1 main() {

n main 1 int i;

n main 2 struct node_list * head, *cur;
n main 3

X main 4 1 cur = (struct node_list *) 0;
X main 5 1 for(i=0; i<6; i++)

n main 6 {

X main 7 6 head = (struct node_list *) malloc(
sizeof (struct node_list *));

X main 8 5 head->node = i;

X main 9 5 head->next = cur;

X main 10 5 cur = head;

n main 11 }

n main 12

n main 13 /* other statements... */

z main 14 0 :

n main 15

z main 16 0 process_nodes (head) ;

n main 17 }

NE 615 CAMPUS STREET
PULLMAN, WA 99163
BENTEC o

346

$ cat c.h

#define NIL 0

$ cat c.c

t¢include "c.h"

struct node_list {
int node;
struct node_list *next;
};

void
process_nodes (list)
struct node_list *list;

if (list=NIL) {
post_finish();
return;

}
/* obtain information from node... */
while (list->next!=NIL) {
process_nodes (list->next) ;
%ist = list->next;

return;

}

main() {
int i;
struct node_list * head, *cur;

cur = (struct node_list *) NIL;
for(i=P; i<6; i+) {
head = (struct node_list *) malloc(sizeof (struct node_list));
head->node = i;
head->next = cur;
cur = head;

}
/* other statements... */ ;
process_nodes (head) ;
}

post_finish() {
remove_node_list();
}

NE 615 CAMPUS STREET
PULLMAN, WA 99163

BENTEC e

$ cat d.c

struct node_list {
int node;
struct node_list *next;
}:

remove_node_list (head)
struct node_list * head;
{

struct node_list * next;

while (head!=8) {
next = head->next;
free (head);
head = next;
}

e
BENTEC

348

NEG1S CAMPUS STREET
PULLMAN, WA 99183
(S09) 332-3164

10

make system

/users/dbenson/clue/src/procc —C

/users/dbenson/clue/src/procc —C
-C

/users/dbenson/clue/src/procc c.o0 d.o —o system
m profile.lc
m: profile.lc nonexistent
system
prolc -1 fnamesf | lcp
Code Coverage x, z, x:(x+z) 13 7 65.00 %
/users/dbenson/test/example/c.i 13 3 81.25 &
process_nodes 5 2 71.43 &
main 8 P 100.00 %
post_£finish) 1 .00 %
/users/dbenson/test/example/d. i 0 4 0.00 %
remove_node_lis) 4 0.00 %

NE 615 CAMPUS STREET
PULLMAN. WA 99163

BENTEC e

349

prolc -1 fnamesf

F /users/dbenson/test/example/c. i

c chflc.i 0
c chflc.i 1
c chflc.i 2
c chPlc.i 3
c chflc.i 4
f process_nodes 0
n process_nodes 1
n process_nodes 2
n process_nodes 3
X process_nodes 4
n process_nodes 5
z process_nodes 6
z process_nodes 7
n process_nodes 8
n process_nodes 9
X process_nodes 10
n process_nodes 11
X process_nodes 12
X process_nodes 13
n process_nodes 14
X process_nodes 15
n process_nodes 16
c chP2c.i 0
f main 0
n main 1
n main 2
n main 3
X main 4
X main 5
n main 6
X main 7
sizeof (struct node_list))
X main 8
X main 9
X main 10
n main 11
n main 12
X main 13
X main 14
n main 15
c chP3c.i ()
f post_finish)
z post_finish 1
n post_finish 2

°
’

struct node_list {

int node;
struct node_list *next;
}:
32 void
process_nodes (list)
struct node_list *list;
{
32 if (list==0)
{
0 post_finish();
0 return;

}
/* obtain information from node... */
32 while(list->next!=0)
{
31 process_nodes (list->next) ;
31 list = list->next;
}
32 return;
}

main() {
int i;
struct node_list * head, *cur;

—

cur = (struct node_list *) 0;
for(i=@; i<6; i++)
{
head = (struct node_list *) malloc(

head->node
head->next
cur = head;

cur;

AN () = -

}
/* other statements... */

—

érocess_nodes(head);
}

post_finish() {
remove_node_list () ;
}

NE 615 CAMPUS STREET
PULLMAN, WA 991683

(SO9) 332-3164

BENTEC
]

350
12

F /users/dbenson/test/example/d. i

c cPP5d.i 0

c cP@5d. i 1 struct node_list {

c cPp5d.i 2 int node;

c c@P5d.i 3 struct node_list *next;
c c@p5d.i 4 }:

c cPp5d. i 5

f remove_node_list 0 @ remove_node_list (head)

n remove_node_list 1l struct node_list * head;
n remove_node_list 2 {

n remove_node_list 3 struct node_list * next;
n remove_node_list 4

z remove_node_list 5 ('] while (head!=0)

n remove_node_list 6 {

z remove_node_list 7 0 next = head->next;

z remove_node_list 8 0 free (head) ;

z remove_node_list 9 0 head = next;

n remove_node_list 10 }

n remove_node_list 11 }

NE 615 CAMPUS STREET
PULLMAN, WA 99163
(S09) 332-3164

]
BENTEC

351

$ cat balance
: check that number of 'malloc' calls equal the number of 'free' calls.
sed -n -e /malloc/p $l.scr >$l.malloc
mallocs="awk -f awktotal $l.malloc’
echo "mallocs: Smallocs”
sed -n -e /free/p $l.scr >$l.free
frees="awk -f awktotal $l.free'
echo "frees: S$frees"
if test Smallocs -eq $frees
then
echo 'number of malloc calls equals number of free calls'
m S$l.mallocs
m $l.frees
else
echo IR 2322822 2228222223222 2222282222222 22222233233 232 2222222222222 222222
echo 'STANDARDS VIOLATION: number of malloc calls and free calls differ'
echo "!
echo 'mallocs:'
cat $l.malloc
echo "'
echo 'frees:'
cat $Sl.free
fi

$ cat awktotal
{ total = total + $4 }
END {print total}

NE 615 CAMPUS STREET
PULLMAN, WA 99163
BENTEC e

14

352

$ prolc >system.scr
$ balance system
mallocs: 6

frees: 0
RRRRRRRRRRRRRRRRRRRRRRRARRRRRRRARRRRRRRRRRRRRRRRRRRR R A AR A ARk Ak kk kK

STANDARDS VIOLATION: number of malloc calls and free calls differ

mallocs:
X main

frees:
z remove_node_list

8

353

head = (struct node_list *) malloc

free(head);

NE 615 CAMPUS STREET
PULLMAN, WA 99163
(509) 332-3164

15

$ prolc | 1lcf -s process_nodes -f ty b sl -t £: n:
void
process_nodes (list)
struct node_list *list;
{

J'{.f (list="0)

* post_finish();
* return;

}
/* obtain information fram node... */

while (list->next!=0)

{
process_nodes (list->next) ;
list = list->next;

}

return;

I
BENTEC
|

354

NE 615 CAMPUS STREET
PULLMAN, WA 99163
(509} 332-3164

16

$ prolc | lcr =1b 15 | 1lcf =k x -f £n b sl

process_nodes if (list=0)

process_nodes while(list->next!=0)
process_nodes process_nodes (list->next) ;
process_nodes list = list->next;
process_nodes return;

NEG6 1S CAMPUS STREET
PULLMAN, WA 99163
(SO9) 332-3164

.
BENTEC

355

$prolc | 1cf =k F £ -f 1c b £n
F /users/dbenson/test/example/c.i
32 process_nodes
1 main
@ post_finish
F /users/dbenson/test/example/d. i
f@ remove_node_list

356

NE 615 CAMPUS STREET
PULLMAN. WA 99163
(S09) 332-3164

18

Simple to use

Clean directories

ROBUST

Evaluation reports

19
357

TOOLS FOR PROBLEM REPORTING

Susan V. Bartlett
MetheusCV, Inc.
Hillsboro, OR

Ways To Track Problems

Benefits of Data Base Management Systems

Determining Your Needs

Example of Our Implementation

Choosing Your Own DBMS

WAYS TO TRACK BUGS

1) Do Nothing
2) Manual Paper Systems
3) Design Your Own Computerized System

4) Use An Existing DBMS as a Base

WHY WE USE AN ON-LINE DBMS

e Central Location

e Instant Access

e Global View of Product Status

e Increases Visibility to Management
e Time Saving in Tracking Status

e Automatic Follow-up

WHY WE USE AN ON-LINE DBMS

(continued)

* Problems Aren’t Lost

e F'ormalizes Methodology

e Enforce Entry of Needed Information

» Faster to Apply Metrics, Reporting

e Data Entry Time Same as Paper (or less)

e Unique Number for Cross Reference

DETERMINE YOUR NEEDS

» Look at the Big Picture
e What Are Your Needs Now?

e Try To Anticipate Future Needs

« Who Else Might Be Interested?

PROBLEM REPORTING SYSTEM
FLOW CHART

Find Problem

User
______;> Input Problem ———> Report to

Manager Manager
Y
Manager-———E} Assign for Report to
Analyzing Engineer

Engineer % §>
Analyze &
[Suggest Action Boord C |

Board |

Action, Schedule Engineer

Eng Mgr.
0A B !
Mktq. oard —> Determine Priority, %Report to

Defer (Enhancement)

Englneer_—~;>[Fix, Delete or

hY

QA ;>l Record Closed —————E} Report

!
Gt -

Three types of reports are automatically
generated and mailed to assigned person:

1) Newly entered problems.

2) Problems to be analyzed.

3) Problems requiring actions.

|_Query g

SQL | 9‘\ Users

Data - AWK Mail .
Base script E -

Figure 8. Process Flow for Notification Program

OUR PROBLEM REPORT RECORD

DATA ENTRY SCREEN

» Release Number
e Users View of Priority
e Description of Problem

ANALY SIS SCREEN

e Responsible Engineer
e Effort To Fix

e Analysis

« Recommendations

STATUS SCREEN
e Final Priority
e Activity and Engineer
e Target Date
e Complete Date

CHOOSING YOUR D.B.M.S.

e Set-up and Maintenance Utilities

e Query Language: On-line and Batch

e Access to Operating System

e Report / Formatting Utility

e Aggregate Functions (sum, count, avg)
 Pre and Post Processing of Data Entry
e Good Documentation with Examp.les

e Security

CHOOSING YOUR D.B.M.S.

(continued)

e Diagrams and Pictures
e Tie-in to Configuration Management
e Variable Length Fields

 Iiditing of Fields

TIME INVESTMENT

System Development and Enhancments

[Development ~100 hours
| Add Reports 5 min. -> 4 hours

Add New Record | 2 days

System Monitoring

Monitor ~1 hour/week

CCB Meetings | Varies

BENEFITS

e Gives A Clear Picture Instantly

e Saves Time in Tracking Problems

e Automate Problem Tracking Procedures
* Reports are Easily Generated

 Ilexible, Easy to Implement and Change

e Allows Better Response to Customers

Tools for Problem Reporting

Susan V. Bartlett

Project Leader for Software Test and Evaluation
Metheus-CV Inc.
Hillsboro, Oregon 97124

ABSTRACT

It has been said that all software has bugs. For companies in the software busi-
ness, this premise translates into a need for methods to deal with known prob-
lems. The informal methods of word-of-mouth and paper memos have the disad-
vantages of temporary (or permanent) lapses of memory, misfiling, and the
information being dispersed instead of being centrally available for queries.

We have obtained a database management system which we feel satisfies the
requirements of problem reporting, problem tracking and problem follow-up.
This paper discusses our application of the DBMS and its many benefits. The on-
line database itself will be covered, with the ease of defining and updating the
schema. Tools provided with the DBMS fulfill several needs: The definable screens
and menus allow an easy-to-use interface to those who need to input information
into the system. There is a choice of querying methods which are used for
different levels of access, allowing users to see what problerns have been
reported and what their status is, along with other relevant information. We will
present our use of the report writing system, along with the interface Lc the
operating system which allows access to UNIXi mail and other utiiities.

t UNIX is a trademark of Bell Laboratories.

359

Benefils of Error Reporting Systems

The benefits of error tracking systems are comprehensive. The fact that a system of
this sort exists in a company indicates the realistic acceptance of the fact that
errors can exist. The extent to which it is used and supported indicates the extent
of the company's understanding of the quality problem and their commitment to
maintenance of their product.

Ideally, a problem reporting system should include:

(1) A way to enter information which is easy to learn and use and thereby
encourage its use.

() A form which caplures all Lhe informalion needed Lo reproduce and evaluale
the problem.

(3) A way of assigning responsibility for the problem.

(4) A mechanism to confirm the problem.

(5) A mechanism to determine if the problem can be fixed and how.
(6) A mechamsm to determine if the problem should be fixed.

(7) A tickler system to keep the ball from dropping.

(

8) A way to make sure that the fix gets to the customers (both to those who report
it and to future customers)

(9) A way to track the problem and determine its status at any time by anyone
allowed access to the information.

(10) Security to insure that only those allowed access to the information can get to
it.

(11) A way to apply metrics to all the problems as a whole in an effort to reduce
problems in future products or determine the current "quality” of the product.

(12) Some way to determine the correspondence between changes to the product
and the problems reported (ie: these lines of code were changed to fix problem
number N, which was reported by...).

The Unify} Data Base Management System is the tool we have chosen to automate

our Problem Reporting System. It has the flexibility and integrated utilities that
allow fulfillment of most of the items in the wish list.

One of Lthe biggest benefils of Lthe DBMS is ils reporling capabilities. The syslem ix
on line and real time and so allows the storage of reported bugs in a central location
for general queries, but also allows a person to have instant access to up-to-date
data at a terminal or on hard copy.

Some Drawbacks to Problem Reporting Systems

There are several drawbacks to problem reporting systems.

(1) Some programmers are reluctant to report bugs because it is an admission that
their software is imperfect.

2) Someone must monitor the system AND take responsibility for it.
Bugs must be entered to be fixed.

4) As with paper systems. managers and engineers must take it seriously and pro-
vide resources for maintenance to make it useful.

t Unify is & Trademark of Unify Corporation.

360

Definition of terms
Following are definitions for some common data base terms:

Field: The smallest significant unit in this data base. For example: "program name"
may be a fleld and would be of type string (characters) of length 16, and "telephone
number” would be a field of type numeric (integer) of length 10. (Note: DATE is a
defined field type in Unity.)

Record Type: This is generally an entity which is comprised of related fields. For
example: we have a "Problem Report" record type. This consists of the definition of
all the flelds which we considered necessary to provide complete information on a
problem.

Record: A record is an instance of the record type. It consists of the data which
describes the particular problem and it exists in the form described by the record

type.

Schema: Definition of the information to be stored in the data base. In this case,
the schema consists of the record types and the fields in each record type.

Query: We use this word to mean a description in a formal language (SQL) of the
type of information we want, based on stated restrictions.

Use of Screens and the Schema

We chose to make one record type for our released software and one for unreleased
software. Both record types consist of three categories of data: the submittal data,
analysis of the incident and the current status of activities relating to the problem.

Figure 1 is an example problem report which has most of the fields represented.
Refer to it for the following discussion.

The first category is the submittal fields. These include most of the information
needed from the person who found or is reporting the problem.

Second, is the analysis fields: the information provided by the engineer assigned to
evaluate the problem. This can include what the engineer perceives the problems to
be, whether it is a problem, an enhancement or an improper use of the system, how
long it would take to fix the problem, and the engineer's view of the priority.

The third category i1s what is determined i1n a Configuration Control Board (CCB)
meeting. Members of the CCB are the managers of the engineering group, a person
representing QA and a person representing Marketing. They look at the engineer's
evaluation of the problem, the customer's perception of the importance of the prob-
lem, the engineering resources and the marketing priorities and come to an agree-
ment on a status (bug, enhancement, duplicate or delete), the final priority, an
action to be taken, a target date for that action to be completed and the person
responsible.

Defining the Configuration of the System
The next few sections describe a little how easy it is to define the system you wish to

create. Please refer to the examples. Tigure 2 is a picture of the system mainte-
nance menu to give you an idea of what kind of utilities are provided.

361

Metheus—-CV Configuration Management System
Problem Report

07/19/85
Problem Report #: 327 Name of Submitter: howard
Program Name: cif2phl Date of Occurrence: 08/07/84
Release-ID: 3.1.pa Problem Type (bug/enh): bug
Resp. Croup (sys/fe/be/sim/man): be Problem Duplicated (y/n): y
Company (if any): MCV Supporting Documents (y/n):

Priority (HOT/critical/major/minor): major

Summary: “cif2phl ~130 -t foo" core dumps. “cif2phl -1 30 -t foo" doesn’t.
The options parser seems to be buggy.

Description: I¢ there is no space after the “-1" in a cif2phl command line,
the program can core dump trying to read the next argument as an integer.

ANALYSIS SECTION

Responsible Engineer: Jay Analysis Date: 08/21/84
Eng. Priority (critical/major/minor): minor
Effort to Fix (manhours): 4
Recommended Action -~ Software Change (y/n): 7]
Manual Change (y/n): n
Delete (not a bug): n
Change to Enhancement: n
Analysis: This is a minor problem with the command line options in

cif2phl. I should be no problem to fix

CCB STATUS SECTION
CCB Date: 08/21/864

Final Priority (critical/major/minor). minor
CCB Action (fix/enh/dup/del)- fix
Activity Responsibility Target Date Completion Date
saftware fix Jay 11715784 11/20/84
software test Jay 11/715/84 11/20/24
check—-in for 3.0 Jay 11720784 11/721/84
[XYL YL TS "R/ NN/
R/ Hn/nn (2 VT VR TS
LT YE I Y] R/ RN N
Closure Date: 11/21/84

Figurc 1. Examplc Problem Rcport

362

Schema Definition

The schema is easily defined just by typing in the name of the field, type of field and
descriptive name. Figure 3 shows what the on line entry screen for the schema
fields look like.

Fnough space is allowed for the description to explain the field. It is a true rela-
tional data base, and you may use combination fields to link up with a field in
another record type. Figure 4 shows the one page of the schema listing for the
problem report record type.

Screen Definition
Once you have what you think you want, a utility is provided to reconfigure the data

base and with that done, you can start defining your screens. Screen entry is quite
easy. You can let the system give you a default screen, or you can use the paint

pr—

(sysmenu] UNIFY SYSTEM
S OCT 1982 - 15:25
System Menu

1. Schema Maintenance 9. Data Base Test Driver

2. Schema Listing 10. MENUH Screen Menu

3. Create Data Base 11. MENUH Report Menu

4. SFORM Menu 12. Reconfigure Data Base

5. ENTER Screen Registration 13. Write Data Base Backup

6. SQL - Query/DML Language 14. Read Data Base Backup

7. SQL Screen Registration 15. Data Base Maintenance Menu

8. Listing Processor

SELECTION: 1]

!
|
!
!
i
!
i

.

$ e e e e e mm A mm mmmt ———————

+

Figurc 2. System Maintenance Mcnu

363

&>
v

[(schent]

RECORD: manf
LN CMD FIELD

1 I EEEEEKE]
:ww n (LLLILLE]
[ww " I LLLLLLL]
[uu n (LLLITILL]
[wn L] L LLLILLL]
Inn L] LLLEL DL
LA L] LLLLLLLL]
lnu n LI L]
jon n LLLLLLL]]
L L] LLLLILLL]
Inw n L LLLLLLL]
{
{[N]ext

e
g

page, [Plrev page, [A)dd

KEY

UNIFY SYSTEM
S OCT 1982 - 15:25
Schema Maintenance

REF TYPE

LEN

LONG NAME

line, or number af|

COMB. FIELD

+ ——— R A M . —E —y —— D Gap S G G S G - ew o ee oo

trrererer o5 field data entry area
nannnnan .5 field paging area

Figure 3. Field Data Entry

364

fpr 2000 interim_pr

#iprno NUMERIC 3 pr_number
submtre . BTRING 8 submitter_name
prnm STRINGC 20 program_name
relid STRING 8 release_id
rcomp STRING 24 rptg_company
sumi STRING 70 summary_linel
sum2 STRING 78 summary_line2
descl STRING &6 descriptionl
desc STRING 78 description2
desc3 STRING 78 description3
desc4 STRING 768 descriptionsd
descd B8TRING 78 descriptiond
descé B8TRING 78 descriptioné
prdt DATE pr_date
analdt DATE analysis_date
‘respeng STRING 8 responsible_eng
engpri STRING 8 engineers_pri
swchange STRING 1 software_change

DATE : 07/18/83 TIME : 20:42:31
SCHEMA REPORTS
Schema Listing

RECORD/FIELD REF TYPE LEN LONG NAME
mpchange STRING 1 manpage_change
delete STRING 1 del
enh STRING 1 enhancement
anall : STRING 69 analysist
anal2 STRING 78 analysis2
anal3 STRING 78 analysis3
analéd STRING 78 analysisid
anald STRING 78 analysisS
analé STRING 78 analysiss
ccbdt DATE ccb_date
finpri STRING 8 final_priority
ccbact STRING 3 ccb_action
actt STRING 32 activityl
act2 STRING 32 activitya
act3 STRING 2 activity3
act4 STRING 32 activitys
acts STRING 32 activityS
acté STRING 32 activitys
respl STRING 8 respt
resp2 STR ING 8 respa
resp3 STRING 8 resp3
respd STRING 8 respid
respS STRING 8 respS
respéd STRING 8 respb
tgtdti DATE target_dt1
tgtdt2 DATE target_dt2
tgtdt3 DATE target_dt3
tgtdta DATE target_dt4
tgtdtd DATE target_dt3d
tgtdts DATE target_dte6
comodtl DATE complete dt1

Figure 4. Schema Listing

365

facility. Figure 5 is an example from the Unify Tutorial Manual which shows a default
screen built with a record type which has three fields.

The default screen takes all the fields in the record type and using the long name for
the prompt, puts them in columns on the screen.

The paint facility lets you enter your own prompts and field positions anywhere you
wish. [t uses commands similar to vi, the screen oriented editor in Unixt. For exam-
ple: ‘'a’' is to append, 'w' moves you across the line by word, and 'q’ is quit. Figure 8
is the listing of the status screen for our problem report. It took about an hour to
enter this screen in paint.

When you finally have it the way you want it, you register it by executing another
utility and start entering data.

[(manf] . UNIFY SYSTEM
S OCT 1983 - 15:25
Manufacturer Maintenance

——me— e

{number :
{name :

laddress:
1

(IINQUIRE, [AlDD, [M]ODIFY, (DJELETE (

t
1
1
i
|
1
I
!
]
1
1
1
1
Y
+

- S T i e el

Figure 5. Default Screen Example

$ Unix is a Trademark of Bell Laboratorics.

366

(e

IR S

14

o 1 Q 3 4]) 7

[}
01234567890123456789012345678901234567890123456768901234546768901234567890123456789

SCREEN LAYOUT
prstatus

FR g Program Name: «x Resp. Croup: x
Summary
]

CCB Date «

Final Praiority (critical/major/minar): X
CCB Action (fix/enh/dup/del) x
Status e« :
Actavity Responsibility Target Date Completion Date :
x X X X
¥ X X
t x x x
] I X X
1 4 X X
] [X X
Closure NDate x

Figure 6. Problem Status Screen

VONOCUWIG2WN~-O

Changing the Schema (Schema maintenance)

Generally, once you've designed a data base and then started using it, you find lots
of things that you want to change There is very litlle difficulty in maintaining this
data base. Changing it is even easier than defining it: just modify the schema by
deleting, adding or changing Lhe field you wanlL. Then reconfigure Lhe data base and
you are done. The screen is changed in a similar manner: delete or add the field and
re-register the screen.

Input

Data input is accomplished by one of two means: input through the screen vou just
built or through a data base load (batch method) wluch uses ascii files. The ouly
rules you have to remember for input through a screen is thal carriage return gets

you Lo the next field and <control> U gets you back. When in doubt, <conlrol> U
like crazy and you will get out.

367

Querying and Report Feature

The querying feature is a very powerful tool. It is an implementation of the IBM
Sequel(SQL) relational inquiry and data manipulation language based on an Fnglish
keyword syntax. Together with the report writer (RPT) it's just about all you need to
get whatever information you want out of the data base.

You can query on any field, match keywords, ranges, etc. The results of the query
can be dumped to the screen, a unix file, or a printer, or you can write a C program
or shell script and pipe it through any utility you like.

Figure 7 is an example of what kind of queries can be generated.

It is a Bourne shell script (batch command processor program on Unix) which
echoes SQL syntax into a temporary file based upon the user's choices and then exe-
cutes that shell script and pipes it through the report formatter and to the printer.
This is executed from a menu within the Unify environment. This is only one of
several ways that this type of report can be done. There are actually easier ways,
but this was an early attempt and one easily copied.

Using Unix ulililies

We use 'awk’' scripts (a pattern scanning and processing language) and Unix mail to
notify or remind people of the action items which have been assigned to them. Fig-
ure B is a diagram which demonstrates the process flow.

We have three different kinds of mailings. The first queries the data base for all new
problems (those not assigned to anyone) and then divides them up by development
group and mails off a report to each manager informing them of the new problems
and ask that they assigh someone to each one.

The second mailing looks at what reports have not yet been analyzed by an engineer,
but have been assigned. Mail is then sent to the assigned engineer with the informa-
Llion of which problems need to be analyzed by them.

The last mailing queries for all the action items which have been assigned to some-
one and which have not yet been completed. It sends to the assigned engineer a list
of the problems which have actions assigned to them as a reminder. It also sends to
cach manager, the entire lisl of open action ilems assigned Lo Lheir group. This is
all run once a week. Emergency bugs go through this process as well but are gen-
crally expedited with a walkthrough by the concerned party. To keep things from
getling lost 1n a black hole, all the items which have not been assigned, analyzed,
been through a CCB meeting or are incomplete with past due target dates are put
together on a report once a week and go to the CCB meeting.

The possibilities are mostly limited by the resources you wish to tie up in develop-
ment to enhance the problem reporting system

Administrative Problems

As usual, there were some who found fault with our system. One of the perceived lim-
itations was the fixed field lengths. To have a description which will accommodate a
lol of data, you would have to define a large amount of space in the record type just
to give space to the few who need it. We have just limited our deseription to six lines
on the screen and encourage use of ascii Unix files in a related directory for any

368

echo

echo

echo “This report brings a complete copy of the records you have chosen to the"
echo “line printer. You may have searches made with the following keys:*

echo "Program name: responsible group, responsible engineer, *

echo "and problems which have or have not been fixed (based on closure date). "
echo ' i

ocho "Would you like to specify s program name(pn), responsible grouplrg), *
echo “responsible engineer(eng). all problems(all) *

echo -n “or would you like to qupit(q)? *

read choice '

echo .
"1 test schoice = “"q" 1 then
exit
el se
cp lpfull.s lpfull. {
" echo "Please‘'specify if gou want problems reports which are closed(cl)*
echo ~n "(ie: fixed and checked in) or not closed(nc) or both(d): *
read status
1
i# test sSchoice = "pn" ; then
echo
echo ~n “Please specify program name desired(eg. phled, sche): *~
read prog
prog=\‘sSprog\#*
case Sstatus in
“nc") echo where program_name = $prog and closure_dt \< 1/1/80
“cl") echo where program_name = Sprog and closure_dt \> 1/1/80 /
#) echo where program_name = $prog / D> lpfull. i
esac
elif test schoice = “eng” ; then
echo
echo -n “Please specify responsidble engineer(login name) - *
read name
name=\ ‘sSname\#\ "’
case sstatus in
“nc”) echo where ([responsible_eng = Sname and analysic_date
echo respl = Sname Or resp2 = Sname or respl3 = Sname
echo or resp4 = sname Or respd = gname or respb = Tnams])
echo and closure_dt \< 1/1/80 / >>1lpfull i
“cl") echo where (responsible_eng = sname or - lpfull 1
echo respl = Sname Or Tesp2 = Sname Or resp3 = STname ..
echo or resp4 = Sname or rTespd = Sname Or respé = tname)
echo and closure_dt \> 1/1/80 7/ D> lpfull. i ;.
#) echo where (responsible_eng = Sname or D> lpfull i
echo respl = Sname Or resp2 = S$name OTr respld = tname _.
echo or respsd = sname or respd = $name or resps = *¥nam:)
esac
elif test schoice = “rg* | then
echo

echo -n "Please specify responsidble group(sys, fe, be, sim, man)

read Tgroup

rgroup=\‘srgroup\#\‘

case sstatus in
"nc*”) echo where respn_group = Srgroup and closure_dt \< 1/1/80
“cl®) echo where respn_group = Srgroup and closure_dt \> 1/1/80

#) echo where respn_group = Srgroup / > lpfull. i
esac
elif test schoice = "all" ; then
case sstatus in
“nc®) echo where closure_dt \< 1/1/80 /7 >>lpfull. i ;;
“cl®") echo where closure_dt \> 1/1/80 / >> lpfull.i ;
#) echo / D> 1lptull. i

msac
else
echo .
echo "You have not entered a valid choice. please try again. *
exit
[}
echo

echo C(runningl
SAL 1lpfull. i IRPT fr.rpt ~llpr

Figurc 7. Example Script for Gencrating Reports

369

Users

Data AWK
Base script

——3p Mail L

Figure 8. Process Flow for Notification Program

additional documentation. This also encourages short descriptions which are to the
point, which are usually more desirable.] have found that maybe 1 of 30 reported
problems really need more space. We overcame this problem by providing a direc-
tory for any additional documentation needed to describe the problem.

Also there are no editing capabilities on a field unless you program it in. Thus if you
make a typing mistake, you have to retype the whole tield instead ot just editing the
mistakes. This is irritating but not disastrous since none of the fields are larger than
one screen line (80 characters).

The last perceived problem is that there doesn't seem to be a way to change screens
and keep working with the same record, without going through the process of back-
ing out to the menu, choosing the menu and the mode of operation and the problem.
Woe have not yet found a way, although we believe the problem can be solved through
the optional programming.

lHHow Much Time Do | Have To Devote?

To design and implement this system including learning Unify took around 100
hours. 1 would estimate that to maintain this system on a minimal basis has taken
an average of one hour a week or less. To monitor the data entered is trivial due to
the reporting capabilities of Unify. It's a matter of reading a report and acting on
the information

Writing a new report is a function of what is already there. If the output format is the
same, then it might take two minutes to devise an SQL script to pull the information
out that you want. On the other end of the scale, to put together a report for a new
record type, it will probably take four hours or more depending upon the complexity

370

of the information you want.

Concerning enhancements, | just added a new record type to our data base. It took
me about two days (16 person hours) to enter the schema, set up the screens and
set up one report.

The only other time consuming item left is CCB meetings. This is probably the most
time consuming part of the system (besides actually fixing the bugs) because every-
one has to discuss the problem. But it is likewise an important function because of
the ideas it generates and the awareness of how the system as a whole functions as
well the need for maintenance plans. This can take an hour a week if you have one
meeting and run it efficiently or an hour a week per engineering group. depending
on how you wish to schedule the meetings.

Conclusion

We have found the Unify DBMS system with the Unix access to be invaluable tools.
Time saving in problem status tracking alone has probably amounted to the work of
one full time person or more. When the tools are not used bugs seem to get lost.
The flexibility of a good DBMS allows for changes like added projects, added fields,
and varying reports as needs change.

This system provides a good record of the current status of projects, in terms of
quality, and provides up-to-date information to customers and managers alike.

Good tools do exist, and good use can be made of them. However, they are

ineffective without a joint commitment from management and engineering to pro-
duce a quality product.

371

BIOGRAPHY

Susan Bartlett
Susan Bartlett joined Metheus Corporation in 1983. Previously she worked with
a software testing group at Johnson Controls after receiving a BS degree in

computer science at the University of Wisconsin at Madison. She is the project
leader for software test and evaluation at Metheus-CV, Inc., Hillsboro, Oregon.

372

