
PROCEEDINGS
PACIFIC NORTIIWEST

TI IIRD X\:\l AI.

SOFIWARE UALITY
CONFE NCE

TOOLS
FOR

SOF1WARE QUALI1Y

September 27, 1985
Red lion/lloyd Center

Portland, Oregon

1985 Pacific Northwest Software Quality Conference
TABLE OF CONTENTS

Chairman's Message .. iv
Organizing Committee . v
Authors .. vi
Exhibitors vii
Keynote (Abstract and Biography) viii

Session 1. Methodologies 1
"Extending Structured Analysis to Become a Design Tool"

Walter Webb, Rainer Wieland, & Chris Olson, Tektronix, Inc. 3
"Implementing the Software Review Process"

David Kerchner, Floating Point Systems, Inc 24
"Software Configuration Management A Tool for Software Quality"

George Tice, Jr., Tektronix, Inc. 56
Session 2. Metatools 77

"Reduced Form for Sharing Software Complexity Data"
Warren Harrison and Curtis Cook, Oregon State University 79

"A Practical Guide to Acquiring Software Engineering Tools"
Tom Milligan, Tektronix, Inc. 97

"The Use of Software Metrics to Improve Project Estimation"
Bob Grady & Debbie Caswell, Hewlett Packard Co. 107

Session 3. Panel: "The Pros and Cons of Rapid Prototyping" .

Moderator: LeRoy Nollette, Tektronix, Inc.
Panelists: Rick Samco, Mentor Graphics Corp.

Robert Babb, Oregon Graduate Center
Will Clinger, Tektronix, Inc.
David Kerchner, Floating Point Systems, Inc.

Session 4. Testing and Problem Reporting, I

"A Tool for Analyzing the Logic Coverage of Source Programs"

139

143

Arun Jagota, Intel Corp. 145
"TCA TIC: A Tool for Testing C Software"

Edward Miller, Software Research Associates 169
"A Unix Based Software Development Problem Tracking System"

Gordon Staley, Hewlett Packard Co.. 195
Session S. Development Tools 215

"Software Design Using BCS Argus"
Bill Hodges, Boeing Computer Services . 217

"The System Engineering Environment PROMOD"
Peter Hruschka, Promod, Inc. 235

"Locating Suspect Software and Documentation by Monitoring Basic Information
about Changes to the Source Files"
David Vomocil, Hewlett Packard Co. 263

Session 6. Testing and Problem Reporting, II277
"A Software Test Environment for Embedded Software"

David Rodgers and Ralph Gable, Boeing Commercial Airplane Co 279
"CLUE--A Program and Test Suite Evaluation Tool for C"

David Benson, BENTEC . 321
"Tools for Problem Reporting"

Susan Bartlett, Metheus-CV, Inc. 359

I
I

CHAIRMAN'S MESSAGE

Ronald K. Swingen

Welcome to the Third Annual Pacific Northwest Software Quality Conference. We are pleased
that you took advantage of this opportunity to share knowledge and ideas on "Tools for
Software Quality."

The requirements for producing high-quality software have never been greater than they
are today. Our "computer industry" is under extreme pressure to be profitable and
productive. We cannot meet these requirements merely by working harder. We must avail
ourselves of every opportunity to leverage our efforts--hence, the importance of software
tools.

The Proceedings contains IS papers from software engineers and managers who responded to
our Call for Papers. One of these will be reproduced in a future issue of IEEE Computer.
This year's Conference includes a new element--exhibits by selected vendors who offer
products related to our theme. A listing of those vendors is included for your reference.

Watch for an announcement of the Fourth Annual Software Quality Conference during the
summer of 1 986. We welcome your comments on this year's Conference and your suggestions
for the 1 986 program.

iv

ORGANIZING COMMITTEE

1 985 Pacific Northwest Software Quality Conference

Chairman:
Ronald K. Swingen
Mentor Graphics
8500 S.W. Creekside Place
Beaverton OR 97005
503/626-7000

Program:
Monika Hunscher
Floating Point Systems, Inc.
P.O. Box 23489, MS S-1 50
Portland OR 97223
503/641-3151, x1 516

Sue Bartlett
Metheus C-V, Inc.
P.O. Box 959
Hillsboro OR 971 23
503/640-8000, x23 1

Chuck Martiny
Tektronix, Inc. MS 50-487
P.O. Box 500
Beaverton OR 97077
503/627-6834

Dale Mosby
Sequent Computer Systems, Inc.
14360 N.W. Science Park Drive
Portland OR 97229
503/626-5700

LeRoy Nollette
Tektronix, Inc. MS 78-528
P.O. Box 500
Beaverton OR 97077
503/627-5012

Committee

v

Exhibits:
Richard A. Martin
Intel Corporation, EY2-0 1
5200 N.E. Elam Young Parkway
Hillsboro OR 971 24
503/68 1 -2246

Treasurer:
Kenneth P. Oar
Hewlett Packard Co.
Portable Computer Division
1 000 N.E. Circle Blvd.
Corvallis OR 97330
503/757-2000, x 4248

Steve Shellans
Tektronix, Inc. MS 50-487
P.O. Box 500
Beaverton OR 97077
503/627-4954

Janet Sheperdigian
Intel Corporation EY2-0 1
5200 N.E. Elam Young Parkway
Hillsboro OR 97 1 24
503/68 1 -2284

Sue Strater
Mentor Graphics
8500 S. W. Creekside Place
Beaverton OR 97005
503/626-7000

George Tice
Tektronix, Inc. MS 92-525
P.O. Box 500
Beaverton OR 97077
503/629- 1 3 1 0

AUTHORS

1985 Pacific Northwest Software Quality Conference

Ms. Susan Bartlett
Metheus-CV
P.O. Box 959
Hillsboro OR 97 1 23

Dr. David B. Benson
BENTEC
NE 615 Campus St.
Pullman W A 991 63

Ms. Deborah Caswell
Hewlett Packard
3500 Deer Creek Rd.
Palo Alto CA 94304

Dr. Curtis Cook
Oregon State University
Computer Science Department
Corvallis OR 97331

Mr. Bob Grady
Hewlett Packard
3500 Deer Creek Road
Palo Alto CA 94304

Mr. Warren Harrison
University of Portland
5000 N. Willamette Blvd.
Portland OR 97203

Mr. William H. Hodges
Boeing Computer Services
P.O. Box 24346
Seattle W A 98 1 24-0346

Dr. Peter Hruschka
Promod, Inc.
2298 1 Alcalde Dr.
Laguna Hills CA 92653

Mr. Arun Jagota
Intel Corporation
5200 N.E. £lam Young Parkway
Hillsboro OR 97 1 24

Mr. David J. Kerchner
Floating Point Systems
P.O. Box 23489, MS S- 1 50
Portland OR 97223

Dr. Edward Miller
Software Research Associates
P.O. Box 2432
San Francisco CA 941 26

Mr. Tom Milligan
Tektronix, Inc.
1 4460 N.W. Hunters Dr.
Beaverton OR 97006

Mr. Chris Olson
Tektronix Inc.
P.O. Box 4600 MS 92-525
Beaverton OR 97075

Mr. David A. Rodgers
Boeing Commercial Airplane Co.
1 2707 N.E. 1 20th, Unit B3
Kirkland W A 98034

Mr. Gordon Staley
Hewlett Packard Co.
1 000 N.E. Circle Blvd., P.C. Div.
Corvallis OR 97330

Mr. George D. Tice, Jr.
Tektronix, Inc.
P.O. Box 4600 MS 92-525
Beaverton OR 97075

Mr. David Vomocil
Hewlett Packard Co.
1 000 N.E. Circle Blvd.
Corvallis OR 97330

Mr. Walter Webb
Tektronix, Inc.
P.O. Box 4600 MS 92-525
Beaverton OR 97075

Mr. Rainer Wieland
Tektronix, Inc.
P.O. Box 4600 MS 92-525
Beaverton OR 97075

EXHIBITORS

1985 Pacific Northwest Software Quality Conference

Database Design, Inc.
Contact: Kim Frazier
2006 Hogback Rd.
Ann Arbor MI 48 1 04
3 1 3/97 1 -5363

Higher Order Software
Contact: Robert S. Dane
2067 Massachusetts Ave.
Cambridge MA 02 140
2 14/257-3758

Interactive Systems Corporation
Contact: Kristie Korte
2401 Colorado Ave., 3rd Floor
Santa Monica CA 90404
2 1 3/453-8649

Productivity Products International
Contact: Chet Wisinski
27 Glen Road
Shady Hook CT 06482
203/426-1 875

Promod, Inc.
Contact: Thomas L. Scott
2298 1 Alcalde Dr.
Laguna Hills CA 92653
7 14/855-8560

Software Research Associates
Contact: Dr. Ed Miller
580 Market St., Suite 350
San Francisco CA 941 04
4 1 5/957-1 44 1

Teledyne Brown Engineering
Contact: Rusty Bynum
300 Sparkman Dr.
Huntsville AL 35807
205/532-1 66 1

Wiley Learning Technologies
Contact: Jacqueline Philpotts
605 Third A venue
New York NY 1 0 1 58
2 12/850-6000

vii

KEYNOTE

Adversaries in Software Development

Dr. Richard Hamlet
Professor of Computer Science

Oregon Graduate Center for Study and Research

Although designers and programmers want to make their software work well, the
pressure of circumstances can compromise a project. An independent quality
assurance (QA) group can defend standards, but only if there is agreement about
measures of software quality. Unfortunately, our understanding of how to
measure quality is still very poor.

A careful look at a number of accepted quality measures shows that each can
be subverted. That is, software may be given the appearance of quality
(accidentally or on purpose) without having the substance. For the measures
to have meaning, software developers must cooperate with QA in their
application, observing the spirit rather than the letter of the law.

Biography

Dr. Richard Hamlet has had a distinguished career in higher education as
teacher and researcher. In the last 20 years he has taught at the University
of Washington, University of Maryland, and University of Melbourne, and since
1984 has been Professor of Computer Science at the Oregon Graduate Center.

Dr. Hamlet also has had practical experience as systems programming director
of a university computer center and a commercial timesharing service bureau.
He has rewritten and maintained a commercial operating system, and written
several production-quality compilers. He is the author of a textbook on theory
of computing and is working on two other texts, one on theory, and the other
(with Harlan Mills and others), an introduction to programming from a
mathematical point of view.

viii

Session 1
METHODOLOGIES

Titles and Speakers:

"Extending Structured Analysis to Become a Design Tool"
Walter Webb, Rainer Wieland, and Chris Olson, Tektronix, Inc.

"Implementing the Software Review Process"
David Kerchner, Floating Point Systems, Inc.

"Software Configuration Management: A Tool for Software Quality"
George Tice, Jr., Tektronix, Inc.

1

r

Extending Structured Analysis to Become a Design Tool

Walter Webb

Rainer Wieland

Chris Olson

Software Development Products Division
Tektronix, Inc.

ABSTRACT

This paper presents an extension of the Structured Analysis method of writing
specifications. Data flow diagrams previously defined using interactive graphics
tools directly dictate the architet:ture of the program. The software design is the
requirements definition, bypassing the traditional structured design step. Conse
quently, the resulting program closely reflects the Structured Analysis document.
This approach was successfully employed in building a software product at Tek
tronix.

July 2, 1985

3

Extending Structured Analysis to Become a Design Tool

Introduction

Walter Webb

Rainer Wieland

Chris Olson

Software Development Products Division
Tektronix, Inc.

In July, 1984, Tektronix began selling software tools (SA Tools) which aid a software engineer in
using Structured Analysis.! The tools themselves were specified with Structured Analysis. The
resulting specification showed all processes and their data interfaces down to the mini-specification
level. The next step was to develop a structured design by the application of transform and tran
saction analysis on the structured specification. This procedure, however, is ill-defined.

When you carry out transform analysis, remember that it is a strlltegy. You cannot unthink
ingly follow its steps as you could those of an algorithm. From time to time, to stay on the
right track, you must bring to bear your knowledge of what the system is supposed to accom
plish. And, when you derive your first structure chart, you must use all the design criteria you
have learned to improve it.

One day, transform analysis may become an algorithm. But if it does, the structure chart will
disappear and the DFD will be implemented directly, for a machine can obey an algorithm
much better than can a human being. . . . perhaps, we shall see DFDs being executed on a
horde of dynamically reconfigurable microprocessors.2

At about this time, the project team was exposed to the Large-Grain Data Flow technique.3 With
this approach, the data flow diagrams (DFDs) directly dictate the architecture of the program.
Contrary to the popular convention of developing structure charts from the DFDs, structure charts
are never drawn. This technique was adapted by the project team in designing the software.

A New Model for Program Design

Processes in a DFD are defined either by a lower level DFD or by a mini-specification (mini-spec).
The DFDs exist in a hierarchical tree structure where the mini-specs are the leaves on the tree. A
mini-spec contains a structured English description of a primitive process.

The new program design model is based on the DFD: only mini-spec processes do any work (are
executable) and they may execute in parallel. In addition, all data flows are thought of as being
single-entry queues that are either full or empty. The essential question is "When should a mini
spec (module) be activated?". This question is answered as follows.

Control of Module Execution

A module is able to perform its task when all of its input queues are fuB and when all of its output
queues are empty. The destination of some output data flows is external to the system. Their
queues are fixed as always being empty. This approach is similar to techniques propc.sed by

4

others.4,5 Some modules do not need all of their inputs to be present or all of their outputs to be
consumed. Such modules require state memory to track which data flows are present or which
have been used.

Each module is responsible for filling its output queues and for emptying its input queues. Failure
to do so results in a static (or deadlocked) system. In this manner each module can be executed
indl:pcndent1y based on the state of its inputs and outputs. If no queues change state (are emptied
or filled) after all modules have executed, the entire program is done and halts. A single main
program controls the execution of all modules.

This model is implemented by associating a boolean flag for each queue. A queue is full if its
corresponding flag it set, empty if its flag is clear. The setting and clearing of these flags is per
formed using compile-time macros.

The specific application of this model to develop a program is described in the subsequent sections.

MS
files

Remcwe
hLevel

ala Flow.
2

miniJpec
and-ow·

record.

Add
Arsument

oc:essins
9

DFD 0 • Convert Data Flow Dlasram. to Code
Figure 1

From Data Flow Diagrams to Code •• an Overview

module-

ti .. -odua
7

6126l8S·rainerw

It is assumed that one starts from a structured specification consisting of data flow diagrams,
mini-specs, and a data dictionary. It is also assumed that these documents are consistent and
correct. The following examples and descriptions are based on the use and output of Tektronix'
SA Tools.

These tools are grouped into five categories: graphics editing tools, evaluation tools, correction
tools, display tools, and auxiliary tools. The cumbersome task of drawing, correcting, and verify
ing the data flow diagrams is simplified by using these automated tools.

To produce high-level code (C in this case) from the data flow diagrams the steps shown in Figure
1 are followed. Figure 1 is itself shown as a DFD with circles, representing automated steps and
rectangles representing manual steps. The steps are outlined in the Table 1.

5

Table 1

___________ ��2. ________ _
Descr!pJ:!.� __

_

_
_ _

Extract Data Flow Names The data flow names are extracted from all DFDs, sorted
___ + and saved in the file !]pes.

Remove High Level Data The data flow names not attached to a mini-spec are
Flows deleted. The output data flows that terminate on the

Declare C Types

Extract Mini-spec Info

Build Programs

Make Module Stubs
Code Modules

Add "Or" Conditions

Add Argument Processing

An Example

boundary of DFD 0 (the t�p.J�ve!. DF!?J are also deleted.
The C language declarations for the remaining data flows
are defined.
The mini-spec body is converted to C language comments.
Records indicating the name and type of each data flow
and the names and parameters of each module are
created.
The main program containing the code to call each mini
spec, the data declarations for all data flows with their
associated queue states, and the module stubs containing
the parameter declarations and mini-spec body as com
ments are all created. --

'!.�� m .£>E ul �Y..!�E����i.!.!.I!.�_���!..��Ji!.es. _________ _

The mini-spec inserted as comments into each module is
converted to code. --
This step is optional. It consists of adding logical "or"
conditions to the "if" statements preceding a module's call

j!.£>�..!����i.���!��� ____________________________ _

This step is optional. It consists of adding code to process
any command line parameters that are needed by the pro-

p�_�� ___
_

______________________________________ J

The above technique was used to produce the SA Tools. Each DFD and mini-spec must be in a
separate file. A directory must be created containing only those DFDs and mini-specs that are
directly involved in the code generation. For this example the files for the SA Tools' lookdd com
mand are in the current directory:

dfdO
ms9.1.1

dfd2
ms9.1.2

dfd9
ms9.1.3

dfd9.1
ms9.1.4

ms2.1
ms9.1.5

To generate code for one of the other list commands, a different set of lower level DFDs and
mini-specs would be used with tile same top level DFD, The leveled DFDs for the lookdd com
mand are shown in Figures 2 through 5.

Figure 2 is the top level DFD for the SA Tools' list commands. It contains no mini-specs and ends
IIp with no executable modules.

6

DFD 0 - SA Toollliltdf,liItpaD, ud lootdd commandi

Figure 2

deL
ellternal

612618S-rainerw

Figure 3 contains the input modules for the three types of files supported by the SA Tools. Once
created, these modules serve as library modules for all of the tools. The DFDs are thereby used to
define modules which are common to several individual programs. The program lookdd only
needs the mini-spec 2. 1 to read the data dictionary. The other processes in Figure 2 will not con
tribute to the code.

deL
internal

dd..
external

ml_
internal

ml_
elIternaJ

DFD 2 - Getdd, dId, or ms
Figure 3

dId..
elIternal

dfd..
internal

6126I8S-r.inerw

Figure 4 shows the list commands as separate entities. None of the processes in this figure are
mini-specs. Only the mini-specs under process 9. 1 (the lookdd command) will expand into code.

7

612618S-rainerw
Figure 4

Figure 5 shows all of the processes that comprise the lookdd command. Each process is a mini
spec and will have a corresponding code module.

\e-------�e�J:�-

612618S-rainerw
Figure 5

From Data F low D iagrams to Code •• Step by Step

The automated steps are composed of standard UNIX· commands, SA Tools' commands, and spe
cial programs developed to support this code generation technique. The manual steps are per
formed using a text editor.

CNIX is a Trademark of Beli Laboratories.

8

Step 1 - Extract Data F low Names

This step consists of the command sequence:

Iistdf dfd* I sort I unlq > types

Data flow names are extracted from all the data flow diagrams (llstdf dfd*), sorted by name
(sort) , duplicates dropped (unlq), and saved in a file (>types).

PerformiI'g this step on the DFDs in Figures 2-5 results in a list of all of the data flow names used
in the diagrams. The contents of the file types are show below:

dd_definition dd_entry_to_get dd_external
dd_id dd_internal dd_level
dd_return_code dd_silenCflag deepecentries
deClevel dfd_external dfd_internal
entry_level error_dialog formatted_dd_part
formatted_dCpart formatted_pnn_part formatted_sa_part
gdd_id gdfd_id gms_id
inpucsource lhs_dd_entry lhs_level
liscdCrequest lisCdialog liscpnn_request
liscrequest look_dd_request more_input
ms_external ms_internal requested_dd_entry
sa_id

Step 2 - Remove High Level Data F lows

This step consists of deleting all data flow names that do not flow into or out of a mini-spec. Since
only mini-specs are executed the intermediate level data flow names can be discarded. The data
flow names that are outputs (terminate on a boundary point) of the top level DFD must aho be
deleted. Such outputs are not cleared by the modules in the current program since they are con
sumed external to this system.

Step 3 - Declare C Types

In this step, the designer specifies the C data declarations for the remaining names in the file types.
If the data dictionary was constructed correctly, this information should be readily available. The
results of this step are shown below:

Step 4 - Extract Mini-spec Info

dd_definition
dd_entry _to_get
dd_id
dd_internal
dd_level
dd_return30de
dd_silenCflag
gdd_id

char ..
char ..
char ..
struct dd
int
int
int
char ..

look_dd_request char ..
requested_dd_entry char"

This step consists of the following command sequence

dfdtollst dfd*

9

This step and the next two are usually performed together from a UNIX shell script for ease of
use. We normally put the following into a shell script called dtoc:

dfdtolist dfd· I awk -f awk.script .. mkproc proc.c

The dfdtolist program uses the same DFDs as are used in the previous steps. The file types as well
as all of the mini-spec files for the DFDs are also required by dfdtolist. These files need not be
specified on the command line that invokes dfdtolist; the program accesses them directly. The out
put from this step consists of C comment blocks, dataflow records, and minispec records for each
mini-spec. The output is directed to standard output so that it can be piped to the next step.

The comment blocks indicate information derived from mini-spec such as author, date, parent
name, as well as the entire mini-spec body.

The dataflow record indicates the name and type of a data flow originating or terminating on the
mini-spec's process bubble in the parent DFD. Each dataflow record has the format:

I dataflow I name I flag I C-typ�
The name is the data flow name. The flag indicates whether the data flow is an input or an output.
Both fields are derived from the parent DFD. The C-type field is taken from the file types.
The mini spec record indicates the name of a process and all of its required data flow names. All
fields are derived from the parent DFD. Each minispec record has the format:

[iiiinispec I file-name I function-name] parameter�
file-name is the name of the file from which the mini-spec was read.

function-name is the name of the C function representing this mini-spec. Ideally, the name of the
mini-spec process would be the name of the function. However, compilers and linkers have severe
restrictions on lengths and of function names. Thus, the convention was adopted to name each
function with a p followed by the process number (periods being replaced by underscores).

parameters are the names of all data flows used by the mini-spec. Again, the name of the data
flow should become the name of the parameter. However, hyphens must be converted to under
scores in order to disambiguate parameter names from arithmetic expressions.

A sample of the output from dfdtolist is shown below.
/ .
••

• DFD ·9.1· Look up dd entries (lookdd cmd)
.. MINI SPEC ·9.1.1
• TITLE . Get entry from DD
.. AUTHOR . rainerw
.. DATE . 6/26/85
••
. /

dataflow dd_id i char "
dataflow dd_entry_to_get i char ·
dataflow dd_internal i struct dd
dataflow requested_dd_entry 0 char "
dataflow gdd_id 0 char "
mini spec ms9.1.1 p9_1_1 gdd_id requested_dd_entry dd_internal dd_entry_to_set dd_id

/ .
••

1 0

*
• Get entry from DD
• rainerw
• 6/26/85
• 9. 1.1
*
• Repeat {
• if left hand side of dd entry !- dd_entry_to_get {
* skip this dd entry.
• } else {
• SET requested_dd_entry - right hand side of dd entry.
• SET Ihs_Ievel - entry_level.
• SET lhs_dd_entry - left hand side from a dd entry.
* CLEAR dd_entry_to_get.
• CLEAR entry_level.
• Return.
· }
* } until the entire dd_internal has been read one time.
*
* if (dd_silenUlag - FALSE) {
* print "Name <dd_entry_to_get> not found in DD <gdd_id>".
· }
•
• CLEAR dd_entry_to_get.
• CLEAR entry _level.
• Return.
•
••
. ,

Step 5 - B uild Programs

This step consists of an awk program that produces the main program and the module stubs from
the output of the previous step. The main program contains the data declarations for all data
flows, the data declarations for all flags associated with each data flow, and the main loop that
calls each mini-spec process in turn. The main program generated for the example is shown
below. The include file references were automatically generated for this application.

,*
* Main loop
*1

#include
#include
#include
#include

"flag.h"
"io.h"
"error.h"
"globals.h"

main (arge, argv)
int arge;
ehar *argv[];

FLAG loop_flag;

do {

loop_flag = 0;
if (IS_SET(Fdd_internal» goto skipOO1;
if (IS_CLEAR(FgddJd» goto skipOO1;
p2_10;
loop_flag - 1;

skip001:
if (IS_SET(Fgdd_id» goto skip002;
if (IS_SET(Frequested_dd_entry» goto skip002;
if (IS_CLEAR(Fdd_internal» goto skip002;

1 1

if (IS_CLEAR(Fdd_entry_to_get» goto skip002;
if (IS_CLEAR(Fddjd» goto skip002;
p9_1_1 0;
loop_flag = 1;

skip002:
if (IS_CLEAR(Frequested_dd_entry)) goto skipOO3;
if (IS_SET(Fdd_definition» goto skip003;
if (IS_SET(Fdd_return30de)) goto skip003;
if (IS_CLEAR(Fdd_silenUlag)) goto skip003;
p9_1_20;
loop_flag = 1;

skip003:
if (IS_CLEAR(Fdd_definition)) goto skip004;
p9_1_30;
loop_flag = 1;

skip004:
if (IS_CLEAR(Flook_dd_request)) goto skip005;
if (IS_SET(Fdd_silenUlag)) goto skip005;
if (IS_SET(Fdd_Ievel» goto skip005;
if (IS_SET(Fdd_id» goto skip005;
p9_L40;
loop_flag = 1;

skip005:
if (IS_SET(Fdd_entry_to_get)) goto skip006;
if (IS_CLEAR(Fdd_Ievel)) goto skip006;
p9_1_50;
loop_flag = 1;

skip006:
,

} while (loop_flag);
}

The include file flag.h contains the global data declarations for each data flow and its associated
queue state flag. All queue states are automatically initialized to empty (FALSE).

.

FLAG Fdd_definition = FALSE;
FLAG Fdd_entry_to_get = FALSE;
FLAG Fdd_id = FALSE;
FLAG Fddjnternal = FALSE;
FLAG Fdd_Ievel = FALSE;
FLAG Fdd_return_code = FALSE;
FLAG Fdd_silenUlag = FALSE;
FLAG Fgdd_id = FALSE;
FLAG Flook_dd_request = FALSE;
FLAG Frequested_dd_entry = FALSE;
char *dd_definition = {NULL};
char *dd3ntry_to_get = {NULL};
char *dd_id = {NULL};
char *gdd_id = {NULL};
char *look_dd_request = {NULL};
char *requested_dd3ntry = {NULL};
int dd_level = {NULL};
int dd_return30de = {NULL};
int dd_silenUlag = {NULL};
struct dd dd_internal = {NULL};

Each module stub contains the correct external data declarations for the data flows used by a
module, and the rudimentary C statements to make the file suitable for compiling. Even though
all of the data flows are global variables in this implementation, each module can only access those
data flows that are directly attached to its process bubble since other data flows are not explicitly
declared. The following is an example of a mini-spec stub.

#include
#include

"io.h"
"error.h"

12

BEGIN
STATE(STATEO)
END

Step 6 - Make Module Stubs

This step consists of the foHowing command sequence:

mkproc filename

The program mkproc splits up filename, the module stubs produced by the previous step, into
separate files. One file is created for each module. Having each module stub in a separate file
permits better management of the system components and lets the user take advantage of UNIX
utilities like make.

Step 7 - Code Modules

This step is the coding of the mini-spec from the algorithm described by the mini-spec body. The
body of the mini-spec has been put into each module file as a comment to aid in this translation
step.

In some instances the module for a mini-spec may have multiple internal states. The states are a
means of introducing control inside the module. The need for multiple states arises when a
module is used to control the sequence of execution of other modules. Macros are used to define
states and state transitions. This allows the source code to remain readable.

Step 8 - Add "Or" Conditions

This step is optional. Some modules must execute even if not all of their inputs are set. Such
modules must have their conditional invocation in the main program modified. These modifica
tions consist of adding a logical "or" to the list of conditions preceding the module's call.

Step 9 - A dd Argument Processing

This step is optional. It is required if the main program must obtain user-supplied parameters
from the invoking command line. In this case, the designer must supply the code required to pro
cess the command line.

Advantag£s of This Technique

Generating code from the DFDs ensures that the specification is very close to the final code in the
implemented product. If the specification is correct, the implementation will be correct.

The use of compile-time macros for the module entry, module exit, module state control, and
queue state control makes it easy to add (and subtract) debug hooks into various parts of the sys
tem. The macros need simply be changed to include the desired debug print statements.

The conversion of DFDs to structure charts is skipped. This saves time. It also preserves the ori
ginal information about the system. Usually DFDs are discarded after structure charts are drawn.
This does not happen here.

Disadvantages of This Techniq ue

Reading the code without the original DFDs is difficult. You must have the specification to under
stand the code.

13

#include "globals.h"

1*
** •••••••• ** •••••••••••••••••••••••••••••••••••• ***.
*
* DFD · 9 . 1 · Look up dd entries (lookdd cmd)
* MINI SPEC · 9 . 1 . 1
* TITLE . Get entry from DD
* AUTHOR . rainerw
* DATE . 6/26/85
•• ** ••

1*
* FLAGS
*1

extern FLAG
extern FLAG
extern FLAG
extern FLAG
extern FLAG

Fdd_id;
Fdd_entry _to_get;
Fdd_internal;
Frequested_dd_entry;
Fgdd_id;

extern
extern
extern
extern
extern

char *dd_id; 1* i *1
char *dd_entry_to_get; 1* i *1
struct dd dd_internal; 1* i *1
char *requested_dd_entry; 1* 0 *1
char *gdd_id; 1* 0 *1

*
* Get entry from DD
* rainerw
* 6/26/85
* 9.1.1
*
* Repeat {
* if left hand side of dd entry != dd_entry_to_get {
* skip this dd entry.
* } else {
* SET requested_dd_entry .. right hand side of dd entry.
* SET Ihs_Ievel = entry _level.
* SET lhs_dd_entry .. left hand side from a dd entry.
* CLEAR dd_entry_to_get.
* CLEAR entry_level.
* Return. * } * } until the entire dd_internal has been read one time.
*
* if (dd_silenUlag = FALSE) {
* print "Name < dd_entry_to_get> not found in DD < gdd_id>".
* }
*
* CLEAR dd_entry_to_get.
* CLEAR entry _level.
* Return.
*
••• * ••••••••••••••••••••
*1

1 4

The hierarchical nature of the DFDs is lost in the code. A flat, single-level DFD can be recon
structed from the maia program, but the result is messy (much like a flat, detailed structure chart).

As with all new techniques, people have to learn how to use it. Maintainers of the product
developed with this technique must understand SA.

Another disadvantage is that not all of steps are automatic. Thus, changes are still made to the
code rather than in the specification. If all steps were automated, changes could be made only in
the specification and the code would simply get regenerated.

Future Work
Many paths can be followed from here to extend the advantages and to reduce the disadvantages
of this scheme. Eliminating the manual steps from Figure 1 seems like an obvious next step. High
level data flows could be removed from the types without too much trouble. Data declarations, if
contained in the data dictionary, could be automatically extracted. If mini-specs were written in a
more structured way, the translation of mini-specs to code would be easier. "Or" conditions could
be placed directly into the DFD with a graphics editor permitting correct mini-spec invocation con
ditions to be generated the first time.

Work has also been started on animating a DFD to monitor the execution of a program.

Summary
A technique used to build programs from data flow diagrams has been presented. Some of the
steps in the technique are automated while others are manual. The authors are currently working
on automating some of the manual steps.

There are significant implications for using this approach to develop programs for computers with
multiple central processors. It would be possible to have each module execute on a separate
hardware processor. In this way, CPU intensive programs could execute much faster.

References

1. DeMarco, Tom, Structured Analysis and System Specification, Prentice-Hall, Englewood Cliffs,
New Jersey, 1979.

2. Page-Jones, Meilir, The Practical Guide to Structured Systems Design, pp. 182-183, Your don
Press, New York, 1980.

3. Babb, Robert G. II, "Parallel Processing with Large-Grain Data Flow Techniques," Com
puter, vol. 17, no. 7, pp. 55-61, July, 1984.

4. Peterson, J. L. , Petri Net Theory and the Modeling of Systems, pp. 18-21, Prentice-H<111, Engle
wood Cliffs, New Jersey, 1981.

5. Pugh, J. R., "Actors Set the Stage for Software Advances," Computer Design, vol. 23, no. 10,
pp. 185-189, Sept., 1984.

15

BIOGRAPHIES

Walter Webb, Rainer Wieland, and Chris Olson

Walter Webb is a software engineer manager in the Microprocessor Development
Products Division at Tektronix. He has been employed at Tektronix since 1982.
He is the project manager for the SA Tools Project. Previously he has worked
for Federal Electric Corp., Aerospace Corp., AC Electronics, and Autonetics.
He has an MS degree in systems management from the University of Southern
California, an MS degree in electrical engineering from the University of
California, and a BS degree in electrical engineering from the University of
Santa Clara.

Rainer Wieland is a senior software engineer in the Microprocessor Development
Products Division at Tektronix. He joined Tek in 1 978. He is the project
leader for the SA Tools Project. Earlier Mr. Wieland was a systems programmer
with Motorola Microsystems. He has a BA degree in astronomy from Brown
University.

Chris Olson is a software engineer in the Microprocessor Development Products
Division at Tektronix. He started working with Tektronix immediately after
receiving his bachelor's degree in computer science from Washington State
University in 1 983. For the past two years Mr. Olson has been a member of
the team developing Structured Analysis Tools.

1 6

I-'
--J

DFD
fi les

-.�
MS-

files

/�,
I Extract
Data Flow

Names
• 1

Extract
Mini-spec

Info
.4

r------�
KCmOUe !

Hiqh Leuel
Data Flows

2

Declare
C T�pes

minispec
and-

ow
records

!Add I � Argument
iProcessing
I 9

main
11 ,�

Add "Or"
Conditions

8

DFD 0 - Conuert Data Flow Diagrams to Code

Make
Module
Stubs

.6

Code
Modules

7

6/26/85-rainerw

OJ
C

- .---f

If)
Qj If) If)

c Q) u If) 0 LJ 0 � - .---f 0 U =s --t.J L
--t.J - .---f � 0 If) (j � If) C --t.J
Q) Q) 0 C

If) I r--i r--i LJ � =s =s 01
1

I (j (j - =s l !

-

O· 0 0 L L
E E 0 OJ

r-- - [) L -

Cl Q) Q)
(� (j (j (j � 0 0 (j (j LL L u CI CI

{! {! {! {!
1 8

�-r�om DFDs to Code
(===========================�==�

I-'
\.0

* Extract data flow names
* Remoue high leuel flows
*Oeclare C t�pes
* Extract mini-spec info
* Bu i 1 d programs

r--

N
o

New ilode 1 fOr Program Des i gn

* state memor� tracks
queue usage

* MSs control own queues
* Program is done when

no queues change state

c
rn
If)
QJ

o
E
(]
L
Ul
o
L

CL

x X i I

L QJ ---t-J
CJ i I ---t-J �

(+-1 � � �
U �---t-J

r--1 0 C �
QJ E - .-; 0

u
o _.-. __ ...

'>
L_

-,
� ____ 1

OJ
21

c
Ol
Ul
QJ

o
E
o
L
Ol
(.=J
L

CL
(
�

o
(I I

r I

I 3! QJi z:1
I
I I

(' -

x x C
C =s
o L

- ,..--; -t--J QJ
Ul �
QJ =s en o-L

i I

-,..--; U -t--J i I

C =s QJ 0
Ul l
Ul Ul QJ C
QJ QJ

�5
22

�ew �odel for Program Des i gn
c==:::-======--==================

u Based on the DFD
N U On l� MSs do work
w

I

U MSs run in para lIe I
u Data flows are

1-entr� queues

IMPLEMENTING THE SOFTWARE REVIEW PROCESS

David J. Kerchner

Floating Point Systems, Inc .
P . O. Box 23489

Portland, OR 9 7223

ABSTRACT

Estimates as high as 40 to 60 percent of a software project's total lifecycle
budget being spent for software maintenance are not uncommon. But effective
implementation of the review process throughout the computer industry to help
forestall the expense of this maintenance is not as widespread as one might
believe.

The review process has been documented through many case studies, the results
of which point to the fact that their effectiveness in helping reduce the
number of software errors found during the pre-release software development
phases cannot be ignored. The benefits to an organization far outweigh any
possible negative aspects that software developers, from programmers to
managers, perceive as being reasons for not using this readily available
process.

Further, the review process is an invaluable tool for management to monitor the
software development effort with a minimum amount of effort and cost to the
organization (compared to today's software maintenance costs !) . Moreover, it
enhances interpersonal communication between developers, it's an excellent
educational tool, and of course it helps produce better quality software.

The purpose of this paper is to examine the software review process and to
outline the important steps that a QA group should take when implementing the
software review process in order to reduce testing and post-release maintenance
costs.

INTRODUCTION

A critical issue facing software developers is whether or not their products
will meet the users' quality criteria (see BOE76, BOE78, POD8S) . In the past,
software deficiencies could be covered up by the maintenance and support areas.
Today's users are smarter . When offered a wide selection of available
applications and systems, they invest their dollars in software that works.

Numerous QA standards may be written, but unless there's some mechanism to
monitor their application and the developer's adherence to them, such standards
are for all practical purposes useless. But if developers don't use quality

24

standards from the beginning, there ' s no assurance the final product will have
any quality. So how does one ensure that quality , as predefined by the
developer, is built into the softwar�

A proven and effective method
addressed is the review process.
through the review process, to
objectives.

THE REVIEW PROCESS

What is the review process?

for ensuring that
QA should provide

bring into focus

quality objectives are
an objective viewpoint,

the predefined quality

The software development effort may be described as a multi-phased set of
operations or functions, each operation or function resulting in a
deliverable (s) for that phase. The review is that process by which each
deliverable (s) is judged to be in conformity with a set of predetermined
quality objectives.

Whether one uses the inspection, the structured walkthrough, the walkthrough ,
the review, and so forth, may be a matter of choice and practicality (or may be
dictated by outside requirements) . Each differs in its formality of approach
and in the amount of quantitative data that can be extracted from the results.
Generally speaking, the inspection method is the most formal, and most
effective , method. But the others may be effective depending upon their
implementation, application, or the deliverable under review. Each method can
be tailored to a specific deliverable, or any one type may be applied to all
project deliverables.

Excellent discussions regarding the definitions of the review process may be
found in a number of works (e.g. , YOU78 and FRE82) , and a reader unfamiliar
with the proces s is urged to do further research. These works cover the review
process in detail with guidelines for its design and implementation , and just
as importantly they consider the human element.

The characteristics which define the succes sful review program are organization
and planning for each review conducted. Generally, all of the review processes
incorporate the same ideas and procedures to some extent, but one, such as the
inspection method, might stress them more explicitly than another, such as the
walkthrough process. To illustrate this, Table 1 lists six explicitly defined
steps which make up the inspection method.

When the inspection method is used, there is a strong dependency on role
playing by the participants. On the other hand, a less formal peer review does
Dot rely on such strict role playing for conducting the review session. In
general, there are certain guidelines which should be followed to ensure that
whichever type of review is held, it will be as successful as possible. We
shall describe the more formal inspection process to illustrate the general
procedure for conducting a review.

25

Table 1. Six Steps in the Inspection Process.

•
Step Participant(s)

1 Planning the Moderator
Inspection

2 Product overview All participants

3 Pre-inspection Each participant
Preparation

4 Inspection/review All participants

5 Product rework Product Designer

6 Inspection Moderator/Designer
Follow-up

Planning the inspection

Objectives

Schedule review
Distribute materials

Familiarize inspection
team with materials

Examination of materials
against checklists

Error detectio'n

Correct errors in product

Ensure defects corrected
Feed-forward education
Error analysis

Entrance criteria for the review must be defined; for example, a scheduled
deliverable must be completed, such as a design specification. The completion
of this deliverable serves as a trigger mechanism to initiate the review
process. Other triggers might be a project manager's request to hold a review
or a client's request.

Once triggered, the inspection moderator, ideally a member of the Quality
Assurance group, assumes responsibility for scheduling and organizing the
review and, with the designer's assistance, selects the other review
participants. The number of reviewers may vary depending on circumstances such
as the particular deliverables to be reviewed. Also, if any reviewer doesn't
have the proper training in the review process, it's the responsibility of the
QA group to provide such training.

The time and place for the inspection are set. It's important that the review
be conducted in a room isolated from outside disturbances, that it be
comfortable, and that it be adequately supplied with the proper blackboards, AV
facilities, etc., necessary for the designer's overview presentation and for
the inspection meeting itself. Also, it should be scheduled for a convenient
time for all participants, and not, for instance, one hour before quitting
time.

The moderator ensures that all deliverables to be reviewed are distributed to
the inspection team several days before the review and that checklists and

26

reporting sheets are also distributed. It must be emphasized that any software
code to be reviewed should already have been clean compiled ; it ' s a waste of
human resources to do the compiler ' s work . If a less formal review method is
used, the moderator ' s responsibilities generally fall on the designer and/or
other review participants .

Product overview

An overview of the deliverable (s) should be scheduled before the inspection
meeting. This provides each reviewer with an understanding of the product and
its intended function (s) . It's essentially an educational session for the
inspection team and it is usually conducted several days before the actual
inspection. Les s formal peer reviews may incorporate an overview into the
actual review meeting to briefly familiarize the reviewers with the product,
but its effectiveness at that time is questionable .

Pre-inspection preparation

Between the time of the overview and the inspection meeting, each reviewer
examines the deliverables, evaluates them against the checklists provided, and
makes notes regarding errors found so that these may be recorded in the
inspection meeting. Reviewers should not attempt to provide solutions to
errors discovered; that's the work of the designer and other software
engineers. An advantage of checklists is that they provide objective criteria
to evaluate the product . Otherwise, each reviewer is left to his or her own
intuitive feeling as to what to look for in the product. If review
participants are unable to prepare themselves ahead of time, they should excuse
themselves from the review, and the review should be rescheduled, if necessary.

Inspection/review

At the beginning of the inspection the moderator should explicitly state the
objectives for that particular inspection, and present the inspection agenda
describing the sequence of events in the meeting . Since reviews/inspections
may be tailored to a particular company's needs, there are variations to this
proces s: a reader might be selected from among the reviewers to present the
material rather than the designer, the designer might be the review moderator,
checklists might not be used, and so forth . Generally, key guidelines to
follow in conducting any type of review include:

o Optimum review duration is one hour, two hours maximum
o Unprepared reviewers should be excused and the review

rescheduled, if necessary
o Focus on error detection, NOT error correction
o Review the product, not the person
o Record ALL errors/discrepancies
o Avoid discussions unrelated to the product under review
o Determine reviewers consensus for reinspect ion

Product rework

Whenever possible, the moderator should issue a report .to the designer within

27

one working day of the inspection. This
discrepancies found during the review and their
the severity of impact on the reviewed product.
necessary changes to the product while the
his/her .. ind.

Inspection follow-up

report lists the errors and
categorization with respect to

The designer can then make the
information is still fresh in

In cases where a reinspection has not been scheduled, the moderator verifies
that the proper changes have been made, and if satisfied, gives formal approval
allowing the project development to continue. If the moderator feels the work
should be reinspected, another inspection session may be scheduled. Continuing
analysis of the error data can take place, and the results can be compiled to
provide a future database of statistics regarding the software development
process. Completion of all rework and follow-up activities define the end of
one review cycle; the process is repeated when re-triggered.

In less formal reviews, the formal rework and follow-up work processes are
generally omitted; it's assumed the designer will make the necessary
corrections to the reviewed items. Also, the authority to schedule
reinspections or to reject the rework does not usually exist within the less
formal review processes.

Why the review process?

Project management requires there be some form of control over a software
project's development effort (e.g., MET81). The review process gives
management this needed control (FAG76, GLA84) over product quality much earlier
in the project's lifecycle (Figure 1). Each scheduled review becomes a project
milestone that must be passed, thus ensuring that the product's development is
closely monitored and corrected, when necessary.

1T-______ T._t ______ �I�
f flr.' -.... _- I

... ,

I I
-

�I""'"
I

I r: j "-fIo'_ I • II-

.. , - - , .. , -.

T.t 1-''''-'
I

............ --..., .. - _

.... ..- AI nII lRII .. 11-.

.-

Figure 1. Enhanced Project Management Control (from FAG76).

2 8

The objective of the review is to find errors in the deliverable item (s) or
product (s) being reviewed. Even after the review process, some errors may
still be found . However, those errors detected at the earliest possible phase
in the project's lifecycle will reduce the subsequent cost of testing the
software before its release and the inevitable cost of its post-release
maintenance . (It's not uncommon to hear numbers such as 40 to 60 percent of a
project ' s total lifecycle budget being spent on maintenance .)

Many people still have the misconception that reviews are needed only for the
actual software code, and programmers are too often blamed for the errors when
the requirements and/or initial designs were really at fault . Yet problems
arise in all phases of the development cycle (see HUG77) . For example :

o Immature, incomplete, or unvalidated requirements
o Lack of traceability from requirements to operational software
o Incomplete functional specifications, incomplete detail

data dependencies not defined
o Logic errors, unstated assumptions
o Poor documentation
o Changes in specifications

It is QA ' s responsibility to persuade management, project members et . al . , of
how effective reviews can be (CON8S and POD8S) . Logic, as well as simple
economics, strongly suggest that a project be reviewed at all critical points
and milestones in its lifecycle, not just during the coding phase (Figure 2).
No matter what an organization/project defines its deliverables to be, (as
commonly outlined in standard methodologies, DOD standards, IEEE standards ,
et. al.) each should be subject to review for conformance to the
organization's quality standards . Otherwise, the proverbial wheel will
continue to be reinvented !

100

10 1 -
10 -I .wi
10 I ::_ou._y

..... - I � 10 -

..... . _._1IlICID

Figure 2 . Relative Cost to Fix Defects by Project Phase .

2 9

Effectiveness studies

Studies done using the review process at a variety of companies point out some
of the benefits of its use . For instance , at IBM (FAG76) , one study project
showed a 23 percent increase in productivity of the coding operation as
compared to a control sample project . After conducting testing comparable to
that done on a project of similar scope on which less formal walkthroughs had
been used , the inspection project contained 38 percent fewer errors . The
inspection method is in standard use there .

A case study conducted at Sperry-Univac recorded similar findings (KAR82) . The
project covered a period of one and a half years and involved writing 23 , 000
source statements in 165 code modules and 180 data modules . Strict adherence
to one standard type of review was not followed; they used structured
walkthroughs and later round-robin reviews as their schedule tightened . Yet
the 90 percent of the product they reviewed accounted for only 25 percent of
the significant error reports , whereas the 10 percent of the total (comparable)
code not reviewed amas sed 75 percent of the error reports .

IMPLEME��ATION OF THE REVIEW PROCESS

It's the responsibility of the Quality Assurance organization to oversee the
review process implementation and to provide effective leadership for the
review program (CON85) . Commonly , the software development project teams are
often in control of the review process . However , to provide that st rong , yet
objective voice to focus on quality issues during development , the QA group
should ideally be in charge of this proces s. Therefore , to succes sfully
establish a QA review process or to enhance an already existing one , the
strategy should include certain key activities (ACK82 , FRE82 , YOU78).

o Management must decide to commit project resources in support of the
review process and they must solidly support QA's efforts to implement
the review process

o QA must plan the installation , execution , and evaluation of the review
process

o QA must provide training to convey skills , technical information , and
provide motivation for using the proces s

o The review process must be applied in a consistent , sustained effort

Although it's been said quality is free , every manager must allocate sufficient
project resources for conducting the reviews that will ultimately further the
program's succes s . I f the commitment is there and reviews are scheduled as
deliverable items or milestones themselves , then reviews will be respected.

3 0

Reviews become all the more effective as their visibility in the project
increases .

Quality Assurance must decide which method, e.g . , inspection , is most suitable
for the company's purposes . The method selected must be clearly outlined as a
company standard or guideline that has the full support of management as well
as the software development teams .

Failure of the review process can frequently be attributed to a lack of
understanding of the goals and methods of the process itself . The key to
eliminating this problem is proper education of all project personnel. And
although management doesn't normally participate in most reviews, they too
should be educated as to the purpose and impact of the review process.

The objective of the review process is to enhance the development process
itself and reduce the overall costs incurred during product development and
maintenance. Furthermore, the review process allows management the opportunity
to evaluate the quality of the product much earlier in its development cycle .
In order to accomplish these objectives, the review process must be applied to
the selected project (s) in a systematic, sustained fashion. There should be no
special cases where deliverables are skipped over for review because of
schedules , personal reasons, and so forth. To be truly effective, all
deliverables must be reviewed .

The review process enhances and reinforces the idea in every software
engineer ' s mind that quality is everybody ' s job . But when it comes to
reviewing our own work, we tend to become overly protective, and therein lies
an important source of resistance to the review process. Reviewing one ' s own
work exposes it to others for constructive help, not destructive criticism. QA
must ensure that reviews are 'egoless' and don ' t jeopardize the personal
feelings of those whose work is under scrutiny. Once people perceive this,
they tend to become more receptive to the review process and view it not as an
outside imposition on them, but as a valuable tool.

To judge the effectiveness of the review program, QA must evaluate the
efficiency and effectiveness of the review process itself. Feedback from
project personnel and management will help to refine the process and correct
any deficiencies. As statistics are gathered, they should be made available to
the project and can serve as a basis for reviewing and evaluating the direction
of future projects.

RESULTS

Preliminary results of using the review process at Floating Point Systems (FPS)
are encouraging. Peer code walkthroughs have been the unofficial standard
practice for some development groups and QA specification reviews have been
conducted. Neither relied on checklists or other objective criteria to
ascertain if quality objectives and issues were being addressed (the
specifications were reviewed against existing standards) .

3 1

On the proj ect this writer was supporting, suggestions were made to improve the
efficiency and effectiveness of the code reviews . An educational session was
developed which would convey these ideas to all of the software engineers on
the project and provide the necessary information needed to conduct effective
reviews. (A number of these presentations have been given to other development
groups as well).

Since most of the code had already been written for this project, the reviews
conducted numbered only four. But 34 subroutines (approximately 4200 lines of
code) were reviewed, and 237 items were recorded as possible discrepancies. Of
these discrepancies, 156 were related to documentation problems and
non-adherence to standards. The number of errors due to conflict with the
existing programming standard emphasized the need to complete this standard ' s
revision, which was already in progress. The remaining 81 d iscrepancies were
addressed by the engineers and either corrected as errors or investigated
further (not all turned out to be errors).

Some observations were made regarding these reviews. As one might expect, the
more senior team members were far more knowledgeable and better prepared to
participate in reviews, primarily because of their higher level of expertise;
junior members were less likely to have review experience, and their
contribution was perhaps less. In both cases, however, neither group, plus QA,
could independently find all the defects (see an interesting study by Myers,
MYE78) . Checklists would help in this process. They can also help to define
more specifically the types of errors to look for and to record and report the
ones that were found . Yet even with their shortcomings, the reviews greatly
enhanced each participant's understanding of both the product and the review
process.

In addition, the manner in which software engineers design and develop software
may be in conflict with the existing company standards (enforced by QA). In
the case of the programming standard, what works best for the engineer was in
conflict with the existing standard , so QA worked in harmony with the project
to revise that standard. The point is that standards should be living
documents; they too should be reviewed and updated as needed.

The review process at FPS is progressing and is currently in its second
iteration. It ' s become apparent that a more formal approach should be taken in
handling the review process, more along the lines of the inspection method. A
review standard is being written, and in conjunction with this, checklists will
be devised to make the review process more obj ective. It's felt this approach
will give more quantitative results from the reviews and provide more precise
definitions of the types of defects being reported. The educational process
will also cont inue, helping to pave the way for general acceptance of the
review process within the company. A real need, however, will be to have
resources allocated from the beginning of a project for the purpose of
conducting these reviews.

CONCLUSIONS

Because of the limited application of these reviews, the results achieved to

3 2

date have not been dramatic (considering the project's scope) . On the other
hand, any one of the errors detected could potentially have stopped the
programs. Since only these few code· reviews were held, they were not the most
cost effective as far as the review program goes, but they set the future
direction and hone the method. Greater benefits will result only from the
systematic application of the review process over the complete development
cycle of the software ; management must realize this.

In summary, the review process should aid, not inhibit, the software
development effort. An effective review program gives the Quality Assurance
function a high degree of visibility that reinforces the concept of building
quality into the product. Reviews serve as a positive standards reinforcement
tool that will ensure uniformity during the development process (which later on
eases maintenance problems) . Further, reviews introduce the software engineers
to the concept of software reviews, their importance in the development
process, and the realization that quality is everyone's responsibility, not
Quality Assurance's or one or two key project members. Finally, through an
effective review program, management has a better assurance that quality issues
have been addressed and that the final product will be as error free as
possible .

"Quality doesn't happen, it's planned"

REFERENCES

ACK82 Ackerman, F., and Ackerman, A. "A software
Program." Proceedings of COMPSAC, 1982

Inspection Training

BOE76 Boehm, B., Brown, J., and Lipow, M. "Quantitative Evaluation of
So f tw ar e Qua li ty . " -::P�r�0:..::c:..::e:..::e:..::d:..::i:::n:s:;gt=s:...z,_-=2:::n:..::d=--...=I:::n:.,:t:..::e:..::r�n:..::a:.,:t:..::i:.;:o:::n:..::a:.,:l=--...=C:..::o::;n:..:f:.;:e:..:r...=e::;n:.,:c:.,:e=-----=o;::n
Software Engineering, 1976

BOE78 Boehm, B., Brown, R., Kaspar, H., Lipow, M., MacLeod, G., and Merritt,
M. "Characteristics of Software Quality." TRW Series of Software
Quality, Vol 1, North Holland Publishing Co., 1978

CON85 Connell, J., and Brice, L. "Practical Quality Assurance." Datamation,
March 1985

FAG76 Fagan, M. "Design and Code Inspections to Reduce Errors in Program
Development." IBM Systems Journal, Vol 15, No 3, 1976

FRE82 Freedman, D., and Weinberg, G. "Handbook of Walkthroughs, Inspections,
and Technical Reviews." Little, Brown and Company, Third Edition, 1982

GLA84 Glaser, G. "Managing Projects in the Computer Industry." Computer,
October, 1984

3 3

HAR82 Hart , J. "The Effectiveness of Design
Proceedings of COMPSAC , 1982

and Code Walkthroughs . "

HUG77 Hughes , J . , and Michtom , J . "A Structured Approach to Programming . "
Prentice Hall , Inc . , 1977

MET81 Metzger , P . "Managing a Programming Project . " Prentice Hall , Inc . ,
Second Edition , 1982

MYE78 Hyers , G . "A Controlled Experiment in Program Testing and Code
Walkthroughs/Inspections . " Communications of the ACM , Vol 2 1 , No 9 ,
September 1978

POD85 Podolsky , J. "The Quest For Quality." Datamation , March 1985

YOU78 Yourdon , E. "Structured Walkthroughs . " Prentice Hall , Inc . , Second
Edit ion , 1978

34

BIOGRAPHY

David Kerchner

David J. Kerchner is employed by Floating Point Systems of Beaverton, Oregon
as a supervisor in the Methods, Standards, Quality Assurance department. He
has earned both BA and MS degrees from Northwestern University in astronomy.
He taught at two universities before continuing studies including computer
science. He was employed by the McDonnell Douglas Automation Company of
St. Louis, Missouri before coming to FPS.

.

3 5

w
O"l

IMPLEMENTING THE SOFTWARE
REVIEW PROCESS

BY

DAVID J. KERCHNER

FLOATING POINT SYSTEMS, I NC.

SOFTWARE QUALITY CHARACTERISTICS TREE

GENERAL
UTILITY

� DEVICE INDEPENDENCE

PORTABILITY -------.... SELF-CONTAINEDNESS

ACCURACY

RELJABILITY � COMPLETENESS / � ROBUSTNESS/INTEGRITY

As-IS UTILITY � CONSISTENCY

EFFICENCY -- _---""1 ... � ACCOUNT ABLfTY

DEVICE EFFICIENCY

HUMAN ENGINEERING --. ACCESSIBLfTY

1:. COMMUNICATIVENESS

TESTABILITY � SELF-DECRIPTIVENESS /
STRUCTURED NESS

CONCISENESS

LEGIBILITY

MODIFIABILITY -----4.� AUGMENTABILITY

flOATING POI� SYSTEMS, NC. 3 7

REVIEW TYPE DIFFERENCES

w
co

o FEEDBACK/FEEDFORWARD

o CHECKLISTS

o ERROR ANALYSIS

o SIGNOFFS

FLOATING POINT SYSTEMS, INC.

o QA/PROJECT DIRECTED

o FORMALITY

o ROLES

o REPORTS

INSPECTION PROCESS

1 . PLANNING

2. OVERVIEW

3. PRE-INSPECTION

4. INSPECTION
w
\.0

5. PRODUCT REWORK

6. FOLLOW-UP

FLOATING POINT SYSTEMS, INC.

MODERATOR . SCHEDULE /DISTRIBUTE

ALL PARTICIPANTS FAMILIARIZATION

EACH PARTICIPANT EXAMINE MATERIALS

ALL PARTICIPANTS ERROR DETECTION

DESIGNER CORRECT ERRORS

MODERATOR ENSURE CORRECTIONS
DESIGNER EDUCATION

ERROR ANALYSIS

�
o

"

FLOATING POINT SYSTEMS, INC.

1 . PLANNING

o SCHEDULE OVERVIEW & INSPECTION

o SELECT a NOTIFY PARTICIPANTS

o ENSURE ACCEPTABLE ENVIRONMENT

o DISTRIBUTE INSPECTION DELIVERABLES

o DISTRIBUTE CHECKLISTS a FORMS

z
52 en ac en ...
... • � en � en z

W c c
- z
> ! II
a: z
w ! > u m 0 8

• •
N II I > ac ... > 0 "

0 0

41

�
N

FLOATING POINT SYSTEMS, INC.

3. PRE-INSPECTION

o REVIEW DELIVERABLES

o RECORD DISCREPANCIES

�
w

FLOATING POINT SYSTEMS, INC.

4. INSPECTION

o STATE INSPECTION OBJECnVES

o PRESENT AGENDA

o SELECT READER

o ENSURE PARTICIPANTS PREPARED

o ERROR DETECTION, NOT CORRECTION

·0 REVEW PRODUCT, NOT PERSON

o RECORD ALL ERRORS

o AVOID EXTRANEOUS DISCUSSIONS

o DETERMINE SUBSEQUENT ACTION

o PARTICIPANTS SIGNOFF

�
�

FLOATING POINT SYSTEMS, INC.

5. PRODUCT REWORK

o CATAGORIZE ERRORS

o INSPECTION REPORT

o MONITOR REWORK

.t:.
Ul

FLOATING POINT SYSTEMS, INC.

6. FOLLOW-UP

o VERIFY CHANGES

o SCHEDULE RE-INSPECTION

o FEED FORWARD EDUCATION

o ERROR ANALYSIS

o STAnSTICS

o FINAL INSPECTION SIGNOFF

..I o � o u
.... z w � w " c(z c(� .
.... u w .., o a:: a.
c w U z c(: z w

z u 1 1
o �

I

t --u

46

.c:.
...J

DEVELOPMENT PROBLEMS

. 0 IMMATURE, INCOMPLETE, OR UNVALIDATED REQUIREMENTS

o LACK OF TRACEABIUTY

o INCOMPLETE FUNCTIONAL SPECIFICATIONS

o LOGIC ERRORS

o POOR DOCUMENTATION

o CHANGES IN SPECIFICATIONS

FLOATING POINT SYSTEMS, INC.

W tn ca: :I: A-
I- I (.) w .,
0 Ii a:: A-
> I • m Ii I tn l- I I (.) • w I u. I I W I c
>< i -
u.
0 I l- I E . 1 . I-tn - -

• 0
u (.) 8 .. d Z .. W ... > li�!1 � -l- t;; :s � w
� a::
5
Q..
l.) Z � 0 ...J u...

4 8

EFFECTIVENESS OF THE PROCESS

o IBM

o 23% CODING PRODUCnvlTY INCREASE

o INSPECTIONS 38% FEWER ERRORS THAN WALKTHROUGHS

� 0 SPERRY-UNIVAC
'"

o 1 65 CODE MODULES, 1 80 DATA MODULES

o 23,000 SOURCE STATEMENTS (1 1 /2 VR PROJECT)

o 90% PRODUCT REVIEWED -. 25% ERRORS

o 10% PRODUCT NOT REVIEWED � 75% ERRORS

FLOATING POINT SYSTEMS, INC.

Ul
o

REVIEW IMPLEMENTATION

o MANAGEMENT SUPPORT/PROJECT RESOURCES

o REVIEW PROCESS IMPLEMENTATION

o REVIEW PROCESS TRAINING

o CONSISTENT, SUSTAINED REVIEW APPLICATION

FLOATING POINT SYSTEMS, INC.

1Jl f-'

FPS REVIEWS

o 34 SUBROUTINES (4200 LINES OF CODE)

o 237 POSSIBLE DISCREPANCIES

o 1 56 DOCUMENTATION ERRORS

o 8 1 OTHER ERRORS .

o (OlliER REVIEWS NOT INCLUDED)

FLOATING POINT SYSTEMS, INC.

V1
N

OBSERVATIONS

o SENIOR MEMBERS MORE EXPERIENCED

o TRAINING BENEFICIAL TO PARTICIPANTS

o NO CHECKUSTS REDUCED EFFECTIVENESS

o ERROR ANALYSIS DIFFICULT

o STANDARDS NOT ADHERED TO

o STANDARDS NEEDED REVISION

o QA ENHANCED REVIEW PROCESS

FLOATING POINT SYSTEMS, INC.

Ul
W

FUTURE DIRECTIONS

o FORMAL COMPANY REVIEW STANDARD

o USE OF CHECKLISTS

o CONTINUED EDUCATIONAL EFFORTS

o PROJECT RESOURCE ALLOCATION

FLOATING POINT SYSTEMS, INC.

Ul
�

SUMMARY

o REVIEW PROCESS AIDS DEVELOPMENT EFFORT

o QA HAS HIGH DEGREE OF VISIBILITY

o POSmvE STANDARDS REINFORCEMENT TOOL

o QUALITY IS EVERYONE'S RESPONSIBILITY

o PROJECT MANAGEMENT HAS BE i i ER QUALITY CONTROL

o QUALITY PROJECTS/PRODUCTS

FLOATING POINT SYSTEMS, INC.

fa
!
en 1:

-

.... Z en w 0 C
u 6

...

� � a �
0-
l? Z � 0 --'

5 5 "-

Pac i fic Northwest So ftware Qua l ity Con ference

Paper Abstract

George D . Tice , Jr .
Tektron ix , I nc .

P . O . Box 4600 (MIS 9 2 - 525)
Beaverton , Oregon 97075

(503) 629 - 1 310

So ftware Con f i gurati on Management :
A Too l for So ftware Qua l ity

So ftware con f i gur ation management i s the so ftware qua l i ty
act iv ity through wh ich the products o f the so ftware deve l opment
pr ocess are identi fied , l abe l ed , contr o l led and accounted for .
The four ma j or functions o f so ftware con f i gurat i on management
involve :

ident i fying the so ftware product whi ch inc ludes the
computer program , i ts documentat i on and associ a ted
data

contr o l l ing changes to the so ftware pr oduct

report ing the status o f the so ftware pr oduct and
a l l changes to i t

aud i t ing the so ftware product pr i or to release for
product i on or de l ivery to a customer

Th i s paper w i l l present so ftware con f i gur at i on management
as an iT:lportant factor in the deve l opment o f a qua l ity so ftware
pr oduct . I t wi l l prov ide the reader w i th :

an d i scuss i on o f the need for so ftware con f i gura t i on
management

a de f i n i t i on o f the funct i ons o f so ftware con f i gur a t i on
mana gement

an intr oduction to the techn i ques for per forming so ftwar e
con f i gur ation management

a summary o f severa l standards for the pr act ice o f s o ft
ware con f i gurati on management

The under lying theme for the paper i s that so ftware
con fi gurat i on management as a ma j or so ftware qua l i ty act iv i ty
i s an important " too l " in the deve l opment o f a so ftware product
w i thin the management constra ints o f cost , schedu l e and
per formance .

5 6

So ftware Con f iguration Management :
A Too l for So ftware Q�a l ity

George D . Tice , Jr .
Tektronix , Inc .

P . O . Box 4600 (MIS 9 2 - 525)
Beaverton , Oregon 97075

(503) 6 29 - 1 310

Introducti on

So ftware con figuration management i s the so ftware qua l ity
act ivity through which the products o f the so ftware deve l opment
process are identi fied , l abe l ed , contr o l l ed and accounted for .
The four ma j or functions o f so ftware con figuration management
invo lve :

ident i fying the so ftware product
contr o l l ing changes to the so ftware product
reporting the status o f the so ftware product and
a l l changes to it
auditing the so ftware product pr i or to release for
production or de l ivery to a customer

This paper presents so ftware con figuration management
as an important factor in the development o f a qua l ity so ftware
product . I t provides the reader with :

a discus s i on o f the need for so ftware con figuration
management
a de finition o f the functions o f so ftware con figuration
management
an introducti on to the techn iques for per forming so ftware
con figuration management
a summary o f sever a l standards for the practice o f so ft
ware con figuration management

The under lying theme for the paper i s that so ftware
con figuration management as a maj or so ftware qua l ity activity
is an important " too l " in the devel opment o f a so ftware product
within the pro j ect management constra ints o f cost , schedule and
per formance . (1)

The Need for SCM

The goa l o f so ftware con f iguration management i s to be
ab le to reproduce the comp lete so ftware con figuration o f a
system for any speci fied vers i on at any point in t ime starting
with masters of a l l modi fiab l e e l ements and speci fied rules o f
assembly . Thi s goa l re flects the needs o f the var i ous views o f
the so ftware wor l d depending on one ' s distance from the so ftware
devel opment e f fort . This distance ranges from that o f corporate
or other upper l evel management through pro j ect management to
the technical l evel o f the actual so ftware devel opment team .

5 7

At the corporate or upper management l evel the primary
concern is productivity . At this level so ftware i s considered
a corporate asset to be kept , maintained and reused . So ftware
con figuration management is a too l which provides for the
indexing , protection and avai l ab i l ity o f thi s so ftware asset .

Pro j ect comp letion is the bas ic concern o f pro j ect manage
ment . Th is invo lves the contr o l o f the products at each phase
of the so ftware l i fe cyc le . These products represent the what ,
the how , the answer , the eva luati on and the changes o f the
so ftware product . I n other words , the products re flect the
va lue added or resources expended at each phase o f the s o ft
ware l i fe cyc l e . So ftware con f i guration management i s a too l
for the protection o f the value added to the so ftware product .

At the technical l evel the so ftware deve l oper ' s concern
is for the day - t o - day j ob o f creating the so ftware product .
This invo lves the generation o f and changes to numerous s o ft
ware deve l opment documents and t o the actual source code . I t
i s at th is leve l where the concerns for productivity and
pro j ect completion are reso lved . So ftware con f i guration manage
ment provides the so ftware devel oper with the too l s to achieve
both so ftware- engineer ing productivity improvement and so ftware
product integri ty and qua l ity . This is achieved through
the contro l o f the tapes , the disks , the l istings and the
documents produced by the so ftware devel opment team . This i s
accomp l ished on a day - t o -day basis by the so ftware devel opment
team . The success o f the so ftware con fi guration management
e f fort is direct ly dependent on the abi l ity to meet these rea l
needs o f the so ftware deve l opment team .

Frequent ly these needs for so ftware con figurati on manage
ment are uncl ear due to the transparency o f the so ftware itse l f
as it passes through the so ftware devel opment process . An
ana l ogy may be made to the devel opment o f a more v i s ib l e product -
a new automob i le . Consider the Ford Motor Company 1960 era
deve l opment o f the new Mustang moving from a concept to some
418 , 8 1 2 vehicles del ivered to customers dur ing the first year
o f producti on . Pr ior to the actua l producti on the Mustang
deve l opment team stated and restated the requirements for the
new sports car . Once approved the requ irements were expressed
by Ford des i gners in a series o f c l ay mode l s which were reviewed
by upper management . Se lected des i gns were incorporated into
a ser ies o f prototype vehicles which were sub j ected to both
engineer ing and marketing tests . On ly a fter the final des i gn was
selected and approved was the commitment made for the expens ive
retoo l ing for the manu factur ing capacity to mass produce the
Mustang . I t is at this po int that the final con figuration o f
the Mustang permitted creation o f the necessary machine too l s
and assembly l ines plus the tra ining o f peop l e t o enab l e
pro fitab le manufacture and marketing .

A so ftware product ' s travel from concept to production is
s imi l ar . Like the Mustang a so ftware product wi l l benefit from
con figurat ion management . This wi l l permit the computer so ftware
reuse and increased productivity corporate management des ires .

5 8

The Functions o f SCM

So ftware con figurat i on management i s a four step process
des igned to meet the needs o f corporate , pro j ect and technica l
man agers . F irst the con figuration i tems in a system must be
identi fied and de fined . This is fo l l owed by the contro l o f
the rel ease and change o f these items throughout the system
l i fe cyc l e . Concurrently , the status o f con f i guration items
and change requests must be recorded and reported . F ina l ly
the correctness and comp leteness o f con figuration i tems must
be ver i fied . Thus , the four functions o f so ftware con figuration
management are :

con figuration identi fication
con figuration contr o l
con figurat ion status accounting
con figuration audit

Con figuration identi fication is the process o f des ignating
the con figurat ion items in a system and recording their
character istics . For the un initiated a con figuration i tem i s
a c o l lect i on o f hardware o r so ftware e l ements treated a s a un it
for the purpose of con figuration management . Character istics
inc lude the identi fication o f the person responsibl e for the
con figurat ion item , its l ogical contents , its phys ica l and
contro l identi fication , and any speci a l relationships . I n
addition to the code the con figuration i tem must include the
approved documentation that de fines the con figurat ion item
and the approved technical documentat ion as set forth in
speci ficat ions , dr awings or associated l i sts .

Con figuration contr o l is the process o f eva luating,
approv ing and coordinating changes to con figuration items
a fter forma l estab l i shment o f their con figuration identi fication .
This forma l estab l ishment o f the ccn figuration identi fication
is typica l ly accomp l ished by a con figurationl change board (CCB) .
The CCB norma l ly is chaired by the program or proj ect manager
and has a membership which represents a l l the vested interests
in the con figuration item . At a minimum the CCB shoul d inc lude
so ftware deve l opment , qua l ity assurance , maintenance , manua l s ,
manu factur ing and con figuration management representatives .
CCB approva l or acceptance o f the initial con figuration and
changes thereto establ ishes a basel ine for the con figuration
item . This function is not meant to prevent or even inhibit
change . Rather in recognit ion that there wi l l a lways be change
the intention is to provide for both order ly change and for
integr ity in the con figuration item as va lue is added dur ing
each step o f the so ftware deve l opment process .

The con figuration status accounting function provides
for the recording and reporting o f the in formation that
is needed to e f fectively manage a con figuration . This
must inc lude a l i sting of the approved con figuration identi fi
cat i on , the status o f proposed changes and the imp l ement
ation o f approved changes . This in formation must be provided
to every person with an interest in the con figuration .

5 9

The con figuration audit is the process o f ver i fying that
a l l required con figuration items have been produced , that the
current ver s ion agrees with speci fied requ irements , that the
technica l documentation complete ly and accurate ly descr ibes
the con figuration items and that a l l change requests have
been resolved . I n -process audits may be conducted dur ing the
so ftware devel opment process . At pro j ect comp l et i on both
funct ional and phys ica l audits are conducted . These check
that the so ft�are product meets requ irements and has a l l o f
its phys ica l e l ements present .

The Activities o f SCM

So ftware con figuration management i s per formed throughout
the so ftware l i fe cyc l e from pro j ect preparation through so ftware
ma intenance . These activities invo l ve product management - the
contro l o f the so ftware product through its evo l ut i on and ma inten
ance . They are not proj ect management - the contr o l o f the organ
ization which deve l ops the so ftware product . They are not support
management - the contr o l o f the process which is used to deve l op
the so ftware product . These activities can be viewed from either
the so ftware con figuration management funct i on or a so ftware l i fe
cyc les perspective .

From the perspective o f each o f the so ftware con figuration
management functions , activities are e i ther p l anned or conducted .
The fo l l owing l ist inc ludes both the p l anning and conducting
activit ies for each o f the four so ftware con figuration management
funct ions :

Con f i guration I denti fication

P l an

- estab l ish rules for tit l ing, l abe l in g , number ing,
cata l oging

- de fine basel ines to be estab l ished and their
documentation

- estab l ish procedures for preparation , approva l ,
contro l and ma intenance o f a l l so ftware code
and documentat i on

Conduct

l abe l a l l SCI documentat ion and code
de fine and update the set o f SCI ' s
identi fy and record a l l SCI dependencies
l ist SCI ' s in a basel ine
l ist current so ftware con figuration

6 0

Con figuration Contro l

P l an

descr ibe level o f author i ty for change approva l
i n each l i fe cyc le phase
de fine methods and procedures for process ing change
proposa l s
de fine r o l e for each CCB and other change manage
ment bodies
state methods to be used for con figuration contr o l
o f inter faces with programs and pro jects
state the contr o l procedures for associated speci a l
so ftware products in support and/or vendor
so ftware

Conduct

eva l uate and record changes
assure a l l required changes are imp lemented
pr opagate changes throughout the so ftware
con figuration

Con figuration Status Accounting

P l an

- de l ineate how in formation on status i s to be
co l lected , ver i fied , stored , processed and
reported

- identi fy the per iodic reports to be provided
- state what or estab l ish query capabi l ities
- descr ibe any spec i a l status account ing require -

ments speci fied

Conduct

- record the estab l ishment o f each SCI
- record the estab l ishment o f each base l ine
- record changes to SCI ' s and base l ines
- track and report change request process ing
- track and report the status o f a l l SCI ' s

Con figuration Audit

P l an

ident i fy the review (interna l / forma l) and audits
to be hel d dur ing the l i fe cycl e

- de fine SCM ' s r o l e in reviews and aud�ts
- ident i fy the con figuration i tems andj associ ated

documentation and/or so ftware to be covered in
each identi fied audit

- estab l ish the rules for audit and review agenda ,
action i tem reporting and fo l l ow-up by SCM

6 1

Conduct

- approve base l ine compos i ti on and functi ona l ity
- determine d i f ferences between basel ines

The so ftware l i fe cyc le permits a somewhat d i f ferent
view o f so ftware con figuration management activities . This
l ist inc ludes the activities per formed dur ing each phase o f
the so ftware l i fe cyc l e :

Concept Exp l oration (Pro j ect Preparation)

- determine scope o f SCM for pro j ect
- estab l ish pro j ect documentati on scheme
- create SCM p l an

Requirements Phase

- estab l ish contro l procedures and organization
- prepare the proj ect master data base and too l s
- acquire proj ect p l ans
- acquire systems requirement documentation

Des ign Phase

- save and di str ibute system requirements
documentation

- contro l updates
- acquire system architecture documentation

inc luding inter face and data base speci fications
- begin pro j ect system structur ing
- acquire system test documentation

Imp lementation Phase

- save and distr ibute system architecture
documentation

- contro l updates
- acquire modu l e des ign documents
- comp lete product system structur ing
- acquire code and unit test documentation

Test Phase

- save and distr ibute code for product system
vers ions

- contro l updates
- acqu ire system test resul ts

Maintenance Phase

save and distr ibute product system ver s i ons
- contro l updates
- acquire system enhancements in documents ,

code and data

6 2

The des ired resu l t o f the total so ftware con figuration
management e f fort as represented by the above l ists o f act ivities
is an env ironment which makes the overal l so ftware devel opment
process more stab l e by estab l i shing base l ines and contr o l l ing
change . This wi l l enhance the probab i l ity o f del iver ing a
qua l ity so ftware product on t ime and within budget .

The Implementati on o f SCM

I n those instances where so ftware pro fess i ona l s and
managers must initiate so ftware con figurat i on management
an implementat ion approach must be sel ected . Organi z at i ons
which have spec i fic standards and/or guidel ines specified
in contracts or s imi l ar requirements have the rel atively
easy task . They can , and most l ikely must , fo l l ow th� process
and procedures stated in the contract and the speci fied
standards and/or guide l ines . For those organizations that
l ack th is luxury the fo l l owing is a suggested approach to
implement so ftware con figuration management :

de fine a l ong term goa l
de fine the environment
se lect a pro j ect for tr i a l
tra in a team
imp lement the tr i a l pro j ect
measure and eva l uate the results

Mandated or not , so ftware con figuration management shoul d
be ab le t o stand the test o f making a pos itive contr ibuti on
to both the so ftware pro j ect and the so ftware product .
When there is no mandate it is cr it ical that a l ong term goa l
for so ftware con figuration management be establ ished . Thi s
goa l should re flect both pro j ect management concerns for
cost , schedule and per formance and upper management concern
for the bottom l ine . There fore a so ftware con figuration
management goa l should be stated in terms o f spec i fic contr i
but ions t o both so ftware pro j ects and products . This goa l
shou ld be measurab le i n terms o f cost (budget) , schedule ,
per formance (function a l ity and qual ity) and return on investment
(ROI) .

I t is essenti a l that the environment for so ftware devel op
ment be de fined . Caution must be taken t o avoid s ituat ions
where so ftware con figur ation management is being l ooked upon
as a mirac le cure for an otherwise unen l ightened so ftware
devel �pment environment . I n such a s ituation even the best
implementation o f SCM is un l ikely to succeed . Should such
an env ironment be discovered every e ffort shoul d be made to
upgr ade the overa l l environment . Otherwise it is best
to seek a better s ituati on for the ini t i a l SCM e f fort .
I f one must continue to work in an unen l ightened environment
the s ituation should be reflected by stating very conservative
l ong term goa l s .

6 3

TIle next step is to se lect the candidate so ftware pro j ect
for tr i a l . TIle selected pro j ect wi l l determine both the schedule
for the pro j ect and for implementing SCM . I t wi l l a l s o determine
the sta f f who wi l l participate in the SCM tr i a l and there for
must be tra ined . I f there is an opti on the selected pr o j ect
shou ld be one with good opportunity for success ful co�pletion
within a year . I t shou l d a l so be sta f fed with so ftware devel op
ment personnel who are ready t o accept so ftware con f i guration
management contr ibutions to their pro j ect e f fort . I n any event
pro j ect select ion is a maj or factor in the success or fa i lure
o f the SCM tr i a l and shou ld be handl ed with due care and consider
ation .

Once the pro j ect is selected the next task i s to train the
team with the so ftware con figuration management background
appropr iate to each individua l j ob . In addition to shar ing
SCM know l edge this tr aining must get the ent ire team involved
to the extent that each person knows what is expected , why i t
is expected and what is in it for him/her . TIlis shoul d resul t
in the team ' s "buy in" t o the SCM tr i a l . TIle training shoul d
be selective i n t iming, sub j ect , deta i l and audience .

TIle actual imp l ementation one the se lected pro ject
shou ld come j ust a fter the selective train ing and with
consul t ing support to the pro j ect team . Remember , i t i s
the pro j ect schedule that wi l l dr ive the SCM tr i a l not
v ice versa .

I n order that the SCM tr i a l can be adequate ly eva luated
stat ist ics on e f fort , dates and bene fits must be kept through
out the tr i a l . At appropr iate times dur ing and on complet i on
o f the tr i a l these statistics should be eva luated to determine
i f the tr i a l has been success fu l . To be success fu l the SCM
tr i a l must indicate a measurab l e improvement to the process -
that is : SCM ' s contr ibut ion to the product and the pro j ect must
be quanti fied and shou l d resul t in sav ings greater than
cost .

Standards for SCM

At this wr iting that are two sources o f genera l standards
for so ftware con figuration management . TIley are the numerous
directives and standards issued by the U . S . Department o f
De fense (DoD) and the I EEE Standard 828 - 1 98 3 , I EEE Standard
for Con figuration Management P l ans .

TIle recently issued DoD So ftware Dev�Jgpment Standar�
(DoD-STD- 2 167) dea l s with speci fic so ftware con figuration

management issues . By re ference , it a lso invokes sever a l
other genera l con figuration management directives and
standards . TIlese include :

64

DoD-D 5010 . 19 - Con figurat i on Management : d irect�
-t}ie lmpTementati on o f CM in the DoD and DoD agencies
Con figuration Management - Jo int Regu l at i on Navy
NAVMATINST 4 1 30 . lA, AF -AR 65 - 3 , ARMY AR 70- 37 , NSA
CSS 80- 14 , MCO-4130 . 1A, DCAC 100-50- 2 , DNAINST 5010 . 18 ,
DSAR 8250 . 4 : a j o int po l icy on con f i guration management
that de fines CM and its r o l e throughout contractua l
phases and requires imp lementation o f CM by DoD services
and components on contracts .

)29P- STD- 480 - Engineer_i_�_9 _CQ-�nges , DevJ.a!_!()D_�and
Waviers : provides directi on for deal ing with engineer ing
change proposa l s (ECP) , waviers and dev i at i ons .

MIL- STD - 48 3 (USAF) - Con figurat i on Management Practices
for Systems , Equipment , Munitions and Computer Progra�� :
provides for a con figuration management p l an which i s
adaptab le t o hardware and so ftware app l ication and contains
guidance rel ative to con figuration i tems (CI) and computer
program con figur ation items (CPCI) . (This standard is being
updated to incorporate changes necessary to support DoD
STD- 2 167 .)

MI L - STD- 152 1 (USAF) - Technical Reviews and Audits for
Systems , EqUipment and Computer PrDgrams-:-- -- provides
deta i led guidance for the conduct o f reviews and audits
(This standard is being updated to incorporate changes

necessary to support DoD- STD- 2 167 .)

The I EEE Standard 828 - 1983 , I EEE Standard for So ftw'!re
Con figuration Management P l ans is one o f the ser ies o f I EEE
So ftware Engineer ing Standards being devel oped by vo lunteers
under the auspices o f the Techn ical Committee for So ftware
Engineer ing in the I EEE Computer Society . As with a l l I EEE
standards this standard is voluntary and i s invoked only as
des ired by the organization doing the so ftware devel opment .
However at such time that compl iance with the standard is
dec lared the directives of the standard become mandatory .
I EEE Standard 828- 1983 provides for the deve l opment o f a
so ftware con figurat ion management p l an with the fo l lowing
out l ine :

Introduction

Purpose
Scope
De fin i t i ons and acronyms
Re ferences

6 5

Management

Organ ization
SCM respons ibi l ities
Inter face contr o l
SCMP imp l ementation
App l icable pol icies , directives and procedures

SCM activities

Con f i guration identi ficati on
Con figuration contro l
Con figuration status accounting
Audits and reviews

Too l s , techniques and methodo l ogies

Supp l ier contr o l

Records co l lection and retention

Conc lusi on

So ftware con f i guration management is not merely a
co l lection o f speci fied tasks ass igned to a few · c l erks .
Rather , i t is a way - a tool - for a l l pro j ect team members
to deve l op a so ftware product that i s comp l ete in its parts ,
and consistent in and traceab l e through a l l representations .
To this end , so ftware con figuration management provides
v i s ibi l ity o f the evo lving so ftware product to both the
ent ire so ftware deve l opment team and the customer .

Re ferences

I EEE Standard 828- 1983, I EEE Standard for So ftware
Con figuration P l ans , I EEE

- - - - - - - - - - -

Buck l e , J . K . So ftware Con f�r�ti on�anag�m�nt , MacMi l l an
Press Ltd , 1982

Bersho f f , Edward H . , Vi l as D . Henderson & Stanley G . Se ige l
So ftware Con figuration Management , Prentice -Ha l l , 1980

(1) This paper i s an overview o f a portion o f a book
ent itled "So ftware Qua l ity Contr o l - Practices and Procedures "
in preparation for pub l ication by Prentice-Ha l l .

66

BIOGRAPHY

George Tic:e, Jr.

George D. Tice. Jr. is a senior software engineer in the Micro-Computer
Development Products Division of Tektronix. He is preparing a software
development methodology to support MDP's software and microcomputer development
products. and is involved in numerous software quality and productivity
improvement projects. Prior to joining Tektronix he managed software quality
control projects at the Naval Ocean Systems Center in San Diego. California.
Mr. Tice is Chair of the IEEE Computer Society Software Engineering Standards
Subcommittee. He received his BS degree from Pennsylvania State University
and an MPA degree from San Diego State University.

6 7

GOAL OF SCM

To reproduce the complete SOFTWARE � CONFIGURATION of a system

- for any specified retllon

- at any point In time
Starting with

- mute,. of all modIfiable e1em.1s
- method. of con.ftucllon

THE NEED FOR SCM

Corporate Management

--.. � Productivity

Project Management

.. Project Completion

Technical

--.� Day-to-Day Job

1
tn 0 !:

�
CD

• • • B ,. " 5" -� £ t i - 3 M I» � - I i1
m I I»

1ft E
r;r
a
c • -
r

• • • :D 2 =-m
C - " ::::I -
en If m I C

w i =:
I» :J: i1 -< iii tn I» 0 8 oil !:
0 I ; CD n
I 0

-a - 0 0' iii r ' a;
!:
I»
::J I»

cc
(1) 3
(1)
::J ...

, WHY SCM - Project Management

I PHASES PRODUCTS

L-_D_E_FlN_I_NG_�"""'----�-- O
L----------' I----�- 0

�- D O L-___ �
•

L--_TE_sn_NG_�"';'--- D 0
�MA_INT:_'A_IN_IN_G�I--- D 0

.. WHAT

.. HOW

.. ANSWER

.. EYALUAnON

Whet and where are .n of the product pieces on which we spent
our resources?

6 9

�

WHY SCM - Technical

Q S Ea
TAPES DISKS LISTINGS

Where's the IOUrce?
Is this the right listing for that ftle?
Did you have a backup copy of that program

IOmewhere?
Where are the build Instructions?
Why are all the function library routines marked as

"'mlulng extemals"?

THE FOUR FUNCTIONS OF SCM

• Configuration Identification

• Configuration Control

• Configuration Status Accounting

• Configuration Audit

� CONFIGURATION ITEM

A collection of hardware or software elements treated
as a unit for the purpse of configuration management.

-- --- ---- -------

CONFIGURATION IDENTIFICATION

(1) The process of designating the configuration Items
In a system and recording their characteristics.

,(2) The approved documentation that defines a
configuration Hem

,
. (3) The current approved or conditionally approved ,

technical documentation for a configuration Item as
set forth In specifications, drawings, or associated
lists, and documents referenced therein.

-...]
N

CONFIGURATION CONTROL

(1) The process of evaluating, approving or
disapproving, and coordinating changes to
configuration Items after formal establishment of
their configuration Identification

(2) The systematic evaluation, coordination, approval or
disapproval, and Implementation of all approved
changes In the configuration of a configuration Item
after formal establishment of Its configuration
Identification. (DOD STD 480 A)

CONFIGURATION STATUS

ACCOUNTING

The recording and reporting of the Information that Is
needed to manage a configuration effectively, Including
a listing of the approved conflguratlQn Identification,
the status of proposed changes to the configuration,
and the Implementation status of approved changes.

(DOD STD 480 A)

CONFIGURATION AUDIT

The process of verifying that all required configuration
Items have been produced, that the current version
agrees with specified requirements, that the technical
documentation completely and accurately describes
the configuration Items, and that all change requests
have been resolved.

. :1: CJ J O w � -' � � (Y")
r--0 0 W w - "" t- _

- -' . > - W t- :I: 0 t-e .
::E 0 0 I

product �nagement -

-.J
�

SCM Is

controlling the software
product throuah Its evolution
and maintalnance

not project management - controlling the organIza
tion which develops the
software product

not support management - controlling the process
which Is used to
develop the software
product

IMPLEMENTING SCM

• A change In how the Organization works affects
everyone and everyone needs to "Buy In" to the
change

• Change Involves

- Defining long tenn goal

- Defining present or should be environment

- Select trial project

- Train team

- Implement trial

- Evaluate SCM Program

MILITARY STANDARDS

DOD-D 5010.19 - CONFIGURATION MANAGEMENT

CONFIGURATION MANAGEMENT - JOINT
REGULATION NAVY-NAVMATINST 4130. 1A, AF-AR 65-3. ARMY AR 70-37. NSA CSS ·80-14 MC0-4130.1A, � DCAC· 100.·50-2. DNAINST 501 0.1 8. DSAR 8250.4

DOD STD 480 - ENGINEERING CHANGES
DEVIATIONS AND WAIVERS

MIL STD 483 (USAF) (NOTICE-2) _

CONFIGURATION MANAGEMENT PRACTICES FOR
SYSTEMS, EQUIPMENT. MUNITIONS AND
COMPUTER PROGRAMS.

.

MIL STD 1521 (USAF) - TECHNICAL REVIEWS ANO
AUDITS FOR SYSTEMS EQUIPMENT & COMPUTER
PROGRAMS.

IEEE Standard for

SQftware Configuration

Management Plans

OUTLINE

(1) Introduction
(a) PurpoIe
(b) Scope
(c) Deflniliona and acronyms
(d) References

(2) Management
(a) Organization
(b) SCM ntIpOnIiblll
(c) Interface control
(d) SCMP implementation (e) Applicable policies, directives and �

(3) SCM activities
(a) Configuration ldenaflcation
(b) Configuration control
(c) Configuration status accounting
(d) Audita and re¥Iewa

(4) Tools. technIq� and methodalaaIM

(5) SUpplIer control
(6) Records collection and .. ""Ion

-...J
(j)

SOFTWARE CONFIGURATION

MANAGEMi:NT

• provides visibility of the evolving software product

to the entire project development team

to the customer

• assures that each successive refinement of the
software product II

complete with all of Its configuration Hems

consistent between all of Its configuration Items

,------------ - --- -

Session 2
METATOOLS

Titles and Speakers:

"Reduced Form for Sharing Software Complexity Data"
Warren Harrison, University of Portland. and Curtis Cook. Oregon State
University

"A Practical Guide to Acquiring Software Engineering Tools"
Tom Milligan. Tektronix. Inc.

"The Use of Software Metrics to Improve Project Estimation"
Bob Grady and Debbie Caswell. Hewlett Packard Co.

77

REDUCED FORM FOR SHARING SOFTWARE COMPLEXITY DATA

Warren Harrison

curtis Cook

One of the most important aspects of program qual ity is how
easy it is for a programmer to understand a program . Software
complexity metrics are a method of quantifying the
understandabil ity (of lack thereof) of a program . The goal of
researchers in this area is to develop measures that can assist
in estimating the difficulty of a programmer performing a task on
the software such testing or maintenance .

In order to study and compare the performance of measures ,
researchers need data from " real world" software systems .
However , industrial and business organizations are often
reluctant to provide the needed data . They are especially
reluctant to provide researchers with copies of their source code
because they have a considerable investment in the code and the
obvious security problems . Unfortunately , this data is essential
to the work of the software complexity researcher .

The Reduced Form of a source program provides the researcher
with information about the characteristics of the code without
disclosing the code . For each subprogram , the Reduced Form
provides a l ist of the program characteristics that are of
interest to complexity researchers . The actual program cannot be
reconstructed from this information because the operands and
operators in each statement and the order of the statements
cannot be inferred from the information .

Programs that automatically generate the Reduced Form for
several high level languages have been developed . In addition to
providing a relatively secure method of sharing data , the format
of the Reduced Form makes it trivial to compute most of the
common metrics such as McCabe ' s V (g) and Halstead ' s E . We hope
that the use of a convenient tool such as the Reduced Form will
contribute greatly to the development and encourage the use of
software complexity metrics .

79

� u M � R E S U L T S F R O M U S I N G

A R E D U C E D F O R M F O R S H A R I N G
S O F T W A R E C O M P L E X I T Y D A T A

1 . I n t r o d u c t i o n

W a r r e n
U n i v e r s i t y

P o r t l a n d ,

H a r r i s o n
o f P o r t l a n d

O R 9 7 2 0 3

C u r t i s C o o k
O r e g o n S t a t e U n i v e r s i t y

C o r v a l l i s , O R 9 7 3 3 1

O n l y r e c e n t l y , h a s t h e i m p o r t a n c e o f w r i t i n g u n d e r s t a n d a b l e
s o f t w a r e b e e n a c k n o w l e d g e d t o b e a s i m p o r t a n t a s p r o g r a m
e f f i c i e n c y . T h i s i m p o r t a n c e s t e m s f r o m t h e h i g h c o s t o f
s o f t w a r e m a i n t e n a n c e (e s t i m a t e d t o c o n s u m e u p t o 7 0% o f t h e
t o t a l a m o u n t s p e n t o n s o f t w a r e) a n d t h e g r e a t a m o u n t o f t i m e
s p e n t o n t e s t i n g (e s t i m a t e d t o b e u p t o 5 0% o f s o f t w a r e
d e v e l o p m e n t t i m e) [1] .

S o f t w a r e c o m p l e x i t y m e t r i c s a r e o n e a p p r o a c h t o a n o b j e c t i v e
m e a s u r e o f t h e u n d e r s t a n d a b i l i t y o f a p i e c e o f s o f t w a r e .
T h e s e m e t r i c s a r e b a s e d o n t h e h y p o t h e s i s t h a t t h e
d i f f i c u l t y o f u n d e r s t a n d i n g a p i e c e o f s o f t w a r e d e p e n d s o n a

s e t o f c h a r a c t e r i s t i c s o f t h e s o f t w a r e , a n d t h e d e g r e e t o
w h i c h t h e s e c h a r a c t e r i s t i c s a r e p r e s e n t . F o r e x a m p l e , i t i s
w i d e l y b e l i e v e d t h a t a- l a r g e n u m b e r o f I F s t a t e m e n t s m a k e a
p r o g r a m m o r e d i f f i c u l t t o u n d e r s t a n d t h a n a s i m i l a r p r o g r a m
w i t h f e w e r I F s t a t e m e n t s . U n f o r t u n a t e l y , t h e r e i s n o
c o n s e n s u s a s t o e x a c t l y w h i c h c h a r a c t e r i s t i c s c o n t r i b u t e
m o s t t o s o f t w a r e c o m p l e x i t y . A s a r e s u l t , m a n y s o f t w a r e
c o m p l e x i t y m e t r i c s h a v e b e e n p r o p o s e d o v e r t h e l a s t s e v e r a l

y e a r s .

S o m e o f t h e m o r e p o p u l a r m e t r i c s i n c l u d e t h e C y c l o m a t i c
c o m p l e x i t y o f M c C a b e [2] a n d H a l s t e a d ' s s o f t w a r e s c i e n c e
[3] .

I n o r d e r t o v a l i d a t e a c o m p l e x i t y m e t r i c (i e , f i n d o u t i f i t
r e a l l y " w o r k s ") o n e m u s t d e t e r m i n e i f a p a r t i c u l a r
c h a r a c t e r i s t i c o r s e t o f c h a r a c t e r i s t i c s w h i c h t h e m e t r i c
m e a s u r e s a c t u a l l y h a s a n e f f e c t o n p r o g r a m
u n d e r s t a n d a b i l i t y . T y p i c a l l y , o n e o f t w o a p p r o a c h e s a r e
t a k e n i n t h e v a l i d a t i o n o f a m e t r i c :

(1) C o n t r o l l e d E x p e r i m e n t a t i o n

(2) F i e l d St u d i e s

I n c o n t r o l l e d e x p e r i m e n t a t i o n , t w o o r m o r e v e r s i o n s o f t h e
s a m e p r o g r a m a r e p r e p a r e d , e a c h w i t h d i f f e r i n g d e g r e e s o f

8 0

t h e c h a r a c t e r i s t i c b e i n g s t u d i e d . F o r e x a m p l e , o n e v e r s i o n
m i g h t u s e d e t a i l e d c o m m e n t s w h i l e t h e o t h e r v e r s i o n m a y
c o n t a i n o n l y h i g h - l e v e l c o m m e n t s . A n u m b e r o f s u b j e c t s a r e
r e c r u i t e d a n d a s k e d t o p e r f o r m s o m e p r o g r a m m i n g t a s k t h a t i s
t h o u g h t t o b e a f f e c t e d b y u n d e r s t a n d a b i l i t y , s u c h a s
c o r r e c t i n g a n e r r o r o r a n s w e r i n g s o m e q u e s t i o n s a b o u t w h a t
t h e p r o g r a m d o e s . T h e s u b j e c t s ' p e r f o r m a n c e o n t h e t a s k (e g ,
t i m e r e q u i r e d t o f i x t h e e r r o r , o r n u m b e r o f c o r r e c t
a n s w e r s) i s t h e n a n a l y z e d t o a s s e s s w h i c h v e r s i o n w a s e a s i e r
t o w o r k w i t h . I f t h e m e t r i c i s a t r u e m e a s u r e o f s o f t w a r e
c o m p l e x i t y , i t s h o u l d a g r e e w i t h t h e o b s e r v e d o u t c o m e o f t h e
e x p e r i m e n t .

C o n t r o l l e d e x p e r i m e n t a t i o n p o s s e s s e s s o m e m a j o r w e a k n e s s e s .
T o a l l o w t h e s u b j e c t s t o c o m p l e t e t h e e x p e r i m e n t w i t h i n a
r e a s o n a b l e a m o u n t o f t i m e , o n l y s m a l l p r o g r a m s c a n b e
s t u d i e d . O f t e n , t h e p r o g r a m s u s e d c o n t a i n l e s s t h a n 5 0
l i n e s , a n d u s u a l l y p e r f o r m f a i r l y t r i v i a l o p e r a t i o n s (e g ,
f i n d i n g a m e a n) . M o r e i m p o r t a n t l y , s i n c e m o s t e x p e r i m e n t s
a r e p e r f o r m e d a t u n i v e r s i t i e s , s t u d e n t s a r e m o s t o f t e n u s e d
a s s U b j e c t s . I t i s n o t c l e a r t h a t t h e r e s u l t s o f s u c h
e x p e r i m e n t s c a n b e g e n e r a l i z e d t o l a r g e s o f t w a r e s y s t e m s
w r i t t e n b y p r o f e s s i o n a l p r o g r a m m e r s .

I n f i e l d s t u d i e s , d a t a i s c o l l e c t e d f r o m o n e o r m o r e " r e a l
w o r l d " s y s t e m s a n d a n a l y z e d . T h e d a t a i n c l u d e s s o f t w a r e
c h a r a c t e r i s t i c s a n d t h e d e g r e e t o w h i c h t h e y o c c u r , a s w e l l
a s p e r f o r m a n c e m e a s u r e s o f p r o g r a m m e r s d o i n g t y p i c a l t a s k s
s u c h a s d e b u g g i n g , t e s t i n g o r m a i n t e n a n c e . T h e a n a l y s i s
a t t e m p t s t o d e t e r m i n e s i g n i f i c a n t r e l a t i o n s b e t w e e n t h e
s o f t w a r e c h a r a c t e r i s t i c s a n d t h e p e r f o r m a n c e m e a s u r e s .

W h i l e f i e l d s t u d i e s h a v e a f e w w e a k n e s s e s , s u c h a s
d i f f i c u l t y i n f i n e l y c o n t r o l l i n g t h e v a r i a b l e s b e i n g
s t u d i e d , r e s u l t s t e n d t o b e m o r e g e n e r a l i z a b l e t o i n d u s t r i a l
a p p l i c a t i o n s , a n d m o r e c r e d i b l e t o p r o g r a m m i n g m a n a g e r s t h a n
s m a l l , a c a d e m i c e x p e r i m e n t s . U n f o r t u n a t e l y , t h e m a j o r

d i f f i c u l t y i n f i e l d s t u d i e s i s o b t a i n i n g a c c u r a t e d a t a -
b o t h p r o g r a m c h a r a c t e r i s t i c s a n d p e r f o r m a n c e m e a s u r e s .

2 . A c q u i r i n g F i e l d D a t a t o V a l i d a t e M e t r i c s

M a n y o r g a n i z a t i o n s a r e r e l u c t a n t t o a l l o w a c c e s s t o t h e i r
c o d e s y s t e m s b y " o u t s i d e r s " . T h i s i s u n d e r s t a n d a b l e s i n c e i t
w o u l d e n t a i l c i r c u l a t i n g c o p i e s o f s o u r c e c o d e w h i c h m a y
h a v e t a k e n t h e m t h o u s a n d s o f m a n - h o u r s t o d e v e l o p . E v e n
t h o u g h t h e r e s e a r c h e r m a y n o t p r o v i d e t h e s o u r c e c o d e t o
o t h e r s , t h e m e r e d i s t r i b u t i o n o f � h e c o d e t o r e s e a r c h e r s
o u t s i d e t h e o r g a n i z a t i o n c o u l d j e o p o r d i z e a n y " t r a d e s e c r e t "
p r o t e c t i o n i t , o r a l g o r i t h m s a n d f o r m u l a s i t c o n t a i n s m a y

8 1

p o s s e s s [4] .

I n a r e c e n t s u r v e y o f a p p r o x i m a t e l y 4 0 i n d u s t r i a l
o r g a n i z a t i o n s , o n l y 3 5% o f t h e r e s p o n d e n t s f e l t t h e i r
o r g a n i z a t i o n w o u l d s h a r e a c t u a l s o u r c e c o d e w i t h r e s e a r c h e r s

(s e e T a b l e I) . O b v i o u s l y , t h i s w o u l d m a k e o b t a i n i n g
i n d u s t r i a l d a t a q u i t e d i f f i c u l t f o r a c a d e m i c r e s e a r c h e r s w h o

a r e n o t a f f i l i a t e d w i t h a n y i n d u s t r i a l o r g a n i z a t i o n .

T o o v e r c o m e t h i s p r o b l e m , w e h a v e r e c e n t l y p r o p o s e d a
R e d u c e d F o r m w h i c h p r o v i d e s i n f o r m a t i o n o n t h e s o f t w a r e
c h a r a c t e r i s t i c s o f i n t e r e s t t o m e t r i c r e s e a r c h e r s , b u t w h i c h
p r e v e n t s t h e r e c o n s t r u c t i o n o f t h e o r i g i n a l s o u r c e p r o g r a m
[5] . A e x a m p l e o f t h i s R e d u c e d F o r m f o r C i s s h o w n i n

F i g u r e s 1 a n d 2 .

I n [5] , w e p r e s e n t e v i d e n c e w h i c h s u g g e s t s t h a t w h i l e m o s t
c u r r e n t m e t r i c s c a n b e o b t a i n e d f r o m t h e R e d u c e d F o r m , i t i s
a l l b u t i m p o s s i b l e t o r e c o n s t r u c t t h e o r i g i n a l s o u r c e c o d e
f r o m t h e R e d u c e d F o r m . S e v e n t y p e r c e n t o f t h e r e s p o n d e n t s i n
t h e p r e v i o u s l y m e n t i o n e d s u r v e y w o u l d b e w i l l i n g t o s h a r e
f i e l d d a t a i n i t s R e d u c e d F o r m , o r d o u b l e t h e n u m b e r w h o
w o u l d b e w i l l i n g t o p r o v i d e t h e a c t u a l c o d e (s e e T a b l e I) .

T h e R e d u c e d F o r m w e h a v e d e v e l o p e d s h o u l d b e v i e w e d a s a
p r o t o t y p e o f a m o r e r e f i n e d v e r s i o n w h i c h w i l l b e d e v e l o p e d
i n c o n c e r t w i t h o t h e r r e s e a r c h e r s . I n a d d i t i o n t o d e v e l o p i n g
a m o r e r e f i n e d v e r s i o n o f t h e R e d u c e d F o r m , w e m u s t a l s o
a d d r e s s t h e n e e d f o r a s i m i l a r d e v i c e t o a l l o w p r o g r a m m e r
p e r f o r m a n c e d a t a t o b e d i s t r i b u t e d t o r e s e a r c h e r s . W e p l a n
t o f o c u s o u r e f f o r t s o n t h i s , o n c e w e h a v e d e v e l o p e d a m o r e
r e f i n e d v e r s i o n o f t h e R e d u c e d F o r m .

3 . R e s u l t s o f a S t u d y U s i n g t h e R e d u c e d F o r m

I n e a r l y 1 9 8 4 , w e i m p l e m e n t e d a p r o t o t y p e v e r s i o n o f a
R e d u c e d F o r m g e n e r a t i o n t o o l w h i c h w o r k e d f o r p r o g r a m s
w r i t t e n i n C . A n u m b e r o f o r g a n i z a t i o n s e x p r e s s e d i n t e r e s t
i n p a r t i c i p a t i n g i n o u r s t u d y , b u t f o r v a r i o u s r e a s o n s , w e
d e c i d e d t o l i m i t o u r i n i t i a l s t u d y t o a s i n g l e p r o j e c t
w i t h i n a s i n g l e o r g a n i z a t i o n . T h e p r o j e c t w e d e c i d e d t o
s t u d y i n v o l v e d a m a j o r c o m p i l e r d e v e l o p m e n t e f f o r t i n v o l v i n g
a b o u t 3 0 , 0 0 0 l i n e s o f C c o d e , a n d a p p r o x i m a t e l y 2 0 l o g i c a l l y
i d e n t i f i a b l e m o d u l e s .

I n a d d i t i o n t o p r o v i d i n g u s w i t h t h e R e d u c e d F o r m d a t a f o r
t h e 2 0 m o d u l e s , t h e o r g a n i z a t i o n a l s o a g r e e d t o p r o v i d e
p e r f o r m a n c e d a t a i n t h e f o r m o f e r r o r r e p o r t s i d e n t i f y i n g
t h e n u m b e r a n d t y p e o f e r r o r s a s s o c i a t e d w i t h e a c h m o d u l e .
A p p r o x i m a t e l y 2 7 5 e r r o r s w e r e l o g g e d f o r t h e 2 0 m o d u l e s i n

8 2

o u r s t u d y , w i t h f r o m 1 t o 3 5 e r r o r s a s s o c i a t e d w i t h e a c h

m o d u l e .

T h e R e d u c e d F o r m d a t a w a s u s e d t o c a l c u l a t e s i x m e t r i c s :

(1) O S L - S i m p l y t h e t o t a l n u m b e r o f l i n e s i n t h e
m o d u l e . T h i s i s t h e m o s t e a s i l y o b t a i n e d m e t r i c i n
u s e , w h i c h i s p e r h a p s w h y i t i s t h e f a v o r i t e o f

b o t h r e s e a r c h e r s a n d p r a c t i t i o n e r s .

(2) P R C - T h e n u m b e r o f f u n c t i o n d e f i n i t i o n s w i t h i n
e a c h m o d u l e . T h i s i s a l m o s t a s e a s y t o o b t a i n a s
t o t a l l i n e s o f c o d e , a n d p r o v i d e s a n a l t e r n a t e
m e a s u r e o f s o f t w a r e " s i z e " .

(3) E - H a l s t e a d ' s E f f o r t m e a s u r e [3] . C a l c u l a t i o n o f E
i n v o l v e s o b t a i n i n g t h e s o f t w a r e s c i e n c e m e a s u r e o f
" P r o g r a m V o l u m e " :

V = N (1 0 g 2 n }

w h e r e N i s t h e t o t a l n u m b e r o f t o k e n s u s e d i n t h e
p r o g r a m , a n d n i s t h e n u m b e r o f u n i q u e t o k e n s u s e d
i n t h e p r o g r a m (t h e c a l c u l a t i o n s w e u s e d , a s s u m e d

t h a t a p a r t i c u l a r t o k e n w a s u n i q u e o n l y w i t h i n i t s
m o d u l e d e f i n i t i o n , a n d t h e u s e o f t h a t t o k e n , o r a
t o k e n w i t h t h e s a m e i d e n t i f i e r i n a n o t h e r f u n c t i o n
d e f i n i t i o n w a s y e t a n o t h e r u n i q u e t o k e n) . A s w e l l
a s t h e s o f t w a r e s c i e n c e " P r o g r a m L e v e l " m e a s u r e :

L = V * / V

w h e r e V i s t h e s o f t w a r e s c i e n c e P r o g r a m V o l u m e a n d
V * i s t h e s o f t w a r e s c i e n c e " P o t e n t i a l V o l u m e " (t h e
v o l u m e t h e p r o g r a m w o u l d p o s s e s s i f i t w e r e
i m p l e m e n t e d a s a s i m p l e p r o c e d u r e c a l l , c a l c u l a t e d
a s : (2 + n 2 * } 1 0 g 2 (2 + n 2 *) , w h e r e n 2 * i s t h e n u m b e r o f
I n p u t / O u t p u t v a r i a b l e s t o t h e p r o g r a m) . E f f o r t i s
t h e n c a l c u l a t e d a s :

E = V / L

(4) V G - W h i c h i s a m e a s u r e o f t h e " c o n t r o l f l o w
c o m p l e x i t y " o f a p i e c e o f s o f t w a r e . V G i s
c a l c u l a t e d b y s u m m i n g t h e n u m b e r o f d e c i s i o n
p o i n t s i n t h e p r o g r a m a n d a d d i n g o n e . W e
c o n s i d e r e d t h e f o l l o w i n g t o r e p r e s e n t d e c i s i o n
p o i n t s i n t h e c o d e : F O R , I F , E L S E I F , W H I L E , C A S E ,
B R E A K a n d E X I T .

8 3

(5) H A R R - A n e w m e t r i c d e v e l o p e d i n [6] w h i c h m e a s u r e s
t h e " m a c r o - c o m p l e x i t y " o f a p i e c e o f s o f t w a r e (i e ,
e n t i r e s y s t e m c o m p l e x i t y a s o p p o s e d t o t h e
c o m p l e x i t y o f a s i n g l e p i e c e o f s o f t w a r e i n
i s o l a t i o n) . H A R R i s c a l c u l a t e d a s :

S y s t e m C o m p l e x i t y * a v e r a g e (M o d u l e C o m p l e x i t y)

W h e r e t h e a v e r a g e m o d u l e c o m p l e x i t y i s t h e a v e r a g e
V G m e a s u r e f o r a l l t h e f u n c t i o n d e f i n i t i o n s w i t h i n
t h e m o d u l e , a n d S y s t e m C o m p l e x i t y i s :

m o d u l e s

W h e r e :

� [G l o b (i) * (#m o d u l e s - 1)] + [P a r a m (i) * (1 - 0 I (i))]
i = 1

G l o b (i) - n u m b e r o f t i m e s g l o b a l v a r i a b l e s a r e
u s e d i n f u n c t i o n d e f i n i t i o n i

P a r a m (i) - n u m b e r o f t i m e s p a r a m e t e r s a r e u s e d i n
f u n c t i o n d e f i n i t i o n i

O I (i) - a " d o c u m e n t a t i o n i n d e x " f o r m o d u l e i ,
w h i c h i s a m e a s u r e o f t h e q u a l i t y o f i n t e r n a l
d o c u m e n t a t i o n w i t h i n a f u n c t i o n d e f i n i t i o n .
W e c a l c u l a t e d i t a s :

O I (i) = (O S L (i) - N C S L (i)) / O S L (i)

w h e r e O S L (i) i s t h e t o t a l n u m b e r o f l i n e s i n
f u n c t i o n d e f i n i t i o n i , a n d N C S L i s t h e n u m b e r
o f n o n - c o m m e n t l i n e s i n f u n c t i o n d e f i n i t i o n
i . I n e s s e n c e , o u r c a l c u l a t i o n p r o v i d e s t h e
p e r c e n t a g e o f c o m m e n t l i n e s i n f u n c t i o n
d e f i n i t i o n i .

(6) H N K - T h e m a c r o - c o m p l e x i t y m e a s u r e b y H e n r y a n d
K a f u r a [7] . L i m i t a t i o n s o f t h e R e d u c e d F o r m w o u l d
n o t p e r m i t t h e e x a c t c a l c u l a t i o n o f t h e H N K m e t r i c
s u g g e s t e d b y H e n r y a n d K a f u r a (i t w a s n o t c l e a r
w h i c h p a r a m e t e r s a r e s i m p l y u s e d a n d w h i c h o n e s
w e r e a c t u a l l y c h a n g e d - t h i s i s n e c e s s a r y t o
p r e v e n t r e c o n s t r u c t i o n o f t h e c o d e - t h u s , i t i s
n o t c l e a r i f a n i t e m i s a F a n l n o r a F a n O u t) . T h e
c a l c u l a t i o n w e u s e d w a s :

84

(F a n l n + F a n O u t) * * 2 * D S L

w h e r e F a n l n a n d F a n O u t a r e t h e n u m b e r o f
i n f o r m a t i o n f l o w s i n t o a n d o u t o f e a c h p r o c e d u r e
(H e n r y a n d K a f u r a s u g g e s t e d F a n l n a n d F a n O u t b e
m u l t i p l i e d) . T h i s w a s o b t a i n e d b y s i m p l y s u m m i n g
t h e n u m b e r o f u n i q u e p a r a m e t e r u s a g e s , g l o b a l
v a r i a b l e u s a g e s a n d f u n c t i o n c a l l s o v e r a l l t h e
f u n c t i o n d e f i n i t i o n s a n d m U l t i p l y i n g b y t h e t o t a l
n u m b e r o f l i n e s o f c o d e i n t h e m o d u l e .

I n o r d e r t o s e e i f a n y o f t h e m e t r i c s w e r e r e l a t e d t o t h e
n u m b e r o f e r r o r s o b s e r v e d i n e a c h m o d u l e , w e p e r f o r m e d a
s i m p l e c o r r e l a t i o n a n a l y s i s , t h e r e s u l t s o f w h i c h a r e s h o w n
i n T a b l e I I . A s c a n b e s e e n , t h e H A R R m e t r i c a n d t o t a l l i n e s
o f c o d e w e r e m o s t c l o s e l y r e l a t e d t o n u m b e r o f b u g s
a t t r i b u t e d t o e a c h m o d u l e , f o l l o w e d c l o s e l y b y V G . T h e s e
t h r e e c o r r e l a t i o n s w e r e s i g n i f i c a n t a t t h e . � � 1 l e v e l (i e ,
t h e r e i s a . � � 1 c h a n c e t h a t t h e c o r r e l a t i o n o b s e r v e d w a s d u e
t o c h a n c e a n d t h a t t h e t r u e c o r r e l a t i o n i s a c t u a l l y � . � �) .

4 . C o n c l u s i o n s

T h e m a j o r g o a l o f t h i s p a p e r w a s t o i l l u s t r a t e t h e
u s e f u l n e s s o f t h e R e d u c e d F o r m . W h i l e t h e R e d u c e d F o r m
d e s c r i b e d i n t h i s p a p e r c a n h a r d l y b e c o n s i d e r e d a n y t h i n g
m o r e t h a n a p r o t o t y p e (m o r e i n p u t f r o m o t h e r m e t r i c
r e s e a r c h e r s w i l l b e n e e d e d b e f o r e t h e f i n a l v e r s i o n o f t h e
R e d u c e d F o r m c a n b e e s t a b l i s h e d) , i t d o e s s h o w t h a t :

(1) A R e d u c e d F o r m c a n a i d i n o b t a i n i n g d a t a f o r m e t r i c
s t u d i e s

(2) M a n y c u r r e n t m e t r i c s c a n b e e a s i l y c a l c u l a t e d u s i n g
t h e R e d u c e d F o r m

(3) T h e R e d u c e d F o r m c a n b e u s e d t o d e v e l o p a n d s t u d y
n e w m e t r i c s

T h e r e s u l t s o f t h e s t u d y s u g g e s t t h a t p e r h a p s t h e m o s t
r e a s o n a b l e m e t r i c t o u s e i n a s s e s s i n g s o f t w a r e c o m p l e x i t y i s
s i m p l y n u m b e r o f l i n e s o f c o d e i n t h e p r o g r a m . W h i l e s o m e
o t h e r m e t r i c s m a y w o r k j u s t a s w e l l , o r e v e n b e t t e r i n s o m e
c a s e s , l i n e s o f c o d e i s a l m o s t t r i v i a l t o o b t a i n , i n
r e l a t i o n t o s o m e o f t h e o t h e r m e t r i c s (e g , E , H A R R , a n d
H N K) .

8 5

H o w e v e r , o n e m u s t b e c a r e f u l a b o u t d r a w i n g s w e e p i n g
c o n c l u s i o n s a b o u t w h i c h i s t h e b e s t s o f t w a r e c o m p l e x i t y
m e t r i c f r o m o n l y o n e s t u d y . I t i s d i f f i c u l t t o e s t i m a t e t h e
i n f l u e n c e o f t h e p r o g r a m m i n g l a n g u a g e (C i n o u r s t u d y) o r

t h e t y p e o f s o f t w a r e p r o j e c t (a c o m p i l e r i n o u r s t u d y) .
T h u s , t h e c o n c l u s i o n s r e a c h e d f r o m t h i s w o r k a r e h i g h l y
t e n t a t i v e . O n e b a t t l e d o e s n o t w i n a w a r , a n d o n e s t u d y d o e s
n o t s e t t l e t h e s o f t w a r e m e t r i c c o n t r o v e r s y . H o w e v e r , i t i s a
s t e p i n t h e r i g h t d i r e c t i o n . B e f o r e m o r e d e f i n i t e
c o n c l u s i o n s c a n b e r e a c h e d , s o f t w a r e w r i t t e n i n o t h e r
l a n g u a g e s a n d f o r o t h e r a p p l i c a t i o n s m u s t b e a n a l y z e d .

W e h o p e t o b e a b l e t o c o n t i n u e o u r w o r k i n t h i s a r e a , a n d
e n c o u r a g e o t h e r s , b o t h a c a d e m i c a n d p r a c t i t i o n e r , t o b e c o m e
i n v o l v e d b y d e v e l o p i n g n e w m e t r i c s , i n v e s t i g a t i n g p r o p o s e d

m e t r i c s , a n d m o s t i m p o r t a n t o f a l l , p r o v i d i n g d a t a f o r
r e s e a r c h e r s .

5 . A c k n o w l e d g e m e n t s

W e w o u l d l i k e t o e x p r e s s o u r a p p r e c i a t i o n t o N a n c y C u r r a n s
f o r h e r a s s i s t a n c e d u r i n g t h i s w o r k .

6 . R e f e r e n c e s

[1] Z e l k o w i t z , M . , A . S h a w a n d J . G a n n o n , P r i n c i p l e s o f
S o f t w a r e E n g i n e e r i n g a n d D e s i g n , P r e n t i c e - H a l l ,
E n g l e w o o d C l i f f s , N e w J e r s e y , ' 1 9 7 9 .

[2]

[3]

M c C a b e , T . , " A C o m p l e x i t y M e a s u r e " ,
S o f t w a r e E n g i n e e r i n g , D e c e m b e r 1 9 7 6 ,

I E E E T r a n s a c t i o n s
p p 3 1'1 8 - 3 2 0 .

H a l s t e a d ,
N e w Y o r k ,

M . , E l e m e n t s o f S o f t w a r e S c i e n c e , E l s e v i e r ,
1 9 7 7 .

o n

[4] G r a h a m , R . , " T h e L e g a l P r o t e c t i o n o f C o m p u t e r S y s t e m s " ,
C o m m u n i c a t i o n s o f t h e A C M , M a y 1 9 8 4 , p p 4 2 2 - 4 2 6 .

[5] H a r r i s o n , W . a n d C . C o o k , " A M e t h o d o f S h a r i n g
I n d u s t r i a l S o f t w a r e C o m p l e x i t y D a t a " , A C M S I G P L A N
N o t i c e s , F e b r u a r y , 1 9 8 5 , p p 4 2 - 5 1 .

[6] H a r r i s o n , W . , " A S t u d y o f M a c r o L e v e l C o m p l e x i t y
M e t r i c s " , P h D D i s s e r t a t i o n , D e p a r t m e n t o f C o m p u t e r
S c i e n c e , O r e g o n S t a t e U n i v e r s i t y , J u l y , 1 9 8 5 .

[7] H e n r y , S . a n d D . K a f u r a , " S o f t w a r e S t r u c t u r e M e t r i c s
B a s e d o n I n f o r m a t i o n F l o w " , I E E E T r a n s a c t i o n s o n
S o f t w a r e E n g i n e e r i n g , S e p t e m b e r 1 9 8 1 , p p 5 1 � - 5 1 8 .

8 6

P e r c e n t o f r e s p o n d e n t s w h o s e o r g a n i z a t i o n s w o u l d s h a r e
so u r c e c o d e w i t h r e s e a r c h e r s 3 5%

P e r c e n t o f R e s p o n d e n t s w h o s e o r g a n i z a t i o n s w o u l d n o t

s h a r e t h e i r s o u r c e c o d e , b u t w o u l d s h a r e t h e R e d u c e d
F o r m w i t h r e s e a r c h e r s 3 5 %

P e r c e n t o f r e s p o n d e n t s w h o s e o r g a n i z a t i o n w o u l d s h a r e
p e r f o r m a n c e d a t a w i t h r e s e a r c h e r s 5 7 %

P e r c e n t o f r e s p o n d e n t s w h o s e o r g a n i z a t i o n w o u l d n o t
s h a r e a n y d a t a d e s c r i b i n g t h e i r c o d e s y s t e m s w i t h
r e s e a r c h e r s

T a b l e I . M a j o r r e s u l t s o f t h e s u r v e y .

M e t r i c
H A R R
H N K
D S L
V G
E
P R C

* S i g n i f i c a n c e < . � 1

B u g s
. 7 5 3 8 * *
. 6 2 3 1 *
. 7 6 121 121 * *
. 7 3 9 121 * *
. 6 9 1 9 * *
. 6 4 9 3 *

* * S i g n i f i c a n c e < . 121 121 1

T a b l e I I . C o r r e l a t i o n o f m e t r i c s w i t h b u g s .

r e a d f i l e (f n a m e)
c h a r * f n a m e ; {

}

r e g i s t e r F I L E * f = f o p e n (f n a m e , " r ") ;
i f (f = = I2I) {

}

e r r o r (" C a n ' t r e a d % s " , f n a m e) ;
r e t u r n ;

e r a s e d b () ;
w h i l e (f g e t s (l i n e , s i z e o f l i n e , f)) {

l i n e l i m = 121 ;
i f (l i n e [l2I] ! = ' # ') y y p a r s e () ;

}
f c l o s e (f) ;
D B c h a n g e d = 121 ;
l i n e l i m = - 1 ;

F i g u r e 1 . S a m p l e C P r o g r a m .

8 7

2 8 %

P R O C E O U R E r e a d f i l e ()

O C L S
F I L E 1
c h a r 1
r e g i s t e r 1
C O N S T A N T S
C O N 0 0 0 0 2 !21 4

C O N 0 !21 111 !21 2 1 1

V A R I A B L E S
V A R !2I !2I 11I 1 3 1 1 u n k n o w n u n k n o w n

V A R 0 0 0 1 2 8 4 F I L E l o c a l
V A R 0 0 0 1 2 7 4 F I L E f o r m a l p a r a m e t e r

V A R 0 111 0 1 2 9 3 u n k n o w n u n k n o w n

V A R 0 0 0 0 !21 8 2 i n t g l o b a l

S T R I N G S
S T R 0 !21 0 !21 4 7 1
S T R 0 0 0 !21 4 6 1

S T R 0 !21 0 !21 4 8 1
F N C A L L S
e r a s e d b () 1
e r r o r e) 1
f c l o s e () 1
f g e t s () 1
f o p e n () 1
y y p a r s e () 1
O P E R A T O R S
! = 1

" " 2
, , 1
* 2

4
1

1121
= 4
- - 1

[1
i f () 2
r e t u r n 1
s i z e o f 1
w h i l e () 1

{ 3
L E N G T H 1 6 1 6

F i g u r e 2 . R e d u c e d F o r m f o r C s u b p r o g r a m i n F i g u r e 1 •

8 8

.-----����������������������������---- -- -

BIOGRAPHY

Warren Harrison and Curtis Cook

Warren Harrison is an Assistant Professor of Business Administration at the
University of Portland. He holds a BS in accounting from the University of
Nevada, an MS in computer science from the University of Missouri, and is a
PhD candidate in computer science at Oregon State University. He has worked
as a computer scientist at Bell Telephone Laboratories in New Jersey and
Lawrence Livermore National Laboratory in California. His research interests
include software metrics, decision support systems, and software project
management and estimation.

Curtis Cook is Professor of Computer Science and Acting Chairman at Oregon
State University. He earned a BA in mathematics from Augustana College, and
an MS and PhD in computer science from the University of Iowa. His research
interests are software complexity metrics, graph theory applications in
computer science, minimal perfect hashing functions, and formal languages.

8 9

SOME RESULTS FROM US I NG

A REDUCED FORM FOR SHARI NG

SOF�JARE COMPLEXI TY DATA

�:ARREN HARR I SON

THE UN I VERS I TY OF PORTLAND

PORTLAND� rR 97203

CURT I S lOO K

PR EGON STATE UN I VERS I TY

CORVALL I S� OR 97331

9 0

PROGRAM MA I NTENANCE

- MOD I F I CAT I ONS MADE TO SOFnlARE AFTER COMPLET I ON - VERY

EXP ENS I VE

- THREE PHAS ES :

I . l'NDERSTAND I NG THE SOFn'IAR E

2 . r·10D I FY I NG THE SOFTWARE

3 . RETEST I NG THE SOFT\"J\RE

- PROGRAM UNDERSTANDAE I L I TY HAS AN EFFECT ON PROGRAt-1 QUAL I TY

- USEFUL TO BE ABLE TO ASS ES S PROGRAM UNDERSTANDAB I L I TY

9 1

�OF1"'t1ARE COr-PLEXI lY METRI CS

- MEASURE DEG R EE TO WH I CH PROGRAM CHARACTER I ST I CS THAT DETRACT

FROM UNDERSTANDAB I L I TY ("COMPLEX I TY CHARACTER I ST I CS ") EX I ST

I N CODE .

DEVELOP S ET OF CONS I STENT� OBJ ECT I VE RULES TO ASS ESS DEGREE

TO WH I CH COMPLEX I TY CHARACTER I ST I CS EX I ST I N SOFTt�RE� AND

WE I GHT THE I R PRES ENCE .

- ALLO� CONS I STENT RAN K I N� OF PROGRAMS BASED ON THE I R COrPLEX I TY

- COULD BE US ED AS A FEEDBAC K TOOL FOR PROr,P.AM�ERS� PERSONNEL

SCHEDUL I NG TOOL FOR MANAGERS

- D I FFERENT I D EAS eN SET OF VAR I ABLES TO CONS I DER AS COMPLEX I TY

CHARACTER I ST I CS AND THE I R WE I G HT I NG

- METR I CS I NCORPORAT I NG V I RTUALLY EVERY � EASURABLE CHARACTER I ST I C -

WH I CH ONE (S) WOR K?

9 2

VALIDAT I 0N nF METRI CS

- F I ND OUT I F THEY "PORK"

- T\" o P, PPROACHES :

1 . CONTROLLED EXPER I MENTAT I ON

o Pu I LD T\,!O VERS I ONS O F SAME PROGRAft1

o RECRU I T LARGE NUMBER OF S UBJ ECTS AND HAVE HALF PER

FORM SAME PROGRAMM I NG TAS K ON ONE VERS I ON OF THE

PROGRAPJ AND THE OTHER HALF PERFORM THE SAME TASK

ON THE OTHER VER S I ON

o COMPARE THE PERFOR��ANCE O F THE T\'!O � ROUPS

o ATTR I BUTE THE D I F FERENCES I N PERFOR�ANCE TO THE

D I FFERENCE I N COMPLEX I TY CHARACTER I ST I CS O F THE

nlO PROGRAM VERS I ONS

2 . F I ELD �TUD I ES

o COLLECT DATA FRO� "R EAL WOR LD" PROJ ECTS

o rEASURE PERFORMANCE OF PROGRAM�ERS CARRY I NG OUT

C ERTA I N TAS KS ON PROGRA�S

o CO�PARE PER FORMANCE OF P ROGRAMrERS ON D I FF ERENT

PARTS CF THE PROJ ECT

o rTTR I BUTE D I FFERENCES I N PROf,RA�MER PERFOR�ANCE TO

D I FFER ENCES I N PROG RAM CHARACTER I ST I CS

9 3

REDUCED FORM

PROBLEM : RESEARCHERS NEED DATA FROM ACTUAL PROJ ECTS� BUT I N
DUSTRY FEARS TPADE S ECRETS W I LL BE COMPROM I SED .

SOLUT I ON : ExTRACT I MPORTANT CHARACTER I ST I CS OF THE CODEJ W I TH

OUT PROV I D I NG ENOUGH I NFORMAT ION TO RECONSTRUCT THE

PROGRAM AND/OR FORMULAS .

94

P.tJALYS I S ' OF A PROJECT

- 30� OOO L I NES O F ' c ' CODE AND 20 LOG I CAL �ODULES

- 275 ERROR R EPORTS

- r�ETR I CS CA.LCULATED :

1 . L I NES O F CODE

2 . MUMEER OF PROCEDURES

3 . �oFnlAR E SC I ENCE ' E '

4 . CVCLOMAT I C CO�PLEX I TY � VG

5 . HENRY AND KAFURA ' S I NFORMAT I ON FLO"': r�ETR I C

6 . HARR� A MEASURE O F �LOBAL COMPLEX I TY

- RESULTS :

CORRELAT I ON " ' 1 TH

rETRIC PUGS
HARR. . 753g
HNK . f2:;1
lOC . 7EOO
VG . 7390
E . E9J 9
PRe . �493

9 5

CONCLUS I ONS

1 . PEDUCED FORM CAN SOLVE DATA COLLECT I ON PROBLErS :

- MAKE ORGAN I ZAT I ONS LESS RELUCTANT TO SHARE DATA

- CAN CALCULATE MANY CURRENT METR I CS US I NG REDUCED FORr

- rEDUC ED FORM CAN BE USED TO D EVELOP AND STUDY NEW

�ETR I CS

2 . MANY �ETR I CS ARE H I GHLY RELATED TO P ROf RAMMER P ER FORMANCE

�EASURES (EG� ERRORS) � BUT L I NES OF CODE S EE� ' B EST '

3 . NEED ADD I T I ONAL DATA FOR FOLLO� I NG STUD I ES

- PEDUCED FORM DATA

- PROGRAM�ER PERFORMANCE DATA

9 6

A Practical Guide to Acqulrlag Software
Engineerlq Tools

Tom M UligGII
.

Software Center Tools Support Group
Software Center
Tektronix, Inc.

Abstract

In the last few years an increasing number of software vendors are providing tools to
address the needs encountered in the Software Engineering Process. Unfortunately, the
targeted audience for these tools (engineers) are not traditionally educated nor experi
enced in the techniques for acquiring software tools. This paper will present a method
for identifying and then acquiring useful software engineering tools from third-party ven
dors. This method has been developed and is in use at Tektronix, Inc. by a corporate
group of software engineers who are acquiring an integrated set of software engineering
tools for use throughout Tektronix. While the method wu derived and is tuned for use
in a central group doing corporate tools acquisitions, the sulHnethodologies delClibed are
discrete. Parts not appropriate for other types of acquisitions can easily be deleted from
the overall method without threatening the overall structure of the process. The outlined
method is straightforward, thorough, and tested. It addresses the following topics:

1 Assessing needs for tools.

2 Finding tools to meet the defined need.

3 Evaluating a prospective tool.

4 Selecting a vendor.

S Purchasing a tool.

6 Supporting a tool.

97

---- ----

A Practical Guide to Acqulring Software
Engineering Tools

Software Center
Tektronix , I nc.

Most of us readily oomit that significant procluctivity gains can be ochieved through the prudent
introcluction of software tools i nto a software engineeri ng environment. What most of us OOn't
know is how to approoch that word "prudent". T his paper wil l present a proctical set of methods
for intell igently selecting and i ntrooucing software tools i nto an engineering environment. I t
wi l l deal with how to determine what tools are needed, how to find needed tools, how to evaluate
prospective tools, how to select a venoor for tools , then how to purchase tools, and finally how to
IJl about supporting tools.

Assessing Needs for Tools

While we may al l agree that we need tool s , we should also understand that not j ust any tools w i l l
00. W e oon't want to solve nonexistent problems, nor 00 w e want to let a critical need I}J
unanswered because we are off deal ing w ith a not-so-critical one. So, how 00 we qeterm i ne
where we are to exert our efforts in ocquiring tools? One methoo is to ask the people who would
be using them. In particular , ask them to rescribe what they 00 , how they 00 it, and finally how
they would \ lke to 00 it. This w i l l give you an idea of the problems you are trying to solve , and
wi l l give the would-be users a chance to define their own problem. A word of caution is i n order
here: when you ask these questions , beware of the answers. Typical ly answers l ike "I need more
computing power. " or "I need a faster something else. " abound. This is not what you are look i ng
for. The answer l ies not in mak i ng mochines or even tools "faster " , the answer l ies in making
peop Ie faster.

Another technique for determin ing which tools to pursue l ies in your imagination , use it. P ut
yourself in the shoes of those you are trying to help . I f you have worked in that environment
before you may find this task easier , but beware of the l i m itations this "advantage" puts on you.
Specifically you mey find yourse lf bound to whot you believe is current technology. I f you ore
goi ng to use your i magi nat ion . then don't bind it I magine the ideal tools for the job , then loot
for tnem.

One of the most im portant aspects of assessing tools needs is to be able to distinguish between
"tools" and "toys". At the most abstroct level , a tool is a useful instrument in ooing a particular
j ob , whi le a toy is something to play with . I t should be clear that we desire to find tools , not
toys. Some distinguishing character istics of tools and toys are give below.

9 8

Distinguishing Chariderjstjcs of Tools

A tool typically aids i n ooing a discreet part of of a larger process.
A tool typically 00es only one or two functions, but 00es them well.
It is easy to quantify time savings that will result from the use of a tool

DistinguishjOQ Charqrjstics of Tws
A toy may reploce an alreac:ty satisfactory tool , but not del iver any significant proouctivity

gain.
The driving factor for wanting a toy wi l l typical ly be personal preference.
Toys are typical ly touted as "more convenient" than an existing tool.
It is difficult to quantify time savings that w i l l result from the use of a toy.
People who want toys are upset when told that they can't have them.

After you have assessed what tools are needed in a particular environment , the task becomes one
of finding tools to fit those oeOOs.

F irMiing Tools

A number of sources are avai lable in which to look for software tools. Trade Publ ications are
rife with reports and �ertisements for al l k inds of tools. Some of the most useful are
Computerworld, Electrical EngIneerIng TImes, Electronics Week. InfoWorld, and if the tool Is to
run on a Personal Computer , one of the myriad of mag82ines dedicated to that particular PC . . ,
Another IJXXi source of information on tools is the trade conference. For UNIX- based tools,
Uniforum and Usenix are the primary trade conferences. Typical ly Uniforum has a wide variety
of software tool venoors displaying their wares , while Usenix may have more intense technical
sessions relating to new tools development.

Also , many catalt)JS exist that l ist and summarize features provided by a wide variety of
software tools. These catalogs are publ ished by the federal �ernment , by operating system
venOOcs, by computer venoors , and by independent organizations. Some of these are even
avai lable In machine- readable format , al lowing a computerized database of software tools to be
compi led. A J ist of software tools catalt)JS , as wel l as their publ ishers are given in Appendix A of
this !XnJment.

Evaluating Prospective Tools

After determ ining what tools exist that aatress a defined need , you wi l l need to evaluate whether
the tools attess the problems correctly , and possibly which tool among many appears to be the
best for your particu lar environment. I n OOdltion , at the same time , you w i l l be evaluating
prospective veoOOrs for a tool. A number of approaches are possible, depending upon time and
other resources avai lable for the evaluation.

9 9

-------------------------- - -- --- - ---

One of the fastest WfJtlS to evaluate a prospective tool is to talk. to current users of that tool. Most
venoors are happy to give you company names as well as the names of i ndividuals w1th1n those
companies who are using a part icular tool . Gan these people, and ask. them the fol lowi ng
Questions:

1 . "What 00 you J i lee about the tool?"
2. "What oon't you l ilee about the tool?"
3. "What would you change about the tool?"
4. "How m uch t ime � it save you?"
5. "How wel l � the venoor respond to your problems?"

The answers to these Questions wi l l tel l you a lot about both the tool and about how wel l the
venoor responds to its customers. This w i l l aid you in both in selecting a tool and in selecting a
venoor.

After the contacts with current users of the tool , you w i l l probably want to evaluate the tool for
yourself. Contact an appropr iate venoor and tel l them that you are i nterested in the tool. Then
asle if you can have an evaluation copy of the tool for a spectfic period of time. Typical ly 2 week.s
to a month is an reasonable period of time for an in-depth evaluation. Most venoors are
prepared to honor this request. Some venoors mfJtl want to offer you a demonstration of the tool
on one of their mach i nes through the use of a modem and phone l ines. I n general th is is not an
occeptable WfJtl to evaluate a tool . Don't buy a tool unless you have the opportunity to try it out
In your env ironment to determ i ne i ts usefulness to you.

Once the tool is i n - house , you w i l l want to give it a cursory acceptance test. Factors to consider
in this in it ial evaluation include ease of installat ion , simple i nvocation without traumatic
Side-effects , and general � behavior. After this in itial test move on to more in-depth testing.

There is no better in-depth test for a software tool than to "drop" it i nto the type of environment
that the tool wi l l eventual ly be used. When placed i nto these envi ronments , the tools are used i n
exactly the manner that is appropriate for your organization. Any deficiencies in the tool that
relates to the wftf your software development environment operates are readily apparent.
Another useful piece of information avai lable from this type of evaluation relates to how readily
the tool w i l l be occepted into your software development environment. If you are unable to find a
software development group into which to place the tool , then mfJtlbe that tool is not appropriate ,
or perhaps i ts time has not yet come. After your evaluation is complete , give the information on
the tool , its weaknesses and its strengths , to the vendor. Be candid but fai r , and give the venoor
a chance to fix the prob lems.

A note is in order regarding relations with venOOrs. The principles are honesty and fairness. Be
straightforward with a vendor , tel l i ng them your concerns about the tool , and then let them
answer. Assure them that you w l l l not steal their software and then make sure you and everyone
else in your company adheres to that prom ise Don't aoopt an "us against them " m indset. Be
prepared to pay the vendor a fair sum for the tool . I f the tools is a � one , it is worth i t , and

100

u5U811y the vendor �n·t "owe" you a bargain.

Selecting 8 Vendor

Beyond simply evaluating how the tool works , you also need to evaluate and select the tool
venoor. There are many types of software venoors , value � resel lers (VARs) , simple
distributors, developers , etc. T he type to select depends on the appl icab i l ity of the tool across
different environments , and your needs for support.

Value � resel lers buy a tool from a developer , attI some value to it , and then resel l it. This
� value can be in the area of support , or in a:tEd functional ity. The disoovant� to VARs
l ies in their distance and independence from the original developer of the software. Their
changes or enhancements to the software may not trock subseQuent releases from the developer.
If the developer stops supporting the software however , this independence can be a positive
attribute.

Simple distributors are "front ends" to developers, and are typically better able to deal with
customers than are the developers. D istributers , however , are typical ly not prepared to
support or enhance the software on their own , depending on the developer for those functions.
This could mean some delays in getti ng bugs fixed or in an i nab i l i ty to get answers to h ighly
technical Questions regarding the tool.

Developers of software are able to respond quick ly to requests for bug fixes or enhancements ,
but are typical ly not able to deal effectively with customers wanti ng only one or two copies of a
tool , preferr ing instead to OEM their software to another distribution agent.

Things to consider in selecting a venOOr are how many copies of software you anticipate needing,
how m uch money you have to spend for an acquisition , and how wel l the venoor can respond you
your request for support , enhancements and bug fixes. An important , often overlooked aspect of
acquiring software is ongoing support for that software. Just because you have purchased a
l icense for a particular software tool 00es not mean you are entit led to hel p , consul tation , bug

fixes, enhancements , or automatic updates to the tool. These considerations are usual ly
n8l;Jltiated and purchased seperately i n a support cootroct with the tool venoor.

Purchasing 8 Tool

The most important aspect of purchasing a tool is to clearly define your needs. Define them in
terms of how many copies of the tool you need , what k ind of support you need, and which venoor
seems best able to fulfi l l those needs. When these aspects of acquiring a tool are answered, you
are reaay to meet with your corporate purchasing agent and controcts adm inistrator. Meet with
each of these people and clearly out l i ne your needs and give them Whatever information you have
that is relevant to the purchase of the tool. I ncluded in this information should be the fol lowing:

I . A document clearly out l in ing how many copies of the tool you want to but , along with
where the tool w i l l reside. and who wi l l be responsible for them

10 1

2. T he name , oo:Iress and phone number of the vendor' .
3. A copy of the venmr's pricing polity.
4. A copy of the venoors appropriate software purchase contra::t.
5. A copy of the vendors appropriate software support contract

If they need further i nformation , they wi l l tel l you. When you meet with the contr�ts
administrator , you should plan to go over the contract item - by- item to determine whether
changes are necessary. Your contra::ts administrator should be an attorney or some other person
versed i n legal term i nology and, hopefully, software law. You can use the contr�ts
m inistrator to translate the legal jargon i nto engl ish. Be aware that terms of contracts and
prices are negotiable, as was mentioned above however , work with and be fair to the venmr.
When you have received this information from the venOOr' and have passed it on to the purchasing
�nt and the contra::ts oomi nistrator , it is tlme to turn al l of these people loose on eoch other.

Supporting 8 Tool

After you have successful ly purchased a tool there are only few other detai ls to attend to i n
supporting that tool. F irst , you must install the software. I f the software i s meant for one
ma::hine , this should be straightforward. If , however , the software is destined for more then one
machine , you w i l l have to decide on an appropriate mechanism for the i nstallation. One option is
to simply fol low the instal 1ation procedure for a single ma::hine on �h separate machine that
the software is to reside. At Tektronix , we have a very efficient computer network whereby
every engineering computer in the company is directly accessible by every other engineering
computer. Thus, it Is possible to Install the software once on one com puter , and then
automatically ship the software in the correctly instal led configuration to all of the other
computers who are to receive it. This has the advantage of reducing a 30 m inute instal lation
procedure to about 6 m inutes.

After the software is instal led, you should have some mechanism set up to answer user questions
about the software. These questions can range from highly detailed technical questions, to very
simple i nvocation i nquiries. Ideally , one person can be designated as the contact for a particular
tool , and this person would process most i nquiries. An important factor to remember is that the
contact person for a particular tool 00es not need to know everything about the tool , but rather ,
they need to know where they can find the answers.

I nvar iably some bugs w i l l be found in the software. You should have a mechanism for accepting
bug reports on the tool . for analyzing them as to their val idity . for oroanizing bug reoorts so
that you can tel l if a given bug has been reported before , and final ly for reporting bu� boclc to
the vendor. T he contact person for the tool is usual ly the focal point for this bug activity.

Tektronix has developed a fai r ly thorough and extenSible bug-trock ing system for system
software bug reports. This extensib i l ity has mOOs it possible to include bug reporting for
software tools i nto the track i ng system.

F inal ly , you w i 1 1 need a mechanism for distributing subsequent software releases to users of the
tool . Most often , this can be accompl ished through the same process as the initial instal lation.

1 0 2

At Tektronix , we m8intain 8 dlrttJbese rel8ting softwere tools to machines. Tektronix hes
developed a software distribution system that queries the database whenever a new release of
some software is aval18ble, and which then distributes it to the appropriate plfDS
automatically. This apprCB:h , however , has met with some resistance from local system
administrators who object to having their m�hines changed without their knowleOje.
Conclusion
Thus we heve seen 8 practicel , tested methods for identifying needs for tools , for finding needed
tools, for evaluating tools , for selecting vendors for tools, for purchasing tools, and finally for
supporting software tools. This metho:Dlogy has been tested in pr�tlce and works. In Ediition ,
the outlined sub-methoOOlogies are discrete and inappropriate segments can be deleted as
avai lab Ie resources dictate.

1 0 3

Appendix A
Software Tool Guides and Catalogs

Publications from the Federal Oovernment

COSMIC Software Catalaj
�'s Computer Software ManljJement and I nformation Center
1 1 2 Barrow Hall
The University of Oeorgia
Athens , GA 30602

Computer ScIence and Techno1Wi, NBS Specjal publication 500-88 .
Software DevelQpment Tools
Raymond C Houghton , Jr, - Author
US eovernment P rinting Office
Washington , DC 20402

Office of Software Develo.oment, federal Software TestinlJ Qm1er,
Software Tools Survey
FflOOra1 Software Testing Center
Office of Software Development
Two Skyl 1ne P loce , Suite 1 1 00
5203 Leesburg P ike
Fal ls Church , VA 2204 1

Vendor P ublications

CAEM Software Referral cataJ(lJ
Digital Equipment Corporation
Computer Aired Engineering and Manuftduring
Two I ron Way
MR03- 1 IE8 , Box 1 003
Mar lboro , MA 0 1 752

f.noineering Applications Graphics Referral CatalQQ
DIgital Equipment COrporatlon
Engineering Systems Group
Marlboro, MA 0 1 752

£ngjneer jno Applications Software Reterral Catalog
D igital Equipment Corporation
P ubl ishing and Circulation Services
1 0 F arbes Road
Northboro , MA 0 1 532

1 04

Intel Yel1aw Pgs Software Directory
I ntel Literature Department
3065 Bowers Ave.
Santa Clara. CA 9505 1

us ChaPter DECUS pr.am Ljbrary SoftwareAbstr�ts
Digital Equipment Corporation
M8rlboro, MA 0 1 752

Independent catalogs
The Software catal�, Science and EDQjneer jug
Elsevier Science Publ ishing Co. , I nc.
52 Vanderbi lt Ave.
New York , NY 1 00 1 7

Uoix* AppJicaUons Software Djrectory
On�r P ubl ishi ng
645 1 Standridge Court
San Jose , CA 95 1 23

Unjx* Software Djrectory
Onager P ubl ishing
645 1 StondridJe Court
San Jose , CA 95 1 23

Unjx* Software Tools Djrectory
Reifer Consultants , I nc.
2550 Hawthorne B lvd. , Suite 208
Torrance , CA 90505

The Unjx* System Y Software CatDIQIJ
Reston Documentation 6roup
Reston P ubl ishing CO. , I nc.
Reston , VA 22090

*Unix is a trademark of ATT Bel l Laboratories

1 0 5

BIOGRAPHY

Tom Milligan

Tom Milligan graduated from the University of Oregon in 1978 with a BA in
computer science, secondary emphasis in mathematics. He has worked as a
software engineer developing embedded systems, as a technical writer, as a
software evaluation engineer, and most recently has been project leader for
Tektronix Software Center Tools Support Group. The Tools Group is a corporate
entity, composed of software engineers, whose purpose is to identify, acquire,
and support software engineering tools, as well as to put those tools together
into an integrated development environment for use by software engineers at
Tektronix.

1 06

Bob Grady and Debbie Caswell
Hewlet t - Packard Company
Software Engineering Lab
Corporate Engineering

ABSTRACT

THE USE OF SOFTWARE METRICS TO
IMPROVE PROJECT ESTIMATION

In 1 9 8 3, a company-wide program was initiated to measure and improve the process of developing
software at Hewlett-Packard. One of the objectives of this program was to use measurements to achieve
immediate short-term improvements in productivity and quality. This paper reviews various efforts
during the first year of measurements which led to significant development process changes and a greater
awareness of which elements to monitor.

BACKGROUND

Hewlett-Packard designs and manufactures scientific instruments, small to medium-size computers, and
medical and analytical instruments. During the past fifteen years these components have been
increasingly designed for and used in systems which solve complex problems. In the forty-six years since
its founding, HP has grown until today its annual sales are in excess of six billion dollars and research and
development for new products is carried on in twenty-five decentralized laboratories scattered
throughout the U. S. , Europe, and Japan.

The first HP computers were introduced in 1 966 and 1 9 67. The HP2 1 1 6A computer and the HP9 1 DDA
desktop computer (or calculator as it was initially referred to) were designed for totally different markets
and produced by two geographically separate divisions. Each contained HP's first substantial efforts in
the software engineering field and characterize how rapidly the breadth of HP's software production
developed. Today, the majority of the software produced in HP is only loosely coupled among any set of
divisions, even though the systems nature of HP's products suggests the need for tight coupling.

TYJles of Software

Softwa re at HP is created for a wide spectrum of applications and customer types. For t : ie sake of
cLlIlVcnience, though, the applications can be reduced to four major types: firmware, systems, :l ppl icat ions,
a nel end user. Firmware consists of software generally designed to execute from ROM (read on Iy memory)
under control of a microprocessor. Examples of divisions designing firmware are t hose producing
inst ruments and computer peripherals. Systems software consists of software genera \ l y designed to
execute from the memory of mini-computers. It functions as the framework for dcvi;' l(lping and
executing other software. Examples of divisions designing systems software include d iv isi(\ns direct ly
involved in producing computers, network software, languages, and data bases. Applicat i011S consist of
software that operates on top of and using systems software. Applications software also g..:nera\ ly solves a
generic class of problems for a narrow set of customers and needs. Examples of divis ions designing
applications software include those dealing with manufacturing, medica l, and fin<l ll l i a l customer
solutions. End-user software at HP consists of software which generally doesn't fit the other three
categories. In many cases end user software as defined here operates on top of or, in addit il1n to,

*** COPYRIGHT HEWLETT-PACKARD COMPANY ***
1 - 2 1 07

applications software, instruments or systems. Examples of end-user software include electronic data
processing and software done by such groups as Production Engineering and Quality Engineering.

Table 1 illustrates some characteristics of these four categories of software. Because each of these types
has different driving characteristics, discussions among the many R&D groups concerning software
encounter difficulties when people try to compare methods, tools, priorities, and estimates.

H P SOFTWARE DEVELOPMENT ENVIRONMENTS
INFLUENCING SOFTWARE

FACTORS MICROPROCESSOR SYSTEMS APPUCATIONS END-USER

TEAM SIZE Small Large * Large * Small

MARKET SIZE + Small � Large Large Large Small

LANGUAGE Asmb.Pascal C/PascaVSPL High-level All

USER Single Multiple Heavy, multiple Single

TIMING Important, Critical Mild Importance Varies In

sometimes critical importanoe

METHODOLOGY Few standards Control-oriented Oata-oriented Varies

COST OF CHANGE Large -7 !-lIge Large Moderate Small
AFTER RELEASE

MAJOR APPUCATION TIming of Process interaction Data integrity, Single problem
CONCERN ex t. processes peripheral generality, user interface, oriented

recovery portability

.. Project sizes not large, but generally aggregates of projects are large.

+ As measured in number of customer sites.

Table 1

*** COPYRIGHT HEWLETT-PACKARD COMPANY ***
1 0 8 1 - 3

Focus on Customer Satisfaction

The one topic which all HP divisions can agree upon is that the final test of a product's worth is measured
by customer satisfaction. This can be characterized in a number of ways, but one early method which was
established at HP in 1 9 7 9, was to methodically record and analyze reports of defects and enhancement
requests from customers. A customer with a software problem contacts the field service organization
which verifies that the problem is indeed a defect. The field submits a service request to the factory via a
system called STARS (Software Tracking And Reporting System).

In the factory, the marketing organization assigns a priority to fixing it. Next, the lab diagnoses the
problem. Diagnosing and fixing the problem are two distinct steps and might or might not occur at the
same time. After a fix is produced, it must be integrated into a product update and tested before it is
released to customers.

Each month, a centralized support division publishes graphs by product line showing the number of
defects reported but not diagnosed, the average amount of time a defect waits to be diagnosed, the number
of critical and serious unresolved defects, and the mean time to fix a critical or serious defect (refer to
Figure 1).

INCOMING SERVICE REQUESTS SOFTWARE MAINTENANCE PROCESS

MARKETING AND
lAB ClASSIFICATION

- r - - - - -
: 1 l.tIClASSIREO : 1 SERVICE � _ _ �E�STS

Unclassified

Service

Requests

Mean Time
To Classify

Service Requests

- [MIicate
- Cannot

[MIleate
- Awalti1g

Data I
��t

I L.._�_:_8 ---' �=:-=-ProbI=Krown=-�8III=8 ==
Normal 1 Critical 1 and Low L !� SerIous

Critical and Serious
Open Known

Problem Reports

- Other

� - - - - - �
Mean Time To Fix

r - - Critical and Serious
Known Problems LJ CJ : � I , 0-<>-0 D � � INTE�TION OA

Figure 1

*** COPYRIGHT HEWLETT-PACKARD COMPANY ***
1 - 4 1 09

RELEASE

- -- ---�--------------

The monthly reports give a written analysis of trends indicated by the graphs. Their intent is to raise
awareness of the amount of time it takes to get a software problem resolved from the customer's point of
view. They also attempt to give information about the responsiveness of the factory maintenance teams.

These graphs have been very successful at focusing top management's attention on the customer
satisfaction issue. Since managers know that every month the whole company will know their
maintenance status, they make an effort to bring their defect backlog under control.

EST ABLISUING PROCESS METRICS

While the consistent reporting of defects and enhancement requests provided HP with a measure of its
success, it fell short of providing an effective method for understanding the development process and
accurately predicting results. What was needed was a common set of terminology and measures for the
process of software development that could be used throughout HP early enough in the development
process to affect change. A group of twenty software managers and developers from thirteen divisions
were invited to establish an HP Software Metrics Council. These representatives were chosen on the basis
of software experience, software management experience, interest, and prior work in software
measurement and/or influence within their organizational entity to implement the council's decisions.
Personal commitment and enthusiasm were also important. In addition, developers of all the various
classes of software were represented.

The objective of the first meeting of the council was:

To gain agreement on a set of software measurement criteria which managers feel are
meaningful, reasonable to collect, and can be used to measure progress and predict results.

Explanation of UP Metrics

The result of the first meeting was agreement to collect metdcs for five categories of information. Forms
were created to ensure consistency and to facilitate collection of the data. They are reviewed and
updated at the end of each phase, and the completed forms are collected at a central point upon product
release. The data is then added to a database and used to compare data at a high level. Within a year of
the initial agreement to metrics, over 1 00 projects had measured or were in the process of measuring these
metrics. The standard metrics are explained below.

SIZE - The standard metric for size is NCSS (non-commented source statements). This means that the
source code, not the object code, is used. Compiler directives, data declarations, and executable lines are
counted, but not blank lines or whole comment lines.

In keeping with our "reasonable to collect" objective, it is assumed that an automatic line counter is used.
In the absence of such a counter, the size is approximated. An educated guess is better than nothing.

PEOPL.fu"TIME�OST - The standard metric for cost is the engineering month. It is important to notice
that it is defined as "40- 5 0 hours per week with no compensation for vacation or sick time. " Therefore,
every engineer who works 80 hours a week for one month has contributed 2 engineering months in one
calendar month. Not compensating for vacation or sick days is in line with our "reasonable to collect"
objective. Also, time project managers spend managing is not included

*** COPYRIGHT HEWLETT-PACKARD COMPANY ***
1 1 0 1 - 5

DEFECTS - A defect is a problem or an error: anything that appears in the output of the software process
which would not appear if it were perfect. Defects can occur at any life cycle stage. Right now, there is
no attempt to distinguish severity. All defects are equal.

DIFFICULTY - The standard metric for difficulty is a number between 3 5 and 1 6 5 with 1 6 5 as the most
difficult. The number is determined by filling in a questionnaire and inputting the responses to a
program called SOFTCOST. The questionnaire asks about stability of requirements, experience of
personnel on the project, familiarity with the type of software and development environment, access to
needed hardware, and many other general project questions. In addition to generating the difficulty
factor, the questionnaire helps to qualify productivity numbers which are computed.

COMMUNICA TIONS - The number of interfaces that the lab project team has is the standard metric.
The intent is to quantify constraints on the project team due to dependencies with entities politically and
physically distant. If this metric were thought out at the beginning of the project it:

1 . Could influence the partitioning of the task to minimize necessary interfaces.

2. Would raise awareness of who the suppliers and customers are for the project.

PROCESS IMPROVEMENTS

One of the most important results of the use of standard metrics was that many divisions went beyond
the standard metrics to understand why certain results were occurring. The results of these more
detailed studies encouraged other groups to leverage off these experiences and extend them in ways
appropriate to their own development needs. The remainder of this paper reviews some of these
studies, including how they have led to better understanding of the tasks being done and how long the
tasks should take.

An Example of Statistical Quality Control

One experiment, which actually began before the definition of the HP metrics, used the techniques of
statistical quality control (SQC) which HP has used effectively for several years throughout our
manufacturing areas. This entity believed that by focusing on defects, the causes of the defects could be
discovered and permanently removed.

The software studied in this case was a series of applications packages designed for internal company use
in support of purchasing and vendor analysis. This type of package is ultimately implemented in over
fifty divisions which operate in a relatively consistent fashion, so development of such systems is typically
done in partnership with several divisions. A prototyping approach was chosen to maximize the feedback
from the customer divisions and avoid some types of problems which had typically appeared in the past.
It was also believed that analysis of defects which appeared in each prototype could lead to elimination of
those defects in subsequent prototypes.

The first step was to prepare a list of defects which applied to the type of software they were producing.
Figure 2 shows that they grouped defects into three principal categories (1). It is important to note that
these definitions and categories are relatively unique to this particular type of application and
development environment. In a later discussion in this paper, we will see a similar approach taken
with quite different prevalent defects.

*** COPYRIGHT HEWLETT-PACKARD COMPANY ***
1 -6 1 1 1

CATEGORIES OF SOFTWARE DEFECTS
A. USER INTERFACE/INTERACTION

1. User needs additional data fields

2. Existing data needs to be organized/presented differently

3. Edits on data values are too restrictive

4. Edits on data values are too loose

5. Inadequate system controls or audit trails

6. Unclear instructions or responses

7. New function or different processing required

B. PROGRAMMING DEFECT

1. Data incorrectly or inconsistently defined

2. Initialization problems

3. Image processing incorrect

4. View processing incorrect

5. Incorrect language instruction

6. Incorrect parameter passing

7. Unanticipated error condition

8. MPE file handling incorrect

9. Incorrect program control flow

10. Incorrect processing logic or algorithm

11. Processing requirement overlooked or not defined

12. Changes required to conform to standards

C. OPERATING ENVIRONMENT

1. Terminal differences

2. Printer differences

3. Different versions of systems software

4. Incorrect JCL

5. Incorrect account structure or capabilities

6. Unforeseen local system requirements

7. RAPID problem

Figure 2

A Pareto analysis was then done to identify the most frequently occurring defects. In this case
over one -third of the defects corresponded to categories A 7, A 2, and A 1 from Figure 2. The probable
causes of these defects were then determined using SQC, and changes were instituted into the
deve lopment process.

The second series of software was completed using the modified prototyping development process. As was
desired, the results showed that instead of these major defect categories appearing after release to the
internal customers, they now appeared much earlier in the process during the several prototyping stages.
In fact, categories A2 and A 7 accounted for over fifty percent of the pre-release defects recorded.

*** COPYRIGHT H WLETT-PACKARD COMPANY *** 1 1 2 1 - 7

Predicting the Testing Process

Another division develops firmware used in communications applications. Their projects are typically
short (less than six months) but the type of application and the number of installations is such that the
final quality of their product is very critical. Because their product line is reasonably repeatable and
their development cycle short, they were able to characterize parts of their process relatively
quickly. They determined that their average coding rate was 6 7 0 NeSS/programmer month (NeSS is
non-commented source statements) and that their average pre -release defect density was 9. 6
defects/ 1 000 Ness. (Note that any defect rate is entirely dependent upon how a given organization
defines defects. Our early experience shows variation of up to a factor of 200 in defect density among
different entities depending upon how defects are defined and recorded.) Using these averages they
were able to make their process more predictable.

They focused their attention particularly on the testing cycle. Using the model defined in Figure 3, they
started predicting how long the testing phase should take as well as recording and categorizing defects in
detail.

DE FECT D ISCOVE RY SCH E D U LE
25% of defects are fou nd I n 2 hou rs/defect (rate o f . 5 0 d efect/hou r)
50% of defects are fou nd I n 5 hou rs/defect (rate o f .20 defect/hour)
20% of d efects are fou nd I n 10 hou rs/defect (rate o f . 1 0 defect/hour)

4% of d efects are fou nd I n 2 0 hou rs/defect (rate o f . 05 defect/hour)
1% of defects are fou nd I n 5 0 hou rs/defect (rate o f .02 defect/hour)

Figure 3

*** COPYRIGHT HEWLETT-PACKARD COMPANY ***
1 - 8 1 1 3

Figure 4 shows the predictive model of a typical project and the actual rate of defect discovery and
completion. As can be seen from this example, the amount of testing required to achieve a desired level of
quality can be predicted reasonably well.

DEFECT RATE
RATE AND 3 WEEK AVERAGE
N � Model cal�

eoo Defect 1000 Hours

400

300

200

100

" " " " " " " " " " " " " "

/ ""-, , , <"'"
" " "

-, '" � " '>�"
�"

- - - - -" � >-<...' '.-< "'" - - -/' ... - �-
'- � � ><'-� " ' ''''- � - · v · . - .- � . . "" . . . " .

-

Logged QA Week

Figure 4

*** COPYRIGHT HEWLETT-PACKARD COMPANY ***
1 1 4 1 -9

In addition to predicting and monitoring defects during the testing process, this division also made an
effort to categorize the defects by severity to use as an aid in project tracking. They used the same
severity categories described earlier that HP uses for reporting defects after a product is released.
Displaying these defects in the form of a stacked bar chart (Figure 5 shows defects for the same project
displayed by Figure 4) on a weekly basis then shows not only the downward trend of defects toward
project completion, but also flags the presence of major problems past the point when they might be
expected.

DEFEC1'S

Minor

Figure 5

Unlike the applications environment discussed earlier where the primary source of defects was in the
user interface specifications, this division found their major source of defects was in the implementation
of algorithms. Figures 6 and 7 show the breakdown of defects by project phase and classification. These
measurements and analyses have not only made their process more predictable, but they have pointed
out the primary areas where effort can be focussed to improve the process.

*** COPYRIGHT HEWLETT-PACKARD COMPANY ***
1 - 1 0 1 1 5

InwIDMlgn U ,.

. . � . ' . ' . "
. . . .

.
. , ' ' .

Figure 6

SOFTWARE METRICS
DIfactII In Impllmentdan by au.

�r--

Figure 7

*** COPYRIGHT HEWLETT-PACKARD COMPANY ***
1 1 6 1 - 1 1

Using their technique to predict testing time and effort necessary, they are routinely predicting the
testing phase within ten percent of the actual times spent now. For three products which have been
released long enough to accurately draw conclusions, they have seen a total of only one defect after this
testing process has been completed.

Project Prediction and SQC at a Systems Division

A third division produces systems and software used to develop firmware applications. They have a large
team of software developers with projects of varying size which primarily fall into operating system and
compiler software, but also include firmware and applications as well. Their productivity has been quite
respectable, but they felt that their ability to predict project completions was poor and that they really
didn't have good understanding or control over defects in their process. Their pre-release defect densities
have varied from . 4 to 6 defects/ l 000 NeSS. Figure 8 shows a graph of the accuracy of their project
estimates.

I

8OF1WAAE PREDIC1'ABlUTY
OM Ilapment Effart

<>
<>

<>

1�1------�1�------�'�------�4�------�1�------�.

Figure 8

By initiating measurements in all areas of development, they hoped to improve their ability to
estimate projects. In addition, by focusing heavily on defect analysis they felt they also had the best
chance of improving their process. They used techniques similar to those described in the previous
two divisions. Figures 9 and 1 0 show categorization of defects for one of their development areas. One
of the most interesting results of these measurements was that in the category of detailed design defects,
the largest category, over half of the reported errors occurred during redesigns. During redesigns they
typically did not have formal review mechanisms in place to ensure top quality. These measurements, of
course, led to the introduction of such reviews.

*** COPYRIGHT HEWLETT-PACKARD COMPANY i:H
1 - 1 2 1 1 7

10

•

10

o

21

11

10

•

Dotlled
Ilotign Ooloc:t

OOMPiLER DEFECTS

xxxxx

Figure 9

COMPILER DESIGN DEFECTS

Figurt> 1 0

*** COPYRIGHT HEWLETT-PACKARD COMPANY ***
1 1 8 1 - 1 3

As was pointed out earlier, it can be seen from all three examples that the detailed definition of defects
was not consistent from division to division, yet in each case significant understanding and progress was
made in eliminating the causes of defects from the development process.

One tool which was used to identify problem causes was the "fishbone" diagram. A high-level
analysis of the primary defect category, detailed design defects, is illustrated in Figure 1 1 . This type
of analysis is suitable for creating change at the lab level. A similar diagram was done for register
allocation defects and some of the others. These led to actions within smaller areas of the lab, since
they represented subsets of the overall problem category.

CAUSE/EFFECT DIAGRAM
I MAN POWER I - I M ETHODS

Meaa
sye

O/S

Incompltte
d41eign

COmplexlty ----'l.---...-------JL--.,..,....--...:;,{

"'ethodolow
DetaIled
de. n
defect

Not enough
�----��-----Ume

Redesign

�----IF---.....,....--- Not documented

�--- R.uM<l

MATER IALS

Incomplete
knowledg4

Figure 1 1

Ume

Oriqinol
<MeIgner,
don't know

We have seen that for different software development environments, the primary defect categories are
significantly different. The techniques for identifying defects involve discipline in recording defects
during the software development process. Once the primary defect categories are identified, the causes of
defects can be determined and permanently removed, and defects are one of the primary factors which
contribute to our inability to accurately estimate.

*** COPYRIGHT HEWLETT-PACKARD COMPANY ***
1 - 1 4 1 1 9

A Tool for Project Estimation

A fourth division develops communications software which operates very closely with the operating
systems software used by all of HP's computers. Their interest in metrics is driven by the need for project
control, which includes predictability of schedules and staffing.

This division's first attempt at cost estimation modeling was to lease a software package which implements
a model discussed much in the metrics literature. This model was studied in terms of its accuracy and
assumptions concerning the development process. A major problem with it was the ease with which
managers could manipulate the inputs to the model to get virtually any answer, realistic or unrealistic.
Also, the high leasing price made the prospect of developing an in-house tool cost-effective for this
division.

The in-house tool, SOFTCOST, was based on a paper written by Robert Tausworth of the Jet Propulsion
Laboratory [2]. Here is a description of SOFTCOST's functionality:

1 . Estimates project size and difficulty. The Difficulty Factor provided by SOFTCOST is based on
various aspects of the project environment, such as product complexity, staff experience, support of
the programming environment, etc.

2. Estimates development resources. SOFTCOST approximates the total amount of engineering effort,
time, and staffing required for development of the project (from Internal Design through
Manufacturing Release).

3. Allows arbitrary resource budgets and performs tradeoffs between time and effort. SOFTCOST
-allows the user to specify certain budget constraints, and shows what the time/effort/staffing
tradeoffs are.

4. Generates a staffing schedule. For large projects, effort is applied in a predictable way, following
what is known as a Rayleigh Curve.

SOFTCOST's goal is to provide Project Managers with a valuable comparison between their expectations of
a project's behavior and industry-based statistical expectations of that project's behavior. It provides an
additional basis for budgeting project time and effort to a project based on estimated confidence limits for
the project's successful completion. Further, continued use of this estimation tool can aid in developing an
information base of productivity factors which are candidates for improvements.

The model uses some very complicated mathematics. An HP engineer ported the public-domain BASIC
implementation into HP-portable PASCAL. The submodels that compose SOFTCOST are each calibrated
to certain non-HP data, and the sum total of the models does not reflect a single set of industry data. HP
had no data and no instructions for customizing the data file.

After a year of using the first version of SOFT COST, enough information had been gathered concerning
its usability and functionality. HP then created the second major revision, which included a total rewrite
of the user manual.

The metrics data collected has shown that for a small number of the division's projects, SOFTCOST
predicted the duration within 20 percent and the effort within 30 percent when correction factors were
used. These results are shown in Figures 1 2 and 1 3.

*** COPYRIGHT HEWLETT-PACKARD COMPANY ***
1 2 0 1 - 1 5

SOFroOST ESTIMATE OF
PROJECT DURAl10N

Figure 1 2

SOFTCOST ESTIMATE (CORRECTEDt
DEYELOPMENT EFFORT

�.�����----------------�

Figure 13

*** COPYRIGHT HEWLETT-PACKARD COMPANY ***
1 - 1 6 1 2 1

The use of SOFT COST has spread. Another division doing firmware development found SOFTCOST's
estimates to be far too optimistic. However, it was consistently wrong by the same relative amount such
that modified SOFTCOST estimates are good predictors. (Again, a limited number of projects have been
used. For four projects, an offset factor of 2. 5 appeared good.) The need to calibrate the model for a
specific development environment gives projects an incentive to collect accurate data for local calibration.
It is used as a check against a manager's own expert judgement. In at least two cases, schedules have been
revised as a result of the large discrepancy between the managers' initial estimates and the estimates
produced by SOFTCOST. SOFTCOST's biggest advantage, however, is reminding the project manager in
the investigation phase of most of the factors that affect a project's schedule.

The next step is to study the model itself and try to understand how to make it more responsive to factors
which have a big impact on project schedules in the HP environments. As data is collected on projects
producing different software types, the model will be calibrated to give more accurate estimates in each
software environment.

CONCLUSION

Probably the most remarkable aspect of the Software Metrics Program at HP has been how quickly
measurable results have been attained. Some aspects of measurements have spread to virtually all
software development labs within the company, and from the examples included in this paper it can be
seen that significant changes have been achieved in a relatively short time, particularly in understanding
defects in all of the major development categories. In some cases measurements are limited to individual
projects in a lab, but in many cases the process is now virtually across entire labs.

The original metrics accepted by the HP Software Metrics Council are internal standards now, subject
to growth and change over time as various experiments define new needs. The paper forms
originally created over a year ago have been supplemented by some tools which meet collection and
presentation needs. In addition, A set of three high-level management graphs, based upon data from
the standard metrics, have been accepted as the basis for evaluating software quality and productivity
throughout HP at the division level. These graphs (scattergrams) portray productivity, pre-release
quality, and post-release quality.

Finally, the major issue of predicting software development costs and schedules is being addressed by
both measurements to help calibrate our ability to estimate, as well as tools, to help standardize and
ensure completeness. In some HP environments, the time necessary to achieve desired quality goals
can be computed today so that the necessary resources can be allocated. This predictive ability must be
extended to other parts of the development process and the accuracies of prediction must continue to
improve until software development is really a predictable engineering discipline

BIBLIOGRAPHY

1 . C. Sieloff, "Software TQC: Improving the Software Development Process Through Statistical Quality
Control," HP Software Productivity Conference Proceedings, (April, 1 9 84).

2. R. C. Tausworth, "Software Specifications Document, DSN Software Cost Model," Jet Propulsion
Laboratory, Pasadena, CA, 1 9 8 1 .

*** COPYRIGHT HEWLETT-PACKARD COMPANY ***
1 2 2 1 - 1 7

BIOGRAPHIES

Bob Grady and Deborah Caswell

Bob Grady manages the Software Engineering Lab of Hewlett Packard Company.
SEL is a Corporate Engineering function responsible for software tools
development environments, and metrics. During his 1 5 years with HP, he has
managed software development projects in the areas of compilers, measurement
and control systems, firmware development and manufacturing automation.
Mr. Grady holds a BSEE from MIT and MSEE from Stanford University.

Deborah Caswell is a software development engineer for the Software Engineering
Lab of Hewlett Packard Company. She was instrumental in initiating and
coordinating the software metrics effort at HP. During the three years she
has been with HP, Ms. Caswell has developed automated testing programs and
other software engineering tools. She has a BA in computer science from
Dartmouth College and is pursuing an MSCS at Stanford University.

1 23

�
N
�

H P SOFTWARE DEVELOPM E NT E NVI RON M E NTS

INFLUENCING SOFTWAA�
FACTORS MICAOPflOCESSOA SYSTEMS

TEAM SIZE S",.II L.roe *

MARKET SIZE + Sma" � Large Large

LANGUAGE Almb.Paloal C/PascaVSPL

USER Single Multiple
TIMING Important, Critical

aometlmea critical
METHODOLOGY Few standard. Control-oriented
COST OF CHANGE Large � Huge Large
AFTER RELEASE

MAJOR APPUCATION TImIng of ProceII lnterlction
CONCERN ext. prooea_ peripheral generaltty,

recovery

* Project sizes not large, but generally aggregates of projects are large.

+ As measured in number of customer sites.

APPUCATIONS
Large *

Larte

Hlth-level

HHvy, multiple
MIld Importance

OIta-oriented

Moderate

o.ta integrity,

UMr Interface,
portabllty

�ND-U8�"
Small

Sma"

An

Single

vartet In
Importance

Varies

Small

Single problem

orIentad

f-'
N
U1

INCOMING SERVICE REQUESTS

MAAI<!11NG AND
LAB a.A8SlFlCATION

. I

. p - - - - - - - -

: I I _ � : I �U
' 1 .
: 1 SERVIOI
� : REOUEm
. .. _ - - - - - - ,
I • • • • • • • • • • • • • : I

I
I

SOFTW AR! MAlNTINANCI PROCESS

Unol_lfled
Servtce

Requests

MIIn TIme
.. :.:. : To CI ... lfy

hrvloe Requests

- - - - - � - - - - - - - -

- 1MIIodI
- CMnDt

�
- A __

Data
- ou.

E,......1t I I

I I I

Known I ... I
PrabIInII I IIr.tl •• I
NorIIIII I 0 I

Ind lDw L.Il'iJ.lr1··

\ r-- Critical and Serious
Open Known

Problem Reports

MIlan 1'1mI To Ax
r _ . - Critical and Serious
: Known Problema I -----.... \ I •

0-<:><S> D
INTEGRATION QA RELEASE

CATEGORlES OF SOfTWARE DEFECTS
A. USER INfat=�

t lJIer n ••• IdIItionIII dIlta fields
2. EJcistIIIg data A ••• to be argIIiadf ted clfferently
1 EcIts an fMta vUJIlI .. too NStrictiwe
4. Edts on data tao loa ••
5. �"I __ .• ca or ... INIiIs
i.. lMcta If IIwIructIons or rwepon.l.
, MctIan or elf,.. proc •• 1ing '*IUiad

.. PROGRAMMING �FECT
1. Data Incorrectly or ft:onIist.ntly defiI.ad
2. InItiaIzation probl-
l. • • proc.llq IncaINCt
4.. *- IN(lISsing ft:xJnw:t
5. �1Il1Ct instruction
6. 'lIIccDt"ad ,....... pIS. III
1. w.fMIItii� .. tmX' anltion
.. tIFE lie ft:xJnw:t
� hXM ,eet prev .. control flow

n h:orrect processing logic or 8Igoiltlwn
.. Processilg requirement CMar'1OOked or not defined
IZ. 0wInges required to conform to standards

C. OPERATNi ENVIRONMENT
t T clfferences
2. Printer (Jfferences
3. afferent versklns of systems software
4. h:onect JCl
5. h;orrect acccurt structure or capabilities
6. lklforeseen local syStem requirements
7. RAPID problem

126

DEFECT DISCOVERY SCH EDULE

25% of defect. Irt found In 2 hours/defect (rate of .eo deflctlhour)

50% of defects are found In � hours/defect (rate of .20 defectlhour)

gl 20" of defects are found In 10 houri/defect (rate of .10 defectlhour)

4% of defects are found In 20 hours/defect (rate of .05 defectlhour)
1% of defects are found In 50 houri/defect (rate of .02 ctlfeet!hou"

a.c

r
f!

,� , ; 1
" � I �i

I :J ";'
I I: :

I -
I 11 ' I I V: i

I . ..,
• I

I :,, :
I : .r ,). : ", I : - �

I � , �
I :} -/ I : � j

I V � -
i / 1 :

, I : _' e , ' " : i
" ,� � , V �

" � : _ tl 'J : • , ,' . , ", , l/ , ',/' , , , /, 1' , � l , ' I , .' , , ' ,
, V , / \ , ,, ' , "

I I

1 28

I

: '" : - � � �
·
·
· -

·
· : � �

--- -- --- - -

I-'
N
\.0

Mtftor
W///1

DIIIICTI

Miler SerlOUl
� �

H.,.. ...

11 - « r - -- .. - - - -, - - .. -« """""-
, ;

14

11

, "OfJM OA Week

1 3 0

• •
•
f
1 l

I

I" J!

. :.: .. :.. � .
.

.
.

. .
. . .

. . .

...

. " : : : ::::::: : : ::: ::::::>:: < ::: :..........
.

.

.
. .

. .
.

.
. . .

. . . .

.

.
. .

. .
. . . .

.
. �

. . . :<::::::.

13 1

• •
•
c:;

•

l--r --/1 -iii
I

I
I

I

I
\ \
\
I
(

., - I L

I \ _Jj Jl-L -�t-. l-.1 ----;
..

1 3 2

-L

I
..

.. 5 a
..

I
::I

� �------_�I ------_�I ------_�I ------_�I ------...
I o

1 3 3

I-'
W
.t:>

301-

....

lOt-

181-

tOt-

't-

� �
I)

)I
I)

�

)0
)0)0

RegIster
Anocatlon

COMPILER DESIGN DEFI!CTI

�
IX>O

)C
)0
X)

)C
)I

�

Target
Knowledge

�
KXXXXX.XI
�
�
� � ..

Poor
DocumentatIon

Defect Type

DOO 111

I)()(')

X)I
� --X)

Stack
Offsets

�

t-'
w
1Jl

CAUSE/EFFECT DIAGRAM
I MANPOWER I [METHODS I

TralnlnQ

Meas
eye

O/S

Tralnln9

Inexpertenced �, d"19n.no

Other
Sy.tem

Interaction.
product

Interface.

Emulatora /'
Proce •• or

Complexity

Side

code

Product,
Interaction.

'� Reu.ed

Code

[MAT-fRiALS [

Incomplete ,,�� ____ r� __ _ Methodolo9Y

Detailed
de.19n

Lanvuave

Compnera Not , enough
IE < time

Poor
e.tlmat ..

'4£ . Redesign

No tool.

Schedule
pressure

"tIE £" .. Not documented

Incomplete
knowledge

Didn't
take
time

Orl91nal
designers
don't know

HlWlDT-PIICICARD
@ 1 P1t4 QS104J2

r---�--------------------_O
(I)

�
� I � I •

� ti G 6
.. B

. ..
:I

� i
0

0 ..

.,

1 3 6

r-��----------------� � c

0

8 �
w b 1&1

I I • I/:.
..

..

� �
c
0 �

2 -
0 Q 1ft C

= � � -.. I c W i
-Q

�
C W

�
8 �

• � 0 I • 2 0 1ft

1 3 7

Session 3
PANEL SESSION

"The Pros and Cons of Rapid Proto typing"

Panelists:

Rick Samco, Mentor Graphics
Robert Babb, Oregon Graduate Center
Will Clinger, Tektronix, Inc.
Dave Kerchner, Floating Point Systems, Inc.

Moderator:

LeRoy Nollette, Tektronix, Inc.

Overview Prepared by Will Clinger, Tektronix, Inc.

1 3 9

OVERVIEW OP RAPID PROTOTYPING

by William Clinger

TEKTRONIX , INC .

Rapid prototyping is a technique used in the early stages of
software development . The prototype is an executabl e software
specification . In many cases the prototype is obtained by tran
slating an existing specification into a programming language ,
but in some cases the prototype is itsel f the first specifica
tion . The prototype is developed relatively rapidly and cheaply
by using a high level programming language , by using existing
code where possible , by using simple but inefficient data struc
tures and algorithms , and by ignoring frills .

Rapid prototypes help to catch specification errors early , before
they waste much programming effort . For example , the speci fica
tion for a numerical calculation can be tested by translating it
into APL . Specifications expressed in a functional language such
as lambda calculus can be translated into Lisp . Speci fications
expressed using first order logic can often be translated into
Prolog .

Unfortunately , most specifications are informal and imprecise .
In such cases the rapid prototype serves as the first formal
specification of the software to be built . The prototype can
even be used to develop requirements . Though it is difficult to
specify an interactive user interface that makes significant use
of graphics , for example , a prototype written in Smalltalk can be
used to explore the possibil ities .

Given enough care , rapid prototypes can also be used to explore
the feasibil ity of novel implementation strategies . Such proto
types can be thought of both as specifications and as simulators
for the final software product .

Once the rapid prototype is complete , it should
important component of the design documentation .
useful , rapid prototypes should be written and
carefully as any other software .

remain as an
To be most

commented as

Rapid prototypes are rapid and cheap only by comparison with the
software development process they support . The final product is
more expensive to build than the prototype because it must have
better performance , more extensive features , and better documen
tation for its intended users .

Rapid prototyping should not be confused with sloppy programming ,
poor internal documentation , and buggy code . Sloppy programming ,
poor internal documentation , and buggy code should be confined to
the later stages of software development , where they are cheaper

1 4 1

to fix . The purpose of rapid prototypinq is to remove sloppy
thinkinq and buqqy specifications from the early staqes of soft
ware development , where mistakes are most expensive .

Rapid prototypinq is not always cost-effective . A software pro
j ect that beqins with a detailed formal speci fication that is
known to be correct does not need a rapid prototype , and it would
be a waste of time and money to construct one . Most proj ects , of
course , beqin with a detailed informal speci fication that is be
l ieved to be correct . In such cases a rapid prototype can in
crease confidence , but the prototype must be weiqhed aqainst its
cost . The worst possible thinq to do in such a s ituation would
be to construct a prototype , but to construct it hurriedly and
sloppily in order to hold down costs . A sloppy and hurried
prototype is all cost and no benefit .

To make best use of rapid prototypinq , proqrammers need to be
trained in the use of formal specifications and should understand
the principles of proqramminq lanquaqe semantics and proqram
verification . Proqrammers must understand and use abstract data
types to separate the obj ects that appear in the specification
from their inefficient implementations in the prototype . Final
ly , proqrammers need to learn about the software development
process , lest they view the prototype as a quick and dirty throw
away implementation , undertaken perhaps for practice ; many pro
qrammers will think enouqh of their talents to bel ieve they can
qet it riqht the first time .

Rapid prototypinq should be supported by an excel lent interactive
proqramminq environment so the prototype can be developed as
quickly as possible . The basic tool is an executable specifica
tion lanquaqe or a proqramminq lanquaqe whose semantics is clean
enouqh to be used as a specification lanquaqe . The lanquaqe
should supply a convenient means of synthesiz inq new abstract
data types , predefined modules for the most common data types and
operations , facil ities for readinq and printinq obj ects of all
types , automatic storaqe manaqement , and a convenient I/O packaqe
that includes support for qraphics displays . In qeneral , the
proqramminq environment should minimize the amount of new code
that must be written to develop the prototype , and should make it
easy to debuq whatever new code is written .

Amonq wel l-known proqramminq lanquaqes , APL, Lisp , and Smalltalk
are the best for rapid prototypinq . Proloq is also qood , but the
currently available Proloq proqramminq environments are primi
tive .

The hardware required to test rapid prototypes may have to be
faster than hardware used to run production software , both be
cause rapid prototypes are very slow and because the prototype
testinq time is usually on the software proj ect ' s critical path .

1 4 2

Session 4
TESTING AND PROBLEM REPORTING, I

Titles and Speakers:

"A Tool for Analyzing the Logic Coverage of Source Programs"
Arun Jagota, Intel Corp.

"TCA TIC: A Tool for Testing C Software"
Edward Miller, Software Research Associates

"A Unix Based Software Development Problem Tracking System"
Gordon Staley, Hewlett Packard Co.

1 4 3

A Tool For Analyzing The Logie Coverage Of Source Programs

Arun Jagota

Oregon Micro-proccessor systems
In tel Corporation

This paper describes a software tool which can aid in analyzing the logic coverage of source programs.
The first section explains what logic coverage is and how it can be done. The next section gives an over
view of the tool and shows how it can be used. The final section presents a general strategy for its use and
a summary of results and observations from my experience in using the tool.

1. What Do We Mean By Logie Coverage?

It is a measure of how well the internal control flow logic of a source program has been exercised. The pri
mary goal is to find errors in the program's logic. One simple form of logic coverage is to check if all
statements in a program can be executed at least once. Consider the rollowing example.

X = Y;
if X > Y then 5 1
else S2;

It is obvious that 51 can never be executed. This rorm or coverage is called statement coverage. Now, is
statement coverage sufficient ror detecting all k inds or logical errors? No, and the rollowing example
should show why not.

X = Y;
if X = Y then 8 1 ;
S2;

There is an obvious error in the program due to the fact that the conditional expression in the W state
ment can never take the false value. Yet, statement coverage would not detect this error because both
statements are executed. Hence, to detect such errors, we would need to cover both the branches of IF
statements (and other two-way decisions). This kind of coverage is known as branch coverage. Again, is
branch coverage sufficient for detecting all k inds of logical errors? No, and the following example should
again show why not.

X = Y;
if (X = Y) and (Y > 2) then 8 1
else S2;

Again, there is an obvious error in the progam which is due to the fact that the first condition in the W
statement is always true. But, this error cannot be detected by branch coverage because we can cover
both branches of the W statement by running the program twice with Y = 2 and Y = 3. How do we
detect such errors then? We need to cover both values (TRUE,FAL8E) of each condition in the IF state
ment. But, simply doing this does not guarantee branch coverage. Consider the following W statement.

IF C l and C2 THEN -

Suppose that it's execution history shows the following coverage.

1 4 5

(1) C 1 is false and C2 is true.
(2) C l is true and C2 is False.

Each condition (C1 and C2) individually takes on both the values (TRUE,FALSE) at least once. Yet the
THEN part of the IF statement is never executed .

So, wh at we really need to do is to cover all combinations of outcomes or each condition in an IF state
ment, and in two-way decisions, in general. This is known as multi-condition coverage I l l . A condition is
defined as a relational expression separated rrom other conditions by the logical operators AND, OR or
XOR. NOT is the only logical operator allowed as part or a condition.

1 . 1 . What about multi-way decisions!

So far, we have confined our decision to two-way decisions, in particular IF statements. In addition to
such decisions, most programming languages allow multi-way decisions, ror example Pascal case state
ments. For such decisions, we need to ensure that each branch (case alternative) is executed at least once.
This is known as case coverage.

1.2. How can we automate the process of multi-condition and ease coverage!
For each two way decision in the program, we need to insert hooks ror monitoring the run time values or
all its conditions. For each case statement in the program, we need to insert a hook to monitor the values
of the associated case expression. The range of values that needs to be monitored depends on the number
of case alternatives in a case statement. The number of hooks that need to be inserted is not astronomi
cally large since the number of decisions in a program is bounded by its size.

2. Overview of the Logie Coverage Tool

The logic coverage analyzer is targetted for PL/M source programs. PL/M is an Intel developed language
which supports three kinds of Pascal like control flow statements which are IF . . THEN, DO WHILE . .
and D O CASE . . . The analyzer performs multi-condition coverage on IF and D O WHILE statements. A
DO WHILE statement is interpreted as having two branches-execute the loop or skip it. It performs case
coverage on DO CASE statements. It can handle the most complicated forms of nesting of IF, DO WHILE
and DO CASE statements. It can also handle very complex boolean expressions in IF and DO WHILE
statements.

The Analyzer is partitioned into three parts-Preprocessor, Monitor and Reporter. The preprocessor inserts
the hooks for IF, DO WHILE and DO CASE statements. The modified program can then be linked in
with the second part, the MONITOR. It can then be executed with any set of test data. The monitor uses
the run time values supplied by the hooks to perform the multi-condition and case coverage. At the end of
a session , the monitor writes its coverage status onto a file. This makes it possible to run the subject pro
gram in multiple sessions and use the MONITOR to accumulate coverage data. The third part, the
reporter, interprets the contents of the coverage file to produce a coverage report.

2.1. Implementation
The P reprocessor

The preprocessor is coded in standard Pascal. It uses a recursive descent LLI grammar for parsing IF, DO
WHILE and DO CASE statements. The basic processing algorithm is shown below. There is a look ahead
of one symbol everywhere except for DO WHILE and DO CASE statements.

1 4 6

The algorithm is fully recursive.

P�O C 5SS I e�TAd P{tOG-. AM i'". ----... �

The preprocessor can process multiple PL/M modules together. The only condition is that the first one of
the multiple modules should be the main module. This is because the main module is treated differently as
shown below.

Main Module
Main: do;

Call 1nlt; --Initialises the MONITOR

Call Savelnfo; --Saves the Coverage Into a file
End Main;

The first executable statement should be a call to a MONITOR routine which initialises the MONITOR.
The last executable statement should be a call to a MONITOR routine which saves the coverage results in
a file. The preprocessor inserts these calls into the main module at the appropriate places.

The Monitor

The monitor is written in PL/M. It can process a maximum of 200 statements for multi-condition cover
age (IF + DO WHILE statements) . If there are more such statements, then their coverage is ignored. The
maximum number of conditions in each statement can be six. Any more conditions are ignored . The moni
tor can also process a maximum of 200 case statements. There can be a maximum of 32 case alternatives
in each case statements. Anything exceeding these limits is ignored similarly .

The information that needs to be recorded, especially for multi-condition coverage can be very large. In
the maximum case, for instance, we need to record 12,800 boolean values (200 * 26) . A unique scheme is
used to represent this much information in just 1600 bytes.

200

I I I I
"---------�--------� 1 6 + bi -l-s

1 4 7

The maximum number of possible combinations for doing multi-condition coverage or one statement is 64
(26). Hence, we use 64 bits for the multi-condition coverage or each statement. Each combination is asso
ciated with a particular bit. A 0 for that bit indicates that the combination hasn'.t been covered. A I indi
cates that the combination has been covered.

The Reporter

It is also coded in PL/M. It interprets the logic coverage data rrom the coverage file and creates a report
in the following format.

Statement Type

IF

WHILE

Multi-Condition Coverage

Line No No Of Conditions

Case Coverage

Condition Combinations
Not Covered

Line No No Of:::C=a::8=:e8===t==,C:=a:::8:::e::s=N:=o=t=,C=ov==:er:;ed===t

3. Example

The following example illustrates how the three parts or the logic coverage analyzer can be used together.

The original program is:

read(a,b);
IF (a> 2) AND (b< l) then < SO > ;

Arter preprocessing, the subject program looks like this:

DECLARE c array(6) BYTE EXTERNAL;
-c is used to pass condition values to ir probe.

read{a,b);
DO;

c [l] = (a > 2);
c [2] = (b < l);
CALL Ifprobe(l ,2);
IF c lll and c l21 then < SO > ;

END;

The array c is declared in the MONITOR and is used to pass the condition values to it. " irprobe" is the
MONITOR hook which processes these values. Its first parameter indicates the index of the " if" statement
being processed. The second parameter indicates how many conditions the " if" statement contains. Now,
let us run the altered subject program with the rollowing test data.

1 4 8

rub

3 3
3 0

We can now invoke the reporter to show us the current level of coverage.

Statement TYDe Line No No Of Conditions Combinations Not Covered
IF 2 2 False False

False True

The report clearly shows that we have not completely exercised the logic of the IF statement. Specifically ,
we can see that the following situations have not been covered.

(1) a<=2 and b > = 1
(2) a<=2 and b< 1

4. Summary of usage
Originally , this tool was implemented for analyzing single PL/M modules. It was tested with quite a few
single module PL/M programs (less than 100 lines each) . But once it was ready , and I decided to test a
large PL/M program, I realised that the preprocessor had to be modified to process multiple modules.
Once this was done, the PL/M program was preprocessed. There were 56 IF and DO WHILE statements
and 18 DO CASE statements (The preprocessor gathered this information). The program spanned two
modules. But, when I tried to execute it I ran into a problem. I had assumed that the program had a sin
gle exit point (the last statement of the main module) and this is where I inserted CALL SAVEINFO. But,
evidently , PL/M allowed the program to exit from any point under certain conditions. Since my prepro
cessor had not made such allowances, I had to manually insert CALL SA VEINFO 's at all such points.

Once this was done, I executed the program and it worked perfectly . Test data was fed interactively and
the coverage was seen to correspond to it. In fact, even with very limited test data, I succeeded in detect
ing a program error- a WHILE loop which would never be entered.

5. A testing strategy based on analyzing logic coverage

The source program should be driven with test data derived solely through its functional specifications, in
other words with Black box test data. This will make it easier to correlate the internal control flow logic
of the program to its specifications. The analyzer will detect which logic has not been excercised so far.
There could be three reasons why the logic wasn't covered .

(1) The test data was insufficient.
(2) There were logical errors in the program.
(3) Some combinations in multi-condition coverage were not intended to be covered . An excellent

example of this is

if (X = 1) and (X = 2) then 8 1;

It should be obvious that both conditions cannot be true at the same time.

Close inspection of the source code will usually give us a clue as to which reason applies to individual
cases of incomplete logic coverage.

Let us examine the role of an analyzer in selecting additional test data. Analyzing logic coverage is one of

1 49

the best ways or receiving reed back on how exhaustive test coverage has been. The primary reason ror
this is that the runctional specifications or a program are usually not detailed enough to cover all the
program's logic and hence test the program under all possible situations. This ract is especially true ror
"memory" programs - that is programs whose output is dependent not only on its input, but also on the
state or the environment at that time. Such programs have control flow logic which takes care or environ
mental ractors. The runctional specifications, usually do not cover such logic too well and hence monitor
ing this logic through a logic analyser provides a very userul insight into how well it has been exercised,
and hence, how well this part or the program has been tested .

In conclusion , then, logical coverage analyzers can serve two runctions. They can detect logical errors and
they can aid us in estimating how complete our coverage has been. To do these optimally, we should use
a logic coverage analyzer as a reedback element in a testing loop (as shown below).

' ''f&ORS L. C
0 0

c;
v
�

",gW I R c. "
1\:� %)�

�O G RA-"" O U T P\') ,..
-re S T 'D A�

6. Additional usee-Measuring control flow complexity
The preprocessor, in addition to its normal runction, gathers the rollowing statistics. It indicates the total
lines or code, the number or IF statements, the number or WlllLE statements, the number of CASE state
ments and the average number or conditions in IF and WHILE statements and the average number of
alternatives in CASE statements.

7. References

1 . Myers Glenrord J, 1979. The Art or Sortware Testing. John Wiley & Sons.

1 50

BIOGRAPHY

Aruo Jagota

Arun K. Jagota is a software engineer at Intel Corporation in Hillsboro,
Oregon. He holds an MS in computer science from the University of Kansas and
a BTech electrical engineering degree from the Indian Institute of Technology
in Delhi.

1 5 1

....--__ iny ________________ _

A Logic Coverage Analyzer of
Source P rograms

�-------------- Testing tool
1 5 2

AJ: 1 8 JULy 85

:----- inY --------------.

What is Logic Coverage

• A measure of how well the internal control flow
logic of a program has been exercised

• The goal is to find logical errors

• Statement Coverage - A Form of Logic Coverage

Example

X=Y;
if X > Y then S 1 ;
else S2 ;

• S 1 is never executed

�---------------- Testing tool 1 5 3
AJ: 2 8 JULy 85

� _____ D1� ________________________________ ___

- contd-

• Is statenlent coverage enough?
No. \Vhy not?

Example

X=Y;
if X=Y then S 1 ;
S2 ;

• Statement coverage is complete but there is stil l a

logical error
• What is the solution? Cover both the branches of

the decision . This is known as branch coverage.

1-------------------------------- Testing tool
1 5 4

AJ: 3 8 JULy 85

_-- intJ ------------...;,

- contd-

• Is branch coverage enough?
No. Why not?

Example

A=B;
if (A=B) and (B > 2) then 8 1 ;

else 82;
• B=2 and B=3 will guarantee that both branches

are covered . Yet we see a logic error in the pro
gram

• What is the solution?
• Cover al l combinations of outcomes of each con-

dition
• This is known as multi-condition coverage

a..----------------- Testing tool
1 5 5

8 JULy 85 AJ: 4

:------ inY --------------.

What about multi way decisions?

• Excercise all possible branches of the decision

• This is called case coverage

'------------------ Testing tool
1 56

AJ: 5 8 JULy 85

.-------------------------- --- -- -

:---- intJ --------------.

Is it easy to automate multi
condition and case coverage?

• Yes

• For every two-way decision , we need to insert
hooks for monitoring the boolean values of all its
conditions

• For every multi-way decision , we need to insert
hooks for monitoring the values of the case ex-

.
preSSIon

• The number of decisions in a program is bounded
by its size

.......... ---------------- Testing tool
1 5 7

AJ: 6 8 JULy 85

� ____ m� ____________________________ .

Overview of the Logic Coverage
Analyser - Features

• It is targetted for PL/M source progams
• It performs multi-condition coverage on two-way

decisions (IF and WHILE statements)
• A WHILE statement has two branches-execute

the loop or skip it
• It performs branch coverage on CASE statements
• It can handle very complex nestings

'------------1�5�8---- Testing tool
A.1: 7 8 JULy 85

------- �� ------------------------------------.

Overview - Implementation
• It is subdivided into three parts
• Preprocessor, Monitor and Reporter

• The preprocessor inserts hooks into the

source program to monitor condition and
case expression values

• The modified program is linked and exe
cuted with the monitor which keeps track
of the actual logic coverage

• The monitor stores the results in a per
manent file

• The reporter interprets the data in the file
to produce a coverage report

i-o-o-_______________________________ Testing tool -
1 5 9

AJ: 8 8 JULy 85

inY
-------------:..

,

Implementation- P reprocessor
• It is coded in standard Pascal and runs on RrvIX

86
• Uses a recursive descent LLI grammar
• Can process more than one PL/M module
• The source program should be error free . It can

not recover from syntax errors in the source
• The basic processing algorithm is shown below

F'R�� \ :t.t.lS�-r I \ PItOC E"SS I Q p�o�'-----f :pe CL�« 1------1, PROG RANI _ I----1c.:;J

W H I L..E'

1------------------ Testing tool
1 6 0

AJ: 9 8 JULy 85

------- �� -----------------------------------

- contd-

The Inain module requires special treatment

Main : do;

CALL INIT; --Initialises the monitor

CALL SA VEINFO; --Saves the coverage into a fil

end �lain ;

---------------------------- Testing tool
1 6 1

AJ: 10 8 JULy 85

__ ----- D1� __________________________________ .

The Monitor
.1 It is coded in PL/M
.' Maximum number of (IF + WHILE) statements

that can be covered = 200
• Maximum number of allowable conditions in each

statement = 6
• In the maximum case, we would need to record

1 2 ,800 condition values (200 * 2)
• A special scheme allows the monitor to use only

1600 bytes to represent all of them
• Maximum number of Case statements that can be

covered = 200
• Maximum number of allowable cases in each case

statement = 32

'--------------------- Testing tool
1 6 2

AJ: 1 1 8 JULy 85

-- � -- -------------,

:---__ inY --------------.

How it represents a Max of 76,800
condition values

I I I , '- __ --------J -----� 64- !:,d -s

• Each condition combination is represented by a
particular bit

• A 0 for that bit indicates that the combination
hasn 't been covered

• A 1 indicates that it has been covered

�----------�16�3�--- Testing tool
AJ: 12 8 JULy 85

iny _____ _

The Reporter
• It is coded in PL/M 86
• The coverage data in the file is stored in the

internal format
• The Reporter translates the data into a report

showing logic coverage

A.J : 13

co"'� , .,- \ 0 tJ
S"'A��eNT -r yp � t. I N � ,",, 0 N o oF co tolPITlO"lS c.o""al "' �IO"'S
--------t------4------ "'err c:o,,�

I F

WIo\ I L..e:

1 64

- -

Testing tool
8 JULy 85

r----- inY --------------.

A strategy for optimally using a
logic coverage analyser

• The source program should be driven w ith test
data derived solely through it's specifications
(Black box)

• The analyser will detect which logic hasn't been
excercised

• There are three possibilities here
• Testing was incomplete. This helps in

selecting more tests
• There are logic errors in the program
• The program logic was designed to be

incomplete
• An example of this is -- if (X= 1) or

(X=2) then S I ;
• Logic coverage serves a dual purpose.

• Find errors
• Select additional test data

--""'-------------- Testing tool
AJ: 14 1 6 5 8 .JULy 85

:-__ inY ----------------.

Example

The Original Program:
read(a,b) ;
IF (a> 2) AND (b < l) then <SO> ;

After preprocessing:

DECLARE c array (lO) BYTE EXTERNAL;
--c is used to pass condition values to if probe.

read(a,b) ;
* DO; *

* c [l] = (a> 2) ; *
* c [2] = (b < l) ; *
* CALL ifprobe(1 ,2) ; *

IF c [l] and c [2] then < SO> ;

* END; *

I-----------��---- Testing tool -
1 6 6

AJ: 15 8 JULy 85

:----- intJ -----------___ .

Example - contd-

un the altered program with the following test

a = 3, b = 3
a = 3, b = 0

lall the reporter . It prints the following report .

���L���� __ ��l��_:_��_�:����::J�:::���_t��_�:_�:t_����� �
IF 2 2 False False

False True

-------------1-6
7

---- Testing tool
AJ: 16 8 JULy 85

�----- �� ------------------------------------

Other uses - Measuring control flow
complexity

• The following statistics are gathered
• Total Lines of code
• Number of if statements
• Number of while statements
• Number of case statements
• Average number of conditions in if statements
• Average number of conditions in while statements
• Average number of alternatives in case state

ments

�------------------------------- Testing tool
1 6 8

AJ: 17 8 JULy 85

TCAT/C : A Tool For Tes t i ng C Software

TCAT/C : A Tool for Te s t i ng C Software

Edward M i ller
Techn i ca l D i r ec tor

July 1 9 8 5

TN- 1 1 8 3/1

@ Copyr ight 1 9 8 5 EY Software Re search As soc i ates

TN-1 1 8 3

ALL RIGHTS RESERVED . No par t o f t h i s document may be repro
duced in any form , by photocopy , mi cro f i lm , r e t r i eva l sys
tem , or by any other means w ithout wr i tten permi s s i on of
Software Research Assoc i ates .

Software Research Assoc i ates
P . O. Box 2 4 3 2

S an F r anc i sco , CA 9 4 1 2 6 USA

Phone : (4 1 5) 9 5 7-1 4 4 1 Te le x : 3 4 0-2 3 5 (SRA SFO)

1 6 9

Software Research Assoc i ates S an F r anc i sco , Ca l i fornia

TCAT/C : A Tool For Test i ng C Software

TCAT/C : A Tool for Te s t i ng C Software

D r . Edward Mi ller
Techn ical D i rector

Software Research Assoc i ates
P . O . Box 2 4 3 2

S an F r anc i s co , CA 9 4 1 2 6

(4 1 5) 9 57- 1 4 4 1

ABSTRACT

TN-1 1 8 3

SRA has developed a soph i st i cated t e s t cover age analys i s
tool for so ftware wr i tten in "C" , TCAT/C . The TCAT/C system
oper ates under VAX/Un i x and supports automatic i nstrumenta
t i on , runt ime s uppor t , and cover age analys i s .

TCAT/C appli es to un i t- testing , sUb- sys tem testing and to
system tes t i ng . I n operat i on , TCAT/C i ntrod uces min imum
system overhead and provides for a h i gh leve l of conven i ence
in u se o f the tool .

Reports produced by TCAT/C show the impac t o f test i ng on a
sys tem that has been processed by the TCAT/C i nstrumenter i n
two way s : (1) b y ident i fy i ng the complete e xtent of exer
c i se of the prog ram , and (2) by i dent i fying the set of log i
cal elements i n the code that are NOT yet e xer c i sed by the
current set of tests .

I n pract i ce , the TCAT/C system lend s i t sel f ver y eas i ly to
sys tema t i c tes t i ng . I n several SRA proj ects TCAT/C has been
used as the bas i s for completene ss testing , w i th ve r y good
e ffect . SRA est imates that , w i th TCAT/C in use and w i th ap
propr i ate leve ls o f test coverage obta i ned , the er ror r a te s
i n treated sof tware d rop by a factor o f a t l east 10 : 1 . S uch
improvement va lue s easily j ust i fy TCAT ' s moderate cost and
use overheads .

The TCAT/C product has been deve loped a s par t o f SRA ' s long
term strategy for deve loping an i ntegr ated collec t i on of
te st s uppor t tools . TCAT ' s are al ready implemented for PAS
CAL , BAS IC , COBOL and several t ypes of a ssembly l anguage .

1 7 0

Software Research Assoc i ates S an Franc i sco , Cal i forn i a

BIOGRAPHY

Edward Miller

Dr. Edward Miller is technical director of Software Research Associates of
San Francisco. He specializes in advanced technology for software engineering
management, software testing, software maintenance, and automated tool design.
Previously Dr. Miller was Director of the Software Technology Centre, Science
Applications, Inc., and Director of the Program Validation Project at General
Research Corporation. He has lectured at the University of California at Santa
Barbara and at the University of Maryland, where he received his PhD.

1 7 1

AVAILABLE SOFTWARE TESTING TOOLS AND TECHNIQUES

REQU I REMENTS BASED TEST I NG

BLACK-BOX TEST PLANNI NG
REQU IREMENTS LI NKl NG
ABSTRACTI ON APPROACHES

I NSPECT I ON AND REVI EW METHODS

DES I GN REVI EWS
CODE REV I EWS
TEST PLAN REV I EWS

STAT I C ANALYS I S

CONTROL- FLOW ANALYS I S
DATA FLOW ANALY S I S
I NTERFACE ANALYS I S

UN I T (DEVELOPMENT , MODULE) TEST I NG

WH I TE-BOX (STRUCTURAL) TESTI NG
I NTERACT I VE TE ST BED SYSTEMS

SUBSYSTEM TESTI NG

AUTOMATED TEST SCENAR I OS _

AUTOMATED TE ST DATA GENERAT I ON SCHEME S
I NTERFACE TEST I NG

I NTERFACE & I NTEGRAT I ON TEST I NG

I NTERFACE CHECK I NG
COMP I LER-ASS I STED TEST I NG

SYSTEM (FUNCT I ON) TEST I NG

BLACK-BOX FUNCTI ONAL TEST I NG
COVERAGE ANALYS I S
GRAY BOX TE ST I NG
FSM-BASED TEST I NG

REGRESS I ON TE ST I NG

CHANGE CONTROL
COVERAGE ANALYS I S
MOD I F I CAT I ON ANALY S I S

17 2

QA-SRA-O. 1

f-'
�
w

COCOMO DATABASB RBPRBSBNTATION OF COST-TO - F I X OR CHANGB SOFTWARB THROUGHOUT LtFB CYCLE

1� �i------�------�----�r------'-------r--��, lMIer IOftwirt prolectl 6 t IBM .. SSD

I
,
8
I I to

a I GTE

lOS f =.., ITRW Mlrwy'

o--a o SAFEGUARD

•
Sm.II" IOftwIre proJeetI

2
0- [Boehm •. 1IBOJ

I'hne In which error Wft detected end comcted

SOURCE : Bo ehm , So ftware Bngineering Economi cs ,
Prentice -Hall , 198 1 .

aper.tlon .

QA - 2 - 1 8 • 1 -.a

RANGE OF SOFTWARE QUALITY LEVELS

METR I CS U SED

. 1000 ' s OF L I NES OF CODE
DEF ECTS PER 1000 L I NE S OF CODE (KLOC)

NORMAL QUAL I TY

DEFECTS LESS THAN 60 (+30 -20) PER KLOC

NORMAL PROGRAMM I NG P ROCE SS , NO SPEC I AL
QUALI TY MANAGEMENT METHODS

GOOD QUALI TY

DEFECTS LESS THAN 10 PER KLOC
BAS I C QUtL I TY MANAGEMENT ACT I V I TY :

NSPECTI ON/REV I EWS
EFECT TRACK I NG

S I MPLE COVE RAGE ANALY S I S

H I GH QUAL I TY

DEFECTS LESS THAN 1 PER KLOC
I NTERMEDI ATE QUAL I TY MANAGEMENT ACT I V I TY :

H I GHEST QUAL I TY

�ORMAL TES
,

T PLANN I NG
NSP ECT I ON REV I EWS 1 COVERAGE ANALYS I S

DE FECTS LESS THAN 0 . 1 PER KLOC
ADVANCED QUAL ITY MANAGEME NT ACT I V I TY :

FORMAL TEST PLANN I NG �NSPECT I ON/REVI EWS
T COVERAGE ANALYS I S
YMBOLI C EVALUAT I ON

QA-SRA-O. 2

1 74

Oh! Now,
there's an affordable "Way to 1l1ake

sure software you're writing in
"e" is thoroughly tested.

Software Research Associates introduces the TCAT/C test coverage
verifier, a sure, low-cost way to make effective, measurable quality
assurance a reality in your laboratory. TCAT/C analyzes your "C"
program, gauges its internal structure, and sets it up so that the
quality and effectiveness of the tests you run can be measured
directly. Better yet, TCAT/C gives you simple, easy-to-read reports
that can be used as part of your formal software acceptance process.

What does this mean for software authors, managers, and
publ ishers? It means SRA's new TCAT/C product provides:

o Meaningful, quantitative quality assurance

o A sure "feedback loop" for knowing how much testing you've
done and how much you've left to do

o A method to minimize the amount of re-testing you have to do

o Protection for your product's reputation

Besides its system for the "c" language, SRA has simi lar capabil ities
for your programs written in BASIC, or PASCAL, or . . . you name it!

SRA is a pioneer in software quality assurance, serving business,
research, and governments around the world. The introduction of
this product represents an affordable delivery of our unique
technology into the PC field.

Interested? Call or write S'RA today for more information.

Software Research Associates, Attention: PC Test Group,
580 Market Street, San Francisco, CA 94 104, (4 15) 957- 144 1.

1 7 5

TCAT/C : A Tool For Tes t i ng C Software TN- 1 1 8 3

/ * * * Re ference l i s ting for SRA C i n strumentor
instr . ve r s i on 1 . 9 - e : 1 . 1 0 stat i st i cs ** */

/* Copyr i ght (c) 1 9 8 4 by Software Research Assoc i ates .
All Rights Reser ved . */

i nt c : /* c i s column count to s k ip empty columns */
GetName (l i ne , name)
char 1 i ne [] , name [] : {

char token [2 0] , bu f [80] :
stat i c char a f f i xm [MAX] = w a w :

/* * Beg in module GetName : segment 1 * */

1 GetToken (l i ne , token) : /* Returns token f rom l i ne */

2

3 4

i f (strcmp (token , w SUBROUTI NEW) = =
strcmp (token , w FUNCTION") = =

GetToken (l i ne , name) :

o I I
o) /* * 2 i f**/

}
else

}

.str cpy (name , bu f) :

/* * 3 e 1se* * / i f (s t rcmp (token , "BLOCK") == 0)
/ * * 4 i f* */ {
cats t r (" blkdat . " , a f f i xb , bu f) :
a f f i xb [O] = a f f i xb [O] +l :

{

5 6 e lse /* * 5 e 1se* */ if (strcmp « GetToken (l i ne ,
w FUNCTION") == 0) /** 6 i f**/

GetToken (l i ne , name) :

token » ,

7
}

strcpy (name , buf) :

else /* * 7 e1se* * / {
strcpy (name ,

}
pr intf (" : % s

w ma in . f ") :
: ma i n prog r amO , name) :

/* Tota l of 18 statements and 1 2 segments */
/* Total of 2 6 3 tokens in 3 9 l i nes . * /

1 76

{

Software Research Assoc i ates S an Fr anc i sco , Cal i for n i a

TCAT/C : A Tool For Tes t i ng C Software TN-1 1 8 3

Cover age Ana l yzer , Ver s i on 1 . 8 (80 Column)
(c) Copy r i gh t 1 9 8 4 by Software Research Assoc i ates

+----------- ----------- ----+
I I (Arch ived) Past Tests I
+ + -- - - - - - - - - - - - - - - - -- - - - - --------+
I I Number O f I
I Module Number Of I Number O f S egments Per cent I
I No . Name S egments : I I nvocat i ons H i t Coverage I
+--------------------------------- --+ ------ ---+
I 1 : SCN BUFI 1 I 4 1 100 . 0 0 I
I 2 : get ce ll data 11 I 19 7 6 3 . 64 I
I 3 : do_parm_type_chk 1 5 I 2 7 4 6 . 67 I
I 4 : set_source

-
ptrs 7 I 2 6 8 5 . 71 I

I 5 : TEST BREAK 9 I 5 2 2 2 . 2 2 I
I 6 : POINTER ON 2 3 I 22 12 5 2 . 17 I
I 7 : look_up 7 I 2 6 85 . 71 I
I 8 : UPDATE ROWS 7 I 3 4 57 . 14 I
I 9 : SET RULER 3 I 1 2 6 6 . 6 7 I
I 10 : NEXT ROW 13 I 8 3 2 3 . 0 8 I
I 11 : Get mem b1k 1 I 4 1 1 0 0 . 0 0 I
I 12 : D1 CTL PAGE DOWN 7 I 1 3 4 2 . 86 I
I 13 : DET FORMAT 1 5 I 5 12 80 . 0 0 I
I 1 4 : evaI 1 7 I 5 12 7 0 . 59 I
I 1 5 : dec ide_exe_mode for E 4 I 5 3 7 5 . 0 0 I
I 1 6 : CHANGE KBD 4 I 1 3 7 5 . 00 I
I 17 : RULER 11 I 1 6 54 . 5 5 I
I 18 : do asg 30 I 5 17 5 6 . 67 I
I 1 9 : SET_STATUS_LINE 3 1 I 2 2 1 9 61 . 2 9 I
I 20 : RESET GLOB VARS 7 I 1 5 7 1 . 43 I
I 21 : RESET-DATA-WOS 1 I 1 1 100 . 0 0 I
I 22 : ROW S TATUS 5 I 17 4 8 0 . 0 0 I
I 2 3 : ana lyze_source 29 I 2 9 3 1 . 0 3 I
I 24 : DET DIRECTION 1 0 7 I 11 1 6 1 4 . 95 I
I 2 5 : pe rform 11 I 9 7 63 . 6 4 I
I 26 : RESET PDATA AREA 1 I 1 1 1 0 0 . 00 I
I 27 : f i nd element 7 I 8 2 28 . 5 7 I
I 2 8 : POINTER OFF 5 I 3 3 3 6 0 . 0 0 I
I 29 : I n i t i alTze mx 9 I 1 7 77 . 78 I
I 3 0 : NEXT RIGHT 2 9 I 1 2 6 . 90 I
I 31 : ge t_nxt_row_ 5 I 7 3 60 . 0 0 I
I 32 : parse 30 I 5 15 50 . 00 I
I 3 3 : D 1 HOME 7 I 1 3 42 . 8 6 I
I 34 : do-eva1 27 I 5 10 3 7 . 04 I
+---------- -- - - - - - ----------+
I Tota ls 1 1 92 I 3 9 7 454 3 8 . 09 I
+---------- ---+

Software Research Assoc i ates 1 7 7 S an F r anc i sco , Ca l i fornia

TCAT/C : A Tool For Tes t i ng C Sof tware TN- 1 1 8 3

Cove r age Analyzer , Version 1 . 8 (80 Col umn)
(c) Copyr i ght 1984 by Softwar e Research A ssoc i ates

+ -------
i I I Th i s Test I Cumulat i ve S ummar y I� �----------;��-�;--------�----------;��-�;-------
I Module Number Of I No . O f S egments C 1% I No . O f S egmen ts C 1 %
I Name : S egments : I I nvokes H i t Cove r I I nvokes H it Cover
+ -- -- - - - - - - - - - - - - - - -
I SCN BUFI 1 I 0 0 0 . 0 0 I 4 1 100 . 0 0
I get-ce ll data 11 I 0 0 0 . 00 I 19 7 6 3 . 64
I do parm type ch k 1 5 I 0 0 0 . 0 0 I 2 7 4 6 . 6 7
I set source ptrs 7 I 0 0 0 . 00 I 2 6 8 5 . 71
I TEST_B REAK- 9 I 0 0 0 . 0 0 I 5 2 2 2 . 2 2
. 1 POINTER ON 23 I 0 0 0 . 00 I 2 2 1 2 52 . 17
I look up- 7 " 1 0 0 0 . 0 0 I 2 6 8 5 . 7 1
I UPDATE ROWS 7 I 0 0 0 . 00 I 3 4 57 . 14
I SET RULER 3 I 0 0 0 . 0 0 I 1 2 6 6 . 67
I NEXT ROW 13 I 0 0 0 . 00 I 8 3 2 3 . 0 8
I Get mem b1 k 1 I 0 0 0 . 0 0 I 4 1 1 0 0 . 0 0
I D1 CTL PAGE DOWN 7 I 0 0 0 . 00 I 1 3 4 2 . 86
1 DET FORMAT 1 5 I 0 0 0 . 0 0 I 5 1 2 8 0 . 0 0
I evaI 17 I 0 0 0 . 00 I 5 1 2 7 0 . 59
I dec ide exe mode for E 4 I 0 0 0 . 0 0 I 5 3 7 5 . 0 0
I CHANGE-KBD- 4 I 0 0 0 . 00 I 1 3 7 5 . 00
I RULER 11 I 0 0 0 . 0 0 I 1 6 54 . 5 5
I do asg 30 I 0 0 0 . 00 I 5 17 5 6 . 67
I SET STATUS LINE 31 I 0 0 0 . 0 0 I 2 2 19 6 1 . 2 9
I RESET GLOB-VARS 7 I 0 0 0 . 00 I 1 5 7 1 . 4 3
I RESET-DATA-WOS 1 I 0 0 0 . 0 0 I 1 1 100 . 0 0
I ROW STATUS 5 I 0 0 0 . 00 I 1 7 4 8 0 . 00
I anaIyze source 29 I 0 0 0 . 0 0 I 2 9 31 . 0 3
I DET DIRECTION 107 I 0 0 0 . 00 I 11 1 6 1 4 . 95
I perform 11 I 0 0 0 . 0 0 I 9 7 6 3 . 6 4
I RESET PDATA AREA 1 I 0 0 0 . 00 I 1 1 1 0 0 . 00
I find element 7 I 0 0 0 . 0 0 I 8 2 2 8 . 5 7
I POINTER OFF 5 I 0 0 0 . 00 I 33 3 6 0 . 0 0
I I n i t i alIze mx 9 I 0 0 0 . 0 0 I 1 7 77 . 7 8
I NE XT RIGHT 2 9 I 0 0 0 . 0 0 I 1 2 6 . 9 0
I ge t_nxt_row_ 5 I 0 0 0 . 0 0 I 7 3 60 . 0 0
I par se 30 I 0 0 0 . 00 I 5 15 5 0 . 00
I D1 HOME 7 I 0 0 0 . 0 0 I 1 3 4 2 . 8 6
I do-eva1 27 I 0 0 0 . 00 I 5 10 37 . 0 4
+ -- ---
I Total s 1 1 92 I 0 0 0 . 00 I 3 9 7 4 54 38 . 0 9
+ -- - - - - - - - - - - - - - - - - - - -- - - -- ------

Software Resear ch A s soc i ates
1 7 8 S an F r anc i s co , Cal i forn ia

�-- -

TCAT/C : A Tool For Tes t i ng C Softwar e

Coverage Analyzer , Ver s i on 1 . 8 (80 Column)
(c) Copyr i gh t 1 9 8 4 by Softwar e Research Assoc i ates

Cl Not H i t Report .

Module : SCN BUFI A l l S egments H i t . C! = 1 0 0 %

Module : get_ce Il_data S egments Not H i t :

2 4 6 9

Module : do_pa rm_t ype_chk S egments Not H it :

4 5 6 8 9 10 11 12

Module : set_source
-

ptrs S egments Not H i t :

4

Module : TEST B REAK S egments Not H i t :

2 3 4 5 6 7 8

Module : POINTER ON S egments Not H i t :

2 5 10 1 2 14 15 1 6 1 7 18 2 2
2 3

Module : look_up S egments Not H i t :

7

Module : UPDATE ROWS -- S egments Not H i t :

2 3 4

Module : SET RULER -- S egments Not H i t :

2

Module : NEXT ROW S egments Not H i t :

4 5 6 7 8 9 10 1 1 1 2 13

Module : Get mem b1k All S egments H i t . C 1 = 1 0 0 %

Module : D1 CTL PAGE DOWN S egments Not H i t :

3 4 5 7

1 7 9

TN-1 1 8 3

Software Research A ssoc i ates S an Franc i s co , Cali for n i a

TCAT/C : A Tool For Tes t i ng C Softwar e

Coverage Ana l yzer , Ver s i on 1 . 8 (8 0 Column)
(c) Copyr i gh t 1984 by Softwar e Research Assoc i ates

Segment Leve l H i stog ram for Modul e : an imal

TN- 1 1 8 3

I Logar i thm o f E xecu t i ons , Normal i zed to Max imum
I (Max imum = 2 q 6 H i ts)

S egment Number Of I
Number E xecut i ons I ------------ l---------- lO----- 2 0---- 3 0--- 4 0-- 8 0 - l00
- -+ -

I
1 2 I XXXXXXXXXXXXXXXXXX
2 2 I XXXXXXXXXXXXXXXXXX
3 * I
4 2 I XXXXXXXXXXXXXXXXXX
5 * I
6 1 4 I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
7 2 I XXXXXXXXXXXXXXXXXX
8 2 I XXXXXXXXXXXXXXXXXX
9 * I

1 0 * I
11 2 I XXXXXXXXXXXXXXXXXX
12 * I
13 2 I XXXXXXXXXXXXXXXXXX
14 20 I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
15 * I
1 6 4 4 I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
17 * I
18 20 I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1 9 * I
20 4 4 I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
21 * I
22 * I
2 3 8 I XXXXXXXXXXXXXXXXXXXXXXXXXXX
24 4 I XXXXXXXXXXXXXXXXXXXXXXX
2 5 4 I XXXXXXXXXXXXXXXXXXXXXXX

38
39
40

8 I XXXXXXXXXXXXXXXXXXXXXXXXXXX
8 I XXXXXXXXXXXXXXXXXXXXXXXXXXX

16 I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
I

- -+- -

(* = Z ero H i ts)

Ave rage H its Per E xecuted S egment :
C 1 Val ue for Th i s Module :

Software Research Assoc i ates
1 8 0

1 8 . 3 8 60
6 5 . 7 8 9 5 ,

S an Franc i s co , Cali forn i a

TCAT/C : A Tool For Tes t i ng C Softwar e

Cover age Ana l yzer , Ve r s ion 1 . 8 (80 Column)
(c) Copy r i ght 1 9 8 4 by Softwar e Research Assoc i ates

S egment L eve l H i s tog ram for Mod ule : an imal

TN- 1 1 8 3

I Number o f Execut i ons , Normal i zed to Maximum
I (Max imum = 2 96 H i ts)
I (Scale : . 3 3 8 XS = One H i t : Each X = 5 . 9 2 0 H it s)

S egment Number O f I
Numbe r Execut i ons I 1------- 2 0-------- 4 0-------- 6 0-------- 8 0------- 1 0 0
- -+ -

1
2
3 *
4
5 *
6
7
8
9 *

10 *
11
12 *
13
14
1 5 *
16
17 *
18
1 9 *
20
21 *
2 2 *
23
2 4
2 5

2
2

2

1 4
2
2

2

2
2 0

4 4

2 0

4 4

8
4
4

I

I X
I X
I
I X
I
I XX
I X
I X
I
I
I X
I
I X
I XXX
I
I XXXXXXX
I
I XXX
I
I XXXXXXX
I
I
I X
I X
I X

38 8 I X
39 8 I X
40 1 6 I XX

I
- -+ -

(* = Z ero H i ts)

Ave r age H its Per E xecuted S egment :
C l Value for Th i s Module :

Software Research A ssoc i ates
1 8 1

1 8 . 3 8 6 0
6 5 . 7 8 9 5 ,

S an Franc i sco , Cal i for n i a

TCAT/C : A TOOL FOR TE S T I NG C SOF TWARE

S-TCAT/C FEATURES

SYSTEM T E S T VE R S I ON O F TCAT/C -- S-TCAT/C

S I M I L AR TO TCAT/C F OR S I NGLE/MUL T I PL E
MODUL E

SLAN T E D TO N E E DS O F I NT EG R AT I ON/S Y S T E M
T E S T I NG

S l M E T R I C

ALL CALL E P -CALL � E P A I R S E XE R C I S E D

S T R O N G E R T HAN
"

EVERY MODU L E CALL E D
"

M E AS U RE M E NT T E C H N I QU E

S E M I - I NVA S I VE I NS TR UME NTAT I ON

R UN- T I M E PACKAGE

T R AC E F I L E S

·
STANDARD

"
COVER ANALY Z E R

S P E C I AL I N T E R AC T I VE U T I L I T I E S

A DD I T I ONAL R E P O R T S

F ULL CALL- P A I R ANALYS I S

COMPL E T E CALL I NG T R E E

SYSTEM S T R U C T U R E S T AT I S T I C S

I MPL E M E N TAT I ON B ASE

UN I X � NV I RONMENTS

BE R K EL E Y UN I X

AT&T UN I X

XE N I X

PC-DOS

1 8 2

IN- 1 1 83

SOF TWAR E RE S E AR C H AS S OC I AT E S SAN FR ANC I S CO , CAL I F OR N I A

TCAT/C : A TOOL FOR TE S T I N G C SOF TWA R E

STRUCTURAL TEST PLANN ING -- ADVANCED TECHN IQUES

B A S I C A P P ROACH

P ROGRAM F L OWCH A R T -- D I G R A P H

P R OG R AM S E C TO� G R A P H

H I E R AR C H I CAL D E C OM P O S I T I ON

SUCCE S S I ON

I F E L S E E ND

WH I L E E ND WH I L E

L OO P E NUME R A T I ON

PATH R E P R E S E NTAT I ON

T E C HN I CAL L I M I TS

NON-PU R E -SP PROGRAMS

COMB I NA TOR I C S

P A T H C OMPL E X I TY

OPPORTUN I T I E S F OR AUTOMAT I ON

F I ND I N G N E X T U S E F UL T E S T

S E L E C T I NG
"

R E L I ABLE
"

T E S T VALUE S

I N T E R AC T I ON W I TH DE BUGGER

CONVE NT I ONAL LEVEL

ADVANC E D L EVEL

TN- 1 183

SOF TWAR E R E S E AR C H ASSOC I AT E S
1 8 3

SAN FRANC I S CO , CAL I F OR N I A

SRA APPROACH TO SOFTWARE . QUALITY MANAGEMENT

RECOGNI T I ON OF REALI T I ES OF PROBLEM

KNOWLEDGE OF TECHNOLOGY

AVAI LAB I L I TY OF I NFORMAT I ON

RE SEARCH AND DEVELOPMENT CAPAC I TY

COGN I ZANCE OF CLI ENT NEEDS AND WANTS

BUDGET CONSTRAI NTS

PERSONNEL I SSUES

TRUST

CON F I DENT I AL I TY

PRODUCT I VI TY GA I N THROUGH AUTOMAT I ON

RECORDK EEP I NG

TE ST PLANN I NG

COVERAGE ANALYS I S

RE-TE ST I NG (REGRE SS I ON)

ELECTRON I C COMMUN I CAT I ON

QUALITY GA I N THROUGH AUTOMAT I ON

I NTERACT I VE I NSPECT I ONS

AUTOMATED STAT I C ANALYS I S

AUTOMATED UN I T TEST I NG

COVERAGE ANALYS I S

QA-S�A-O. 6

1 84

Oh! Now,
there's an affordable W'ay to 111ake

sure software you're writing in
"C" is thoroughly tested.

Software Research Associates introduces the TCAT/C test coverage
verifier, a sure, low-cost way to make effective, measurable quality
assurance a reality in your laboratory. TCAT/C analyzes your "C"
program, gauges its internal structure, and sets it up so that the
quality and effectiveness of the tests you run can be measured
directly. Better yet, TCAT/C gives you simple, easy-to-read reports
that can be used as part of your formal software acceptance process.

What does this mean for software authors, managers, and
publishers? It means SRA's new TCAT/C product provides:

o Meaningful, quantitative quality assurance

o A sure "feedback loop" for knowing how much testing you've
done and how much you've left to do

o A method to minimize the amount of re-testing you have to do

o Protection for your product's reputation

Besides its system for the "C" language, SRA has similar capabilities
for your programs written in BASIC, or PASCAL, or . . . you name itf

SRA is a pioneer in software quality assurance, serving business,
research, and governments around the world. The introduction of
this product represents an affordable delivery of our unique
technology into the PC field.

Interested? Call or write SORA today for more information.

Software Research Associates, Attention: PC Test Group,
580 Market Street, San Francisco, CA 94 104, (415) 957-144 1.

1 8 5

TCAT/C : A Tool For Tes t i ng C Softwar e TN-1 1 8 3

/ * * * Re fer ence l i sti ng for SRA C i nstrumentor
instr . ve r s i on 1 . 9 -e � 1 . 1 0 stat i st i cs * * * /

/* Copyr i ght (c) 1 9 84 by Software Research Assoc i ates .
All Rights Rese r ved . */

i nt c � /* c i s column count to s k ip empty columns */
GetName (l i ne , name)
char l i ne r] , name [] � {

char token [2 0] , bu f [80] �
stat i c char a f f i xm [MAX] = " a " �

/** Beg in module GetName : segment I **/

I GetToken (l i ne , token) � /* Returns tok en f rom l i ne */

2

3 4

i f (strcmp (token , " SUBROUTI NE ") ==
strcmp (token , " FUNCTION") ==

GetToken (l i ne , name) �

o I I
o) /* * 2 i f**/

}
else

}

str cpy (name , bu f) �

/** 3 e lse* * / i f (s t rcmp (token , " BLOCK") == 0)
/* * 4 i f**/ {
cats t r (" blkdat . " , a ff i xb , bu f) �
a f f i xb [O] = a f f i xb [O] +l �

{

5 6 e lse /** 5 e lse**/ if (strcmp « GetToken (l i ne ,
" FUNCTION") == 0) /** 6 i f**/

GetToken (l i ne , name) �

token » , {

7
}

strcpy (name , bu f) �

e lse /* * 7 else**/ {
str cpy (name , " ma in . f") �

}
pr intf (" : % s : ma i n programO , name) �

/* Total of 18 statements and 1 2 segments */
/* Tota l of 2 6 3 toke�s in 39 l i nes . */

1 86

Software Research Assoc i ates S an Franc i sco , Cali forn i a

TCAT/C : A Tool For Test i ng C Softwar e TN-1 1 8 3

Cover age Ana l yzer , Ver s i on 1 . 8 (80 Column)
(c) Copyr i ght 1 9 8 4 by Softwar e Research A s soc i ates

+---+
I I (Arch ived) Past Tests I
+ +-------------------------------+
I I Numbe r O f I
I Module Number Of I Number Of S egments P e r cent I
I No . Name S egments : I I nvocat i on s H i t Cove rage I
+-----------------------------------+-------------------------------+
I 1 : SCN BUFI 1 I 4 1 100 . 0 0 I
I 2 : get ce ll data 11 I 19 7 6 3 . 64 I
I 3 : do_parm_type_chk 15 I 2 7 4 6 . 67 I
I 4 : set source ptrs 7 I 2 6 8 5 . 71 I
I 5 : TEST BREAK- 9 I 5 2 2 2 . 2 2 I
I 6 : POINTER ON 2 3 I 22 12 5 2 . 17 I
I 7 : look_up 7 I 2 6 85 . 71 I
I 8 : UPDATE ROWS 7 I 3 4 5 7 . 14 I
I 9 : SET RULER 3 I 1 2 66 . 6 7 I
I 10 : NEXT ROW 13 I 8 3 2 3 . 0 8 I
I II : Get mem blk 1 I 4 1 100 . 0 0 I
I 12 : Dl CTL PAGE DOWN 7 I 1 3 4 2 . 86 I
I 13 : DET FORMAT 15 I 5 1 2 80 . 0 0 I
I 14 : eval 17 I 5 12 7 0 . 59 I
I 1 5 : dec ide exe mode for E 4 I 5 3 7 5 . 0 0 I - -I 16 : CHANGE KBD 4 I 1 3 7 5 . 00 I
I 17 : RULER 1 1 I 1 6 54 . 5 5 I
I 18 : do asg 30 I 5 17 5 6 . 67 I
I 1 9 : SET STATUS LINE 3 1 I 2 2 1 9 6 1 . 2 9 I

- -I 20 : RESET GLOB VARS 7 I 1 5 7 1 . 4 3 I
I 2 1 : RESET-DATA-WOS 1 I I I 100 . 0 0 I

- -I 22 : ROW STATUS 5 I 17 4 8 0 . 00 I
I 2 3 : analyze source 29 I 2 9 31 . 0 3 I
I 2 4 : DET DIRECTION 1 0 7 I 11 1 6 1 4 . 9 5 I
I 2 5 : perform 11 I 9 7 63 . 6 4 I
I 2 6 : RESET PDATA AREA 1 I I I 1 0 0 . 00 I
I 2 7 : f i nd element 7 I 8 2 28 . 5 7 I
I 2 8 : POINTER OFF 5 I 33 3 6 0 . 0 0 I
I 29 : I n i t i alTze mx 9 I 1 7 77 . 7 8 I
I 30 : NEXT RIGHT 2 9 I 1 2 6 . 90 I
I 3 1 : get_nxt_row_ 5 I 7 3 60 . 0 0 I
I 32 : parse 30 I S I S 50 . 00 I
I 33 : D l HOME 7 I 1 3 42 . 8 6 I
I 34 : do-eva1 2 7 I 5 10 37 . 04 I
+--------=--+
I Tota ls 1 1 92 I 3 9 7 4 54 38 . 09 I
+---+

1 8 7
Software Resear ch A s soc i ates S an F r anc isco , Cali fornia

I TCAT/C : A Tool For Tes t i ng C Software TN- 1 1 8 3

Cover age Analyzer , Ver s ion 1 . 8 (80 Column)
(c) Copyr i ght 1984 by Software Research A s soc i ates

+---
I I Th i s Test I Cumulat i ve S ummary
+ +------------------------+-----------------------
I I No . O f I No . O f
I Module Number Of I No . Of S egments C 1% I No . Of S egmen ts C 1%
I Name : S egment s : I I nvokes H i t Cove r I I nvokes H i t Cove r
+---
I SCN BUFI 1 I 0 0 0 . 0 0 I 4 1 10 0 . 0 0
I get-ce ll data 11 I 0 0 0 . 00 I 1 9 7 6 3 . 64
I do parm type ch k 15 I 0 0 0 . 0 0 I 2 7 4 6 . 6 7
I set source ptrs 7 I 0 0 0 . 00 I 2 6 8 5 . 71
I TEST_B REAK- 9 I 0 0 0 . 0 0 I 5 2 22 . 2 2
I POINTER ON 23 I 0 0 0 . 00 I 2 2 1 2 52 . 17
I look up- 7 I 0 0 0 . 0 0 I 2 6 8 5 . 7 1
I UPDATE ROWS 7 I 0 0 0 . 00 I 3 4 57 . 1 4
I SET RULER 3 I 0 0 0 . 0 0 I 1 2 6 6 . 67
I NE XT ROW 13 I 0 0 0 . 00 I 8 3 2 3 . 0 8
I Get mem b1k 1 I 0 0 0 . 0 0 I 4 1 1 0 0 . 0 0
I D1 CTL PAGE DOWN 7 I 0 0 0 . 00 I 1 3 4 2 . 86
I DET FORMAT 1 5 I 0 0 0 . 0 0 I 5 12 80 . 0 0
I eva1 17 I 0 0 0 . 00 I 5 12 7 0 . 59
I dec ide exe mode for E 4 I 0 0 0 . 0 0 I 5 3 7 5 . 0 0
I CHANGE-KBD- 4 I 0 0 0 . 00 I 1 3 7 5 . 00
I RULER 1 1 I 0 0 0 . 0 0 I 1 6 5 4 . 5 5
I do asg 30 I 0 0 0 . 00 I 5 17 5 6 . 67
I SET_STATUS_LINE 31 I 0 0 0 . 0 0 I 22 1 9 61 . 2 9
I RESET GLOB VARS 7 I 0 0 0 . 0 0 I 1 5 7 1 . 4 3
I RESET-DATA-WOS 1 I 0 0 0 . 0 0 I 1 1 100 . 0 0
I ROW STATUS 5 I 0 0 0 . 00 I 1 7 4 8 0 . 00
I anaIyze_source 29 I 0 0 0 . 0 0 I 2 9 3 1 . 0 3
I DET DIRECTION 107 I 0 0 0 . 00 I 11 1 6 1 4 . 95
I perform ' 11 I 0 0 0 . 0 0 I 9 7 6 3 . 6 4
I RESET PDATA AREA 1 I 0 0 0 . 00 I I I 1 0 0 . 00
I find element 7 I 0 0 0 . 0 0 I 8 2 2 8 . 57
I POINTER OFF 5 I 0 0 0 . 00 I 33 3 6 0 . 0 0
I I n i t i alIze mx 9 I 0 0 0 . 0 0 I 1 7 77 . 78
I NEXT RIGHT 2 9 I 0 0 0 . 00 I 1 2 6 . 90
I get_nxt_row_ 5 I 0 0 0 . 0 0 I 7 3 60 . 0 0
I parse 30 I 0 0 0 . 00 I S IS 5 0 . 00
I Dl HOME 7 I 0 0 0 . 0 0 I 1 3 4 2 . 86
I do-eval 27 I 0 0 0 . 00 I 5 10 37 . 04
+---
I Totals 11 92 I 0 0 0 . 00 I 3 9 7 4 54 3 8 . 09
+---

1 8 8

Software Resear ch A s soc i ates S an F r anc i s co , C a l i forn ia

TCAT/C : A Too l For Tes t i ng C S o f twa r e TN- 11 8 3

Cove r age Ana l yz e r , Ve r s i on 1 . 8 (8 0 Column)
(c) Copyr i gh t 1 9 8 4 by S o f tware Res e a r c h A ssoc i ate s

C l Not H i t Repo r t .

Mod u l e : SCN BUFI A l l S egment s H i t . C l = 1 0 0 %

Module : get_ce I l_d ata S egments Not H i t :

2 4 6 9

Module : do_pa rm_t ype_ch k S egment s N o t H i t :

4 5 6 8 9 10 1 1 1 2

Module : set_sour ce_p t r s S egments Not H i t :

4

Module : TES T B REAK S egmen ts Not H i t :

2 3 4 5 6 7 8

Modu le : POI NTER ON S egment s Not H i t :

2 5 1 0 1 2 1 4 1 5 1 6 1 7 1 8 2 2
2 3

Mod u l e : look_up S egment s Not H i t :

7

Mod u l e : UPDATE ROWS -- S egment s Not H i t :

2 3 4

Mod u l e : SET RULER -- S egment s Not H i t :

2

Modu le : NEXT ROW S egment s Not H i t :

4 5 6 7 8 9 1 0 11 1 2 1 3

Mod u l e : Get mem b 1 k A l l S egments H i t . C l = 1 0 0 %

Module : D l CTL PAGE DOWN S egments Not H i t :

3 4 5 7

1 8 9
Software Research As soc i at e s S an F r anc i s co , C a l i forn i a

TCAT/C : A Tool For Tes t i ng C S o f twar e

Cove r age Ana l yz e r , Ve r s i on 1 . 8 (8 0 Col umn)
(c) Copyr i gh t 1 9 8 4 by S o f twar e Research A s soc i ate s

S egment Leve l H i s tog r am for Modul e : an ima l

TN- 1 1 8 3

I Loga r i thm o f E xec u t i ons , Nor ma l i zed to Ma x i mum
I (Max imum = 2 q 6 H i ts)

S egment Number O f I
Numbe r E xecut i ons I ------------ 1---------- 1 0 ----- 2 0 ---- 3 0 --- 4 0 -- 8 0 - 1 0 0
- -+ -

I
1 2 I XXXXXXXXXXXXXXXXXX
2 2 I XXXXXXXXXXXXXXXXXX
3 * I
4 2 I XXXXXXXXXXXXXXXXXX
5 * I
6 1 4 I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
7 2 I XXXXXXXXXXXXXXXXXX
8 2 I XXXXXXXXXXXXXXXXXX
9 * I

1 0 * I
1 1 XXXXXXXXXXXXXXXXXX 2 I
1 2 * I
1 3 XXXXXXXXXXXXXXXXXX 2 I
1 4 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 2 0 I
15 * I
1 6 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 4 4 I
1 7 * I
1 8 XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXX 2 0 I
1 9 * I
2 0 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 4 4 I
21
2 2

*
*

I
I

2 3 XXXXXXXXXXXXXXXXXXXXXXXXXXX 8 I
2 4 XXXXXXXXXXXXXXXXXXXXXXX 4 I
2 5 XXXXXXXXXXXXXXXXXXXXXXX 4 I

3 8
3 9
4 0

8 I XXXXXXXXXXXXXXXXXXXXXXXXXXX
8 I XXXXXXXXXXXXXXXXXXXXXXXXXXX

16 I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
I

- -+ -

(* = Zero H i ts)

Ave r age H i t s Per E xecuted S egmen t :
C l Val ue f or Th i s Module :

S oftwar e Res earch A ssoc i at e s

1 9 0

1 8 . 3 8 6 0
6 5 . 7 8 9 5 %

S an F r anc i s co , Cal i forn i a

TCAT/C : A Tool For Test i ng C S o f tware

Cove r age Ana l yz e r , Ver s i on 1 . 8 (80 Column)
(c) Copyr i gh t 1 9 8 4 by S o f twa r e Research A ssoc i at e s

S egment L e ve l H i s tog r am f o r Mod ul e : an imal

TN- 1 1 8 3

I Numbe r o f Execut i on s , Normal i zed t o M a x i mum
I (Max imum = 2 q 6 H i ts)
I (S ca le : . 3 3 8 X S = One H i t : Each X = 5 . 9 2 0 H i t s)

S egment Number O f I
Number E xecu t i ons I 1------- 2 0-------- 4 0-------- 6 0-------- 8 0 ------- 1 0 0
- -+ -

1
2
3 *
4
5 *
6
7
8
9 *

1 0 *
11
12 *
1 3
1 4
1 5 *
1 6
1 7 *
1 8
1 9 *
2 0
2 1 *
2 2 *
2 3
2 4
2 5

2
2

2

1 4
2
2

2

2
2 0

4 4

2 0

4 4

8
4
4

I
I X
I X
I
I X
I
I XX
I X
I X
I
I
I X
I
I X
I XXX
I
I XXXXXXX
I
I XXX
I
I XXXXXXX
I
I
I X
I X
I X

3 8 8 I X
3 9 8 I X
4 0 1 6 I XX

I
- -+ -

(* = Z e ro H i ts)

Ave r age H i t s Per E xecuted S egmen t :
C 1 Val ue f or Th i s Modul e :

Software Res e a r ch A ssoc i at e s
1 9 1

1 8 . 3 8 6 0
6 5 . 7 8 9 5 ,

S an F ranc i sco , C a l i for n i a

TCAT/C : A TOOL FOR TE S T I NG C SOF TWARE

S-TCAT/C FEATURES

SYSTEM T E S T VE R S I ON O F TCAT/C -- S-TCAT/C

S I M I L AR TO TCAT/C F OR S I NGLE/MUL T I PL E
MODULE

SL ANT E D TO N E EDS OF I NT E G R A T I ON/S Y S T E M
T E S T I NG

S l M E T R I C

ALL CALL E R -CALL � E P A I R S E XE RC I S E D

S T RON G E R THAN
"

EVERY MODU L E CALL E D
"

M E AS U R E M E NT T E C H N I QUE

S E M I - I NVAS I VE I NSTRUME NTAT I ON

R UN- T I M E PACK AGE

T R ACE F I L E S

"
S TANDAR D

"
COVE R ANALY Z E R

S P EC I AL I N T E R AC T I VE U T I L I T I E S

A DD I T I ONAL R E PORTS

F ULL CALL- PA I R ANALYS I S

C OMPL E TE CALL I NG T R E E

S Y S T E M S T R UC T U R E S T AT I S T I C S

I MPLE M E NTAT I ON BASE

UN I X � NV I RONMENTS

BE R I(E L E Y UN I X

AT&T UN I X

XE N I X

PC-DOS

TN- 1 1 83

SOF TWAR E RE S E AR C H AS S OC I AT E S
1 9 2

SAN FRANC I S CO , CAL I F OR N I A

TCAT/C : A TOOL FOR TE S T I NG C SOF TWA R E

STRUCTURAL TEST PLANN I NG -- ADVANCED TECHN I QUES

B AS I C A P P ROAC H

P ROGRAM F L OWCHART -- D I G R A PH

P ROGR AM S E C TOR G R A P H

H I E R AQCH I CAL DECOMPOS I T I ON

S UCCE S S I ON

I F E L S E E ND

WH I L E E N D WH I L E

L OO P E NU M E R AT I ON

PAT H R E PR E S E N T AT I ON

T E C HN I CAL L I M I TS

NON - PU R E -SP PROGRAMS

COMB I NATOR I C S

PATH C OM PL E X I TY

OPPORTUN I T I E S F OR AUTOMAT I ON

F I ND I NG NE XT U S E F UL T E S T

S E L E C T I NG
"

R E L I ABLE
"

T E S T VALUE S

I NT E R AC T I ON W I T H DE BUGGER

CONVE NT I ONAL L EVE L

ADVANC E D L EVEL

TN- 1 183

SOF TWAR E R E S E AR C H AS S OC I AT E S 1 9 3 SAN FR ANC I SCO , CAL I F OR N I A

SRA APPROACH TO SOFTWARE . QUALITY MANAGEMENT

RECOGNI T I ON OF REALI T I ES OF PROBLEM

KNOWLEDGE OF TECHNOLOGY

. AVA I LAB I LITY OF .I NFORMAT I ON

RESEARCH AND DEVELOPMENT CAPAC I TY

COGN IZANCE OF CLI ENT NEEDS AND WANTS

BUDGET CONSTRAI NTS

PERSONNEL I SSUES

TRUST

CONF I DENT I AL I TY

PRODUCT I V I TY GA I N THROUGH AUTOMAT I ON

RECORDK EEP I NG

TE ST PLANN I NG

COVERAGE ANALYS I $

RE-TE ST I NG (REGRESS I ON)

ELECTRON I C COMMUN I CAT I ON

QUALI TY GA I N THROUGH AUTOMAT I ON

I NTERACT I VE I NSPECT I ONS

AUTOMATED STAT I C ANALYS I S

AUTOMATED UN I T TEST I NG

COVERAGE ANALYS I S

QA-S.RA-O. 6

1 94

A UNIX BASBD SOFTWARE DBVELOPMENT PROBLBM TRACKING SYSTEM

Gordon Staley

S oftware Qual ity Enqineer

Portable Computer Division

Hewlett Packard

ABSTRACT

As more software development is beinq done in unix
environments , the need for a Unix based problem trackinq
system has come about .

This paper addresses the approach taken to set up an on-l ine
software trackinq and reportinq system for use durinq the
development of products ; and discusses the potential areas
for improvement and expansion in the future . The qoal in
developinq this system was to improve productivity of the
development and test enqineers by providinq an on-l ine
problem trackinq system that qave them easy access to
problem information and status . PCD software enqineers are
currently usinq the first implementation on a widespread
basis .

1 9 5

1 . INTRODUCTION

Durinq the testinq phase of software development there is a
need to have a reportinq and trackinq system for software
problems encountered in the product . Often these inputs
come from individuals in orqanizations other than the
development orqanization , and in some cases from individual s
at remote locations with respect t o the development
orqanization . Additionally , the development may be
supported by individuals in different locations and in
different orqanizations .

the
This

basis

As the testinq phase continues there is a need to track
proqress of the action taken on reported problems .
status information is often needed on an on-demand
(e . q . has problem X been fixed in the new release?) .

As the proj ect nears completion there is a need to evaluate
the current risk of the code . This requires the extraction
of information from data collected to date concerninq
problems .

Prior to the implementation of the Unix problem trackinq
system , most problem trackinq was done manual ly . This
resulted in some problems not qettinq formally reported due
to extensive administrative overhead . This in turn caused a
poss ible understatement of the true level of problem
detection occurrinq in a proj ect . Additionally , any status
of the current rel iabil ity of the product had to be manually
qenerated . These factors reduced the productivity of the
testers , developers and software qual ity enqineers , as well
as makinq the assessment of the reliabil ity of the code for
the product difficult at best .

2 . GOALS

The need for a system that would automate the software
development reportinq and trackinq of problems was
identified . The system needed to meet the followinq qoals :

e provide easy access for testers and developers

e allow for easy problem information entry and retrieval

e allow for better risk assessment data

e able to be run on any multi-user system supportinq Unix

e less than four weeks total development effort

1 96

3 . SOLUTION

After an investigation , the solution that appeared to meet
all of the goal s was to highly l everage the existing
software available on the Unix systems . By so doing , the
development effort could be minimized and the result would
be as supportable as possible given the tight schedule
constraints .

The solution implemented made use of three different
features of Unix , the notes system , shell scripts and the
lexical analysis preprocessor (lex) .

3 . 1 Unix Notes

Part of the solution was to use the Unix "notes" system to
collect the raw data from the tester and developer . The
notes system allows a user to place information on an
electronic bul letin board . This electronic bulletin board
is sub-divided into separate topic areas commonly referred
to as notes groups . In our solution separate notes groups
were used for different parts of different proj ects (e . g .
O/S , BASIC) . This made it easier for the different
developers to keep track of the problems that appl ied to
them and not have to wade through reports of problems that
had no bearing on what they were doing .

The Unix notes system provides for an administrator
(director) that can edit and delete notes and change the
access control s for the particular notes group . This
feature allows the director to l imit the access of a
particular notes group to only the developers or any group
of users that might be desired . This can ensure that only
the developers are entering solution data into the system .

3 . 2 Shell script

In order to provide some control on the data being entered ,
a " script" (system program) was written to provide a
consistent structure to the input . This script
automatically enters the current date and time and prompts
the user for the information needed to reproduce the
problem . This script also placed consistent flags in the
data to allow for programmatic extraction of key information
by a lexical analysis preprocessor .

1 97

3 . 3 Lex

Programs were then written in a l exical analysis
preprocessor language (lex) to extract pertinent summary and
management data from the submitted notes . The output of the
lex preprocessor is a compilable C program . Lex allows for
embedded C commands in the lex source , making it easier to
customize the extraction of the data , and reduces the effort
to generate a one-time report . This extracted data allows
anyone involved with the proj ect to have current information
on the status of any particular release .

3 . 4 Basic Use of system

When a user detects and wishes to post a problem into the
system , they run the script called bugs . This script
prompts them for the information needed to reproduce and
troubleshoot a particular problem . The system is flexible
enough to allow the different proj ects being tracked to ask
for different information or to put various input
restrictions on the information . The Unix system provides
some of the desired information (current date , unique
tracking number) , with the balance being supplied by the
user (see exhibit I at the end of this paper for a sample
problem input) .

A public account was provided for those potential users of
the system that did not have a regular account on a computer
that supported the problem tracking system . This proved to
be particularly useful for the testers that were in other
organizations or different geographical locations .

The notes system allows for notes files to be "networked" .
This way users on multiple Unix systems can track the status
of software under development .

The developer responsible for a reported problem submits a
response to the problem report (responses are built-in
feature of the notes system) outl ining the corrective action
taken , if any (see exhibit 2 at the end of this paper for a
sample response input) . The absence of a response to
problem report would flag the proj ect manager that a
solution has not yet been found to a particular problem .

This information can then be viewed by developers and
testers to keep up on problems discovered and their current
status .

The software qual ity engineer uses this system to generate
summary reports for the proj ect leader (see exhibits 3 & 4

1 9 8

� --

at the end of this paper for sample reports) . These reports
detail the problems into four areas :

1 . problems that do not have a response posted yet
(exhibit 3)

2 . problems that are under investigation

3 . problems where no change action was taken (dupl icate ,
user misunderstanding)

4 . problems where corrective action was taken (exhibit 4)

Exhibit 4 is based on actual data with the names changed and
descriptions deleted . The bug number i s a unique number
assigned to a problem report . This is done to allow for
tracking of problems across notes systems , as notes usually
do not have the same note number on all systems . The SEV
column represents the severity of the problem discovered
(one # being trivial , four * being critical) . CLS refers to
classification (totals shown at the bottom of the page) .
The DATE is date the problem was reported . The version of
the software that the problem was found in is under VER .
The last two columns indicate the level of difficulty of the
repair, and the l ines of code required to make the change .

4 . RESULTS

The tracking system has been in place for 18 months . In
that time it has been used to track five different proj ects
at Hewlett Packard ' s Portable computer Division . There has
been widespread acceptance of the system in the division .
We have seen interest in the system from other HP divisions
and other companies in the Northwest .

The system had enough acceptance that Manufacturing set up
the same system that contains the information on problems
discovered . In addition they chose to add problems reported
from the field to yield a current problem database for the
released product .

There have been a number of benefits identified s ince the
first implementation . The rapid implementation was very
beneficial in that we were working on a fast-track proj ect
and did not have a lot of time to spend developing an
automated tracking system .

The system really encouraged good communications between the
developers , testers and Qual ity Department . The current

1 9 9

- ----------------------------------

status of a particular problem was more visible than it had
ever been before . Anyone with access to the machine with
the tracking system on it could read about the known
problems and the current status of the fix . This led to
less confusion about the current status of the code .

By allowing for multiple responses to a particular report
the testers were more l ikely to add amplifying information
to the original reports . This feature was also used by the
developers to acknowledge that a particular problem was
being addressed , although not yet fixed . An initial "under
investigation" response would be filed , and later a final
response would be filed .

With all of the data being in a machine readable form , we
were able to generate data for risk analysis much more
quickly than we had been able to in the past . Initially
there were many challenges here as a lot of the data was
entered in free form . As we needed more statistical data
from the system it became necessary to restrict some of the
input to allow for programmatic extraction of this data . In
later versions we would ask for input from a menu of
selections . One selection " other" would allow for free form
input in a case where none of the menu items were
appropriate .

The only maj or drawback to the system is that of
maintenance . The source has been modified by 6 different
authors . Any time a new version of one of the proj ects
needs to be tracked the source must change . To add a new
proj ect the source must change . with support for so many
proj ects and having so many authors the modifications are
l ikely to cause a problem in the system . There have been
some occasions where the user is mysteriously dropped out of
the system . A solution to this drawback is discussed in the
next section .

In spite of the problem listed above the system has been a
success . This early version has been a good prototype to
get usage information from , but now needs to be upgraded to
a fully documented and supported system .

2 0 0

5 . IMPROVEMENT/EXPANSION

As with any system developed in a
is much room for improvement .
resolved by use of early versions
The following is a l ist of the
improvement in this system :

short period of time there
Many details have been

of the tracking system .
known areas that could use

• Convert the shell scripts to programs written in a more
supportable and faster executing high level language .

• Allow for easier update to the l ist of products (and
their modules) that are being tracked at any point in
time .

• Preprocess input data to prevent > 8 0 character l ines .

• Provide a facil ity that directly posts a response to a
problem report (now manually done by the developer) .

• Provide editing capabil ities for public access users
that may not be famil iar with a particular editor .

• Allow for on-l ine access to summary status information .

• Have as many inputs as poss ible converted to menu
prompting for inputs rather than requiring free form
input .

• Add a usage tracking system , something that allow
testers to easily enter their testing
hours/module/configuration .

2 0 1

BIOGRAPHY

Gordon Staley

Gordon Staley is a software quality engineer with Hewlett Packard in Corvallis,
Oregon. He has been with HP for six years, the last two in the Software
Quality department. His educational background includes a BS in computer
science from the University of Utah and an MBA from the University of Oregon.

2 0 2

Bxhibit 1 . Sample Completed Problem Report

« PROBLEM ID »

5068

« REPORT DATE »

Fri Jun 7 08 : 3 2 : 1 6 PST 1 9 8 5

« PROBLEM DESCRIPTION »

The software test (for compatibility) includes a test for the
Non-maskable interrupt by doinq the instruction : INT 2 . On
the tarqet machine , this function does an iret . On XXXXXXXX ,
s ince there can never be a hardware Non-maskable interrupt , this
instruction sends the unit into never-never-land .

« REPORT SUBMITTER »

Annie

« SYSTEM IDENTIFICATION »

PP

« SYSTEM CONFIGURATION »

any

« SOFTWARE VERSION »

QA2

2 0 3

Exhibit 2 . Sample Completed Problem Response

« LAB ENGINEER ASSIGNED »

Annie

« PROBLEM CLASSIFICATION »

1 - New problem (des iqn)

« PROBLEM SEVERITY »

4 - Trivial

« AFFECTED MODULE (S) »

interr . asm
rombios . asm

« PROBLEM WORKAROUND »

do not enable those interrupts without takinq over their interrupt
vectors .

« SOFTWARE VERSION FIXED »

QA3

« FIX DESCRIPTION »

At boot , these interrupts will point to a routine that will clear
any interrupts that come in on these lines .

« REPAIR DIFFICULTY »

1 - S imple

« TYPE OF ERROR »

6 - Error condition not trapped

« NUMBER OF LINES OF CODE CHANGED »

10

« FIX VERIFICATION »

tested on the 64000 & traced on the interrupts beinq cleared .

2 04

,-----------� -------------

Bxhibit 3 . Sample No Response Problem Summary

Fri Jun 7 05 : 07 : 3 9 PST 1985

BUGS WITHOUT RESPONSES

BUG' ENGINEER SEV CLS DATE SUBMITTER VER NOTE'
13 8 5 0 6 0 3 Howard LP3 1 5
2 5 8 5 0607 Howard LP3 3 2

5 0 2 8 8 5 0 6 2 3 Eric LP4 9 5
4 2 8 5 0 6 2 5 Joni LP4 66
62 8 5 0 7 0 6 Joni LP3 8 6
9 4 8507 2 0 Ken QA1 1 2 2

109 8 5 0 7 2 2 John QA1 1 3 8
5 0 4 3 8 5 0 7 2 5 Phil QA1 144

124 8 5 07 2 7 Joni QA1 161
1 2 5 8 5 0 7 2 8 Joni QA1 166
128 8 5 0 8 0 1 Joni QA1 17 0
1 2 7 8 5 0 8 0 1 John QA1 169
14 1 850805 Jim QA2 185
14 0 850805 Howard QA2 184

5057 8 5 0 8 0 6 Jim QA2 18 6
5062 850806 Bill QA1 1 9 1
5 0 6 3 8 5 0 8 0 6 Bill QA1 192
5061 8 5 0 8 0 6 Craig QA2 190
5058 8 5 0 8 0 6 Annie QA2 187
5059 850806 Annie QA2 188
5060 850806 Annie QA2 189

142 850807 Jim QA2 194
1 4 3 8 5 0 8 0 7 Joni QA2 197
144 850807 Joni QA2 198

5065 850807 Annie QA2 195
5066 850807 Annie QA2 196

Total Number of unanswered bugs = 2 6

2 0 5

Exhibit .. . Sample Fixed Problem Summary

Fri Jun 7 05 : 07 : 3 9 PST 1985

BUGS WITH ACTION TAREN
BUGf ENGINEER SEV CLS DATE SUBMITTER VER NOTEf DIF LINES
5 0 3 2 Phil I 0 8 5 0 6 2 5 Phil LP4 6 5 1 5

101 Allyn I I 0 8 5 07 2 1 Ken QA1 1 3 0 1 5
105 Jim I f f 0 8 5 0 7 2 1 Jim QA1 1 3 4 1 10

5 0 5 1 Annie I 0 8 5 0 7 2 8 Annie QA1 163 1 5
1 3 4 Al lyn f f 0 850804 Ken QA2 177 1 3

5002 Leon I f 1 8 5 0 6 0 2 Leon LP3 3 2 15
5019 Leon f 1 8 5 0 6 1 0 Leon LP3 3 6 1 1

61 Phil f f 1 8 5 0 7 0 6 Joni LP3 8 5 1 4
5 0 3 8 Allyn f l l 1 8 5 0 7 13 Annie QA1 1 0 0 2 4 0

8 1 Phil I f f f 1 8507 17 John QA1 110 2 10
115 Phil f f f 1 8 5 0 7 2 6 Ken QA1 152 3 2 0

5048 Annie I 1 8 5 0 7 2 6 Annie QA1 150 1 2
1 3 1 Leon 1 # 1 850804 John QA2 174 2 16

3 Al lyn # f 2 8 4 1113 Ken LP3 1 1 1
5 0 0 3 Phil # # 2 8 5 0 6 0 2 Leon LP3 4 1 2

17 Allyn # 2 850604 Jim LP3 18 1 5
18 Allyn f 2 8 5 0 604 Gwen LP3 4 1 1 1
2 1 Allyn # # 2 850607 Dan LP3 4 2 1 5
3 6 Annie # # # # 2 850618 Eric LP4 5 3 1 6

502 9 Leon f # f 2 8 5 0 6 2 3 Annie LP4 59 1 1
5 0 3 1 Phil # f 2 8 5 0 6 2 5 Phil LP4 64 1 1

4 8 Al lyn # f 2 8 5 0 6 3 0 Mike LP4 7 3 1 1
5 0 Allyn f i # 2 8 5 0 6 3 1 Mike LP4 7 6 1 10
54 Allyn # # i 2 8 5 0 7 04 Karen LP4 7 9 1 10
69 Allyn # # 2 8 5 0 7 0 7 Eric LP4 9 3 1 1

5 0 3 5 Al lyn I 2 8 5 0 7 07 Leon LP4 89 1 1
7 2 Allyn 1 # # 2 8 5 0 7 12 John LP4 9 8 1 6
7 3 Leon # # # 2 8 507 13 Andy LP4 103 2 10
7 6 Allyn # # 2 8 5 0 7 13 Ken LP4 1 0 6 1 1

5 0 4 0 Annie # # # 2 8 5 0 7 1 3 Annie QA1 1 0 2 1 2
8 3 Annie i f 2 8 5 0 7 19 Jim QA1 1 1 2 2 1

107 Allyn # 2 8 5 0 7 2 2 Jim QA1 1 3 6 1 1
I I I Al lyn # 2 8 5 0 7 2 4 John QA1 14 0 1 1
117 Allyn f f f # 2 8 5 0 7 2 6 John QA1 154 1 1

5045 Annie # # # 2 8 5 07 2 6 Annie QA1 147 1 2
119 Jim # # # 2 8 5 0 7 2 7 Jim QA1 1 5 6 1 3
13 8 Allyn f # 2 850804 Ken QA2 1 8 1 1 1

9 2 Phil # f # # 3 8 5 07 2 0 Sherry QA1 1 2 0 1 5
1 3 3 Leon # # # 3 8 5 0804 Jennefer QA2 17 6 3 2 0

Total number of new requirements discovered in the design = 5
Total number of new problems discovered in the design = 8
Total number of new problems found in the code = 2 4
Total number of side effects of previous changes = 2

2 06

-- -- �� --

A U N IX BASED

SOFTWARE DEVELOPM E NT

PROBLE M TRACKI NG

SYSTEM

I
�----DlJ PORTABLE COMPUTERS �

2 0 7

THE NEED:

- SYSTEM FOR REPORTING PROBLEMS

- SYSTEM TO TRACK STATUS OF PROBLEMS

- ACCESS SUMMARY DATA

I I
- i

I
i
I I

________ M PORTABLE COMPUTERS �
2 0 8

THE GOAl8:

- EASY ACCESS FOR TESTERS AND DEVELOPERS

- EASY PROBLEM INFORMATION ENTRY AND

RETRIEVAL

- BETTER RISK ASSESSMENT DATA

- ABLE TO RUN ON LAB DEVELOPMENT/SUPPORT

SYSTEM

- LESS THAN FOUR WEEKS TOTAL DEVELOPMENT

EFFORT

I
�-------. M PORTABLE COMPUTERS �

2 0 9

THE SOLUTION:

- UNIX NOTESFILES (DATABASE)

- SHELL SCRIPT (USER INTERFACE/DATA
STRUCTURE)

- LEX (DATA EXTRACTION)

________ Iil PORTABLE COMPUTERS -
2 1 0

I I I

- -

�

�-----------DiJ PORTABLE COMPUTERS
2 1 1

THE RESULTS:

- ACCEPTED BY LAB

- IMPROVED COMMUNICATIONS

- DEVELOPERS

- TESTERS

- QUAUTY DEPARTMENT

- IMPROVED PROBLEM STATUS ACCESS

- IMPROVED DATA FOR RISK ANALYSIS

- A GOOD ONE TO THROW AWAY

________ DlJ PORTABLE COMPUTERS �
2 1 2

ROOM FOR IMPROVEMENT:

- CONVERT TO HIGH LEVEL LANGUAGE

- AlJ.OW FOR EASIER UPDATE OF PRODUCTS

BEING TRACKED

- PROVIDE EDITING CAPABIUTIES FOR PUBUC

USERS

- ADD MORE STRUCTURE TO RESPONSES TO

AlJ.OW FOR EXTENDED DATA ANALYSIS

- ON-UNE ACCESS TO PROJECT SUMMARY

INFORMATION

--------DiJ PORTABLE COMPUTERS �
2 1 3

Session 5
DEVELOPMENT TOOLS

Titles and Speakers:

"Software Design Using BCS Argus"
Bill Hodges, Boeing Computer Services

"The System Engineering Environment PRO MOD"
Peter Hruschka, Promod, Inc.

"Locating Suspect Software and Documentation by Monitoring Basic Information
About Changes to the Source Files"

David Vomocil, Hewlett Packard Co.

2 1 5

Copyrig ht © 1985 The Boeing Company. All rights reserved.

SOFTWARE DESIGN USING ReS-ARGUS

W i l l i a m M. Hodges

Boei n g Com p uter Services Com pany
P . O. Box 24346

Seattle, Wash i n gton 98 1 24

The paper, " Softwa re Desig n Using B CS-ARGUS" , d escri bes the use of a Boeing
deve loped set of tools that a id i n the specification a nd desig n stages of
software projects. The process of usi ng an a rch itected set of mechan ized tools
is descri bed with a n u m ber of major adva ntag es h i g h l ig hted . A brief
d iscussion of the u nderly ing a rch itect u re revea ls the ease with which new tools
can be added to mechan ize more of the software development process.

Background

BCS-ARG US is the code name for a too l u nder development at Boeing
Com puter Services. It is imp lemented as a desktop envi ron ment i ntended to
mechan ize and i nteg rate many of the activities performed d u ring the software
l ife cycle by ana lysts, desi g ners, prog ra mmers, and managers. This activity is
considered propr ieta ry at th is ti me . However, i t i s expected that it wi l l be
packaged as a commerc ia l offeri n g in the futu re .

The heritage of BCS-ARGUS l ies i n Boe ing research into softwa re metho
dolog ies that started as early as 1 974. These resea rch activit ies prod uced two
d i sti nctly d ifferent prototypes Intended to su pport the specificat ion phases of
the software l i fe cycle .

One prototype is ca l l ed SWI FT. SWI FT is functiona l ly si m i l a r to PSUPSA i n that
it uses specif ication l a ng uage to ca ptu re system specifications. Li ke PSUPSA,
SWI FT can be regarded as a data d i ct ion a ry system with added featu res. Key
e lements of its a rch itecture inc lude the fol l owi ng :

• A u n iversa l SWI FT l a n g u age whose su b lang uages i ncl ude syntactic meta
language, a specif ication lang u age, a PDL or pseudocode, and a rel ational
query language .

• A user i nterface from wh ich softwa re tools ca n be i n voked via commands
or men us.

• A set of mod u l a r software too ls access ing a centra l d ata store through a
reta ined re l at iona l q uery l ang uage ca l led SQ L.

• A carefu l ly structu red re lationa l data base supported by a fu l l -fu nction
DBMS.

2 1 7

• A report capa b i l ity for ta b u l a r a nd indented tree reports.

The second prototype is ca l led ARG US. It partia l l y auto mates software
development activities spa n n i ng the entire a p p l i cation l ife cycle . Th ro u g h a
soph isticated set of menus, users can :

• Enter softwa re specificat ions i n g ra p h i ca l (data flow d iagram) or textua l
form from a n on l i ne term i n a l i nto a set of U NIX f i l es . Some of these
fi les com prise a re lationa l data base.

• Create and u pdate speci a l ly formatted U N I X fi l es, i nc l u d i ng phone l i sts
and sched u les.

• I nvoke basic UN IX fu nctions for f i le control a nd document preparation.

• Con nect to va r ious host com puters as a n i nte l l igent term i n a l .

• Prod uce h igh-qua l ity p lotter output of data f low d iagra ms.

• Perform ana lyses specifications captu red i n the data base.

ARGUS has been ported from the ONYX-based U N IX System 3 to DEC VAX
systems ru n n i ng Berke ley 4 .2 and System 5 UN IX systems. It i s cu rrently used
by severa l Boei ng projects .

BCS-ARG U S Overview
The experience ga i ned si n ce 1 974 has a l l owed Boe ing to deve lop BCS-ARG US
wh ich exploits cu rrent hardware and software ca pab i l i t ies to prod uce a
softwa re deve lopment capa b i l ity on the I B M PCIXT and PC/AT. BCS-ARG US
provides consistency of environment, user i nterface, and methodology
regard less of the type of host system, i m p l ementation l ang uage or type of
appl ication , (i .e . , rea l time or I M S CO BOL) . (The real time constructs for the
methodology and the VAX VMS h ost capab i l ity is p lan ned to be ava i lab le in
1 986).

The theory u nderly ing BCS-ARGUS is that software is deve loped in stages, with
each stage descri b ing the software in more deta i l than the previous stage.
Each stage cu l m i nates in a docu ment expressi ng the design . The docu ment is
then reviewed to eva l u ate the completeness and ade q uacy of th e desi g n . The
theory further assumes that the design docu ments w i l l be u pd ated to reflect
the current software i m p lementation th ro u g ho ut the l ife of the software .

The arch itectu re of BCS-ARGUS a l lows systems to b e specif ied , desi gned , and
created on it and be i mp l e mented on some other host. The design of BCS
ARG US a l l ows a la rge project to centra l ize its specif ications a nd integ rated
data d ictionary on a l a rge-sca le host. Specifications may be checked out to
the PC or checked in to the h ost as req u i red . The host may a lso provide
lang uage processors and a test envi ronment fo r the deve loped systems.
Fu nctions su pported on th e host inc l ude :

2 1 8

• Work package management

• Relationa l data base management

• Report generation

• Docu ment generation

BCS-ARGUS h a rdwa re featu res a th ree-button mouse, a n I RMA board, and a
mu lti-fu nction card i ncorporated on a n I B M PCIXT or PC/AT. Co lor or mono
chrome mon itors a re su p ported . BCS-ARGUS tools i nc lude a data f low
d iag ram ed itor, a com mercia l word processor to prod u ce docu mentation , a n
S P F look a l i ke ed itor t o captu re code, a n d a rel ationa l data base to tie every
th ing together. An SNA com m u n ication capab i l ity provides the too ls necessary
to receive work packages from the host and retu rn com p l eted ones.

This u n i q u e arch itectu re a l lows projects that a re too la rg e to ru n on the PC to
be com pleted i n pa rts a nd assembled on the h ost. Traceab i l ity and a ud it
ab i l ity of req u i rements a re supported through out the two-level data base
i mplementatio n , thus a l lowi ng the completeness of a n a l located basel i n e to be
verified .

The cu rrent version of BCS-ARGUS i s i ntended to be used either i n a sta nd
a lone confi g u rat ion or con nected to a n I B M mai nframe via an I B M 3274 tele
commun ications contro l ler .

Work Package Initiation

The rema i n i n g d iscussion wi l l assume that a systems a n a l yst who cu rrent ly uses
an I BM 3 2 78/9 term i n a l , su pp lemented with data flow d iagra ms for software
design , decides to change to a Pc/XT eq u i p ped with B CS-ARG US. H e wou ld
p lug h i s exist ing coax cab le i nto h is PCIXT, then log i n to a password
protected ARG U S account when the U N I X log- in prompt a ppears.

,

After log g i n g i n , o u r hypothetica l systems ana lyst f inds h i msel f i n the BCS
ARGUS top- leve l men u . At th is level he ca n do a n u mber of th i n gs, in any
seq uence, captu re a specification or desi g n for a work package :

• He may con nect to the host to down load data d i ct ionary entri es or
req u i rements paragraphs from a h ig he r leve l docu ment.

• He may ente r the docu mentation system to prepare port ions of h is
docu ment.

• He may enter the speci f ication system via data flow d iagra ms or m i n i
specification data.

Communications

If the systems a n a lyst ch ooses to com m u n i cate with the host, he ca n either
req uest a comp lete package to be transferred from the host or log on to TSO

2 1 9

on the host and q uery the d ata base, depend ing u pon the d ata that h e
wants. He can use these capab i l it ies in whatever seq uence he chooses.

Documentation

If the analyst chooses to enter the docu mentat ion system , he can use the
WYSIWYG (what you see is what you get) word processor to prepare a sect ion
of h i s docu ment. He can specify that pages conta i n i n g d ata flow d iagrams be
incl uded at certa in poi nts in the text. Li kewise, i f he were docu menting after
the construction of the d ata flow d iagra ms and m i n i-specif ications, he cou ld
specify that ana lysis reports be i ncl uded at certa i n positions.

Specification E ntry

When the analyst constructs a data flow d iagram, he can use the mouse to
interactively position sym bols dep icti ng processes, i nterfaces, and data stores
on the 1 32-by GO-character vi rtua l screen . Once the entries a re posit ioned and
annotated with the i r descriptions, he can add the d ata flows and thei r l abels.

At any t ime d u ring th is p rocess, the ana lyst ca n selective ly enter a m i n i
specification for any one o f t h e entities that have been p laced o n the screen .
M i n i -specifications specify attri butes, as fol l ows :

• For a process

• S ib l i ngs
• Long descri ption
• Proced u ra l descri ptions of a lgorith ms and/or tra nsition log ic
• Etc.

• For an i nterface

• Descri pti on
• Data items
• Ed it req u i rements
• Etc.

• For a data sto re

• Component of
• Conta i ns
• Descri ption

• For a data f low

• Com ponent of
• Conta ins
• Descri ption
• Etc.

2 2 0

Analysis

If m in i-specification data a re entered at each leve l , the balancing activity wi l l
b e accompl ished a s each successive level i s defi ned d u ri n g the decompositio n
process.

Once the specification is com p l ete, the fol lowi ng reports can be prod u ced for
the design usi ng the local data base :

• List

• Structu re

• Analysis

• Dictionary

• Attri b utes

• Data F low Diagra m

• Req u i rements tracea b i l ity

These reports w i l l h e l p assess the com p leteness and consistency of the cu rrent
desi g n .

Work Package Completion

I f a particu lar softwa re deve lopment task is a one-perso n task, the faci l ities on
the I B M PCIXT workstation are adeq u ate to do the com p l ete j o b . If t h e task
is a part of a l a rger task, it may be necessary to check i n the port ion of that
design from the PCIXT to the BCS-AR G U S system on the h ost com puter.

On check in, the host softwa re wi l l load the re lat iona l data i nto the re lationa l
data base on the host and prepare them for su bseq uent processes. The same
set of analysis reports ava i lab le on the I B M PCIXT workstation can be
accompl ished across the i nteg rated d atabase .

Benefits

In add ition to i nta n g i b le benefits resu lt ing from the ava i l a b i l ity of data on
the desktop and the responsiveness of the loca l ca pa b i l ity on the PCIXT, BCS
ARGUS i ncreases prod uctivity throug hout the softwa re l i fe cycle . It i m p roves
the response t ime of the system , ca ptu res data the fi rst t ime they are keyed ,
provides aids for com pleteness a nd consistency check ing , and a l lows errors to
be detected early i n the l i fe cyc le . The i m pact of these benefits is determ i n ed
by the n u mber of peop le on a project, the l i fe of the system , and the way an
org a n i zation d id the job before BCS-ARGUS

Du r i ng the early stages of the l i fe cycle, BCS-ARGUS wi l l d ra mati ca l l y red u ce
the t ime req u i red to ca ptu re a desi g n and refi ne it . (Studies have shown that

2 2 1

each data f low d iagra m i n a system specificat ion u nderg oes a range of 9 to
22 modifications} . I n add ition, the system wi l l ease the creation and
produ ction of documentation . Last but certa i n ly not least, it wi l l p rovide
ana lysis techn i q ues to ensure the accu racy of a desi g n .

BCS-ARGUS editors wi l l a i d i n t h e prod uction o f code i n the latter portions of
the software deve lopment l ife cycle . An on- l i n e d ata d ictionary w i l l a lso a id
i n code prod uction . Furthermore, the docu mentation a nd ana lysis tools
descri bed earl ier wi l l be ava i lab le to su pport the later stages.

The maintenance stage of the l ife cycle wi l l be a ided by the existence of con
sistent, error-free docu mentation . Docu mentation and code are tied together
via the relationa l data base, which wi l l m a ke it easier to identify a reas related
to each other by fu nction or d ata . With th is identification , it wi l l be a
stra ig htforward task to isolate bugs, provide a com p l ete a nd consistent fix,
and identify the i mpact of proposed changes.

Later versions of BCS-ARG US wi l l p rovide an i nteg rated project management
system as wel l as a comprehensive con fi g u rati on management systems. These
systems wi l l span a l l stages of the project l ife cyc le .

Shown below is a typ ical breakdown for the l ife cycle cost of a l a rge fo rmal
project that has a long l i fe . Th is ta b le a lso shows the esti mated i m prove
ments that BCS-ARGUS is expected to provide .

Req u i rements
Desig n
Construction
Testi ng
Ma intenance

% Life Cycle

1 1
1 1
1 0
1 8
50

I mprovement %

50
50
20
20
40

These esti mates are probably conservative, si nce there are cu rrently no data
ava i lab le to determine the synerg ism that w i l l resu lt from h aving a si n g l e set
of integ rated tools operati ng on a com mon data base th roug hout a system's
l ife . Furthermore, they do not i ncl ude the red uced tra i n i n g costs resu lti ng
from the use of a consistent workstation on a l l p rojects.

Clearly, BCS-ARGUS wou ld provide sig n ificant prod uctivity ga ins and a
shortened devel opment cycle to its users.

2 2 2

BIOGRAPHY

William H. Hodges

William H. Hodges holds a bachelor's degree in mechanical engineering from
Oklahoma State University and his MS in administration from Wichita State
University. He has been employed by the Boeing Computer Services Company since
1965, serving in various capacities of mechanical engineering, operations
research, and software engineering roles. In the last two years that he has
been in the Software Engineering Support Center, he has directed the ARGUS II
Product Development activity. In addition, he has established directions for
the Company relative to UNIX and IBM PCs.

2 2 3

N
N
J>

BOE ING COM PUTER SERVICES ARGU S
FRO M A

SOFTWARE
QUALITY

PERSPECTIVE
T H I R D ANNUAL PACIFIC NORTHWE ST

SOFTWARE QUALITY CONFERENCE

27 S E PTE M B ER 1 985

W. H O DG E S

B O E I N G

N

BCS ARG U S

• OVE RVI EW OF B O E I N G C O M P U T E R S E RVIC E S

SO FTWAR E Q UALITY PROG RAM

• OVE RVI EW O F B O E I N G CO M PUTE R S E RVI C E S

� ARG U S

• I M PACT O F BO E I N G C O M P U T E R S E RVIC E S ARG U S

SO FTWAR E Q UALITY

• S U M MARY

N
N
O"l

BCS ARG U S
OV E RVI EW O F BCS SO FTWARE Q UALITY O BJ E CTI V E S

• O BTAI N Q UALITY O BJ ECTIV E S FRO M U S E R

R E Q U I R E M E NTS

• CONTI N UAL ASS E SS M E NT O F PROG R E SS

BCS ARG U S
OVE RVI EW O F BCS SO FTWARE Q UALITY O BJ E CTIVE S

I M PLE M E NTATI O N CO N C E PTS

• SQA PLAN

� • D I SCIPL I N E E M B E D D E D I N PROC E SS
'-.l

• I D E NTI FY AN D M O N ITO R SQA ACTIVITI E S

• D E LI N EATE TAS KS I N CO ST - E F F ECTIVE MAN N E R

• I N D E PE N D E N T EVALUATI O N S

N
N
(X)

BCS ARG U S
OV E RVI EW O F BCS SO FTWAR E QU ALITY O BJ ECTIVE S

-

ACQU ISITION APPLICABLE
CONCERN U S E R I SSU E Q U ALITY FACTOR

H OW W E LL DOES IT UTI LIZE A RESOURCE? E FF I C I E NCY

H OW SEC U R E I S IT? I NTEG R ITY

PERFORMANCE -- H OW W E LL WILL IT PERFORM U N D E R ADVERSE SU RVIVA B ILITY
H OW WELL DOES CONDITIONS?
IT FU NCTION?

H OW EASY I S IT TO U SE ? U SA B I LITY

WHAT C O N F I D E N C E CAN B E PLA C E D I N R ELIA B I LITY
WHAT IT DOES?

H OW WELL DOES IT CONFORM TO TH E CORR ECTN ESS
REQ U I R E M E NTS?

DESIGN --
H OW VALID I S H OW EASY I S I T TO R E PA I R? M A INTAINABILITY
TH E DESIGN?

H OW EASY I S IT TO V E R I FY ITS PERFORMANCE? V E R I F IABILITY I
H OW E ASY I S IT TO EXPA N D O R U PGRADE ITS E XPA N DABI LITY
CAPA B I LITY OR P E RFORMANCE?

H OW EASY I S IT TO C HA N G E ? F LEXIBILITY
ADAPTATION --
H OW ADAPTABLE H OW EASY I S IT TO I NTERFACE WITH I NTE ROPERABILITY
IS IT? ANOTH E R SYSTE M ?

H OW EASY I S I T TO TRAN SPORT? PORTA B I LITY

H OW EASY I S IT TO CONVE RT FOR U S E I N R E U SABILITY
ANOTH ER APPLICATI O N ?

- - - - -

N
1..0

BCS ARG U S
y-VE RVI EW O F BCS ARG U S-

CORPORATE
SYSTE M S � --:;:::::;

• WORK PACKAGE STATUS
ACTUAL HOU��S� ____ _

• PLANNING
• CONTROLLING
• CHANGE BOARD

• TIME CARD

• WORK
PACKAGE
DEFINITION

• VERSION CONTROL
• CONFIGURATION

CONTROL
• END ITEM

REClASS

ARG U S

C E NTRAL

DATABAS E

• ALTERNATIVE ANALYSIS
• W�ACKAGE STATUS } . SYSTEM SPECI FICATION

ORK PACKAGE DELIVERABlES
HOURS WORKED

• PRELIMINARY DESIGN
• DETAIL DESIGN

• CODI NG
• U NIT TEST
• INTEGRATION TEST

• TEST PLAN
• TEST CONDUCT

ARG U S

I NT E RFACE

• M E N U BAS E D

• M O U S E

G RAPH ICS

• SQL DBMS

• FORMS I N P U T

• WORD

PROCESSOR

• SPREADS H E E T

BCS ARG U S
OVE RVI EW O F BCS ARG U S

I B M PC/XT X E N I X

DATA F LOW

DIAGRAM E D ITOR

FORMS!
E D ITOR I
R E PORT

PROCESSO R

DOCU M E N T

PROCESSO R

COM M U N I CA T I O N

MANAG E R

l ----�
T E X T

_

���T�R

C- I N T E R FACE

COM M O N

D B

I N T E RFACE

S NA

M ISTRESS

I B M M VS H OST

D B INTE RFACE

R I M

M I NISPEC

LEVEL 0

, ,
,

, , , ,

, , ,

, ,
,

---- -- -------- -

BCS ARG U S
OVE RVI EW O F B C S SO FTWAR E Q UALITY O BJ ECTIVES M I N I SP E C

DATASTOR E

, , , ,
I

I I I

[8
cO� :�� �: �':t:: ... : � , , , ,

" ,

"
.... " '

..... , " " , " I \ \ ,) " (, , , , I I \ \
\

\ I \ 1\ \ 1\ \
, , , , , ,

,
\ , ,

PROCE S S 3
PROCESS 2

M I N ISPEC
PROCESS 1

"
"

...
...

..... ::- ,:::

I NTE RFACE 2

M I N ISPEC
I NTERFACE 1

FLOW E

FLOW 0
FLOW C

FLOW B

M I N ISPEC
FLOW A

LEVEL ,1
I I I \ \ , , \

\
, , , , , "

....:::
..... � �

" ... '

IV
W
f-'

I I

M I NISPEC 2-3
,

M IN ISPEC 2-1

M I N I SPEC
DATASTORE

M I NISPEC
FLOW C

M I NISPEC
FLOW B

M I N I SPEC
FLOW A

� 1 \ \ \ \ \ \
\

I I I

\ \ \ \ \

I I I I

\ \ \

, ,

I I

, ,

D F D

A

" , "

B

.��"
'�'\ ' " \ " \ � " \ \': , , \ \ , , l , � ' \ \,' '- ' ' ,
\ \ , \ , ' , \ , \ . "

\

... ...
...

...
...

...... ,
" ,

' ..

' -

[CJ]
D

\ \ \ \ \ , \ , \ ,
" "

...
"

... " "

"" ,
"

,
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \

\ \ \ \ \ \ \ , \

\ \ \

\

\ \ \ , \

, , " ' ,
' ... ,

\

" " " , " ' ,

" ...
"

,
" ' " "

"

\ , \ , \ ,
, " , , , , , ,

, , , \
\ , , \ ,

, , , , ,
"

,

"

,
' , , , , , ,

,

D F D , , ,
D F D

\ \ ,
','----------------------------------.1

INlER-
,
I

ORGANIZA liON

PROCESSING

INlRA-
N
w
(JRGANIZA liON

PROCESSING

PERSONAL

PROCESSING

acs ARG US

OVERVI EW OF acs ARG U S

" COORDI NATION B ETWE EN WORK G ROUPS"

FRONT - E N D
PROCESSOR

BRIDG E

-

"COORDINATION

• • • -
-

WITH I N WOR K G R 0 UP" 'I!!' -!;!I!!!!!!!!!!!!!!!I'

CLUSTER
CONTROLLER

LOCAL AREA N ETWORK

c:J u
I , I ,

" SUPPORT FOR E N D - USER FUNCTIONS"

N
W
W

BCS ARG U S
I M PACT O F BCS ARG U S O N SO FTWARE Q UALITY

BCS ARG U S ATTRI B UTE

• CONSISTENT M ETHODOLOGY

• DATA DICTIONARY

• CONSISTENTLY/COM PLETEN ESS C H E C K I N G

• E M B E DD E D DOCU M E NTATI ON

• R E Q U I R E M ENT TRACI B I LITY

R

E
L
I

A
B
I

L
I

T
Y

X

X

X

-- ----

QUALITY FACTOR

c M V

0 A E
R I R
R N I
E T F
C A I
T I A

N N B
E A I

S B L
S I I

L T
I Y

T
Y

X

X X

X X

X X X

X X

E

X
P

A
N
0
A

B
I

L
I

T
Y

X

BCS ARG U S
SU M M ARY

• B O E I N G CO M P UTER S E RVI C E S ARG U S C U RR E N TLY

SU PPORTS SO FTWAR E Q UALITY

� • BO E I N G CO M P UT E R S E RVIC E S ARG U S WI LL AD D R E SS

M O RE FACTO RS

• B O E I N G CO M PU T E R S E RVI C E S ARG U S WI LL

I N CORPORATE SQA M ETRICS

The sys t em Eng i neer i ng Env i ronmen t PROMOD

P e t e r H r u s c hk a

Promod , Inc .

Abs t r a c t :

D u r i ng t h e l a s t yea r s GEl dev e l oped a sys t em eng i neer i ng
env i ronment ca l l ed PROMOD , (s hor t for : pro j e c t mode l) . PROMOD
compr i s es a s e t of we l l known t echn i q u e s and met hods (St r u c t u r e d
Ana lys i s , Modu l a r Des i g n , Ps eudocode ,) to g u i d e deve loper s
f rom prob l em a n a l y s i s to a ccept ance t e s t , and i t compr i s es
e f fect i ve i n t e r a c t i ve too l s to g i ve i mmed i a t e f eedba c k a t every
s tage of t h e deve lopme n t o f s y s t ems . E r r or s are d e t e c t ed and
repor ted a s ea r l y as pos s i b l e ; va r i o u s repor t s c a n be g e n e r a t ed
a c cord i ng to t h e spec i f i c needs i n every pha s e o f t h e pro j ect .
A l t hough or i en t ed towa rds modern prog ramm i ng languages PROMOD i s
l anguage i ndependen t .

Abou t 1 0 0 d i f f er e n t l i censes i n t he u . s . , i n German y , t he
Ne t h e r l and s and Grea t Br i t a i n a r e prov i ng da i l y t h a t PROMOD can
i mprove t h e qua l i t y o f a d e l i ve r ed s y s t em , can save de l e l opmen t
t i me a n d money a nd i nc r e a s e product i v i t y .

The env i ronmen t PROMOD i s con s t an t l y enhanced to cover mor e and
mor e areas and t h u s s u c c e s s f u l l y h e lp i ng to i mprove the qua l i t y
of s y s t em deve lopm�n t .

1 . I n t rodu c t i on

PROMOD i s a s y s t em eng i neer i ng env i ronmen t deve l oped t o serve a s
the n a t u r a l equ i pmen t o f any s y s t em developer . I t i s app l i ca b l e
f o r a n y k i nd of s y s t em - hardwa r e , sof twa r e or organ i sa t i ona l
sytems t or any comb i na t i on t hereof .

PROMOD fol lows a l i f e cyc l e or i en t ed approa c h , o f f e r i ng too l s for
d i f ferent pha s e s du r i ng t he crea t i on of a new s y s t em or t he
i mprovemen t of an ex i s t i ng s y s t em . The ma jor pha s es s upported
are :

t h e ana l y s i s and de f i n i t i on of t h e r equ i r ement s for a s y s t em
(t he ana l ys i s pha s e)

- the de f i n i t i on of t h e a r c h i t ec t u r e o f t h e s y s t em
(t he s y s t em des i g n pha s e)

- t h e d e f i n i ton o f t h e deta i l ed progr ams of a s y s t em
(t he prog ram de s i gn phase)

2 3 5

For each phase PROMOD s u ppor t s s e l ec t ed s t r u c t u r ed met hodo log i es ,
a l l of wh i ch have been proven s u cc e s s f u l ly i n many l a r g e ,
i ndu s t r i a l pro j ect s . DeMarco ' s STRUCTURED ANALYS I S / 1 / i s
suppor ted for t h e ana l y s i s p h a s e , MODULAR DES IGN / 2 / , / 3 / h e lps i n
f i nd i ng t h e sol u t ion for a g i ven prob l em and PSEUDOCODE / 4 / , / 5 /
i s u s ed for spec i f y i ng t h e s y s t em i n d e ta i l .

S t u d i e s have s hown t h a t u s i ng s t r u c t u r ed me t hodo log i e s , i . e .
obey i ng a s e t of r u l e s du r i ng t he ana l ys i s , des i gn and
imp l emen t a t i on phase of a pro j ec t , can dou b l e the prod u c t i v i t y .
The ma j or r ea son i s t h a t t he r i gor o f t h e s e met hodolog i e s a l lows
e r rors to be found ear l i er and cor r e c t ed i mmed i a t e l y , be fore t h ey
become s i gn i f i ca n t cos t f a c tors in t he p ro j e c t .

The cos t s for f i nd i ng and cor rec t i ng an e r ror t ha t occ u r ed i n t he
ana l ys i s p h a s e m i g h t be one Dol l a r i f i t i s cor r e c t ed
i mmed i a t e l y , i t m i g h t be $ 1 0 , i f you on l y f i nd i t i n t he
arch i t ec t u r a l des i gn phas e ; i t i s a l r eady $ 1 0 0 i f you encoun t e r
i t i n deta i l ed des i g n , $ 1 0 0 0 du r i ng cod i ng and may even b e $ 1 0 0 0 0
i f on l y recogn i z ed i n t h e s y s t ems t e s t a n d i n t eg ra t i on pha s e .

Other s t u d i es have ver i f i ed t ha t prod u c t i v i t y can aga i n be
dou b l ed by u s i ng too l s s u ppor t i ng moder n met hodolog i es . One ma j or
drawba ck of me t hodo log i e s u s ua l l y i s , t h a t t h e ana l y s t and t h e
des i gner s t i l l man u a l l y c r e a t e a n d upda t e t h e i r document s , wh i ch
i s t i me coms um i ng and bor i ng ; anot her ma jor drawbac k i s t h a t t h e
pr i nc i p l e s o f s t r u c t u r ed met hodolog i e s wor k f i ne a s long a s t h e
s h eer amou n t o f i n forma t i on (i n number of pages or number of
documen t s) does not overwhe l m the pro j e c t t eam .

Bot h drawbacks can be over come by e f f ec t i ve too l s , u t i l i z i ng
compu t er power where manpower i s not a s e f f i c i en t . PROMOD t a k e s
over a l l t he c l e r i ca l wor k i n a pro j ec t a s soc i a t ed w i t h upda t i ng
documen ta t i on and keep i ng t ra c k of changes . Manageme n t and
techn i ca l s ta f f may a u toma t i ca l l y produce a w i de var i e t y of up
to-da t e r epor t s a t any t ime and i n any pro j ec t p h a s e t hey need
t hem .

So , PROMOD h e l ps i n two ways t o i mprove prod u c t i v i ty i n pro j ec t s
and e n s u r e

-
h i g h qua l i ty of s ys t ems : i t h e lps ana l y s t s a nd

de s i gners to " s t i ck to t h e met hodo log y " , t h u s preven t i ng e r ror s
to be propaga t ed and i t h e lps management cu t t i ng t he cos t s for
i mp l ement a t i on , t e s t , i n t eg ra t i on and ma i n t enance by prov i d i ng
sol i d doc umen t a t i on , upda ted repor t s and cros s r e f e r ences .

I n t h e f o l l ow i ng t h e met hodog i e s s u ppor t ed a r e s k e t c h ed a nd t he
too l s of PROMOD are d i s cu s sed i n deta i l .

2 3 6

2 . Ana lys i n9 Requ i r ement s

Many eng i neer i n9 d i s c i p l i ne s emphas i z e t h e i mpo r t a n ce o f
es tabl i sh i ng mode l s be fore rea l l y deve l op i n9 prod u c t s , e . 9 .
mode l s o f new car s , new br i dg e s , n ew town s , e t c . . S t r u c t ur e d
Ana lys i s app l i es t h i s pr i nc i p l e to t he deve lopmen t o f s y s t ems .
These s y s t em mode l s con s i s t o f 3 ma j or compon e nt s :

Q�!�=!!Q� �1�9��� 9 i ve a graph i ca l repr e s e n t a t i on o f t he ma jor
f unct i on s of t he s y s t em and t he i r i nt er conn ec t i on s (i . e . t h e
i n forma t i on o r da t a f low i n9 be tween t h e f u nct i on s) . The d i a 9 rams
a r e or9a n i zed i n a h i erarchy to d i s p l a y t h e s y s t em on d i f f er e n t
leve l s of abs t ra c t ion and to l i m i t t he amount o f i n forma t i on t ha t
h a s t o b e perc e i ved a t one t i me to a rea sona b l e s i z e f o r humans .

The da t a �l£!lQ��EY 9 i ve s mor e deta i l ed explana t ions a bou t a l l
t he data u s ed i n t h e d i a9rams i a bou t t h e i r s t r u c t u r e , t he i r
compon e n t s , t he i r s i z e , t h e i r u sage and a n y o t h e r i n forma t i on
that i s r e l evant for t he s y s t em .

�ln i=spe£� 9 i ve d e t a i l ed des c r i p t i ons of t h e f u n c t i on s drawn i n
t he d i ag ram . S i n c e t he d i agrams decompos e a l ar g e s y s t em i n to a
set o f we l l de f i n ed sma l l e r s y s t ems , �l�l-specs (u s u a l l y ha l f a
page to a page o f te x t) can now be wr i t t en i ns t ead o f t h e
t r ad i t i ona l v i ctor i an nov e l s t y l e spec i f i ca t i on s f o r comp l e t e
s y s t ems .

The fol low i n9 f i g u r e s hows t he compone n t s o f a s y s t em mode l and
t he r e l a t i on be tween t h em .

MINI-SPEc Nt

),4rA J)ICTIONAIi?Y -2 -

F i g . 1 : A S t r u c t u red Ana l y s i s s y s t em Mode l

2 3 7

PROMOD h e l p i n var i ou s ways prepa r i ng a s ys t em mod e l a c cor d i ng to
S t r u c t u red Ana l ys i s .
To draw t h e da t a - f low d i agrams a graph i c ed i tor i s a t t he u s e r s
d i spos a l . T h e a na l y s t may f l e x i b l y draw nodes (f u n c t ions) , d a t a
s t or es , t er m i na tor s a n d da t a - f lows , change s u c h d i gr ams b y mov i ng
a round compon e n t s or c hang i ng t he i r names , de l e t i ng ob j ec t s ,
zoom i ng i n to d i f f erent l eve l s (i . e i n ot h e r d i agr ams) e t c . D u r i ng
ed i t i ng and be fore s tor i ng s u c h d i agrams i n a cent ra l p ro j e c t
l i brary PROMOD checks t h e r u l e s d e f i ned i n S t r u ct u r ed Ana l y s i s .
E . g . i t i s ver i f i ed t ha t each node a t l e a s t h a s one i ncom i ng and
one ou t go i ng da t a - f l ow , t h a t no da t a - f l ow i s drawn between two
da t a - s tores w i t hou t go i ng t h rough a node , t h a t every da t a f low
has a proper name , e t c . T h u s P ROMOD h e l p s to f o l l ow t h e r u l e s of
t h e met hodology .

For wr i t i ng en t r i e s i n to t h e da t a d i ct i on a r y and for wr i t i ng
m i n i - specs PROMOD of f e r s s y n t a x d i r e c t ed t e x t ed i tor s . A l so w i t h
t hese ed i tors i mmed i a t e loca l checks on t h e ed i t ed ob j ec t s a r e
per formed .

The mos t powe r f u l t oo l to a s s i s t i n deve lop i ng a s y s t em mod e l i s
t h e SA-Ana l y z e r . Th i s a n a l y z e r checks for t h e g loba l cons i s t ency
and comp l et en e s s of a l l ana l y s i s da ta co l l ec t ed i n t h e p ro j ect
l i brary (or of s e l ec t ed s ubpa r t s of i t) . I t ma kes s u r e t ha t t h e
h i erarchy of d i agrams i s ba l an ced , i . e . t ha t i npu t s a n d outpu t s
on one l eve l a r e con s i s t ent l y r e f i ned a t t h e n e x t l ev e l and
not h i ng has been added or m i s sed . I t a l so c h ecks t ha t a l l da ta
u s ed i n d i agrams or m i n i -specs a r e we l l de f i ned in t h e da ta
d i ct i onary . And you rece i ve war n i ng s i f your m i n i - spec
descr i p t ions do not con form to the i n forma t i on in t he d i a g r ams
(e . g . you t r i ed to a c c e s s a dat a e l emen t , wh i ch i s not i npu t or
ou tpu t of t h e cor r espond i ng node i n t h e d i ag ram) . Many mor e
c h e c k s a r e per formed to e n s u r e t h a t t h e mod e l i s con s i s t en t a n d
comp l e t e . I f t h e h i e r a r c h y of d i agrams h a s on l y 3 to 4 l eve l s
t h i s t a s k wou l d a l r eady b e very t i me coms um i ng for h uman s and
beca u s e of the cons t a n t c hanges occ u r i ng dur i ng t h e co l l ect ion of
r equ i r emen t s it i s near l y i mpos s i b l e t o do i t w i t hout comp u t e r
a i d .

The ana l y z er can pr i n t a var i et y of document s , t he r eby genera t i ng
au toma t i ca l l y a tab l e of con t en t s , t h e s y s t em h i e r a r c h y i n c l ud i ng
t he n umber i ng s c h eme , cros s r e f erence l i s t i ng s for a l l da ta ,
comp l e t e t r ee l i s t s of a l l da ta r e f i nement ever done i n t h e
ana l ys i s p h a s e , er ror l i s t s , e t c .

The amount of docume n t a t i on can be c hosen , so t h a t you can get
more redundant docume n t s for r ev i ews (e . g . a l l t he loca l dat a
pr i n ted i mmed i a t e l y a f t e r each d i agram) o r m i n i ma l documen t s for
f i na l vers i on s (j u s t one a lphabet i ca l l y ordered da t a d i ct i onary
at t h e end of t h e document) .

2 3 8

) . Sketch i ng t h e arch i t ec t ure of a sys t em

Af ter d e f i n i ng a g i ven prob lem u s i ng t h e mode l i ng t echn i q u e s of
S t r u c t u red Ana l y s i s t h e so l u t i on under g i ven con s t ra i nt s h a s to
be found . such con s t ra i n t s mos t o f t en are r e s ou r c e l i m i t a t ions ,
e . g . pred e f i ned h a rdwa r e , l i m i t ed budge t s , e x i s t i ng s ta f f ,
PROMOD he lps i n sugge s t i ng t h e a r c h i t e c t u r e for t he so l u t i on by
a u toma t i ca l l y t r a n s f orm i ng t h e s y s t ems mode l i nt o a h i e r a r c h y o f
modu l e s and f u n c t ions . Th i s h i e r a rchy i s bu i l t obey i ng c r i t e r i a
a s sugge s t ed b y Parnas a n d L i s kov / 2 / , /6 / . U s u a l l y - a f t e r a wel l
don e ana lys i s pha se t h i s sugge s t i on on l y has t o be a ugmen t ed by
add i t i on a l f un c t ions as n eeded du r i ng t h e des i gn proces s .

The ma jor bu i ld i ng b locks a s y s t em des i gner i s dea l i ng w i t h i n
t h i s pha s e a r e modu l e s , f u n c t i on s and s u b s y s t ems .

����!�� are prog ram u n i t s r e spons i b l e to solve a g i ven pa r t of
t h e prob l em . They con t a i n a col l e c t ion o f f��£!i��� and l oca l
modu l e da ta , wh i ch de l i ve r spec i f i ed r e s u l t s t o t he i r " bos s "
whenever t hey a r e a s ked t o do i t . D e l i ve r i n g r es u l t s t o a modu l e
f u r t h er u p i n t h e h i e r a r c hy i s ca l l ed ���E!!�g f u n c t ions o f t h i s
modu l e . whenever n e c e s s a r y mod u l e s a l so f a c tor ou t wor k t o other
(s u bord i na t e) modu l e s ; i . e . t hey ask a modu l e f u r t he r down in the
h i erarchy to do c e r t a i n f u nc t i ons . Th i s is ca l l ed !�E�E!!�g
f u n c t ions f rom o t h e r modu l e s .

E xpor t and i mpor t d e f i n i t ions ma ke u p t h e modu l e ' s i n t e r f ace
spec i f i ca t i on . These i n t e r f ace spec i f i ca t ions a r e s u f f i c i en t l y
deta i l ed t o a l l ow cooper a t i on o f a na l ys t s , des i gn e r s and u s e r s i n
t h i s pha s e . The i n s i d e know l edge a bo u t modu l e s i s not n e c e s s a r y
to ma ke dec i s i on s a bou t t h e s t ru c t u r e o f t h e s y s t em i n t h e l a rge .
Many i mpor t a n t q u e s t i on s a bo u t t he s u gg e s t ed s o l u t i on o f a s y s t em
can be d i s c u s s ed l ook i ng a t t h e i n t er fa c e spec i f i ca t ions on l y .

So , i n other wor d s , a modu l e can be cons i dered a s a f ence a round
a group o f r e l a t ed f un c t i on s and da t a . I t i s the s y s t ems
des i gn e r s j ob to desc r i be t h a t f ence ; t h e program des i gner l a t er
on w i l l s t ep i n t o t h e modu l es and desc r i be t h e f u n c t i on s i n mor e
de ta i l .

Occa s i ona l l y des i gn s become so l a r g e t h a t t h e mod u l e h i e r a r c h y
c a n n o longer be e a s i l y unders tood . P ROMOD of f e r s an add i t i ona l
s t r u c t u r i ng f a c i l i ty ca l l ed ����y�!��� to do t h i s . You can
comb i ne any number of modu l e s i nt o a s u b s y s t em , t he r eby
i n t rodu c i ng h i gher l e ve l s of abs t ra c t i on . Bes i d e s i n t rodu c i ng
h i gher level abs t r ac t i on s t he s e s u b s ys t ems c a n a l so be u s ed for
add i t i ona l pu rpos e s , e . g . to comb i n e t he modu l e s of a c e r t a i n
r e l ease , or t o comb i ne a l l modu l e spec i f i ca t ions wr i t t e n by one
per son , and many mor e .

The too l s s u ppor t i ng t h i s pha se a r e s i m i l a r to t h e t oo l s for
requ i remen t s eng i neer i ng . I n t eract i ve , s y n t a x d i r e c t ed ed i tors
a r e ava i l a b l e to ed i t modu l e s w i t h t h e i r i nt er f a c e d e f i n i t i on s

2 3 9

------------ ---------------------

and subsys t ems . Aga i n i mmed i a t e checks a r e per formed on t h e
cor r e c t n e s s of t h e s e descr i p t i on s . P ROMOD war n s you i f you t r y t o
def i ne f un c t i ons i n mu l t i p l e ways , i f you r mod u l e d a t a l i s t s
con t a i n error s , e t c . . The da t a d i ct i on a r y o f t h e r equ i reme n t s
pha s e has been t ra n s formed i n to a data t ype d i ct i onary for t h e
de s i gn phase . These d a t a types - s i mu l a r to mode r n programm i ng
la nguages - a l low for add i t i on a l ways of e xpres s i ng des i gn
cons t r a i n t s t h u s enab l i ng P ROMOD to p e r f orm a dd i t i ona l checks on
t h e va l i d i t y of parame t e r s o f f u n c t i on s , t h e s cope of d a t a , t h e
a c c e s s to da t a e l emen t s a n d many mor e .

The more power f u l checks a r e done by t h e Modu l a r Des i g n a n a l y z e r .
I t checks for i n t er f a c e cons i s t ency over l arger par t s o f t h e
sys t em des i gn or t h e overa l l s y s t em des i g n . I t f i nd s
cont r a d i ct i ons between e xpor t s a n d i mpor t s , e . g . i f somebody
t r i es to ca l l f u n c t ions wh i ch a r e not d e f i ned and e xpor t e d by
a not her modu l e ; i t a l so f i nd s d i s c r epanc i es i n parame t e r l i s t s of
f u n c t i ons .

)..;ef'a.�,Ly 0 f
moduees

" . .

. . .

. . "

".,0 J", & ;" fQC� sft'Co:f;c Il�QV1

F i g . 2 : The Arch i t e c t u r a l Des i gn Mod e l

T h e s e h i g h level i n t er face c h e c k s a r e very impor t a n t , s i nce
s y s t ems des i gn i s u s ua l ly done by d i f f erent persons or d i f f er e n t
t eams , a l l wor k i ng a t the same t i me o n t h e same s y s t em . The
s y s t em des i gn ana l y z e r i s t h e tool to e n s u r e , t ha t everybody h a s
t h e cor r e c t i n t e r face spec i f i ca t i ons , t h a t o t he r s a r e i n formed
whenever change s occu r , and t h a t t h e ove r a l l a r ch i t ec t u r e i s a
c l ea r l y de f i ned h i erarchy . The ana l y z e r of f e r s a w i de var i e t y of
repor t s at d i f f erent l eve l s of deta i l , g e n e r a t e s a t a b l e of
cont e n t s , t he modu l e ' s h i erar chy , many d i f f erent cross r e f e r ence
l i s t s , t r ee l i s t s (ca l l h i er a r ch i es) for f un c t i on s , re f i neme n t
s t r u c t u res of da ta a n d da ta t ypes , and others . Everywhere i n t h e

2 4 0

document s you f i nd genera t ed h i n t s on where to f i nd mor e deta i l ed
i n forma t i on , wher e to r ead on , i f you a r e i n t e r e s t ed i n spec i a l
pa r t s . These gene r a t ed r e f e r ences ma ke i t very e a s y t o r ev i ew and
d i s cu s s the document s .

4 . Des i gn i ng t he deta i l s

A f t e r de f i n i ng t he overa l l des i gn s t r u c t u r e of a s y s t em , t h e
deta i l s have to b e spec i f i ed . PROMOD u s e s t h e we l l known
pr i nc i p l e of top down decompos i t i on o f f un c t i on and da t a /4 / , / 5 /
to descr i be a l gor i t hms and d a t a s t ru c t u res . Th i s i s n o t on l y done
for a l l t h e f un c t i on s a l r eady spec i f i ed i n t h e modu l e ' s
i n t er f a c e s b u t a l so f or new l y i n t roduced i n t erna l f u n c t i on s of
modu l e s , wh i ch a r e f a ctored ou t o f e xpor t f un c t i on s to keep the
f u n c t i on body short and unde r s t a ndab l e .

Algor i t hms a r e d e s c r i bed u s i ng a s imp l e pseudocode not a t i on . Th i s
pseudocode expr e s s e s s equences of s t a t emen t s , l oops and dec i s i on
s t a t emen t s , f un c t i on ca l l s and ex t en s i ve n a t u r a l l anquage t ex t .

. �

;
FUNCTION ba t h e

(IN pe t ; OUT c l ean_pe t) ,

PURPOSE
D e t e rm i n e i f pet i s dog or cat and send
to a ppropr i at e t u n c t i on t o r b a t h i ng .

ENOPURPOSE
1 IF ' p e t - c a t THEN
2 bat he_cat (pe t . c l e a n_pe t) - - - > 2

ELSE 3 ba t he_dog (pe t . c l ean_pe t) ---> 3
ENO I F

�------------------------�

.

FUNCTION b a t h e_ca t
(IN ca t ; OUT c l e a n_ca t) ;

PURPOSE
B a t h e t h e cat a nd o u t p u t a c l ea n cat •

ENOPURPOSE

1 00 c a t ba t h (ca t) ;
2 UNTIL c l ea n

ENOOO , 3 dry (ca t) ;

F i g . 3 : The deta i l ed des i g n mode l

PROMOD aga i n h e l ps i n t h i s p h a s e b y o f f er i n g a n i n t er a c t i ve
pse udocode ed i tor . Wh i l e you de s c r i be a f u n c t i on t h e keywords of
the pseudocode are recogn i z ed and the l og i ca l s t r u c t u r e of t h e
f unct i on i s v i s u a l i z ed b y i n tend i ng nes ted s t a t emen t s , a l i gn i ng

2 4 1

keywords , and forma t t i ng t h e i n forma l t e x t s . O f cou r s e , i f t h ere
a r e e r rors in you r p s e u docode s t r u c t u r e P ROMOD i mmed i a t e l y
repor t s t h e s e e r rors a nd a l lows you t o cor r e c t t h e s ta t emen t s .

The a n a l y z e r for t h e prog r am d e s i gn pha s e - a s i t s two
predecessors - p e r f orms mor e g loba l c hecks . I t ma kes s u r e , t h a t
f u n c t i on ca l l s wi t h i n f un c t i on bod i es r e f er t o de f i ned f un c t i on s ,
t h a t t h e pa ramet e r l i s t s con form i n number and t ype , t h a t a l l t h e
da ta u s e d i n a f un c t i on a r e a c c e s s i b l e t h e r e a n d we l l de f i ned ,
and many mor e . When pr i n t i ng docume n t s o f t h e d e t a i l ed des i g n ,
t h e pre t ty pr i n t ed p s e u docode i s not on l y i nden t ed a ccord i ng to
the log i ca l s t r u c t u r e ; s t a t emen t numbers are added , r e f erences to
the page s of the docume n t where you f i nd t h e r e f i nement of a
f u nc t i on a r e gene r a t ed a nd a var i e t y o f cross r e f erence l i s t s i s
ava i l a b l e , e . g . for f un c t i on s , da t a , dat a t ype s , parame t er s . T h e
h i e rarch i ca l s t r u c t u r e o f t he f u n c t i on c a l l s can be genera t ed , a s
we l l as h i er a r c h i e s f o r t h e da t a a n d da t a t ype s . Any dev i a t i on of
t h e modu l e h i e r a r c hy or any cont rad i c t i on t o the i n t e r f a c e
spec i f i ca t i on i s r epor t ed to supp l y t h e des i gn e r w i t h t h e
i n forma t i on n e c e s s a r y f o r t h e n e x t wa l k t hrou g h o r r ev i ew meet i ng .

Over yea r s p s e udocode h a s proven t o b e a superb med i um for
natura l l y and eas i l y e xpr e s s i ng det a i l ed des i gns for easy
commun i ca t i on b e tween des i gn e r s and prog r amme r s . P s e u docode can
h e l p e xp l a i n t h e s e deta i l s to non-EDP per sons t hu s keep i ng t h e
i n forma t i on exchange go i ng t h a t s t a r t ed i n t h e ana l y s i s p h a s e and
i n s u r i ng t h a t the d e t a i l ed prog r am spec i f i ca t i on s s t i l l con form
to t h e or i gna l r equ i r emen t s .

5 . Imp lement i ng and t es t i ng a s y s t em

The d e t a i l ed prog ram spec i f i ca t i on i n pseudocode i s t he bas i s for
i mp l emen t i ng a s ys t em i n any c hosen l anguag e . S i nc e t h e
pseudocode i s a very d e t a i l ed descr i p t i on on t h e one s i de i t i s
very e a s y , near l y mech a n i ca l wor k to t r an s l a t e i t i n to a
prog ramm i ng languag e ; on t h e o t h e r s i de t h e p s e u docode i s s t i l l
genera l enough to a l low t r an s l a t i on i n many d i f f er en t prog rammi ng
languages , f rom a s s emb l e r to very mode r n l an g u a g e s l i ke Ada . The
checks t ha t have a l r eady been per formed in the d e t a i l ed de s i gn
pha s e n ea r l y e l i m i na t e a l l er ror s i n the cod i ng p h a s e w i t h t h e
e x ep t i on o f t r i v i a l syn t a x e r rors t h a t a r e e a s i l y c a u g h t b y t he
comp i l e r s . I n t h i s pha s e t h e wor k prev i ou s l y done rea l l y pays of f
i n t i me saved for t es t i ng .

Tes t i ng i s add i t i ona l ly s u ppor t e d by t h e c l ea r l y de f i ned f u nc
t i ons o f the s y s t em , sma l l u n i t s a l low i ng e f f i c i en t s epa r a t e
t e s t s to e s t a b l i s h t h e i r corr ec t n e s s . T h e documen t a t i on s uppor t ed
for t h e t e s t i s ma i n l y b a s ed on t h e u s e r ' s i npu t of t h e requ i r e
men t s , a n d on a u t oma t i c t rans forma t i on s . E spec i a l l y t h e da t a
d i c t ionary o f t h e s y s t em mode l a l lows for a sys t ema t i c genera t i on
of t e s t d a t a wh i ch a r e r e l a t ed to t he or i g i na l r equ i remen t s f rom
t h e u s e r , and not to t h e d e f i n ed so l u t i on of a programmer .

2 4 2

The sys t ems i n tegrat i on phas e c a n be a rou t i ne j ob , s i nc e PROMOD
guarant ees a l r e ady s i n c e t h e a r c h i t ec t u ra l des i g n pha s e , that t h e
i n ter face d e f i n i t i on s between t h e l a rg e r u n i t s o f t he s y s t em (t he
modu l e s) are cor r ect and checked .

Espec i a l l y for t he ma i n t enance o f a s y s t em or t h e pos t -a cceptance
test evol ut i on , wh i ch n a t u r a l ly comes a bou t i n every large s y s t em
beca u s e of ever chang i ng r equ i r emen t s , t h e docume n ta t i on o f
PROMOD i s v e r y h e l p f u l . S i nc e t he r e a r e up-to-da t e model s
ava i la b l e o f t h e r equ i r eme n t s and t he des i gn i t i s e a s y for
ma i n t enance prog r amme r s to l oca t e t h e par t s o f t h e s y s t em where
changes or amendme n t s are necessar y . It i s a l so easy to i n t e g r a t e
t he s e c h a n g e s beca u s e o f t h e i n f orma t i on h i d i ng pr i nc i p l e u sed i n
t he des i gn pha s e . Th i s pr i nc i p l e a l l ow t o change s i ng l e modu l e s
or f u n c t i on s i n modu l es w i t hout e f f ec t i ng o t h e r par t s o f t h e
s y s t em .

6 . I n t egra t i on - t h e key to s u c c e s s

The power o f proMod l i e s i n i t s i n t eg r a t i on . A l l t h e s i ng l e too l s
l i ke t h e DFD-ed i tor o r t h e pseudocode proc e s sor a r e power f u l on
i t s own . However , by u t i l i z i ng i nf orma t i on gener a t ed i n one
pha s e as i np u t a nd bas i s for t he next pha s e an opt i mum on
i n t eg ra t i on i s a c h i eved . The pro j e c t l i br a r y - P ROMOD ' s cent r a l
database - i s not on l y t h e r epos i tory o f a l l i n forma t i on
col l e c t ed i n a proj ect , t he i n d i v i d u a l ob j ec t s i n i t a l so know
abou t each other , a r e r e l a t ed i n many d i f f e r e n t a spec t s , a nd
t he r e fore changes or amendme n t s to one ob j ec t s very o f t en r e s u l t
i n a u toma t i c changes and upda t e s f or o t h e r ob j ec t s . Thu s , a ma jor
por t i on o f c l er i ca l wor k , wh i ch i s u s ua l l y loaded onto t h e
deve loper , i s e a s i l y done b y PROMOD .

The requ i r emen t col l e c t ed a nd mod e l ed w i t h S t r u c t u red Ana l ys i s
a r e u s ed a s bas i s for t h e sugges t ed s y s t em a r ch i t e c t u r e .
Espec i a l l y t h e h i e r a r c hy of d i agrams i s eva l ua t ed to s ug g e s t t h e '
h i erarchy o f modu l es , t he f i l es i n the da t a d i c t i on a r y a r e u s ed
to c r e a t e a b s t r a c t dat a t ypes and t h e appropr i at e access
f u n c t ions a la Parnas / 2 / or L i s kov / 6 / ; t he nodes (or bubb l e s)
o f t h e d i agrams a r e u s ed to c r e a t e f u nc t i on s o f modu l es and t h e
i n forma l m i n i - spec t e x t s a r e a l r eady i n t h e r i g h t p l a c e as
pu rpose d e s c r i p t ions for f u n c t ions s o t ha t the des i gn e r e a s i l y
can t ra n s l a t e t he s e t e x t s i n to mor e forma l pseudocod e . Any change
made to a da ta e l ement i n the da t a d i ct i ona r y i s a u toma t i ca l l y
r e f l ected everywh e r e t h e data e l emen t i s u s ed , e . g . i n da t a - f low
d i agrams a s an a r c conne c t i ng node s , or i n ot her e l ement s of t h e
d a t a d i c t i ona r y o r i n t h e i n forma l m i n i specs d e s c r i b i ng t he
t a s k s o f t h e s y s t em . Chang i ng pa rame t e r s i n a f u n c t i on r e s u l t s i n
an a u toma t i c upda t e o f t h e i nt e r f a c e descr i p t i on o f a modu l e ,
chang i ng a f unct i on ' s name a u t oma t i ca l l y changes a l l t h e ca l l s of
that f u n c t i on .

2 4 3

The se e l egant and power f u l f e a t u res a s s i s t t he s y s t em deve l oper
i n t ha t k i nd of wor k , t ha t u s ua l l y i s not on l y l a bor i o u s but a l so
t he sou rce o f many e r rors and t roub l e s . The t oo l s o f PROMOD he lp
the deve loper to concent r a t e on h i s or her mos t i mpor t a n t j ob : to
be creat i ve .

7 . Summar y

P ROMOD has been dev e l oped by a g roup o f p r a c t i ca l peop l e t o serve
t h e i r own needs in sys t em developme n t s u ppor t a s we l l as t h e
needs of t he i r compan y . Th e i n t er n a l goa l wa s t o prov i de adequa t e
means ens u r i ng t he h i gh s tandard and qua l i t y o f s y s t ems a nd
sof twa r e developed by GE l . Bec a u s e o f i t s i nt erna l s u c c e s s i t
ha s been produc t i zed and i s now ava i la b l e t o h e l p a l l s y s t ems
ana l y s t s a nd des i gn er s . In many sma l l , med i um and very l a r g e
pro j ec t s PROMOD gu i ded s y s t ems deve lope r s t hrou g h t he l i f e cyc l e ,
s how i ng t hem error s , sugges t i ng sol u t i on s and p r epa r i ng docume n t s
for rev i ews and p r e s e n t a t i ons .

L i t e r a t ur e :

/ 1 / T . DeMa rco
S t r u c t u r ed Ana l ys i s and sys t em Spec i f i ca t i on
You rdon Pres s , 1 9 7 9

/ 2 / D . L . Parnas
On The Cr i t e r i a To B e Used I n Decompos i ng Sys t ems I n t o
Modu l e s
CACM , Vol . 5 . , No . 1 2 , Dec . 1 9 7 2

/ 3 / G . J . Myers
Re l i ab l e Sof twa r e Through Compos i te D e s i gn
Van Nos t rand Re i n ho ld , 1 9 7 5

/ 4 / N . W i r t h
A l gor i t hms + D a t a S t r u c t u r e s = Prog r ams
Prent i ce Ha l l , 1 9 7 6

/ 5 / S . H . Ca i ne , E . W . Gordon
POL : A Too l For Sof twa r e Des i g n
i n : AF I PS , Proc . NCC , Vol . 4 4 , 1 9 7 5

/6/ B . L i s kov , S . Z i l l es
programm i ng w i t h Abs t ra c t Dat a Types
ACM S i gp l an Not i ces , Vol . 9 , No . 4

244

BIOGRAPHY

Peter Hruschka

Peter Hruschka received his degrees in computer science from the Technical
University of Vienna, Austria. He started working in the field of programming
languages, participating in the definition, standardization, and implementation
of the German real-time language PEARL. In 1979 Dr. Hruschka became Training
Director at GEl Systems, mainly teaching seminars on software engineering and
project management. During this period he developed the design tool DARTS
(Design Aid for Real-Time Systems) and the concepts of the System Engineering
Environment ProMod. Since 1982 he has been Product Manager for Promod, Inc.

NEW

REQU I REME NTS

OPERAT I ONS

F I NAL

PRODUCT

SYST E M T E ST & DEBUG

DOCUMENTED

PROGRAM

I MP L E ME NT AT I ON

PROBLEM

STAT EMENT

USER

REQU I R E ME N T S

REQU I REMENT S ANAL YS I S

S Y S T E M

MODEL

ARCH ITECTURAL D E S I GN

SYSTEM

SPEC I F I CA T I ONS
PROGRAM D E S I G N

FUNCT ION R.g;st.r -Gwst; PURPOSE
Disti"9uisMS b.1wtfn , gufs1 with
• &nSfrn1ion

"
,nd OM nqufstin9

• room.
ENOPURPOSE ;

PROGRAM

SPEC I F I CAT I ON

--------------------------------- �
2 4 6

WHAT IS IT?
» I NTEG RATED SYSTEMS ENG I N EE RING ENVI RONM ENT

» A SET OF COM PUTER DRIVEN TOOLS

> REQU I REMENTS ANALYSIS

> ARCH ITECTURAL DESIGN

> PROGRAM DESIGN

» CONTROL PROJECT DESIGN

> CENTRAL DATA BASE MANAGEM ENT

> DATA DICTIONARY

> I NTERACTIVE TEXT & G RAPH ICS ED ITORS

> IMMEDIATE & GLOBAL ANALYZERS

. > REPORT GENERATORS

> DOCUMENTATION & SPECI FICATIONS

------------------------------- �c¥n�
247

WHERE DID IT COME FROM?

» AN INTERNAL TOOL FOR G. E. I .

> M U LTI-NATIONAL ORGAN IZATION

> LEADING SYSTEMS & SOFTWARE HOUSE

> H EADQUARTERED IN WEST G E RMANY

> CURRENTLY 400 EMPLOYEES, $30M REVENUE

» THE PRODU CT HISTORY

> CONCEPTUAL DESIGN I N 1 980

> INTE RNAL TOOL IN 1 981

> COMMERCIAL PRODUCT SINCE 1 983

> CURRENTLY AVAILABLE ON VAX & IBM-PC

---------------------------------- ��
248

WHO SUPPLIES IT?

» P ROMOD I NC.

> H EADQUARTERED IN LOS ANGELES

> CUSTOME R SU PPORT G ROUP

> DEVELOPMENT ACTIVITI ES

> SALES & MARKETI NG

2 4 9

WHO USES IT?

» I NTE RNATIONAL CUSTOME R BASE

> DIG ITAL EQU I PMENT

> BOE ING

> TELEDYNE

> PHIL IPS

> SI EMENS

> U N ITED STATES NAVY

> G RUMMAN

2 5 0

WHY USE PROMOD?

» I NCREASED PRODUCTIVITY

» IMPROVED P RODUCT QUALITY

» CU RRENT & CONCISE DOCUM ENTATION

------------------------------- ���
2 5 1

REQUI REMENTS ANALYSIS

STRUCTURED ANAL VSIS -- VOURDON

DATA FLOW

D IAGRAMS

DATA M I N I -
D I CT I ONARY <¢:: ====:> SPECS.

2 5 2

REQUIREMENTS ANALYSIS
THE TOOL SET

/ » INTERACTIVE SYNTAX DIRECTED TEXTUAL &
G RAPHICAL EDITING

» IMMEDIATE CH ECKS FOR SYNTAX & M EAN I NG

» GLOBAL ANALYS IS FOR CONSISTENCY &
COMPLETENESS

---------------------------------- ����
2 5 3

REQUIREMENTS ANALYSIS BENEFITS

» G UIDED TOU R TH ROUGH TH E ANALYSIS PHASE

> PREDEFINED PROCEDU RES & PRODUCTS

> WELL KNOWN & ACCE PTED M ETHODOLOGY

» SHORTER, MORE PRECISE SPECIFICATIONS

» STRUCTU RED & VERIF IED DOCU ME NTATION

_______________ �vfAOD
2 5 4

MODULAR
H I ERARCHY

ARCHI TECTURAL DES I GN
MODULAR DES IGN -- PARNAS

T
E X PO RT E XPORT

I NTERFACE

DEF I N I T I ONS

DATA
D I CT I ONARY

__________________________ ;;.r:wwOD

2 5 5

ARCHITECTURAL DESIGN
THE TOOL SET

» AUTOMATED TRANSITION FROM R EQU I REMENTS

ANALYSIS

» IMMEDIATE LOCAL CHECKS OF INTE RFACE DEFIN ITIONS

» G LOBAL CH ECKS FOR CONSISTENCY OF I NTE RFACES

» STRUCTU RED, CONCISE REPORTS

- - - -'0'" _________________ PIlC�J ..,

2 5 6

ARCHITECTURAL DESIGN BENEFITS

» WIDELY STANDARDIZED

» PRECISE H IGH lEVEL I NTE RFACES

(DISTRIBUTION OF WORK)

» I N FORMATION HID ING (BLACK BOXES)

» INCREASED FlEXIBll TV IN MAINTENANCE P HASE

» SMAll COM P REH ENSI BLE U N ITS

» ADA COM PATI BLE

----------------------------------��
2 5 7

MODULAR
H I E RARCHY

PROGRAM DES I GN

PSEUDOCODE -- CA I NE & GORDON. W I RTH

/
lm
----------------------------��

2 5 8

PROGRAM DESIGN
THE TOOL SET

» PROVIDES RECOG N ITION OF KEYWORDS IN PSEU DOCODE

» VISUALIZATION OF LOG ICAL STRUCTU R E

» IMMEDIATE LOCAL CHECKS OF LOG ICAL STRUCTU RE

» G LOBAL CONSISTENCY CH ECKS WITH I NTERFACES

» STRUCTU RED & CONCISE RE PORTS

---------------------------------- ��
2 5 9

PROGRAM DESIGN BENEFITS

» IMPROVED COMMUN ICATION B ETWEEN ANALYST & USER

» CHANGES AND AMENDMENTS EASILY INCOR PORATED

» STRUCTU RE IMPOSED ON NATURAL LANGUAG E WHILE

ALLOWING ADEQUATE ROOM FOR CREATIVITY

» EASY TO LEARN

-----------------------��
2 6 0

INTEGRATED SYSTEMS ENGINEERING ENVIRONMENT
» EASY TO INTRODUCE

> WELL KNOWN, WIDELY USED M ETHODS

> BASED ON HUMAN UNDE RSTANDING

> IMPROVED MAN/MACH I N E INTERFACE

» EASY TO TEACH & LEARN

> PRECISE METHODS & PROCEDU RES

> STANDARDIZED SCH EMAS

» EASY TO USE

> U N I FORM TOOL I NTERFACES

> M N EMON IC COMMAN DS

> SELF EXPLANATORY MESSAG ES

> EARLY E R ROR DETECTION

____________________ -------- ��CM)
2 6 1

T RANSfORMER

PROGRAM DESIGN
PSEUDOCODE

---------------------------------��
2 6 2

Locatinq suspect Software and Documentation by Monitorinq
Bas ic Information About Chanqes to the Source Files

Dave Vomoci1

July 3 1 , 1985

We can qain useful insights about the status of software
proj ects by monitoring relatively basic items . An
instrumented source editor can be used to record module size
at times of change , the number of l ines added , the number of
l ines deleted , and other basic information items . When this
data is tabulated or plotted against time , it becomes
relatively easy to spot suspect modules .

The hypothesis is that a file , source or documentation ,
should undergo an increasing amount of change during the
implementation phase . Then the rate of change should
decrease and remain small relative to the size of the file .

This paper discusses the theory and how to implement it in a
unix development environment .

2 6 3

Loc a t i n g Suspect Softw are and Documentation by Monitoring
Basic Infor mation A b o u t Changes t o S o u rc e Fl ies

O a v e Vomocll

H e w l e t t P a c k a r d , C o r v all is , O r e g o n

1 . 1 I N T R O D U C T I O N

This paper intends to present a metric for locating problem modules and to demonstrate how easily this
metric can be implemented in a unix 1 programming environment. The metric graphically points out
modules that are receiving an inordinate amount of attention, and statistics from it have been successfully
used to argue that particular modules need to be rewritten. In addition, after the metric has been used
for some time the results can be characterized and used to predict program size and release date. The
paper presents some history, the ideas behind the metric and, primarily, what standard unix tools can be
used to apply the metric in a software development environment.

We can improve quality control:

• without imposing time consuming and frequently inaccurate data entry requirements on
engineers,

• without requiring an understanding of complex software metrics, and

• without building or buying expensive software tools.

1 . 2 H I S T O R Y

The impetus for this work came from a paper presented i n 1 9 84 by Dan Lundberg of Hewlett Packard at
Hewlett Packard's annual Software Productivity Conference. His paper discribed three ideas that had
been studied by a Japanese company desiring improved statistical quality control.

The Japanese company looked first at program size as a metric to predict both release date and quality at
release. They found, as many others have, they were unable to accurately predict program size early
enough in the development phase to make the predictions valuable.

Secondly, the firm studied the effect of reusing tested modules. As a result of this study, they were able
to develop tables allowing them to predict at release time (with reasonable confidence) the quality of the
released product based on the percentage of the product that was reused code.

To facilitate these two studies they developed an instrumented editor and project management package

1 unix is a trademark of Bell Labs.

2 6 4

that recorded vital statistics associated with programs. These statistics included a 1) history of module size
and 2) history of modifications made to the module. For example, a statistics record would include date
information, module size information, and a measure of the amount the module was changed. By plotting
either of these items, size or amount of change, against time the final size of a program could be predicted
at a reasonable time in the development phase. Additionally, these statistics were used during the support
phase to indicate which programs needed complete rewrite.

To become able to predict program size and release
date they first had to characterize the shape of the
curves generated when either program size or
cummulative changes were plotted against time.
The technical content of a module determined the
characteristic shape of the family of S-curves
associated with the module. Once the curves had
been characterized, they were able to predict final
program size and quality at release time early in
the coding phase.

, '/ '" Aclcumulated Updaln or
FIe tlze

Figure I

As an additional benefit, the statistics could be reset at re lease time. The statistics would then accumulate
during the support phase. The charts produced from the activity during the support period were used to
detect problem modules and argue successfully for rewrite of particular modules.

1 . 3 SCOPE OF THIS PAPER

I n the past, engineers have been required t o complete logs t o supply data for use with statistical models.
This data acquisition process was inherently inaccurate since it had l ittle relat ion to the engineer's
progress on his assigned project. Then the questionable data is piped into statistical model, and
quest ionable conclusions are generated.

The Japenese used an instrumented editor to gather the data more accurately. Additionally, the statistical
model used with this data is very easy to understand. Therefore, we wanted to test it in our environment.

Initialy we were frustrated because we did not have an instrumented editor, and we did not want to invent
or buy one. After we moved to HP-UX, Hewlett Packard's unix operating system, we found that the
Source Code Control System (SCCS) provided an excel lent tool to collect the data. awk, another tool
provided with HP-UX, could be used to extract the data from the sees files. A short C program was
written to massage the output from the awk script. These steps leave the data in a form most chart
presentation packages can use. The application of these standard unix tools to snpport the gathering and
preparation of data for the metric is discussed in f he remainder of this paper.

It should be pointed out that once the software tngineering team has moved to a unix environment the
tools needed are readily available. Al l of the p;t rts can be mastered and implemented in a few days.

2 6 5

1 . 4 THE I N S T R U M E N T E D E D I T O R - s e e s

The first step i s to collect the data. In many older software engineering environments, including our past
environment, automating the data collection meant a major programming effort or a major purchase.
Neither the effort nor the purchase was justified for an unproven tool. After adopting a unix engineering
environment, we found the Source Code Control System (SCCS) could be used to collect the data. The
Revision Control System (RCS) from Purdue could most likely be used just as well. We chose sees
because it was readily available and running on our engineering machines.

sees is a standard unix tool that manages multiple versions of a text file with a single file. An example
is provided in table 1. The left column of the example contains three versions of a short text file, the
original version and versions that result from two short editing sessions. The right column contains the
three respective sees files. (The third sees file has been truncated to keep the example on one page.)

The lines in the sees files prefaced with an 's' specify the number of lines that have been added, deleted,
and unchanged respectively. The line following each 's' line (prefaced with a 'd') contain date information
indicating when the edited version was checked into the sees file.

The sees system is documented in most unix reference manuals. Basic use of the system involves
mastering three commands.

1) admin -i<file> s. <sees file name>
The admin command is used set up the initial sees file.

2) get -e s. <sees file name>
The get command with the ' -e' option is used to check out a version for editing.

3) delta s. <sees file name>
The delta command is used to check in an edited version.

2 6 6

Sou rce Files and sees, File - Table 1

This is line 1 h 1 4 1 4 1
This is line 2 s 00004/00000/00000
This is line 3 d D 1 . 1 8 5/06/05 1 3: 1 0: 3 2 davev 1 0
This is line 4 c created 8 5/06/0 5 by davev

e
U
u
t
T
I 1
This is line 1
This is line 2
This is line 3
This is line 4
E I

This is line 1 h 3 0 1 6 8
After line 1 s 00002/00000/00004
This is line 2 d D 1 . 2 8 5/06/05 1 3: 1 7: 3 0 davey 2. 1
This is line 3 c Result of first editting session.
This is line 4 e
End first edit s 00004/00000/00000

d D 1 . 1 8 5/06/05 1 3: 1 0: 3 2 davey 1 . 0
c created 8 5/06/ 0 5 by davey
e
u
U
t
T
I 1
This is line 1
I 2
After line I
E 2
This is line 2
This is line 3
This is line 4

- I 2
End first edit
E 2
E 1

Delete and add. H 50689 -

This is line 1 s 00002/0000 1 /00005
After line 1 d D t . 3 8 5/06/05 1 3: 20: 3 1 davey 3 2
This is line 3 c Result of second editting session
This is line 4 e
End first edit s 00002/00000/00004
One last line d D 1 . 2 8 5/06/0 5 1 3: 1 7: 3 0 davev 2 1

c Result of first editting session.

2 6 7

I

1 . 5 E X T R A C T I N G T H E D A T A - A WK

The second step is to extract the data from an sees file. As explained above, only the 's' and 'd' lines
contain needed data. awk can be used to extract the data from those lines.

awk is a standard part of a unix environment. This programming language allows users to manipulate text
and data. An awk program expects lines of input from standard in (usually a file), processes the line (eg.
does arithmetic), and generates output. The output, which can optionally be formatted, is posted to
standard out. Both standard in and standard out can be redirected to reference files. awk is documented
in most unix reference manuals.

awk programs I have used to extract data from sees files are included below.

** the extract script **

awk -f awk 1 <.sees fH'iI I awk -F\/ -f awk2 >{f#fpu� ::fU.,

** the first awk program -- awk l .*

$ 1 - /5/ { x = $2 }
$ 1 - /d/ { printf "';8s/'; 1 7s\n" , $4, x }
$ 1 - / u / { ex i t }

•• the second awk script -- awk2 *.

{ pr intf "�2s';2s%2s �Ss %5s ';Ss\n " , $ 1 , $2 , $3 , $ 4 , $ 5 , $6 }

The above contains three items. The first is a script which invokes awk twice, and the second and third
are the awk programs. The first invocation of awk applies the first awk program directly to the sees
file.

The three things it accomplished by the first invocation are:

• Anytime a line with starting with an 's' is found, the second item in the line is stored in the
variable x. The second item in such a line is the number of lines added, number of lines deleted,
and number of lines remaining unchanged. Since the default delimiter is a space and these
counts are delimited by '/" the three counts are considered one item.

• Anytime a line starting with a 'd' is found, the second item is printed followed by a 'j'. Then
the information extracted from the previous 's' line, contained in the variable x, is printed. In
this context printed means written to standard out.

• Finally the program exits if a line starting with a 'u' is encountered. This merely keeps the
program from searching through the body of the sees file.

2 6 8

The output from the first invocation of awk is 'piped' 2 into the second invocation of awk; then the second
awk program is applied. The -F option on the second invocation sets the field delimiter to '/'. This
second awk program merely formats the fields and separates them with spaces, i. e. makes them easier for
a person to read.

Data Flow During awk Extract

I sees File J The last file from the previous table is used.

� I $awk -f awk1 <sees. file I LJ standard out

85/06/05/00002100001100005 "C ! 85/06/05/00002100000/00004
85/06/05/00004100000/00000 .. 0

LJ standard in

I Sawk -F 1 -f awk2 I �
850605 00002 00000 00005
850605 00002 00000 00004
850605 00004 00000 00000

FIgure 2

2The vertical bar "/" bewteen the two invocations of awk causes the output from the first to be used as
the input for the second. This feature of unix, i. e. to be able to me the standard output of one program
as the standard input of a second, is referred to as a pipe.

2 6 9

1 .6 S O R T I N G T H E D A T A

The awk scripts leave the data i n the same order i t appears i n the sees file. That is, the first record
contains the most recent information and the last record contains the oldest information. Most chart
presentation packages will want the information in the reverse order. The unix sort utility will easily
solve this ordering problem.

The output from the awk programs is what needs to be sorted. The lines of the output need to be sorted
in ascending order based on the dates. Example output is given in the bottom of figure 3. The date is in
the first field on each line. By default, the unix sort program uses the first field and sorts the lines in
ascending order. Therefore, we can merely apply the sort program with no parameters to the output of
the awk programs.

As with the two invocations of awk, a unix pipe can be used with the sort program. That is, we can
actually combine the two previous awk calls with a call to sort, as pictured to the right, and get all the
work done in one step. The sees file has been edited again for this example. In particular, the dates
have been modified to give the sort program something to do.

h50689

s 00002/0oo0VOOO05

d 0 1.3 85/06105 13:20:31 davey 3 2

c The result of the second editting session.
e

s 00002/00000/00004

d 0 1.2 85/06/04 13:20:31 davey 2 1

c The result of the first editting session.

e

s 00004/00000100000

d 0 1.1 85/06/02 13:20:31 davey 1 0

c created 85/06102 by davev

e

u . . . etc ...

� I $awk -f awk1 <sees I awk -FI -f awk2 I sort >output I
�

850602 00004 00000 00000

850604 00002 00000 00004

850605 00002 00001 00005

FIgure 3

2 7 0

1 . 7 C O U N T IN G T H E D A Y S - A C P R O G R A M

The data is now extracted and sorted. If sees is used religiously once a day and every day, the data could
be handed to a chart presentation package in its present state. The remaining problem is that sees is
frequently not used this regularly, and one of the motivations behind this scheme is to not make such
demands on the engineers. Therefore, to be able to place the data points correctly on the graph, the
number of days between each datapoint needs to be calculated. Since many chart presentations packages
cannot make such conversions, a e program was written to make the calculations. A copy of the e
program is included in the appendix

As before, this step can merely be added to the pipe. As is indicated by the flow diagram in figure 4, the
e program adds a column of data in which each entry is the number of days since the beginning of the
project. In addition to calculating the number of days between each datapoint, the program summarizes
activity if there are mUltiple datapoints on a single day. You are referred to the e program for specifics
on how the summary works. By reviewing the e program you might also appreciate the ease with which
the summarizing could be customized.

h50689

s oooo2/0000VOOO05

d O 1.3 85/07/21 13:20:31 davev 3 2

c The result of the second editting session.

e

s 00002/00000/00004

d 0 1.2 85/06/06 13:20:31 davev 2 1

c The result of the first editting session.

e

s 00004/00000/00000

d 0 1.1 85/06/02 13:20:31 davev 1 0

c created 85/06102 by davev
e

u ... etc ...

I $awl< -f awkl <sees I awk -FI -f awk2 I sort I daycount >file I
{!r

850602 00004 00000 00000 00000

850606 00002 00000 00004 00004

850720 00002 00001 00005 00049

Figure 4

2 7 1

1 . 8 THE F I N A L S T E P - P R E S E N T I N G T H E D A T A

The data the above described procedures generates can be most easily interpreted when it i s presented as a
line graph. Most chart preparation packages (eg. Lotus/ l 2 3, Picture Perfect, DSG/ 3000, to name a few)
will accept the resultant file, that is the file created as output by the procedures described above, as input
for creating a chart. Since the chart preparation tools available at different locations vary considerably,
none is described in any detail here. At some sites a graphics package will be available on the host unix
systems, and at other sites users will need to move their data to a PC or other host computer. If you need
to move your data to another computer system to generate the charts, kermit is a reasonable tool to use;
and it is available on the unix notes network and from universities.

1 . 9 C O N C L U S I O N

This paper has presented both a metric for identifying modules that need to be rewritten and has
described the standard tools available in a unix environment that can be used to implement the metric.
The metric has merit in that:

• the data is easily collected. The collection involves no extra work by the engineer.
• the data is automatically stored and is accurate. The system does not rely on engineers and/or

project managers remembering how much time was spent on various phases of the project.
• The metric is easy to understand and apply.

Equally important to this discussion is that the metric can be implemented with tools that are standard
components of an unix environment. Building a similar system in many older environments meant paying
for a medium to large project, and the results of many such past projects have been hard to use and nearly
impossible to modify. In a unix environment, the pieces can be put together by a project manager in a
short time. , The resulting system is robust and easy to continue to modify.

2 7 2

1 . 1 0 A P P E N D I X - C S O U R C E F O R D A Y C O U N T

#include <stdio. h>

mainO
{

int yr, mo, dy, ins, del, unch;
int yr l , mo l , dy l , ins l , del l , unch l ;
int days, unchanged, status;
int day I, day2, tins, tdel, tunch, tdays;

/* Determine initial conditions * /
/* i. e. initial date and initial program size. * /
scanf("%2d%2d%2d %5d %5d % 5d",

&yr l , &mo l , &dy l , &ins l , &del l , &unch l);

/* Check for further activity on day one. */
scanf("%2d%2d%2d %5d % 5d % 5d",

&yr, &mo, &dy, &ins, &del, &unch);
while (yr == yr l && mo == mo l && dy == dy l)

{
if (unch == 0 && del == a) unchanged = ins;
scanf("%2d%2d%2d %5d %5d % 5d",

&yr, &mo, &dy, &ins, &del, &unch);

}
printf(',%2d %2d % 2d 0 0 % 5d O\n",yr l ,mo I ,dy I ,unchanged);

/* Proceed with rest of days logged in SCCS file. */
tdays = 0;
day I = julian(yr l , mo I , dy I);
do

{
/* initialize for present day */
day2 = julian(yr, mo, dy);
yr l = yr; mo l = mo; dy l = dy;
tins = ins; tdel = del; tunch = unch;

/* scan for more activity on present day. * /
while (

(status = scanf("%2d%2d%2d % 5d %5d %5d",
&yr, &mo, &dy, &ins, &del, &unch)) != EOF &&

yr l == yr && mo l == mo && dy l == dy)
{

tins += ins; tdel += del;
if(tunch > unch) tunch = unch;

}
/* Compute days since last activity

allowing for change of years. * /
if (day2 > day l) days = day 2 - day l ;
else

2 7 3

}

}

{
days - (366 - day 1) + day2;
if ((yr/4)*4 •• yr) days -. 1 ;
}

tdays +. days;

1* Post present day's activity to standard out. *1
printf (',%2d %2d %2d %Sd %5d %Sd % Sd\n",

yr t , mo t , dy t , tins, tdel, tunch, tdays�
day t • day2;

while (status !- EOF);

julian(yr, mo, dy)

{

}

int yr, mo, dy;

static int months(] · {OO,OO, 3 1 , S 9,90, 1 20, 1 S 1 , 1 80,2 1 1 ,242,27 2,303, 3 3 3};
int i, days;

days - months(mo] + dy;
if (((yr/4)*4 ·· yr) && mo > 2) days +- 1 ;
return(days);

2 7 4

BIOGRAPHY

Dayid Vomocil

David Vomocil earned his BS in science and mathematics from Portland State
University in 1 969 and his MS in computer science from Oregon State University
in 1975. After a year at Cornell University and some time with NCR in New
York, Mr. Vomocil came to work with Applied Theory Associates in Corvallis,
Oregon. He is now at Hewlett Packard, where he supervises the computer
services group for the Calculator Lab.

2 7 5

Session 6
TESTING AND PROBLEM REPORTING, II

Titles and Speakers:

"A Software Test Environment for Embedded Software"
David Rodgers and Ralph Gable, Boeing Commercial Airplane Company

"CLUE--A Program and Test Suite Evaluation Tool for C"
David Benson, BENTEC

"Tools for Problem Reporting"
Susan Bartlett, Metheus-CV, Inc.

2 7 7

--------- ------------------------,

A SOFTWARE TEST ENV IRONMENT FOR
EMBEDDED SOFTWARE

BY DAV ID A . RODGERS AND
RALPH GABLE

BOE I NG COMMERC IAL AIRPLANE COMPANY
P . O . Box 3707

M/S 77-21
SEATTLE , WASHINGTON 98124-2207

ABSTRACT

A software test env i ronment i s descri bed that supports the testi ng of
embedded , dual -d i ssimi l ar avi on i c control system software .

The envi ronment des ign addresses the probl ems of testi ng a total software
system . The des i gn frees the software tester from operat ional test
constrai nts (stop/start control , error i ntroduct ion , etc .) often imposed by
the hardware surround i ng the embedded software . The envi ronment provi des
i nput stimu l us that i s exact and repeatabl e for each operati onal cyc l e of
the software under test . The software overal l response i s measurabl e on a
cycl e-by-cyc l e bas i s . The envi ronment al l ows detai l ed moni tori ng of
i nternal software events , for analys i s by software desi gners and veri f i ers .
The envi ronment supports the dual -d i ssimi l ar nature of the software system
to be tested .

The envi ronment i s des igned to i nterface wi th and be user fri end ly to system
eng i neers , who are cogni zant of the fucti ons to be performed by the software
under the test but who may not be sk i l l ed i n software techniques themsel ves .

The envi ronment ' s test procedures are wri tten i n Engl i sh l anguage- l i ke
statements that use the termi no l ogy of the software system under test . The
procedures tend to be sel f document i ng . Software system test scenari os may
be read i ly generated wi th economy of statements. I nput test stimul i at b i t
l evel i s general ly i nvi s i b l e to the test wri ter and i ts generat i on i s
automated , prov i d i ng reduced i nput errors . The envi ronment can hand l e a
compl ex set of d i g i tal d i scretes , anal og and ARINC-429 si gnal s . Output
reports are generated that are read i ly i nterpreted by system eng i neers and
software eng i neers al i ke .

2 7 9

� -- - -

TEST SYSTEM REQU IREMENTS

The software test env ironment descri bed was devel oped to meet these
requ i rements :

TABLE 1 - TEST ENV IRONMENT REQU I REMENTS

(1) It must support the ver if icati on of functional requ i rements of
i ntegrated software that i s part of a dual -di ssimi l ar system (see f i g .
1) and that wou ld l ater be embedded . Once embedded , the preci se
functional performance of the software wou l d be d i ff i cu l t to veri fy due
to cons i derat ions of t iming control , repeatabi l i ty , sens i t i v i ty and
accuracy of hardware stimu l i and measurement dev i ces . (' Embedded '
software i s that wh i ch i s an i ntegral part of a hardware/software
product and usual ly resi des i n ROM . I I ntegrated I here imp l i es the
software i s i n i ts l oad form, as it wou l d appear i n ROM) .

(2) It must (a) s imu l ate the hardware i n wh i ch the software under test
(SUT) i s to be l ater embedded (b) emu l ate the CPU on wh i ch it wi l l be
executed , in the f i nal product for data col l ect i on and record i ng and
(c) provi de for data col l ecti on and record i ng . The i nput stimu l i
mechan i sm must support (1) up to f ive ARI NC-429 channel s each carrying
up to f ive d i fferent l abe l s , (2) f i ve anal og s i gnal s of up to twe l ve
b i ts per s ignal and (3) up to si xty d i screte s i gnal s . Al l i nput
stimu l us must be changeabl e at any and every bas i c cycl e of the SUT.
(An ARINC-429 channe l carr ies 32-b i t ser i al data messages . Each i s
compri sed of an 8-bi t l abel i dent if ier , 2 b i t status matri x , up to 2 1
b i ts of var iab l e data and a par ity b it) . The host CPU emu l ator must
support an I ntel Z80 or a Motoro l a 6802 .

(3) It must re l i eve the test wri ter as much as pos s i b l e from the
requ i rement for software ski l l s . The wri ters must be g i ven the
opportun ity to devel op funct ional test scenari o procedures u s i ng
terminol ogy that i s fami l i ar to the f i nal product ' s system desi gners .

(4) The wri tten procedures must be easy to i nterpret for aud i t and test
mai ntenance purposes . The i r format must l end themse l ves to
expressi on of test stimu l i , test operational steps and
measurments. The procedures must bemach i ne readabl e . C l eri cal
i s to be mi nimi zed .

preci se
resu l ts
support

(5) Due to the number and compl ex i ty of test scenarios (over four hundred
d i stri buted over four separate SUT systems , each of whi ch wi l l go
through four or f ive updates and each requ i ri ng ver if i cat ion) , the
trans l at ion of the test scenarios procedures i nto a form su i tabl e for
execution of the test , the test set operati on and the formatt i ng of
measured resu l ts i nto test reports must be error-free automati c
operat ions with mi nimal and simp l e manual i ntervent ion.

2 8 0

(6) The characteri stics of the actual hardware/software i nterface of the
embedded software wi l l change dur ing normal product devel opment ,
forc i ng mod i f i cati on of the test env i ronment ' s s imu l ated hardware . The
des i gn of the test envi ronment must compri se s imp l e modu l es to
accomodate these changes .

The Software under Test (SUT)

The software to be tested i s dual -d i ssimi l ar (see f i g . 1) . That i s , the
primary funct ional outputs of the system are supported by one CPU , say CPU-
1, whi l e the same functi ons are s imu l taneous ly generated by another CPU
(CPU-2) of d i ssimi l ar arch itecture . Each CPU moni tors the other ' s
performance and each may i nd i v idual ly d i sconnect the primary output i n the
event of unacceptabl e performance . Ideal ly , the software des ign and i ts
imp l ementat ion for each CPU are deve l oped by separate des i gn teams i n order
to reduce the probabi l i ty of a common (or ' generi c ') error at any step of
the software deve l opment process . D i ssimi l ar CPUs are chosen to avo i d
operational generi c fau l ts .

The software archi tecture of one CPU i s s imi l ar to that g i ven i n f i g . 2 .
The foreground tasks are schedu l ed typ i cal ly by two c l ock dri ven i nterrupts ,
one of wh i ch has pri ori ty over the other . The i nterrupt c l ocks of CPU-1 and
CPU-2 run at the same frequency but are not synchroni zed . In real t ime the
bas i c cycl e i nterrupt i n i t i al i zes the primary i nput-process-output funct ions
with the bal ance of the bas i c cyc l e t ime spent i n background process i ng
whi ch typ ical ly compri ses cont i nuous ROM and RAM check i ng .

Speci al fast process i ng may be necessary on several occassi ons duri ng the
bas i c cyc l e . The fast process cycl e i s serv i ced by the h i gher rate ,
secondary i nterrupt wh i ch i s synchroni zed to the bas i c cyc l e c l ock .

The prob l em then , was to prov i de a usefu l test envi ronment for the software
descri bed and to meet the requ i rements of Tab le I .

TEST ENV IRONMENT OVERV IEW

The test system i s shown i n f i g . 3 . The system i s compri sed of two computer
envi ronments , (1) a VAX 11/780 and (2) a Tektroni x 8002 emu l ator l i nked by
a communi cat ion l i ne .

Analys i s showed that to verify the SUT ' s l og i cal performance i t was not
necessary to execute the SUT i n real t ime . Its l og i cal performace cou ld be
measured i n non-real -time prov i d i ng (1) the execution sequence of the SUT
was suff ic iently simi l ar to that experienced i n rea l -time and (2) the SUT
experi enced stimu l i simi l ar to real -time stimu l i . Al so , i n th i s case of
dual -d i ssimi l arity i t was not necessary to verify each software system
(CPU 1 , CPU2) at the same time . Under normal , non-fau l t cond i t i ons the

2 8 1

output from each CPU on a d i ssimi l ar system wi l l be i denti cal . Thu s , w ith
due regard to phase and pol ari ty , a set of II pseudoll d i ssimi l ar CPU (say
CPU2) output s ignal s may be generated from a s i ng l e system SUT (say , CPU 1) .
The II pseudoll s i gnal s must be used as feedback i nput to the SUT i tse l f ,
del ayed by one cyc l e . A s i ng l e system SUT thus may thus generate i ts own
d i ssimi l ar channel i nputs . Th i s mechani sm rel e i ves the test wri ter from
hav ing to pred i ct the proper i nput to the s i ng l e CPU SUT from the d i ssimi l ar
channel . A means must however be provi ded to force I i ncorrect I d i ssimi l ar
CPU s i gnal s to s imu l ate fau l t cond i tions .

The SUT i s then a set of s i ng 1 e CPU software , l oaded i nto the Tektron i x
emu l ator memory and mapped i nto the same address space as when embedded i n
the f inal product . Res i dent with the SUT i n emu l ated memory are (1) i nput
st imu l i data bases (one per hardware dri ver) deri ved from the i nput scenario
of the test procedure , (2) a set of s imu l ated hardware dri vers (AR INC ,
anal og and d i screte) and (3) a spec i al test operati ng system (Test O/S) .
The Test O/S , the dri vers and the SUT are confi gured such that control
passes fi rst from the Test O/S to the dri vers to estab 1 i sh the fi rst (or
next) cycl e ' s i nput stimu l i data at the SUT ' s hardware/software i nput
i nterface and , second ly, to the SUT i tsel f which attempts to execute i n a
normal manner . At the end of the cyc l e , i n the background program , control
i s returned to the Test O/S . Output measurements are taken at the
hardware/software output i nterface and wri tten to the emu l ator d i sk .
Optional ly, the SUT software may be pre-mod i fi ed to produce software
i nterrupts so that the Test O/S records the val ue of some or al l test
scenario RAM vari ab l es as they exi st at the compl et ion of execution of
previously spec if ied SUT software modu l es . At test comp l etion, the gathered
data on d i sk i s returned to the VAX by communi cat ion l i ne and formatted
(f ig . 3) i nto a report .

I NPUT DATA BASES

The i nput data i s generated by the test wri ter i n Eng l i sh l anguage- l i ke
statements . The statement syntax ru l es are designed to g ive the test wri ter
f lex ib i l i ty to express i nput stimu l i i n termi no l ogy used by the f inal
product I s system des i gners . For examp 1 e, a d i screte may be set by the
statement :

HYD PRESS H IGH , H IGH , 1-29 ;

Here the Hydrau l i c Pressure H i gh d i screte i s set to the II h i gh ll state (as
shown on system drawi ngs) for i terat ions (bas i c cyc l es) 1 through 29 . At
i terat ion 30 the d i screte wi l l be set to i ts defau l t val ue .

The anal og s i gnal , Servo-Feedback , wi l l be set to -2 .98 degrees at
i terat ion 3 and wi l l remain at that val ue unti l otherwi se spec i f i ed by the
statement :

SERVB = -2 .98 DEGREES , 3 ;

The statement

2 8 2

RA , I RUC , 3 . 9 , SM = NCD , P=B , 106 ;

wi l l set the AR INC s i gnal for RA (Ro l l Ang l e) on the I RUC (I nertia l
Reference Uni t , Center) to 3 .9 degrees wi th the SM (Status Matr ix) to NCD
(No Computed Data) with P (Pari ty) to the value B (Bad i . e . i ncorrect
parity) from i terat ion 106 i nward unti l set otherwi se by another statement .

Commentary statements may be entered anywhere i n the i nput statement stream .
An exampl e of a typ i cal test procedure i s g i ven i n f i g . 4 . Test control
specifi cat ion i s embedded i n such statements as : ITERMX (number of
i terat ions th i s test) , SELVAR (se l ect vari ab les to be measured) , SELMOD
(se l ect modu l es after whose execution var i abl e val ues wi l l be measured) and
NOMF IT (no measurements duri ng i terations speci f i ed) . Expected resu l ts are
entered i n comment format .

Test scenario source code i s passed to trans l ators wri tten i n Pascal and
supported i n the VAX envi ronment . The trans l ators produce compressed
scenario data bases , ready for downl oad to the emu l ator envi ronment .
Compress ion i s achi eved by only i nc l ud i ng data spec i f i cat ions at poi nts of
change rather than exp 1 i c i t ly spec i fyi ng data for each and every software
cyc l e . An exampl e of the data base format i s g i ven i n f i g . 5 . The
trans l ators provi de extens i ve error check i ng of statement syntax . The SUT
l i nkmap , generated at SUT l oad generat i on t ime , i ts used both here and at
output report generati on time to corre l ate the mnemoni cs referenced with
absol ute SUT addressee .

THE S IMULATED HARDWARE DRIVERS

The dri vers ' funct ion i s to pass i nput scenario stimu l i data from the
appropri ate i nput data base to the SUT i n appropri ate format and i n a manner
that suff ic i ently simu l ates the characteri st i cs of the real
hardware/software i nterface . The dri vers are wri tten i n assembly l anguage
and are l ess than l k bytes i n s i ze . Depend i ng upon the SUT archi tecture ,
the dri vers are ei ther des igned to be cal l ed (1) by the Test O/S , s imu l ati ng
a mechani sm that pre- l oads the DMA (d i rect-memory-access) memory for l ater
access by the SUT or (2) by the SUT i tsel f , s imu l ati ng a mechani sm that
acqu i res data from a hardware I /O dev i ce u s i ng convent ional I /O handshake
protocol . In order to " hook " each dri ver i nto the SUT it i s necessary to
mod ify the SUT code i nstruct ions that normal ly supported the real
hardware/software i nterface . I n pract i ce , such code corrupt ion i s mi nimal ,
with on ly a few I/O i nstruct i ons be i ng mod i f i ed . The dri vers are desi gned
to detect abnormal cal l s by the SUT and to post error codes to the Test O/S .
The dri vers have the abi l i ty (1) to repeat the i nput stimu l i scenario when
the i nput data base i s exhausted thus prov i d i ng for stimu l i wi th a cycl i c
characteri st i c (s i ne wave , square wave , ramp) and (2) to operate the SUT
normal ly usi ng defau l t val ues • •

2 8 3

THE TEST OPERATING SYSTEM

The function of the Test O/S i s to control the test envi ronment withi n the
emu l ator . The Test O/S i s compri sed of (1) emu l ator JCL (job control
l anguage) procedures and (2) a Test O/S control l er wri tten i n assembly
l anguage (3k-4k bytes in s i ze) wh i ch i nterfaces with the SUT (agai n , wi th
minimum code corruption) . The Test O/S prepares the emu l ated SUT RAM areas ,
l oads (1) the SUT , (2) the s imu l ated hardware dri vers , and (3) the
downl oaded test scenario data bases and test control requ i rements , ensures a
proper l oad by checksum technique , performs the test by pass i ng control to
the Test O/S Contro 1 1 er , co 1 1 ects the spec if i ed measurements from the SUT
and wri tes them to emu l ator d i s k , cal l s an on- l i ne pri nt driver that
prov ides conti nuous moni tori ng of the SUT hardware/software output buffer
(f ig 6A) and prov i des the test set operator with conti nuous test status .
The captured measurements are upl oaded to the VAX and processed i nto a
report (an examp l e of wh i ch i s shown i n f ig 6) and the actual resu l ts are
compared to the expected (c irc l ed i n f ig 4 and f ig 6) .

OPERATIONAL EXPERI ENCE

Two d i fferent dual -d i ssimi l ar systems (i . e . a total of four SUTs) were
tested usi ng the method descri bed . A total of approx imately four hundred
d i fferent test scenarios were executed , the majori ty of wh i ch were non
tri v i al and often comp l ex . Dur i ng the test project , al l four SUTs underwent
change resu l t i ng i n new SUT vers i ons . Each new vers ion was comp l ete ly
retested us ing , where necessary, updated test scenar ios and Test O/S support
software . The number of tests executed was i n the order of two thou�and .

It has been found that the advantages of th i s test system are : (1) the
reduced need for i n-depth software experi ence on the part of the test
writer . The wri ter ' s experi ence can be primari ly I system l ori ented . The
test set operator needs m inimal eng i neer ing sk i l l s i nce the test process i s
almost total ly automated . Scarce software ski l l resources are d i rected to
test system devel opment/mai ntenance whi ch has a l esser total cost i n th i s
case than that of test procedure preperati on and resu l ts revi ew. (2) Tests
can be early rerun on new software versi ons to ensure previ ous l eve l of
confi dence . (3) Tests can be qu i ck ly generated and de-bugged . (4) The test
procedures can be more read i ly understood project-wide . (5) The procedures
are sel f-document i ng . (6) The test envi ronment i s modu l ar i ndes i gn , l end i ng
i tsel f to work part it ion ing i n the test system deve l opment and on-goi ng
support phase . (7) Duri ng the devel opment phase , once test procedure
formats have been speci f ied test procedure devel opment can beg i n even though
the test system i s i ncomp l ete . The system i s part icu l arly u sefu l i n
support i ng software test i ng when no hardware l aboratory fac i l i ti es are
avai l ab l e . The d i sadvantages notes are : (1) a major commi tment has to be
made for the test envi ronment devel opment , u s i ng ski l l ed software personne l
and (2) the deve l opment has to be carefu l ly p l anned i n order to attai n
timely del i very of the test resu l ts .

2 8 4

CONCLUS ION

I n conc lus ion the test system descri bed meets the requ i rements of Tab le 1
sati sfactori ly . Cons i derat i on of i ts use i n the future may be g i ven i n
cases where preci se and repeatabl e measurement of software response on a
cycl e-by-cyc l e bas i s i s requ i red , i n s i tuat ions where hardware i s
unavai l ab le or where exact spec if i cat i on of s i gnal acqu i s i ti on i s
unimportant but where software s ignal proces s i ng and effect may be of
i nterest . C l early, the i ni t i al devel opment cost cons i derati on wi l l be a
major factor unti l off-the-she l f systems of thi s type are avai l ab le and l end
themsel ves to tai l or i ng to i nd i v i dual needs . A bus i ness opportun ity may
exi st for the entrepreneur.

2 8 5

BIOGRAPHY

David A. Rodgers

David A. Rodgers has worked as a computer software engineer for 1 8 years.
His employers have included General Dynamics Corp., Infodata Corp., Xerox
Corp., and most recently the Boeing Company. He has been responsible for the
design, implementation and verification of 'real-time mini- and microcomputer
systems for in-flight avionic system support (both commercial and military),
commercial communications, and multi-program/multi-user order entry turnkey
systems. He has 30 years' engineering experience, including work in England
and Canada. His degree is in electrical engineering (UK).

2 86

1

SERVO RESPONSE / H AR DWAR E/S OFTWAR E
I N PUT I NT ER F A C E
,

I
I

�R I MARY I N PUT I
I
•
I

•
C H AN N E L - 1

C PU - 1 F.
1----.. 1 S OFTWAR E S Y S T E M

H AR DWAR E/SOFTWA R E
OUT PUT I NT E R F A C E

L - - ,
"

...
�

I
71 1

I

D I S CO N N ECT
C O NT R O L

�

SERVO \ -I DEVICE

PRIMARY

r
I

-- - - - - - - ,
' - -t T l OUTPUT

N
00
-.J

PRIMARY
EXTERNAL
INPUTS

I r
1.- - -

C PU - Z r.
S O FT WA R E S Y S T E M

I
I
I

C H A N N E L - Z - - - - - - - _ -+- -+ _ ---1
INTERNAL FEEDBACK ./ ."0

F I G 1 D U A L- D I S S I M I LAR SYSTEM

N
(Xl
(Xl

S PEC I A l F AST
PRO C E SS

I NT ERRU PT

I N PUT

, N PUT PROC E S S

F AST PR O C E S S l O O P

PR OC E S S I �I

MA I N PR OC E S S lOO P

OUT PUT

OUT PUT

N OR MA L
B A C K GR OU ND

I � > I B A C KGROUN D

B AS I C C Y C L E
I NT ER R U PT

F I G Z - S I NG LE C PU S O FTWA R E AR CH I T ECTUR E

N
CD
\.0

VAX

D I S �

n ST S C f N U I O/
T E ST PROCEDURE

DAU E NT R Y

TEST

PIIOCEDURE

TRANS LAlOR

AR I N C
TRAN S LATOR

ANALOG

TRAN S LATOR

D I SCRETE

TRANSLATOR

, I V
YAX PASCAl

COMP I LER

F I G 3 - SOFTWARE TEST ENV I RONMENT

UT LOAD

F I LE

�
SOFTWARE

UNDER

TEST (SUT)

OATA LASES

T EST

D I R E C T I VE S

n S T D/S

CONTROLLER

(, ON- l l N E

PIli N T HANDLER

S I MUtATED

H ARDWARE

DR I VERS

r - -F lO '''''

I I
I I
I
I
I I
I

D I SK

I I
__ - - --.1

AR UC

DA�A
U S E

AUlOG

DATA

USE

D I SCRETE

DATA
USE

,
I
I

L _ _ _ _

DR I VER

CONTROLS

AR I NC

DR I VEl!

FlO '''''

D I S K Z

O I SC R ETq ...
OR I YE R

: DW IlIPO'l"

I •
_ _ -IIIfIl _ _ _ _

1-. _ - _ ..
SOHIlARf

TEST ols
CONTROLLER I I

I
I , I
I
I

TEKTRON I X 8002 EMULATOR E N V I RONMENT _J

SUT t l UMA'

UT�UT R E I'OU

G E N E R ATOIt

F I G 4 - E XAMP L E O F TEST SC E NAR I O PROCEDURE

* * * * - - - - - B E G I NN I NG OF . TEST PROCEDURE - - - -

* TEST NUMBER : XG6�01 D0�
* 1� TEST OBJ ECT I V E :
* TH I S TEST WI LL V ER I FY T H E TR I M MODE PR I OR IT Y LOG I C
* 2 � TEST AP PROACH RAT I ONAL E "
* TH I S TEST W I L L C H E C K THE TR I M MODE PR I OR I T Y B Y
* S ELECT I NG T H E AUTO TR I M , MAN UAL TRIM AND MACH/
* S PEED TR I M MODE AND DEMONSTRATE THAT AUTO T R I M
* SHALL OV ERR I DE MANUAL TR I M .
* 2 1 TEST RESULTS / SU C C E SS C R I T ER I A :
* RSC' I TER' A���E SELFC C AUTENG CAUTVD LAUTVD AUTTUA AUTTDA C ONMOD MANMOD
* 1 41 ® ® �\ * 2 4 2 � * 3 47 �0 :. 4 5 �

..................... :.:�
1� _______ -----

* 29 160 �4 III 0 1 110
* 3� 1 6 1 J4
S YSTEM = SAMARM ; * Name o f system .
FNAME : (XG600 lP00 . T P K) ; * Name o f procedure fi l e .
L I N KMAP : (DRC� : �T . C PVCM . TOOL�ARM1 0 1 48 3 . MT P) ; * Name o f l i n kma p .
*
I F I LE S : AR I NC = (XG6001D00) . AC K * I n put scena r i o fi l e s .

A I D = { XG6�01D00) . I DK
ANALOG = (XG6001 D00) . AL K

O F I L ES : OUT 1 = (XG6�01 D00 . ACT) ; * Ac tual re s u l t s fi l e .
I NTERMX= S 4 0 : * Number o f i terati o n s , t h i s test .
* 3 0 ' S ELVAR ' , ' S ELMO D ' AND ' NOMF IT ' STATEMENT TO HERE .
SELMOD : TR I M : * Sel ect modu l e "TR I M " .
S ELVAR : ARMODE , S EL FCC ,AUTENG , CAUTV D , LAUTV D , AUTTUA , AUTTDA ,

CONMOD , MANMOD , V L DTDN , VLDTU P ; * Mea s ure these
va ri a b l e s .

-

NOMF I T : 1 - 3 9 , 1 8 1 - 2 1 9 , 3 6 1 - 39 9 ; * No mea s u rements for i tera t i ons s pec i fi ed .
* * * * - - - - - END OF TEST PROCEDURE - - - - -

* * * * - - - - - B E G I NN I N G O F AR I N C SCENAR I O - - - -

FCC , FC C C , (TDA=0 ,TDC=0 , AELS= 0 , AERS=0 ,TUA= 0 ,TUC=0 , GRO=0 , UN S CHD+0) , 1 :
FCC , FC CLR , (TDA= 0 , TDC=0 ,AELS = 0 , AERS=0 ,TUA=0 ,TUC=0 , GRO= 0 , UNSCHD=J) , l ;
FCC , FCCLR , (TDA= 1 ,TDC=1 ,AELS = 1 ,AERS = 1) , 41 ;

MC , DADC P , 340 , 1 ;
MC , DADCS , 34 0 , 1 ;
V C , DADC P , 1 4 0 , 1 ;
V C , DADCS , 1 40 , 1 ;
*
E ND ;

* E xampl e : S e t AR I N C s i g n a l MC on
* DADe P r i ma ry and Secondary c ha nnel s to 340 mi l l i ma c h .

* Set AR I NC s i g na l A I RSPEED t o 1 40 knots .

* ** * - - - - - END O F AR I NC S C E NAR I O - - - - -
.......... �

2 9 0

**** - - - - - B E G I NN I NG O F A I D SCENAR I O - - - - -

* SET T Y PE CODE FOR 747- 2��
*
APL T Y P E CODE - 1 , 1 , 1 - 18 � ;
APL T Y P E CODE - 1 , 1 , 1 - 18 �
APL T Y P E CODE - 2 , � , 1- 18 �
A P L T Y P E CODE - P , 1 , 1 - 18 � ;
*
APL ON GROUND - 2 , I N A I R , I - 4 1 ;
APL ON GROUND - 1 & 2 , I N A I R , I - 4 1 ;
APL ON GROUND - 1 , I N A I R , I - 41 ;
*
V AL I D MANUAL COMO , MAN CMD , 8� ;
*
* MANUAL TR I M DOWN
*
T R I M DOWN ARM CMD , T R I M DN , 8 �-8 3 ;
TR I M DOWN CONT COMD ,TR I M DN , 8 �-8 3 ,
TR I M U P ARM CMD , N O T R I M U P ,8�-8 3 ,

* Ai rpl a ne type code .

* Put a i rpl a ne i n a i r .

* Start ma nual tr i m .

* Exerc i se TR I M comma nd .

TR I M U P CONT CMD , NO T R I M U P ,8 �-8 3 ; ��,*�--��--------------------------��
�UTOTR I M ARM- C , D I SARME D , 36 1 ;

AUTOT R I M ARM- C ,ARME D , 4 2 � ;
AUTOTR I M ARM- C , D I SARME D , 44�
AUTOT R I M ARM- C , ARME D , 4 7 � ;
AUTOTR I M ARM- C , D I SARME D , 4 9 � ;
*
END ;
**** - - - - - E N D O F A I D SCENAR I O - - - - -

* Exerc i se Autot r i m .

**** - - - - - B E G I NN I NG O F ANALOG SCENAR I O - - - - -
* TH I S SCE NAR I O PROV I DES THE ANALOG FE EDBAC K O F
* RU DDER RAT I O CHANGER FOR CO I NC I DENCE MON I TOR I N G
* O F CONTROL AND ARMS CHANN ELS . STAB I L I ZE R * POS I T I ON I S SET AT � . � DEGR E E S & PROGRAMMED I N * ' S I MULATE ' MODE TO PROV I DE THE D YN AM I C ANALOG
* F EE DBAC K O F THE STAB I L I ZE R H YDRAUL I C MOTOR .
STAB PO=S I M : I POS=� , MRAT E =� . 2 , I RATE =� . � , I TR I M=NO-T R I M , I STATE= l , l ;
PROV CA=TRAC K-ON , l ;
PROV CC=TRAC K- ON , l ;
END ;
**** - - - - - E N D O F ANALOG SCENAR I O - - - - -

2 9 1

lA2A3A4 -

F I G 5 ANAL OG I NPUT D I SCRETE DATA F I LE FORMAT

Al "A2
I A3 A4

Al A2
A3 A4

Imax (MS)
Imax (lS)

MS Byte
lS Byte
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 :-l 2 � iooo"" -

-1 � -':I

} CD - Poi nter to Addr . (Hex . AIA2A3A4) of start of data

}
}
}
}
�

0_ Repeat of 1 above . May be changed dUri nq tabl e use
as current data poi nter.

CD - Reserved � ____ Numbe r of i tera ti ons through wh i ch the software under tes t
wi l l perform before the data i n thi s tabl e i s reca l l ed
from the beg i nni ng CD - I terati on # beg i nn i ng a t whi ch the fol l owi ng data ® i s
to be prov i ded a s cha nges �--- (1) 4 Bi ts , Byte I ndex of I/O word , starti ng at 0
(2) 1 Bi t , Val ue (1 or 0)
(3) 3 Bi ts , Bi t number i n I /O word

1 2 3 I �' --- CD - End of Data Marker, for i terati on ® above � � --- Next occasi on of Data Changes , a s (§) above

• � - S ; m i l ar to ® above

F F
MS Byte
LS B vte
1 2 3 I
1 2 3 I

.-L / • J -

1 2 3
1 2 3
1 2 3 •
F F --a;n

S i mi l ar to above

I----'-�-....;.�--;} 0- End of Al l Data

2 9 2

N
\.0
W

,

CHANNE L : SAMARM
T E ST O/ S : V I . 8 8 NOV 8 3

VERS I ON : DRC8 : [KAT . KAT I IB1 ARH I B I 4 8 3 . TE K I I
TEST CAS E � XG600 1 000 P LACE OF TE ST : EHDC2

L I NKHAP : DRCB : (KAT . CP VCH . TOOL S 1 ARM I
I TE R'.8 1 -
I /O I N . 1
OL D

-- --- - -- -- - - --- - - - - -- ---- -- - - - - -- - --- -- - - -- ---- --- - -- - - - - - - - - - - --- - - - - - - - - - - - - - - --

N E W

I TER8848--- -- --- - - -- ---- -- - --- - ---- - - - --- - --- - - - - - _

TR I H . IARHODE S E L FCC AUTEN' CAUTVD LAUTVD AUTTUA AUTTDA CONHOD MANMOD
OL D 8. 8. •• •• •• •• 8. B8 BB
NEW .3 .B . 1 .B ./6 /6 1 .8 1 B3 /6 1

' /OOUT 8 1 0PRT.B OP RT81
OL D
NEW AE 74

OPRT82
6 8

OPRTB3
DA

OPRT84
25

OPRTBS
B3

OPRT.6
6 6

SSTAB P
E 8

SSTA
4B

OL D 83 BB 81 BB B8 81 .81 B3 .1
l i� �:.4 1;;rv- - - - �� - - -;��;CC- - -� --CAUTV�---�AUTV�---AUTTUA---AUTT�A---CO.H��---M;.H��

NEW B6 B. BB BB BB B l .8 1 B3 . 1

I /OOUT 8 10P RT8.
OL D
NE\J AE

OP RT.8'l
7 4

OPRT82
68

OP RT.8'3
DA

OPRTB4
.8'5

OPRTBS
.8'3

OP RT.6
9C

SSTABP
E 8

SSTABP+ l
4.8'

OL D 86 8.8' B.8' 88 88 . 1 81 B3 B I
' i��=··2;IARHO�E---;E�;�c---AUTE •• -- -cAUTvD---�AUTvD---AUTTUA---AUTT�A- -�-MA.H�D--

NEW .86 .8'. B. B. .8.8' .8'1 .8 1 B6 . 1

810P RT.1JB
AE

OP RT.l
7 4

OPRT.8'2
6 8

OPRT.8'3
DA

OPRT.8'4 OP

F I G 6 - F O R MATT E D OUT PUT R E PORT

N
\.0
.c.

SYSTEf1 : SAM ARM TEST NUMBER: XG6001 DOO T I ME : 05: 2 1PM DATE : 1 1 0 1 8'
S S T P M N n n n n T A A J W M U S - S r
L L X 0 E T A T T T n i l N D O N A PROGRAf11 1ED \'C (UN I TS :: I NCHES) T (t
R 0 1 M M S L I L L S O D S M - A S

ITER D U N V L R E I (E N 0 0 E G E e - 1 - . 5 0 . 5 1 F T
Y T H e D S L R N v e L T F • • • • • • • • • • . • • • • • • • • • N

40 1 1 1 • •
4 1 1 I 1 • •
42 1 1 1 • •
43 1 1 1 • •
44 1 1 1 • •
45 1 I 1 • •
46 1 1 1 • •
47 1 1 1 • •
48 1 1 1 • •
111 1 1 1 • •
SO 1 1 1 • •
51 1 1 1 • •
52 1 1 1 • • �3 1 1 1 • •
54 1 1 1 • •
55 1 1 1 • •
5b I I 1 • • 57 I 1 1 • • 58 1 1 1 • •
S9 1 I t . •

1 1 J • •

1 2 . • 1 • • 1 3 6 3
1 2 . • • • • 1 3 9 6
1 2 . • • • • 1 J 9 6
1 2 . • • • • I 3 9 b
1 2 . • • • • 1 3 9 6
1 2 . • • • • 1 3 C 6
1 1. • • • • • 1 3 C' 6
1 2 • • • 0 . 1 3 C 6
1 2 • • • D • 1 3 C b. 1 2 • • • U . 1 3 3 6
1 2 . • • • • 1 3 3 6
1 � 1 � � L � • • • . , � � 0
1 2 . • • • • 1 3 3 6
1 2 . • • • • 1 3 6 b
1 2 . • • • • 1 3 6 6
1 2 . • • • • 1 3 b b
1 2 • • • 1J . 1 3 6 6
1 2 • • • LI . 1 3 9 6
1 ·2 • • • U . 1 3 '1 b
1 2 • • • 0 . 1 3 9 1-,
I ') � . .

I I I t

...
+
...
+
...
+
+
+
...
+
...
+
...
+ ...
+
i
f
...

... X
+ X
... X
... X
.+ X
+ X
+ X
+ X
+ X + X
... X
of. X
... X
... X
... X
.. X
+ X ... X
... X
+ X

...
+
...
+
...
+
+
-t.
+
+
+
...
+
...
...
+
...
...
...
...
...

AE4
AE4 {\E4
AEIJ AE4 AE4
AE4 AE4
'lE4
AE4 fI[4
n[� Ill: 1
AE4 AE4
AE4
AE4 AE4
AE4
rE4 AE4

...
...
+
...
...
+
...
+
...
+
+
...
+
+
...
...
...
...
...
...
...

F I G 6 A ON - L I N E OUT PUT R E PORT

... E84 ... E3� .. E�IJ
+ [84
+ I84 + Eell
+ E�:4
... [84
... E£1
... EE:F
+ [91
... (71,
+ E'If;. ... ['.16 ... E9� ... [16
... E9b ... E11
... E8B
+ E�::'5 ... -

N
1.0
Ul

A SOFTWARE TEST ENVIRONMENT

FOR EMBEDDED SOFTWARE

•• PTIMBD 2 7 IM5

presented by:
David A. Rodgers and Ralph Gable

Boeing
Commercial Airplane Division
M I S 1 7 -2 1 P. O. BOX 3707
Seattl.� Washington 18124 - 2207

N
\.0
(j)

l ul L A

WHAT IS TO BE PRESENTED

• A SOFTWARE TEST ENVIRONMENT FOR DUAL DISSIMILAR SOFTWARE

• TH E PROBLEM

• TH E SOFTWARE UNDER TEST

• THE SOLUTION CHOSED

• A TEST ENVIRONMENT OVERVIEW

- INPUT SOURCE PROCEDURES

- TH E DATA BASES

- OPERATIONAL SUPPORT SOFTWARE

• OPERATIONAL EXPERIENCE

• CONCLUSIONS

N
�
-...J

OH A

THE PROBLEM

• EMBEDDED SOFTWARE

• DUAL - DISSIMILAR

• PROBLEMS OF A PURE HARDWARE ENVIRONM ENT

• SIMULATION vs EMULATION

• TEST SYSTEM REQUIREMENTS

N
<..0
co

S PEC I AL F AST

PR OC E SS

I NT ERRU PT

I N PUT

I N PUT PROC E S S

f AST PlOCESS LOOP

PROCESS I �I

MA I N PROC E SS LOO P

OUT PUT

OUT PUT

NORMA L

B AC KGROU ND

I .. > I BAC KGROUND

BAS I C C Y C L E

I NT URU n

F I G Z - S I NG L E C PU S OFTWAR E ARCH I T ECTUR E

N
<.0
<.0

l Sd L A

INPUT, EACH SUT

• INPUTS (AT HARDWARE I SOFTWARE INTERFACE)

• 5 ARINC CHANNEL xS LABELS I CHANNEL • 25 ARINC SIGNALS

- PARITY

- STATUS MATRIX

- DATA

• 5 ANALOG CHANN ELS } - 1 2 BITS I CHANNEL

• 60 DISCRETES

INCLUDES AUTOMATIC FEEDBACK -

• CROSS - CHANNEL FEEDBACK,

DISSIMMILAR CHANN EL

• ACTUATOR FEEDBACK

r - ,
I ALL INPUTS ARE TO BE SPECIFIABLE 1 0VERRIDEABLE BY INPUT PROCEDURE STATEM ENTS, I
I I
I IF NECESSARY, AT EACH AND EVERY ITERATION. I
L _ �

w
o
o

l Sb L A

OUTPUT, EACH SUT

• OUTPUTS

• AT HARDWARE I SOFTWARE INTERFACE

- 1 ARINC CHANNEL
- 2 ANALOG CHANNELS

- 30 DISCRETES

• WITHIN SUT

- 300 VARIABLES

- 1 00 MODULES

r - ,
I ALL OUTPUTS ARE TO BE MEASUREABLE AS SPECIFIED BY INPUT PROCEDURE STATEM ENTS, I

I I

I IF N ECESSARY, AT EACH AND EVERY ITERATION. I

L _ �

w
o t-'

U J (l A

TEST REQUIREMENTS

• PRIMARY OBJECTIVE

- TO GENERATE A TEST REPORT THAT

1 . DEMONSTRATED THAT THE TOTAL SOFTWARE HAD BEEN VERIFIED

WITH "WHITE" BOX CONSIDERATIONS AGAINST SYSTEM

REQUIREM E NTS

2. WOULD WITHSTAND AUDIT

• IN ADDITION

• EASY TO GENERATE TESTS & TO OPERATE TEST RIG

- SYSTEM ORIENTED TEST WRITERS NOT SKILLED IN SOFTWARE

TECHNIQUES

• EASY TO REVIEW & UNDERSTAND RESULTS

• REPEATABLE RESULTS, MAYBE YEARS LATER

• EASY TO MODIFY DURING PRODUCT LIFE - CYCLE

• SUPPORT RELATIVELY LARGE TEST VOLUM E & SUT VERSIONS

-- �-l !

w
o
N

u3ll L A

PROBLEMS OF A HARDWARE TEST ENVIRONMENT

• CONTROL OF EXACTLY WHAT

SCENARIO YOU WANT

• REPEATABILITY

• CONFIGURATION CONTROL

CAPTURE OF

QUANTITY OF

DATA IN

SAM E EVENT

w
o
w

t H ;:

THE SOLUTION CHOSEN

• TOTAL SOFTWARE ENVIRONMENT

• ONE CHANNEL ONLY

• DISSIMILAR CHANNEL BECOMES A "PHANTOM" CHANN EL

• USE SUTs OWN OUTPUT TO GENERATE DISSIMILAR CHANNEL's SIGNALS

• VAX PLUS TEKTRONIX 8002 EMULATOR, LINKED BY COMMUNICATION LIN E

• ENGLISH LANGUAGE INPUT

• PASCAL TRANSLATORS WITH ERROR CHECKING IN OFF - LIN E MODE

• DATA BASE PLUS DRIVERS

• TEST OPERATING SYSTEM (TEST 0 I S)

• TEKTRONIX JCL

• TEST 0 I S CONTROLLER

• LOCAL DATA STORAGE WITH ON - LIN E CONTINUOUS OUTPUT PRINT

• REMOTE OUTPUT REPORT GENERATION IN OFF - LIN E MODE

• VAX CONFIGURATION MANAGEMENT & SUPPORT

• RESOURCE CONSIDERATIONS

(STORAGE, RUNTIME)

w
o
�

IJ4A l A

SIMULA TION vs EMULA TION

e2 FACTORS IN THIS CASE

e CERTIFICATION AUTHORITIES REQUIRED USE OF A REAL CPU RATHER THAN A

SIMULATED CPU

• TIME TO EXECUTE FULL - UP SOFTWARE IS IN SIMULATOR ENVIRONM ENT

MUCH LONGER THAN IN EMULATOR ENVIRONMENT

EMULATOR WAS CHOSEN

.. I -.. � • -

m-I
I I I
I ...

t o . .. -.. ..

I
I
I
I t 0 _ .. -.. .
L _

... 1
.. I S = � : f :

.. " 4 � • ..

•
I
I I

1
I
I J

• �
:I 0 0 • • � � � .. _ -o � � ...

, -
I
,
I

_ .J

.. 0 • • - � I Z '"

- - -
- - ,

I
I
I ·

\
• 0 � u � • • - : :I

i . .. � . 4 • � .. r : . "

- - -

• "' ... • • • • 4 0

- -

.. IW U . - -- . . -

... � W e ... • � !I � : .

:l
I
I
I � -
I 0 • ; • .. • 0 � � I I .. N 8 • I Ie • 0 •
ti .. �
I I I
I

L-.----I�_....&.._ _ __.. _ .J
-� ... =-• • e -• • � � 0 • =- �

.. 4 ... c � 4 ...

• 0 .. OII e 0 '" : t .. . t-

• - 0 • - � � � - & 0 0 " ... � : .l � � _ 0 -... - = 8 ... 1: � ...

• " 0 � c - . - c t-

3 0 5

-.. � J : 1 0 • - :I •

..

� • ... • • ..
� .. • 4 • • oo '" ... � 4 -.. .. -• ... " 0 4 u o. • �
:I • 0 ..
...
� ...

w
o
0"1

05 l A.

TEST ENVIRONMENT OVERVIEW

• INPUT PROCEDURES

• TEST CONTROL

• SENARIO DESCRIPTION

- ARINC

- ANALOG

- DISCRETE ·

• TRANSLATORS

• DATA BASES

• HARDWARE DRIVERS

• TEST O I S

• REPORT GENERATION

• ON - LIN E

• OFF - LIN E

w
o
-....J

04t1 l A

WARNING

r · - · - WARNING - • - • - • - • - • - • - • - • - • - • - • - • - • - • - • - • ,

THE PROPOSED SOLUTION

• SUT WILL NOT FULLY BEHA VE, IN SOME DETAILS, AS THOUGH REAL

HARDWARE WERE ATTACHED (RELEGATE TO OTHER TEST PHASES)

• WILL NOT RUN IN REAL TIME

• USES A SMALL AMOUNT OF CODE CORRUPTION

• ONL Y APPROXIMA TES INTERRUPTS

L . _ . J

HOWEVER

LOGICAL PERFORMANCE OF SOFTWARE WILL BE DEMONSTRATED

THE ABOVE LIMITATIONS CAN BE RATIONALIZED

\II I:: z :::»
" z -
D: WI WI Z -" z tl WI
c z � cc
> Q
" � 0 � -oJ C 0 Z Z WI 0 - -::E D: LL. � D:

D:
" WI

... WI Z
WI i= ::E z z -WI
"

:l WI tit ::E z WI � :::» > u \II
� 0 LL.
WI

.....

C 0 ... \II LL. WI � -oJ '" LU :::» '" .
• • •

3 0 8

**** - - - - - BEGI NN I NG OF AI D SCENAR I O - - - - -

* SET TYPE CODE FOR 747- 2JJ
*

APL TYPE CODE - e , l , l - 1B J i
APL TYPE CODE - l , l , l- IB J
APL TYPE CODE - 2 , J , I- IB J
APL TYPE CODE - P , l , l- IB � i
*
APL ON GROUND - 2 , I N A I R , 1 - 4I i
APL ON GROUND - 1 & 2 , I N AI R , I -41 i
APL ON GROUND - 1 , I N A I R , I- 4 I i
*
VAL I D MANUAL COMO , MAN CMD , B J i
*
* MANUAL TR I M DOWN
*
TRIM DOWN ARM CMD ,TRIM DN ,BJ-B 3 i
T R I M DOWN CONT COMD , TR I M DN ,BJ-B 3 ,
T R I M UP ARM CMD , N O T R I M UP ,BJ-B 3 ,
TRIM U P CONT CMD , NO TRI M UP ,B J-B 3 i
*

AUTOTR IM ARM- C , D I SARMED , 36 l i
AUTOTR IM ARM- C , ARMED , 42J i
AUTOTRIM ARM- C , D I SARMED , 44�
AUTOTRIM ARM- C ,ARME D , 47 J i
AUTOTRIM ARM- C , D I SARMED , 49 � ;
*
END ;
* *** - - - - - END O F AI D SCENAR I O - - - - -

* Ai rpl a ne type code .

* Put a i rpl a ne i n a i r .

* Start manual tri m .

* Exerci se TR I M c omma nd .

* Exerci se Autotrim.

**** - - - - - BEGI NN I NG O F ANALOG SCENAR I O - - - - -
* TH I S SCENAR I O PROV I DES THE ANALOG FEEDBAC K O F
* RUDDER RAT I O CHANGER FOR CO I NC I DENCE MON I TOR I N G
* O F CONTROL AND ARMS CHANN EL S . STAB I L I ZER
* POS I T I ON I S SET AT J . � DEGREES & PROGRAMMED I N
* ' S IMULATE ' MODE TO PROV I DE THE D YNAMI C ANALOG * FEEDBAC K O F THE STAB I L I ZER H YDRAUL I C MOTO R .
STAB PO= S I M : I POS=� , MRATE=� . 2 , I RATE=� . � , ITR I M=NO-TR I M , I STATE- l , l ;
PROVCA=TRAC K-ON , I ;
PROV CC=TRAC K- ON , l i
END ;
**** - - - - - END O F ANALOG SCENAR I O - - - - -

3 0 9

L--___ ____ __ _

F I G 4 - E XAMPLE O F TEST SCENAR I O PROCEDURE

**** - - - - - BEGI N N I NG OF , TEST PROCEDURE - - - -

* TEST NUMBER : XG6JJI DJJ
* IJ TEST OBJECT I V E :
* TH I S TEST WI LL VER I FY THE TRIM MODE PR I ORITY L OGI C
* 2J TEST APPROACH RAT I ONAL E "
* TH I S TEST W I L L CHECK THE TR I M MODE PR I ORITY B Y
* SEL ECT I N G THE AUTO TR I M , MANUAL TR I M AND MACH/
* S PEED TRIM MODE AND DEMONSTRATE THAT AUTO TR I M
* SHALL �V ERR I DE MANUAL TR I M .
* 2 1 TEST RESULTS/ SUCCESS CRITER I A :
* RSC' I TER' A���E SELFCC AUTENG CAUTVD LAUTV D AUTTUA AUTTDA CONMOD HAMMOD
* 1 41 ® ® ® * 2 4 2 J6
* 3 47 JJ .:.. 4 5J ____:J::,l __ ----------

* 29 1 6 0 J4 Jl Jl JJ
* 3J 1 6 1 J4
S YSTEM = SAMARM ; * N ame o f system .
FHAME : (XG6JJ\pJJ .TPK) ; * Name o f procedure fi l e .
L I NKMAP : (DRCJ : �T . C PVCM. TOOL�ARMI J148 3 . MTP) ; * N ame o f l i n kma p .
*
I F I l ES : AR I NC = (XG6JJ1DJJ) . AC K * I n pu t scena r i o fi l es .

A I D = (XG6JJ 1 DJJ) . I DK
ANALOG = (XG6JJ1DJJ) . AL K

O F I LES : OUT 1 = (X G6J�l DJJ . ACT) ; * Actual resul ts fi l e .
I NTERMX=S40 : * Number of i terati ons , thi s test .
* 30 ' SELV AR ' , ' SELMOD ' AND ' NOMFIT ' STATEMENT TO HERE .
SELMOD : TR I M : * Sel ect modul e "TR IM" .
S ELVAR : ARMODE , S EL FC C ,AUTENG , CAUTV D , LAUTV D ,AUTTUA ,AUTTDA ,

CONMOD ,MANMOD ,VLDTDN ,VLDTU P ; * Mea sure these
vari a bl e s .

NOMF I T : 1 - 39 , 1 8 1 - 21 9 , 36 1 - 399 ; * No mea s u rements for i terations s pec i fi e d .
**** - - - - - E N D OF TEST PROCEDURE - - - - -

**** - - - - - B E G I N N I NG O F ARI NC SCENAR I O - - - -

FC C , FC C C , (TDA= 0 ,TDC=0 ,AELS=0 ,AERS=J , TUA=0 ,TUC=0 , GRO=0 , UNSCHD+0) , 1 :
FCC , FC CL R , (TDA=0 ,TDC=0 ,AElS=0 ,AERS=J ,TUA=0 ,TUC= 0 , GRO= J , UNSCHD= J } , l ;
FCC , FC CL R , { TDA= I ,TDC=1 ,AElS=1 ,AERS=1 } , 41 ;

MC , DADCP , 340 , 1 ;
MC , DADCS , 340 , 1 ;
V C , DADCP , 14� , 1 ;
VC , DADCS , 1 4� , 1 ;
*
E ND ;

* Exampl e : Set ARI N C s i g nal MC on
* DADC Prima ry and Secondary c ha nnel s to 340 mi l l i ma c h .

* Set AR I NC s i gnal AI RSPEED t o 1 4 0 knots .

**** - - - - - EHD O F AR I NC SCENAR I O - - - - -

3 1 0 J

)(c > � z
-

c e IoU
�

" c c.: Z
-� IoU
� Z
U IoU
IoU � "

c.: % IoU � U Z
c.: � -

::l 0
...I

I C c.: � 0 c.:
� � :E IoU 0

• • •

3 1 1

'" -
� '" c z � c 0 '" ...I :E -

� C a: t:
z 0 0
0I � 0 c

� V; w U
Z � ::i
C u u

� a: C >
.... 0- U
• • •

3 1 2

A IA2A3A4

F I G 5 ANALOG I NPUT D I SCRETE DATA F I LE FORMAT

Al A2
r A3 A4 } (!) --- Poi nter to Addr. (Hex . AIA2A3A4) of start of data

0_ Repea t of 1 above . May be changed dUri nq tabl e use
as current data poi nte r .

-
Al A2
A3 A4

Imax (MS)
Imax (LS)

MS Bvte
LS Byte

1 2 3
1 2 3
I 2 3
1 2 3
1 2 3
1 2 3

--l 2 ...J--...... --1 � ��
I 2 3
F F
HS Byte
LS B�te
I 2 3
1 2 3

}
}
}
}
•

G) - Reserved �� Number of i terati ons through wh i ch the software under tes t
wi l l perfonm before the d a ta i n thi s tabl e i s recal l ed
from the beg i nni ng 0- I terati on I beg i nn i ng a t whi ch the fol l owi ng data ® i s
to be prov i ded as changes �---- (1) 4 B i ts , Byte I ndex of I/O word , s tarti ng at 0
(2) 1 Bi t , Val ue (I or �)
(3) 3 Bi ts , B i t number i n I/O word

I �'

�
----CD - End of Data Ma rker , for i te rati on ® above

�--- Next occas i on of Data Changes , as (§) above

�- S imi l ar to CD above

� /. -1..

1 2 3
1 2 3
1 2 3 •
F F -a;D

S i mi l ar to above

t--....:...�-...;.�---I} 0- End of Al l Da ta

3 1 3

09 L A

W
I-'
.t;:.

HARDWARE DRIVERS

• MODULAR

• SIMULATE ACTUAL HARDWARE

• OUTPUT

• DATA BASE DRIVEN

• OUTPUT DEPENDENT

• HOOKS

• CODE CORRUPTION

• DESIGN

• CALLED BY TEST 0 I S

• CALLED BY SUT

• ASSEMBLY LANGUAGE

- CPU DEPENDENT

- SUT DEPENDENT

It) l A

W I-'
V1

TEST O I S

• BASIC FUNCTIONS

• PREPARE RAM AREAS

• LOAD

- SUT

- DRIVERS

- 0 1 B's

• CH ECK PROPER LOAD

• PERFORM 81 CONTROL TEST

- CYCLE COUNT 81 ON - OFF M EASUREMENT SYSTEM

- COLLECT DATA

- KNOWLEDGE OF MODULE BEING EXERCISED

- VARIABLES TO BE M EASURED

- CONTROL ON - LINE PRINTER

• UPLOAD RESULTS

w �
0'1

.

CHANNE L : SAMARH
T E ST O / S : V l B .8'8 NOV 8 3

VERS I ON : DRC. : [KAT . KAT l l .1ARM 1 . 1 4 8 3 . TE K , 1
TE ST CAS E I XG6001 DOO P LACE OF T E ST : E HDC2

L I NKMAP : DRCB : [KAT . CPVCM . TOOL S 1 ARH I
I TE R ••• I - -
I /O I N . 1
OL D
NEV
E)(P

I TE RS.4S--- - ------ ------------ ---- ------- ---------- ---- ---------- - - - - - - - - - - - - - ------------
T R I M .lARHODE S E L FCC AUTE NQ CAUTVD LAUTVD AUTTUA AUTTDA CONMOD HANMOD
OL D •• •• •• •• •• •• 8. 88 ••
N EW 83 88 8 1 88 88 8 1 8 1 83 8 1
E)(P

1 /00UT .lOP RT.. OP RT.l
OL D
HEV AE 7 4
E)(P

OP RT.2
6 8

OPRT.3
DA

OPRT.4
25

OPRT.5
.3

OPRT.6
66

SSTABP
E 8

r ���=.4 1 ;iLV- ---�E- - -;��;��---�- -
NG- --�;�T�D---�;�T��---;�T�U;---;U;;�;-- -�����D---�;����

OL D .3 S. .1 •• S. .1 8 1 .3 . 1
NE\oJ .6 •• •• 8S S. B l 8 1 B3 B l
E)(P

I /OOUT . 1 0PRT.. OPRT.l
OL D
NE\oJ AE 74
E XP

OP RT.2
6 8

OP RT.3
DA

OPRT.4
.S

OPRTSS
.3

OP RTB6
9C

SSTABP
E 8

l i��:·42;i;;��DE--- ;;�;��---;uTE��---�;uTvD---�;uTvD---;�T��A---;UTTDA---fO�HOD
Ol D 86 88 8. •• •• . 1 B 1 83
NE\oJ 86 •• B.1 8 1 .6
E)(P

.lOPRT.. OP RT.l
AE 7 4

OPRT.2
68

OPRT.f3
DA

OPRTS4 OP

SSTABP + l
4.f

w
...J

- - - -- -- - - - --- ---

SYSTEM: SAM ARM TEST NUMBER: XG6001 000 T I NE : 05: 2 1PM DATE : 1 1 0 1 84
S S T P M M A A A A T A A I � M II S - - - - - - - - - - - - - - - .. - - - - - S f'
L L X f] E T A T T T R I I N D O N A PROGRAMI"1E[I VC (UN I TS = I NCHES) T (I
R 0 I M M S L I L L S O D S M - A S

ITER D U N V L R E I C E M O O E G E e -1 - . 5 0 . 5 1 B 1 Y T H e D S L R N v e L T F . • • • • • • • • • • • • • • • • • • • . N
I I , I I

40 1 1 1 • • 1 2 • • t • • 1 3 6 3
4 1 1 1 1 • • 1 2 • • • • • 1 3 9 6
42 1 1 1 • • 1 2 • • • • • 1 3 9 6
43 1 I 1 • • 1 2 • • • • • I 3 9 6
44 1 1 1 • • 1 2 • • • • • 1 3 7 6
45 1 1 1 • • 1 2 • • • • • 1 3 C 6
46 1 1 1 • • 1 2 • • • • • 1 3 C 6
47 1 1 1 • • 1 2 • • • D • 1 3 C 6
48 1 1 1 • • 1 2 • • • D • 1 3 C 6 49 1 1 1 • • 1 2 • • • u • 1 3 3 I;.
50 1 1 1 • • 1 2 • • • • • 1 3 3 6
51 1 1 1 • • 1 2 • • • • • 1 3 3 t.
52 1 1 1 • • 1 2 • • • • • 1 3 3 6
�3 I 1 I . . 1 2 • • • • • 1 3 6 I;.
54 1 I 1 • • 1 2 • • • • • 1 3 6 b
55 1 1 1 • • 1 2 • • • • • 1 3 6 6
56 1 1 1 • • 1 2 • • • IJ • 1 3 6 6
57 1 1 I • • 1 2 • • • II • 1 3 9 6 58 1 1 I • • 1 2 • • • U • I 3 '1 6
59 1 I I • • I Z • • • II • 1 3 9 to

- 1 1 1 • • 1 2 . •

i
i
t
t
t
t
t
t
f
t
t
...
t
t
t
t
t
t
t

t X ... X
t X
t X
.t X
t X
+ X
t X
... X ... X
t X
.. X
t X
t X
t X
t X
+ X
t X
t X
... X

F I G 6 A ON- L I N E OUT PUT R E PORT

t AE4 +
t AE4 t
+ AE4 +
+ AE4 t
... AE4 +
t AE4 t
t AE4 t
i· AE4 +
t AE4 ..
t AE4 +
t fiE4 t
t nEil t
t AE \ t
t AE4 t
+ AE4 ..
+ AE4 t
t AE4 t
t AE4 ...
t AE4 +
... ��E4 AE4 t

.. E84 .. E:34
+ E84
+ [r::4
t E84
t E:::4
t E�:4
t [84
+ Ee'?
t Etf
t [95
f [7�,
t 1:96
+ E'.?6
t E'?6
+ [96
t E96
t E91 .. EE:B
+ [:35
+ - -

1 1 l A

W I-'
co

OPERA TIONAL EXPERIENCE

• 2 DUAL - DISSIMILAR SYSTEMS

• 4 INDIVIDUAL surs

- 4 TRANSLATORS > PASCAL

..
- 4 TEST O I S

- 1 6 DRIVERS

- 4 ON - LIN E PRINT

CONTROLLERS

• 400 TESTS

• 5 - 6 VERSIONS EACH SUT

ASSEMBLY

LANGUAGE

- 2000 SETS OF PROCEDURES

• C - M SYSTEM

• TEST S I R SYSTEM

W
I-'
\.0

1 1 A L A

ADVANTAGES AND DISADVANTAGES

ADVANTAGES FOUND

• LOW SOFTWARE SKILL, H IGH SYSTEM KNOWLEDGE SKILLS

• LOW ENGINEERING EXPERIENCE TO OPERATE TEST SET

• FAST TEST GENERATION & DE - BUG

• TEST PROCEDURES UNDERSTANDABLE PROJECT WIDE

• SELF - DOCUMENTING

• REPEATABLE

• MACHINE STORABLE

• TEST SYSTEM MODULAR IN DESIGN

DISADVANTAGES FOUND

• HIGH INITIAL INVESTMENT

• SPECIAL SKILLS TO DEVELOP & MAINTAIN TEST SUPPORT SOFTWARE

t-
LLI :E � '" t-Z 0 LLI
:E
LLI � II:
-::l LLI a '" 0 LLI ::l II:

LLI c: -I II: C ::l 8 E t-::l Z u.. -

• •

3 2 0

CWE
a program and test suite evaluation tool for C

Dr . David B. Benson

BENTEC
NE 615 campus Street

Pullman, Washington 99163

Abstract
CWE is a statanent count profiler for C programs in Unix (tIn AT&T) environ
ments. Statement count profiles are used in debugging and evaluating software
and determining the extent of code coverage by a test suite. CWE instruments
C language source in a manner which does not change the functionality of the
software being evaluated. CWE uses the C cCJli>iler available at the test
site. This means the same cCJli>iler used for design and coding is used in the
evaluation. CWE is easy to use, requiring minimal reading before starting.
The paper explains some of the uses of CWE via an extended example, and gives
a detailed evaluatioo of CWE.

Profiling for Evaluation

Profiling serves an important role in software quality assurance. Typi
cally profiling is dale for timing measurements. However , counting the number
of times lines, statements , or routines are invoked enables the evaluator to
determine the adequacy of the tests performed and the extent to which the pro
gram is exercised by the test suite. The counts may be used to determine
whether the tests exercise all of the code, which portions of the program are
exercised at all , and whether the algori tbns embodied in the code are perform
ing as expected. '!hus executioo counts are used to evaluate the test suite and
the program at the same time.

Execution count profilers may count routines , lines, or statements . The
count of routine calls during test provide an overall coarse-grained view of
program execution. Routine call counts are an important tool for the software
designer and the software evaluator. The I gprof I profiler available in Unix
bsd 4 . 2 provides call counts together with other information. Other aspects
of evaluatioo require a fine-grained view of program execution; the individual
statanents forming the grain size. Line counts are adequate for the study of
small programs, but software engineering principles require the counts to be
accumulated for each statanent, even if several statanents are placed on the
same line of the source code. This requires reformatting the source code when
producing the report. C language routines need not return in the Unix
environment since the routine body may invoke exit () , _exit () , longjrnp () , or
may fail, transferring to a signal processing routine . Therefore the line of

3 2 1

code

x = foo (x) i y = foo (y) i

in the source file needs to be displayed in the statement count report as

lBB x = fOO (X) i
99 y = foo (y) i

and in this hypothetical case, sane call to foo () failed to return. CLUE pro
vides a reformatted report so that each executable statement aR;lears on its
own line with the count of the nlDnber of executims of that statement . The
source aR;learing in the report is beautified, to maintain or enhance the rea
dability of the original source text.

The statement count profile report provides the basis for a nLnnber of
other reports useful to the evaluator . Code coverage is a basic measure of
the adequacy of the test suite used to evaluate the software. CLUE provides a
code coverage report by program, source file, and function. The evaluator is
also interested in code which has either unusually large or unusually small
execution counts. CLUE provides a filter enabling the evaluator to easily
locate the statements reporting any percentage range of the total counts .
These and other report types are discussed in the sequel.

The evaluator typically uses the code coverage report to determine test
sui te adequacy. If the test suite is inadequate, the report of code sections
not executed by the test suite aids the evaluator in devising additional tests
for the test suite . Of course, sane code may not be executable by any test,
in which case the designer or coder needs to be informed. Code with large
statement counts is also to be viewed with suspicim.

If the software product is performing poorly, the algorithns may need
changing. Occasimally, large statement counts are simply the result of poor
or incorrect coding, even if the product meets the time performance specifica
tion.

In additim, there are various standards checks which are based on the
statement counts . I give an example when discussing some evaluations based on
CLUE.

Using CLUE

One first must produce the instrumented program from the C source files.
Simply use Iprocc I wherever ICC I would ordinarily aR;lear . For example, a
makefile may contain the CC macro format. The CLUE user can simply change
this line to

CC = procc

and then make the program in the usual way. If the makefile uses the .c .o
dependency it suffices to modify this line to read

3 2 2

.--����������---------

.c .o: procc <whatever cc arguments already appear . >

If I CC I is used for loading, the above changes will suffice in most
cases. If ' ld' is used to produce the executable image, one must change the
occurrences of I Id • • • I to I Id • • • -lclue I to include the CLUE instrllllentatien
runtime support. If the makefile uses the ill form it is best to change this
line to

LD = procc

to avoid various cenfusicns about the loader .

Occasienally ene runs into problems with using a library centaining
'main I • Since the CLUE runtime instr\.lllentatien support must be the first to
gain centrol, the libclue. a library contains a definitien of 'main' . Therefore
it is necessary that -lclue appear before any other -1 flags to the loader for
libraries which caltain a definitial of 'main' . The carmand I procc l places
-lclue last, so that all the . 0 files made by procc have the rest of the rlm
time instrllllentatien linked in. These restricticns make it necessary to
directly invoke I cc I or l Id I to obtain the executable images . This annoyance
will be fixed in a later release of CLUE.

There are flags for procc so that only routines listed in the I procc I
ccmnand line are instr\.lllented. Instrumented . o files may be linked with ordi
nary .0 files in forming the resulting executable image. This feature results
in smaller files, shorter reports , and faster executien times . The usual
evaluatien practice is to instrument all the routines, selecting the desired
informatial from the resulting report .

Once the instr\.lllented program has been made, there is a . i file in the
making directory for every .c file used in the make. The . i files have all
the preprocessor includes expanded, just in case there is any executable code
in the include files. All C source in the include files will appear in the
statement count report.

'!be instrumented program is now run al ale or more test cases. The pro
filing informatial is accumulated in a file named I profile. lc I • This file is
highly condensed in order to save file write time. The information is
ag:>ended to the file, so that sunmary data from a test suite is particularly
easy to obtain. The CLUE user might wish to move the file after one series
before beginning another . The report generator has facilities to cope with
several files profiling informatial.

Finally, the CLUE user runs the report generator and filters. The report
generatial carmand I prolc I takes the statement count information from the
profile.lc file and the C source from the . i files to produce a report on the
files in which any functial has been executed during the test run or runs . If
the informatien from several renamed profiling informatien files is desired,
the carmand form is

prolc -db [file • • •]

3 2 3

and the camtand acts as if the files were coocatenated. The statement counts
appearing in the report are the sums of the counts from all the listed files.

For evaluatioo ooe usually requires a report based on all the C files
comprising the system. For programs with only a few files one may simply list
all the . i files after the -f flag. For example,

prolc -f c. i d. i

will base the report on the files c. i and d. i , even if no routines in one of
the C files are executed in the course of the tests . Large systems require
too many C files to make the -f flag practical. CLUE enables the report to be
based on ooe or more "listfiles" via the -1 flag. The form is

prolc -1 listfile • • •

A listfile is a list of . i file names 00 which the report is to be based.
Anything else may also appear in the listfile. A listfile is readily derived
fran a rnakefile by replacing all occurrences of 1 .0 1 by ' . i 1 within the
makefile. The Unix stream editor is quite useful here, allowing the listfiles
to depend upon all the rnakefiles in all directories defining a system.
Indeed, for large projects , we recannend that the listfiles be created in a
make which keeps track of the dependencies upon the entire collectioo of
makefiles defining the system.

A small example of a rnakefile appears in Listing 1 . This rnakefile has
been set to use I procc �I via the CC line. The -C flag means that cannents
will appear in the . i file and so also in the report. The rnakefile was edited
to produce a file named ' fnamesf ' , appearing in Listing 2 . The ooly editing
was to globally replace 1 .0 1 by ' . i I . This listfile is then used in the com
mand

prolc -1 fnamesf

to define the C files comprising this system to the report generator .

$ cat makefile
CFLPGS =
CC = procc �

system: c .o d.o
$ {CC} c .o d. o -0 system

c. o: c .h

Listing 1 .

The statement count report coosists of several fields of information, one
row for each line of source in the defining . i files, and additional lines

3 24

$ cat fnamesf
CFIJlJGS =
CC = procc -{:

system: c . i d. i
$ {CC } c . i d.i -0 system

c. i : c .h

Listing 2.

whenever more than me executable statement a�rs on the same line of the • i
file. The first field defines the line type via the me character type key :

F file name
c text outside functim definitims
f beginning of functim definitim
n nonexecutable text in a functim definitim
x executable statement with non-zero count
z executable statement with zero execution count

The line type key makes special report generatim easy. The second field
repeats the name of the functim throughout the functim definition. The
third field numbers each line in each functim definition. The fourth field
is the executim count for executable statements . The final field is the
source text derived fran the . i files. Examples of the report are in Listings
3 , 7 , and 8.

CLUE includes several filters and generators to present particular infor
matim fran the statement count report. 'lbe most popular generator is ' lcp' ,
which produces a code coverage report by system, by file and by functim.
Listing 4 provides an example. The most popular filter is ' lcf ' , which easily
enables the user to reformat the statement count report, selecting information
of particular interest to present . The generator ' lch ' generates histograms
of statement count data. The generator ' lct ' provides statement count totals
by system and functim. The filter ' lcr ' enables the user to select a range
of counts for which the corresponding C statements are of interest .

Debugging Example

This example occurred when I was first preparing the next example for the
paper . I wrote the little program ' bad.c ' and attempting to execute it in
preparatim for running CLUE to produce the intended example. As Listing 3
shows , the program died with a bus error. My experience has been that I can
find the fault faster by using CLUE than by using a symbolic debugger .

First I removed 'profile. lc ' just in case it was filled with information
fran a previous use of CLUE. Then I ran 'procc -{:' to instrlJIlent the program.

3 2 5

- ----- - - - - -- ---- - ------ ---

The -C opticn was included to keep the carments for the illustraticn in List
ing 3 . Ordinarily I do not use the -C opticn. I then ran I prolc I to produce
the report ShCMn in Listing 3 . Notice that in routine 'main ' , lines 6 through
11 are the body of a for loop which obviously should be executed exactly 6
times. Clearly the bus error occurred during the sixth call to 'malloc ' •
Inspecticn of the argument to I malloc I shows that the argument to I sizeof I
returns the size of a pointer . This argument should be the size of the struc
ture. Repairing this by removing the extraneous I * I results in a running pro
gram, the basis for the next example.

Evaluaticn Example

This example results f ran the evaluaticn of a useful software package. I
have reduced the problem to its essence to form the example, keeping the file
and program structure faithful to the original. The package involves many C
files, which I have reduced to two for the example. In additicn there is one
header file included. The header file and the file I C. C I are given in listing
4 . The file 'd.d' is ShCMn in Listing 5 . The package ran correctly, but was
intolerably slow for lcng inputs . The example will show why. The evaluaticn
USing ODE begins by making a copy of all pertinent files in a directory for
the ODE evaluaticn. In this case I used the sutxlirectory I example I of the
directory I test I . I began by modifying the makefile to use I procc -CI • The
resulting makefile is given in Listing 1 . I then made the listfile named
' fnamesf ' in Listing 2 by changing all occurrences of 1 . 0 1 to ' . i ' . I next
instrllllented and ran the program. The script is given in Listing 6 . I keyed
the 'make system I and make responded with the invocaticns of I procc ' • I then
keyed I rm profile.lc ' to be sure that the standard statement count informaticn
file was removed, since the instrllllentaticn always a�ds to ' profile.lc ' .
Finally, I keyed ' prolc I lcp' to obtain the code coverage percentage report
by piping the statement count report produced by ' prolc ' directly into ' lcp' .

The report in Listing 6 shows a dismaying low percentage of code exe
cuted. In the entire system, only 65 of the executable statements were exe
cuted, the exact number being 13 executed and 7 unexecuted. In the first C
file, about 81 of the executable statements were executed. Within this file,
the routine ' process-pode ' had 2 statements unexecuted, the routine 'main' was
canpletely executed, and the routine ' post-tinish ' was not executed at all .
In the seccnd C file, there is only one routine, which was not executed. All
this suggests which routines to look for problems. The ODE filter ' lcf '
would enable one to look at one routine at a time. This example is short
enough, however , that I chose to look at the entire statement count report.
The report awears in Listing 7 and Listing 8. It has been split into two
listings since it is too lang to fit on one page.

The routine I main' begins halfway down Listing 7 . The routine builds a
list of 6 nodes containing informaticn. In this example the information is
simply the node number . In the system upon which the example is based, the
length and ccntent of the list depended upon the input. At the end of 'main' ,
the routine ' process-podes ' is called. This routine awears in the top half
of listing 5 . This routine was intended to process the information in each
node exactly once. However , the routine is recursively called, with a total

3 2 6

$ cc bad. c -0 bad
$ bad
Bus error (core dumped)
$ procc -C bad.c
$ rrn profi1e.1c
$ a. out
Cl.UE: Abnormal terrninatim with signal 19

Line counts saved.
$ prole
F /users/dbenson/test/examp1e/bad. i
c c991bad. i 9 struct node-list {
c c991bad. i 1 int node;
c c991bad. i 2 struct node-list
c c991bad. i 3 } ;
f process-podes 9 9 void
n process-podes 1 process-podes (list)
n process-podes 2 struct node-list
n process-podes 3 {
z process-podes 4 9
z process-podes 5 9

if (list=9)
return;

*next;

*list ;

n process-podes 6 /* obtain informatim fran node • • •
*/

z process-podes 7
n process-podes 8
z process-podes 9
z process-podes 19
n process-podes 11
z process-podes 12
n process-podes 13
f main 9
n main 1
n main 2
n main 3
x main 4
x main 5
n main 6
x main 7
(sizeof (struct node-list *» ;
x main 8
x main 9
x main 19
n main 11
n main 12
n main 13
z main 14
n main 15
z main 16
n main 17

Listing 3 .

}

while (list->next!=9)
{

}

process-podes (list->next) ;
list = 1ist->next;

returm

1 main () {
int i ;

1
1

6

5
5
5

}

struct node-list * head, *cur ;

cur = (struct node-list *) 9 ;
for (i=9 ; i<6 ; i ++)
{

}

head = (struct node-list *) ma110c

head->node = i ;
head->next = cur ;
cur = head;

/* other statements • • • */

process-podes (head) ;

3 2 7

$ cat c.h
tdefine NIL 9
$ cat c.c
#include "c. h"
struct node�ist {

int node1
struct node�ist *next1
1 1

void
process-podes (list)

{
struct node�ist *list 1

if (list NIL) {
postJinish () 1
return 1
}

/* obtain infonnatim fran node • • • */
while (list->next ! =NIL) {

process-podes (list->next) 1
list = list->next1

}

main () {

}

}
return1

int i 1
struct node�ist * head, *cur 1

cur = (struct node�ist *) NIL 1
for e i=B 1 i<6 1 i++) {

head = (struct node�ist *) malloc (sizeof (struct node�ist» 1
head->node = i1
head->next = cur 1
cur = head1
}

/* other statements. . . * / 1
process-podes (head) 1

postJinish () {
remove-pode�ist () 1

}

Listing 4.

of 32 calls. Noting that 2** (6-1) = 32, we guess that the nodes are actually
visited as if they formed a binary tree. The problem is in lines 19 and 12 of
' process-podes ' . One designer had decided the routine should recursively
traverse the list while another had decided to iteratively traverse the list.

3 2 8

$ cat d.c

struct node�ist {
int node:
struct node�ist *next:
h

removeJlode�ist (head)

{

}

struct node�ist * head:

struct node�ist * next:

while (head 1 =9) {
next = head-)next:
free (head) :
head = next:
}

Listing 5 .

$ make system
procc -C -c c.c
procc -C -c d.c
procc -C c . o d. o -0 system
$ rm profile. lc
rm: profile. lc nooexistent
$ system
$ prolc -1 fnamesf I lcp
Code Coverage x, z, x: (x+z)

/users/dbenson/test/example/c. i
processJlodes
main
postJinish

/users/dbenson/test/example/d. i
removeJlode�ist

Listing 6 .

13 7 65 .BB %

13 3 8l. 25 %
5 2 71 . 43 %
8 B lBB . BB %
B 1 B . BB %
B 4 B . BB %
B 4 B . BB %

'!be result was the unbelievably slow performance of the actual system for
lists of length 8 or more. This problem is repaired be replacing the 'while '
in line lB by ' if ' .

'!bere is another problem resulting fran the structure of this routine.
Since the execution of the while loop is dependent upon the existence of

3 2 9

$ pro1c -1 fnamesf
F /users/dbenson/test/examp1e/c. i
c c001c. i 0
c c001c. i 1
c c001c. i 2
c c001c. i 3
c c001c. i 4
f process-podes 0
n process-podes 1
n process-podes 2
n process-podes 3
x process-podes 4
n process-podes 5
z process-podes 6
z process-podes 7
n process-podes 8
n process-podes 9
x process_nodes 10
n process-podes 11
x process-podes 12
x process-podes 13
n process-podes 1 4
x process-podes 15
n process-podes 16
c c002c. i 0
f main 0
n main 1
n main 2
n main 3
x main 4
x main 5
n main 6
x main 7
(sizeof (struct node�ist» ;
x main 8
x main 9
x main 10
n main 11
n main 12
x main 13
x main 14
n main 15
c c003c. i 0
f post�inish 0
z post�inish 1
n post�inish 2

Listing 7 .

stroot node�ist {
int node;
struct node�ist *next;
} ;

32 void
process-podes (list)

struct node�ist *list ;
{

32 if (list=0)
{

0 post� inish 0 ;
0 return;

}
/* obtain informatioo fran node • • •

32 while (list->next ! =0)
{

31 process-podes (list->next) ;
31 list = 1ist->next;

}
32 return;

}

1 main O {
int i ;
stroot node�ist * head, *cur ;

1 cur = (struct node�ist *) 0 ;
1 for (i=0 ; i<6 ; i++)

{

*/

6 head = (struct node�ist *) mal10c

6 head->node = i ;
6 head->next = cur ;
6 cur = head ;

}
/* other statements • • • */

1 ;
1 process-podes (head) ;

}

o post�inish () {
o remove-pode�ist () ;

}

3 3 0

F /users/dbenson/test/example/d. i
c c005d. i
c c005d. i
c c005d. i
c c005d.i
c c005d. i
c c005d.i
f removeJlode-list
n removeJlode-list
n removeJlode-list
n removeJlode-list
n removeJlode-list
z removeJlode-list
n removeJlode-list
z removeJlode-list
z removeJlode-list
z removeJlode-list
n removeJlode-list
n removeJlode-list

0
1
2
3
4
5
0
1
2
3
4
5
6
7
8
9

10
11

Listing 8.

struct node-list {
int node ;
struct node-list *next;
} ;

o removeJlode-list (head)
struct node-list * head;

{
struct node-list * next ;

0 while (head! =0)
{

0 next = head-)next;
0 free (head) ;
0 head = next ;

}
}

another node in the list, ' processJlodes ' is never called with an empty list,
so the routine 'postJinish ' was never called on line 6 of ' processJlodes ' .
'!be routine ' postJ inish ' is at the bottan of Listing 7 . In the actual system
there was considerable cleanup activity. I have just shown the call to
' removeJlode-list' in the example.

The routine ' removeJlode-list ' is shown in Listing 8. This routine sim
ply frees the entire node list, preparing for another round of input. The
problems with ' processJlodes ' meant that it was never called.

'!be problem of failing to free all dynamically allocated storage hawens
in many software projects . · It is a source of subtle errors as well as the
frustrating out-of-memory error . With the increasing use of virtual storage,
it is often difficult to detect this problem wring evaluatioo. The CLUE
statement count report provides a s�le means to assure that all dynamically
allocated storage has been freed. The idea is straightforward : SUm the counts
of all calls to 'malloc ' , sum the counts of all calls to ' free ' , and canpare
the totals. Listing 9 is a sample shell script to do this. The statement
count reports are ' .scr ' files by CCI'lventioo, so the carmand line input to
' balance ' is just the project name. The shell script uses the stream editor
' sed ' to select just the lines of the report in which 'malloc' awears, plac
ing these in a ' .malloc' file. The shell script uses ' awk ' to carplte the sum
of the statement counts in the ' .malloc ' file. The ccmnand file for ' awk ' is
shown in Listing 10 .

A similar process is carried out for lines cootaining ' free ' • If the
totals are equal a pleasant message is printed and the extra files are

3 3 1

$ cat balance
: check that number of 'malloc' calls equal the number of ' free ' calls.
sed -n -e /malloc/p $l . scr >$l .malloc
mallocs= 'awk -f awktotal $l .malloc'
echo "mallocs : $ma1locs"
sed -n -e /free/p $l . scr >$l.free
frees= 'awk -f awktotal $l . free'
echo "frees : $frees"
if test $ma1locs -eq $frees
then

echo ' number of malloc calls equals number of free calls '
nn $l .mallocs
nn $l .frees

else
echo ' *** '
echo ' STANDAROO VIOLATIOO : number of malloc calls and free calls differ '
echo "

fi

echo 'mallocs : '
cat $l .malloc
echo ' ,
echo ' frees : '
cat $l . free

Listing 9.

$ cat awktotal
{ total = total + $4 }
END {print total }

Listing 10 .

removed. If the totals are not equal, a less pleasant message is printed and
the two files are listed for the evaluator . Listing 11 sharls the run of ' bal
ance ' 00 our example system.

The shell script ' balance' also illustrates the variety of tools avail
able in Unix to process text files such as the CLUE statement count report.
We have included several filters and generators in the CLUE package, but urge
each eValuatim group to develop additimal generators such as ' balance' .
'Ihese are easily written with the Unix utilities such as ' sh ' , ' sed ' and
' awk ' . Widely used generators will be incorporated in subsequent releases of
CLUE.

The CLUE filter ' lcf ' is used to select informatim fran the statanent
count report, reformat the statanent count report, and change the type keys to

3 3 2

$ prolc >system. scr
$ balance system
mallocs : 6
frees : B

STANDAROO VIOLATlOO : ntDnber of rnalloc calls and free calls differ

mallocs :
x main

frees :

7 6 head = (struct nodeJist *) rnalloc

z remove....nodeJist 8 free (head) ;

Listing 11 .

preferred characters. Listing 12 demonstrates these features. The command
line selects just the routine ' process....nodes ' via the -s flag. In addition,
we select just the type keys (ty) , a blank (b) , and the source line (sl) via
the -f flag. Finally, the type keys are translated via the -t flag. All the
type keys which type lines in a function definition are translated to blank,
except the ' z ' type key which is translated to ' * ' . The result is a code cov
erage report in which the unexecuted statements are conspicuous.

$ prolc I lcf -s process....nodes -f ty b sl -t f : n : x : z : *
void
process....nodes (list)

struct nodeJist *list ;
{

if (list=9)
{

* postJ inish () ;
* return;

}
/* obtain infonnation fran node • • • */
while (list->next l=B)
{

process....nodes (list->next) ;
list = list->next;

}
return;

}

Listing 12 .

Addi tional reports may be obtained fran the CLUE generators ' lct ' , ' lch ' ,
and the CLUE filter ' lcr ' . When considering perfonnance, we are partial to

3 3 3

reports which highlight heavily used statements. The filter ' lcr I selects a
range of counts, by percentage of the total counts, for highlighting. The
type keys wi thin the range remain I x I in the outplt of I lcr I while the type
keys of executed statements outside the range are changed to I pl . '!be result
is usually piped through ' lcf I to reformat before viewing.

In Listing 13 we have an example in which the most frequently executed
85% of lines are selected by ' lcr -lb 15 I (the lower bound of the desired
range is 15%) and the result piped to ' lcf I In ' lcf I the selectim is dale by
the type keys via the -k optim. The report keep; mly the I x I type lines.
In additim, the resulting report consists only of the functim name field
(fn) , a blank (b) , and the source line (sl) , on the carmand line after the -f
flag.

$ prolc I lcr -lb 15 I lcf -k x -f fn b sl
process-podes if (list==9)
process-podes while (list-)next!=9)
process-podes process-podes (list-)next) ;
process-podes list = list-)next;
process-podes return;

Listing 13 .

Of course in our example, almost all executians occur in the functim
' process-podes ' • All the remaining counts fall in the lowest 15% of all exe
cutians and ' lcr ' has cmverted the type key on these lines to I pl . So the
selectim in ' lcf I eliminates such lines fran the resulting report. In more
substantial programs, similar reports are often quite valuable and surprising.

Our last example is a call count report, given in Listing 14. Each type
I f I line in the statement count report begins a routine definition. Counts of
functim entries reported m these lines. We select the file name lines and
the functim header lines of the report via ' -k F f ' and reformat them as the
statement count (lc) , a blank (b) , and the functim name (fn) after the -f
flag. Notice that the file name lines are not reformatted. The result is a
report of the mnnber of times each routine was called, headed by the file in
which the routine is to be found.

$ prolc I lcf -k F f -f lc b fn
F /users/dbenson/test/example/c. i

32 process-podes
1 main
9 postJinish

F /users/dbenson/test/example/d. i
9 rernove-podeJist

Listing 14 .

3 34

There are still more uses for a properly designed statement count report.
'Ihe CLUE User ' s Manual describes several addi tiooal uses for the CLUE state
ment count report in cannectioo with the filters and generators. References
[1] and [2] present other uses of statement count profilers.

Design Criteria: Evaluatioo of CLUE

Foremost, a statement count profiler must provide accurate counts under
all conditialS , while maintaining the functiooality of the original code .

CLUE maintains the original functim of the code with a few insignificant
exceptialS : CLUE writes an additimal file for the profiling informatioo.
CLUE issues signals to trap all the terminating errors so that the profiling
informatioo file can be written before program terminatioo. Any signals
issued by the original code override the CLUE signals, so the original func
tion of the signal processing routines in the instrllllented code is maintained.
CLUE requires a working 'malloc ' to provide storage for the count accumula
tions . Thus the instrllllented code uses more storage than the uninstrumented
code. If the original code functimed correctly only in isolatioo with its
own pattern of 'malloc' storage allocatioo calls, then it is unlikely to func
tion correctly when instnmented by CLUE. I view this positively, since any
change to 'malloc ' is likely to cause such a program to stop working. SUch a
program is not robust.

CLUE provides accurate counts , again with a few minor exceptialS : state
ment counts of ooe billim (10**9) or more are reported as "infinity" in the
report. CLUE uses the ' sigalrm' alarm clock signal to time writes to the
profiling informatim file in order to guarantee accurate counts for programs
which run a very loog time. Each time the alarm goes off (currently set at 2£1
minutes) the counts are written out and the counts reset to zero. If the ori
ginal program uses the ' sigalrm' signal, this protectioo is lost and the
counters could cooceivably overflow, losing count accuracy. CLUE will report
counts of all forked processes provided all the descendant processes terminate
before the report generator is run. Finally, if CLUE is used to instrument
'malloc ' , the counts will include the uses of ' malloc ' by the instrumentation.
Similarly, if any of the other operating system services which CLUE requires
are instrumented, the counts will include the uses by CLUE. CLUE is designed
to functioo under the most stringent of conditialS. The experience to date
suggests that it does.

'!he second deSign criterim for CLUE was simplicity for users. While
simplicity is certainly a matter of individual judgement , we feel we have suc
ceeded in making CLUE easy to understand and use. The software engineer
instruments programs by using 'procc ' wherever ' cc ' is ordinarily used to can
pile C programs. After the executable image is run, the report is obtained by
invoking 'prolc ' . This suffices to begin using CLUE. The additiooal features
can easily be acquired as one uses CLUE by reading the oo-line manual pages
provided. The CLUE User ' s Manual cootains all the details, rut like most
manuals, tends only to be calSulted when unusual uncertainties arise. The
additimal features are specifically intended for the professiooal evaluator .
As need for yet further features arise, we intend to add such to later
releases of CLUE.

3 3 5

- - ------- -----------

Users have menticned that the use of the • i files clutters their direc
tories. A future release of CLUE will eliminate the . i files, simplif¥ing
CLUE at the expense of acXii ticnal time to nDl the report generator , ' prolc •

The last design cri tericn was speed. The instrumented code runs longer
than the original software. Long instrumented programs require about 120% of
the original time. Very short programs can take up to twice as long to run
when instrumented, as the profiling informaticn file write time daninates.
'!be counts are incremented only ooce per "block" of straight-line code to cut
down on the excess time due to the instnlnentatioo. This helps a bit, rut C
code rarely has loog sequences of statenents without a functioo call, and we
begin a new block after each functioo call. The majority of the excess time
is the result of writing the profiling informaticn file. Not much can be done
to improve the file write time while still maintaining the strict accuracy of
the statenent counts , the simplicity of use, and the clean directories.

Instrumenting C source with ' procc ' requires about two and one-half as
much time as just c�iling via ' cc ' , running under bsd 4.2. The ratio is
better when running under Eunice (tm The Wollogong Group) . We believe that
eliminating the . i file will improve the performance of ' procc ' .

While speed is awreciated, robustness and simplicity are our primary
goals. The software designer and evaluator will have little difficulty in
using the tool and will have confidence in the results.

Other Evaluatioos of CLUE

CLUE is regularly used to instrllllent itself . We have a regressioo test
suite of about 200 tests. Running the instrumented versioo of CLUE on the
regressioo test suite results in an eight megabyte ' profile. lc ' file. We use
the statement count report to determine what portioos of the code have not
been exercised � the regressioo test suite, and where the inefficiencies lie.
When a new release of CLUE is made, the regressicn testing statenent count
report may suggest new tests to cover the revised code.

CLUE is regularly used for much these same :r;urposes � software engineers
in other organizatioos . In general it has performed well over the last twelve
months. The largest system that CLUE has instrumented to date, as far as I
know, is a 1 90 , 000 line software product. CLUE failed to instrument two of
the modules because the block nesting of these modules was already near the
limit of the c�iler . CLUE adds acXiitional levels of block nesting to main
tain the original functiooality of tpe C code. On the remaining modules,
CLUE provided the required informatioo. Size is not an issue for CLUE, so
long as enough file space is provided.

A few faults with CLUE have been uncovered in the twelve mooths since the
conclusion of the beta testing. These have been reworked. Of course, test
cases for these faults have been added to the regressioo test suite.

Overall , the design seems to be awreciated by CLUE users. CLUE has
proved to be a robust and simple tool for debugging and evaluation. It is

3 3 6

well integrated into the Unix enviramtent, incorporating the Unix style of
simple programs which do ale thing well and which fit together easily. 'Itle
practicing software engineer and software evaluator will enjoy using CLUE and
have high cmfidence in the results.

AcknCMledgements

I heartily thank Doug Gregory, Keith Koplitz, Craig Thanas, Brian carlson, and
Clay Breshears for their work on CLUE. I sincerely appreciate the assistance
of Tektralics Logic DeSign Systems and DATA I/O in the beta test, and thank
the software engineers at both organizatioos for their aid and suggestioos. I
also want to thank Kelly Whitmill of Burroughs and Robert Wells of BBN for
suggestioos and patience.

Availability

CLUE is currently available for the Unix operating system varieties

bsd 4.1
bsd 4.2
Eunice

al VAX (bn DEC) hosts. Object and source licenses may be obtained only fran
the distributor :

oasys
69 Aberdeen Avenue
cambridge, Massachusetts 92138.

References

[1) J. L. Bentley, Writing Efficient Programs, PrenticeJlall, 1982 .

[2) L. R. Power , Design and use of a program executial analyzer , IBM Systems
Journal v. 22 (1983) , 271-294 .

3 3 7

BIOGRAPHY

David Benson

David B. Benson received his BS, MS, and PhD in engineering, science and
mathematics from the California Institute of Technology. He spent some time
in the defense industry designing information systems during this period.
Dr. Benson has taught at the University of North Carolina at Chapel Hill,
Washington State University at Pullman, the University of Colorado at Boulder,
and in 1983 was briefly at the University of Edinburgh in Scotland. Since
1979, David Benson has been Professor of Computer Science at Washington State
University. He has published over 30 professional papers and lectured in
Canada, Europe, Japan, and India. In 1984 he formed BENTEC, of which he is
a general partner, to provide high-quality software tools to the software
industry.

3 3 8 - �

stat ement

count

p rofiler

3 3 9

NE 8 1 S CAMPUS ST"EET
PULLMAN. WA " 1 83

CS081 332-3 1 84

1

C LU E
consists of

prolc
procc

and

lef lep

Ich Icr Ict

340

NE e 1 5 CAM"US STltEET

PULLMAN, WA " U S3

(5091 332-3 1 84

2

pracc
•

I nst ruments.

cOlnpiles
•

uSing your
C compiler.

3 4 1

NE 8 1 IS CAMPUS ISTltEET

PUU-MAN. W" . , 83

15081 332-3 1 '"

3

a.out

counts
appended to

profile.le

3 4 2

N E 8 1 5 CAMPUS STltEET

PULLMAN. WA W l 83

(!5091 332-3 1 84

4

prole
stateme n t
count
report

3 4 3

N E e 1 5 CAMPUS STftEET

PULLMAN. WA lKl l e3

11108' 332-31 M

5

. i files

libclue. a

-Iclue

344

N E 8 1 5 CAMPUS STREET

PULLMAN. WA H 1 83

(!5091 332-3 1 M

6

$ cat makefile
CFLAGS =
CC = procc -C

system: c . o d.o
${CC} c.o d.o -0 system

c.o: c . h

$ cat fnamesf
CFLAGS =
CC = procc -C

system: c. i d. i
${CC} c. i d . i -0 system

c . i : c.h

345

N E 15 1 5 CAMPUS STREET

PULLMAN, WA 89 1 153

(509) 332-3 1 84

7

cc bad. e -0 bad
bad
Bus error (eore dumped)
procc -C bad. e
rm profi1e.1e
a.out
CUJE: Abnormal terminatim with signal UJ

Line eOlU'lts saved.
prole
F /users/dbenson/test/examp1e/bad. i
e c991bad. i 9
e e991bad. i 1
e e991bad. i 2
e e991bad. i 3
f process�odes 9
n process�odes 1
n process�odes 2
n process�odes 3
z process�odes 4
z process�odes 5
n process�odes 6
z process�odes 7
n process�odes 8
z process�odes 9
z process�odes 19
n process�odes 11
z process�odes 12
n process�odes 13
f main 9
n main 1
n main 2
n main 3
x main 4
x main 5
n main 6
x main 7
sizeof (struct node-list *» ;
x main 8
x main 9
x main 19
n main 11
n main 12
n main 13
z main 14
n main 15
z main 16
n main 17

struct node-list {
int node;
struct node-list *next ;
} ;

9 void
process�odes (list)

struct node-list *list ;
{

9 if (list==9)
9 return;

/* obtain informatioo. fran node • • • */
9 while (list->nextl =9)

{
9 process�odes (list->next) ;
9 list = 1ist->next ;

}
9 return;

}
1 main O {

int i ;
struct node-list * head, *eur ;

1 eur = (struct node-list *) 9 ;
1 for (i=9 ; i<6 ; i++)

{
6 head = (struct node-list *) ma110c (

5 head->node = i ;
5 head->next = cur ;
5 cur = head;

9

9
}

}
/* other statements • • • */
. ,
process�odes (head) ;

346

N E 8 1 !5 CAM"U5 STREET

PULLMAN, WA 89 1 83

1508) 332-31 M

8

$ cat c.h
tdefine NIL B
$ cat c.c
.incll1de -c.h
struct nodeJist {

void

int node ;
struct nodeJist *next,
} :

processJlodes (list)

{

}

struct nodeJist *list ,

if (list==NIL) {
postJinish () ,
return,
}

/* obtain informatioo fran node • • • */
while (list->next 1 =NIL) {

process-PQdes (list->next) ,
list = list->next,
}

main () {
int i 1
struct nodeJist * head, *cur 1

cur = (struct nodeJist *) NIL 1
for e i=B 1 i<6 1 i++) {

head = (struct nodeJist *) malloc (sizeof (struct �ist» ,
head->node = i 1

}

head->next = cur 1
cur = head1
}

/* other statements . . . * / 1
process..Jl()des (head) 1

postjinish () {
remove�ist () 1

}

347

NE 8 1 IS CAMPUS ST"EET

PULLMAN, WA 89 1 83

(!509, 332-3 1 84

9

$ cat d.c

struct node-list {
int node1
struct node-list *next 1
1 1

removeJlode-list (head)

{

}

struct node-list * head1

struct node-list * next 1

while (head! =0) {
next = head->next 1
free (head) 1
head = next 1
}

3 4 8

N E & 1 S CAMPUS STRI!ET

PULLMAN. WA SKl U S3

(509) 332-3 1 �

1 0

make system
/users/dbenson/elue/sre/prooc -C -c e.e
/users/dbenson/elue/sre/prooc -C -c d.e
/users/dbenson/elue/sre/prooc -C e . o d.o -0 system
rm profile. le
rm: profile. le nonexistent
system
prole -1 fnamesf I lcp
Code Coverage x, z , x : (x+z) 13 7 65 . 00 %

/users/dbenson/test/example/e. i 13
process....Jlodes 5
main 8
postJinish 0

/users/dbenson/test/example/d. i 0
remove....JlodeJis 0

3 4 9

3
2
0
1
4
4

81. 25 %
71 . 43 %

100 . 00 %
0 . 00 %
0 . 00 %
0 . 00 %

NE 61 5 CAMPUS STREET

PULLMAN. WA 99 1 63

C�} 332-31 84

1 1

prolc -1 fnarnesf
F /users/dbenson/test/example/c. i
c c991c. i 9
c c991c. i 1
c c991c. i 2
c c991c. i 3
c c991c. i 4
f processJlodes 9
n processJlodes 1
n processJlodes 2
n processJlodes 3
x processJlodes 4
n processJlodes 5
z processJlodes 6
z processJlodes 7
n processJlodes 8
n processJlodes 9
x processJlodes 19
n processJlodes 11
x processJlodes 12
x processJlodes 13
n processJlodes 14
x processJlodes 15
n processJlodes 16
c c992c. i 9
f main 9
n main 1
n main 2
n main 3
x main 4
x main 5
n main 6
x main 7
sizeof (struct node-list» ;
x main 8
x main 9
x main 19
n main 11
n main 12
x main 13
x main 14
n main 15
c c993c. i 9
f post-tinish 9
z post-tinish 1
n post-tinish 2

struct node-list {
int node;
struct node-list
} ;

*next ;

32 void
processJlodes (list)

32

9
9

32

31
31

32

{

}

struct node-list *list ;

if (list=9)
{

}
post-tinish () ;
return;

/* obtain informatioo f ran node • • • */
while (list-)next l=9)
{

}
processJlodes (list-)next) ;
list = list-)next ;

return;

1 main O {
int i ;

1
1

struct node-list * head, *cur ;

cur = (struct node-list *) 9 ;
for e i=9 ; i<6 ; i++)
{

6

6
6
6

head = (struct node-list *) mal10c (

}

head-)node = i ;
head-)next = cur ;
cur = head ;

/* other statements • • • */
1
1

}

. ,
processJlodes (head) ;

9 post-tinish () {
9 removeJlode-list () ;

}

3 5 0

NE 6 1 5 CAMPUS STREET

PULLMAN. WA 99 1 63

(sag) 332-3 1 64

1 2

F /users/dbenson/test/example/d. i
c c99Sd. i 9
c c99Sd. i 1
c c99Sd.i 2
c c99Sd. i 3
c c99Sd. i 4
c c99Sd. i 5
f removeJlode-list 9
n removeJlode-list 1
n removeJlode-list 2
n removeJlode-list 3
n removeJlode-list 4
z removeJlode-list 5
n removeJlode-list 6
z removeJlode-list 7
z removeJlode-list 8
z removeJlode-list 9
n removeJlode-list 19
n removeJlode-list 11

struct node-list {
int node;
struct node-list *next;
} ;

9 removeJlode-list (head)

{

9

9
9
9

}

3 5 1

struct node-list * head;

struct node-list * next;

while (head 1 =9)
{

next = head-)next;
free (head) ;
head = next ;

}

NE 8 1 5 CAMPUS STREET

PULLMAN, W" 88 1 83

(509) 332·3 1 84

1 3

$ cat balance
: check that number of 'malloc ' calls equal the number of I free I calls.
sed -n -e /malloc/p $1 . scr >$l.malloc
mallocs= 'awk -f awktotal $l.malloc'
echo -mallocs : $ma11ocs-
sed -n -e /free/p $l. scr >$l.free
frees= 'awk -f awktotal $l .free'
echo -frees : $frees-
if test $mallocs -eq $frees
then

echo 'number of malloc calls equals number of free calls '
rm $l.mallocs
rm $l.frees

else
echo 1 *** 1

echo I STANDARDS VIOIATICN : number of malloc calls and free calls differ I
echo I I

fi

echo ImallOCS : I
cat $l .malloc
echo I I
echo I frees : I
cat $l.free

$ cat awktotal
{ total = total + $4 }
END {print total }

3 5 2

NE IS 1 5 CAMPUS ST"EET

PULLMAN. WA e9 1 1S3

(509) 332-3 1 154

�-- ---- -

$ prole >system. ser
$ balance system
mallocs : 6
frees : "

STANDARDS VIOLATlOO : number of malloc calls and free calls differ

mallocs :
x main 7 6 head = (struct nodeJist *) malloc

frees :
z removeJlodeJist 8

3 5 3

f ree (head) 1

NE II 1 !1 CAMPUS ST"EET

PULLMAN, WA H I 113

(5091 332-3 1 84

1 5

- --- -- - - ---- ---------------------.

$ prole I lcf -s processJl()des -f ty b sl -t f : n : x : z : *
void
processJl()des (list)

struct node-list *list;
{

if (list==0)
{

* postJinish () ;
* return;

}
/* obtain informatim fran node • • •
while (list->next l=0)
{

process-PQdes (list->next) ;
list = list->next;

}
return;

}

3 5 4

*/

NE e 1 5 CAM�US STREET

PULLMAN. WA 89 U I3

15081 332-3 1 64

1 6

$ prolc I lcr -lb 15 I lcf -k x -f fn b sl
processJlQdes if (list=e)
processJlQdes while (list->next l=9)
processJlQdes processJlQdes (list->next) ,
processJlQdes list = list->next,
processJlQdes return,

3 5 5

NE 8 1 S CAMPUS STREET

PULLMAN. WA 98 1 83

(see) 332-3 1 84

1 7

$ prole I let -k F f -f Ie b fn
F /users/dbenson/test/example/e. i

32 process�odes
I main
B posUinish

F /users/dbenson/test/example/d. i
B remove�odeJ.ist

3 5 6

NE IS 1 5 CAMPUS STREET

PULLMAN. WA 99 1 1S3

15(9) 332-3 1 84

1 8

CLUE
Simple to use

Clean directories

R OB UST

Evaluation reports

3 5 7

NE 8 1 5 CAMPUS STREET

PULLMAN. WA 99 1 83

CSOSll 332-3 1 84

1 9

"

,

� ,

TOOLS FOR PROBLEM REPORTING

Susan V. Bartlett
Metheus-CV, Inc .

Hillsboro, OR

r •

',-I
.
,

Ways To Track Problems

Benefits of Data Base Management Systems

Determining Your Needs

Example of Our Implementation

Choosing Your Own DBMS

..

-..

WAYS TO TRACK BUGS

1) Do Nothing

2) Manual Paper Systems

3) Design Your Own Computerized System

4) Use An Existing DBMS as a Base

WHY WE USE AN ON-LINE DBMS

• Central Locati on

• Instant Access

• Global View of Product Status

• Increases Visibility to Management

• Time Saving in Tracking Status

• Automatic Follow-up

r------- •

WHY WE USE AN ON-LINE DBMS

(continued)

• Problems Aren ' t Lost

• Formalizes Methodology

• Enforce Entry of Ne eded Information

• Faster to Apply Metrics , Reporting

• Data Entry Time Same as Paper (or less)
• Unique Number for Cross Reference

I
I

;. I

I DETERMINE YOUR NEEDS

• Look at the Big Picture

• What Are Your N eeds N ow?

• Try To Anticipate Future Needs

• Who Else Might Be Interested?

PROBLEM REPORTING SYSTEM FLOW CHART
Fi nd Probl em

User --__ >�

Ma nager >

E n g i n e e J" �

Eng . M9).
QA
M k t q .

Boa rd >

E ng i n e e r >

OA >

I npu t Probl em
Manager

As s i g n for
Anal yz i ng

Anal y ze &
Sugg e s t Ac t i o n

--->� Re port t o
Manage)"

--->� RepoJ"t t o
Eng i neer

--->� Re por t t o
Boa rd

De t e rm i ne P r i o r i t y ,
Ac t i o n , S c hed u l e

� Re pc:> r t t o
Eng I ne e r

P i x , De l e t e o r
De f e r (E n ha n c em e n t)

Re c o rd C l o s e d --->� Re po r t

Three types of reports are automatically
generated and mailed to assigned person:

SQL

1) Newly entered problems.

2) Problems to be analyze d.

3) Problems requiring actions.

AWK
scr i pt

Ma i l

ngure 8. Process Flow for Notification Program.

Users

OUR PROBLEM REPORT RECORD

DATA ENTRY SCREEN
• Release N urn ber
• Users View of Priority
• Description of Problem

ANALYSIS SCREEN
• Responsible Engineer
• Effort To Fix
• Analysis
• Recommendations

STATUS SCREEN
• Final Priority
• Activity and Engineer
• Target Date
• Complete Date

CHO OSING YOUR D . B . M . S.

• Set-up and Maintenance Utilities

• Query Language: On-line and Batch

• Access to Operating System

• Report / Formatting Utility

• Aggregate Functions (sum, count, avg)

• Pre and Post Processing of Data Entry

• Good Documentation with Examples

• Security

CHOOSING YOUR D . B . M . S.

(continued)
• Diagrams and Pictures

• Tie-in to Configuration Management

• Variable Length Fields

• Editing of Fields

TIME INVESTMENT

System Development and Enhancments

Develooment r-..J 1 00 hours

Add ReDorts 5 min. -> 4 110urs

Add New Record 2 days

System Monitoring

Monitor r-..J 1 hour I week

CCB Meetin£!s Varies

, ') J

BENEFITS

• Gives A Clear Picture Instantly

• Saves Time in Tracking Problems

• Automate Problem Tracking Procedures

• Reports are Easily Generated

• flexible, Easy to Implement and Change

• Allows Better Response to Customers

. J

�-- -- - -

Tools for Problem Reporting

Susan V. Bartlett

Project Leader for Software Test and Evaluation
Metheus-CV Inc.

Hillsboro. Oregon 97124

ABSTRACT

It has been said that all software has hugs. For companies in t.he softwa re busi
ness. this premise translates into a nee d for methods to deal with known prob
lems. The informal methods of word-of-mouth and paper memos have the disad
vantages of temporary (or permanent) lapses of memory. misfiling . and the
information being dispersed instead of being centrally available for querie s .

We have obtained a database management system which w e feel satisfies the
requirements of proble m reporting . problem tracking and problem follow-up .
This paper discusses our application of the DBMS and its many bene fits. The on
line database itself wlll be c overed. With the ease of defining and updatmg the
schema. Tools provided with the DBMS fulfill several needs: The definable screens
and menus allow an easy-to-use interface to those who need to input information
into the system. There is a choice of querying methods Which are used for
different levels of access. allowing users to see what problerns have been
reported and what their status is . along with other relevant information. We wi l l
present our use o f the report writmg system. along with the mterface L o lhe
operating system whic h allows acc ess to UNIXt mail and olhe r uti i it i e � .

t UNIX is a trademark o f Bell Laboratories.

3 59

Benefils of Error Reporting Systems

The benefits of error tracking systems are comprehensive. The fact that a system of
thi s sort exi sts i n a company indi cates the realistic acceptance of the fact that
errors can exist. The extent to which it is used and supported indicates the extent
of the company's understanding of the quality problem and their commitment to
maintenance of their product.

Ideally, a problem reporting system should include:

(1) A way to enter information which is easy to learn an(l use and thereby
encourage its use.

(2) A Corm which ctipLures till the informtiLion needed Lo reproduce tind eVi11utiLe
the problem.

(3) A way of assigning responsibility for the problem.

(4) A mechanism to confirm the problem.

(5) A mechanism to determine if the problem can be fixed and how.

(6) A mecharusm to determine if the problem should be fixed.

(7) A tickler system to keep the ball from droppi� .

(8) A way to make sure that the fix g ets to the customers (both to those who report
it and to future customers)

(9) A way to track the problem and determine its status at any time by anyone
allowed access to the information.

(1 0) Se curity to insure that only those allowed access to the information can get to
i t .

(1 1) A way to apply metrics to all the problems a s a whole i n a n effort t o reduce
problems in future products or determine the current "quality" of the produc t

(l2) Some way to determine the correspondence between changes to the product
and the problems reported (ie : these lines of code were changed to fix problem
number N. which was reported by . . .) .

The U nifyt Data Base Management System is the tool we have chosen to automate
our Problem Reporting System. It has the flexibility and integrated utilities that
allow fulfillment of mos t of the items in the wish list.

One of Lhe biggest beneflLs of Lhe DBMS is ils reporLi ng capabililies. The sysle m i::;
on line and real time and so allows the storage of reported bugs in a central location
for general queries, but also allows a person to have instant access to up-to-date
Ii ;) t ;) .'It 0 t r:-rmina.l or on hard r.opy.

Scm c Drawbacks to Problem Reporting Systems

There are several drawbacks to problem reporting systems.

(1) Some programmers are reluctant to report bugs because it is an admission that
their software is imperfect.

(2) Someone must monitor the system AND take responsibility for it .

(:1) T3ug � must be entered to be fixed.

(.�) A s with paper systems , managers and engineers must take i t seriously and pro
vide resourc es for maintenance to make it useful.

t Unify is a Trademark of Unify Corporation.

3 6 0

.

Definition of terms

Following are definitions for some common data base terms :

Field: The smallest significant unit in this data base. For example: "program name"
may be a field and would be of type string (characters) of length 16, and "telephone
number" would be a field of type numeric (integer) of length 10. (Note: DATE is a .
defined field type in Unify.)

Record Type: This is generally an entity which is comprised of related fields. For
example: we have a "Problem Report" record type. This consists of the definition of
all the fields which we considered necessary to provide complete information on a
problem.

Record: A record is an instance of the record type . It consists of the data which
describes the particular problem and it exists in the form described by the record
type .

Schema: Definition of the information to be stored in the data base. In this case,
the schema consists of the record types and the fields in each record type .

Query: We use this word to mean a description in a formal language (SQL) of the
type of information we want, based on stated restrictions.

Use of Screens and the Schema

We chose to make one record type for our released software and one for unreleased
software. Both record types consist of three categories of data: the submittal data.
analysi s of the incident and the current status of activities relating to the problem .

Figure 1 is an example problem report which has most of the fields represented.
Refer to it for the following discussion.

The first category is the submittal fields. These include most of the information
needed from the person who found or is reporting the problem.

Second. is the analysis fields: the information provided by the engineer aSSigned to
evaluate the problem. This can include what the engineer perceives the problems to
be . whether it is a problem. an enhancemenl or an improper use of lhe syslem, how
long it would take to fix the problem, and the engineer' s view of the priority.

The third category is what is determined In a Configuration Control Board (Cem
meeting . Members of the CCB are the managers of the engineering group. a person
representing QA and a person representing Marketing . They look at the engineer 's
evaluation of the problem. the customer 's perception oC the importance of the prob
lem. the engineering resources and the marketing priorities and come to an agree
ment on a status (bug. enhancement. duplicate or delete) . the final priority. an
action to be taken. a target date for that action to be completed and the person
responsible .

Defining the Configuration of the System

The next tew sections describe a little how easy it is to define the system you wish to
create. Please refer to the examples. Figure 2 is a picture of the system mainte
nance menu to give you an idea of what kind of utilities are provided.

3 6 1

--------�-- - � - - ---- -

M.th.u.-CV Con f i g urat i on Manag ••• nt St4 t ••
Prob l ... R . p ort

P r o b l .m R e p or t I : 327
Progra. N : c i '2p h l
R . I • • • • _ID: 3. 1 . pa

071 1 9/8'

R e . p . Oroup (. V . I '. / b . / s im/man) : b e
Companll (i ' anv) : MeV
Pr i or i tv (HOT/c" i t i ca l /.a J or l. i nor) : .a J or

Name o f Subm i t t . r : h oward
Oa t. o f Oc c urr.nc e : 08/07/84
Prob hll TV p . (b ug /.nh > : b u g
Prob hll Dup l i c at.d (1I /n) : II
Sup p or t i n g Docu •• n t . (1I /n) :

Su a"V : " c i f2p h l - 1 :50 -t '00" CO". d Ullp .. " c i f2p h l -1 :50 -t faa" d o • • n ' t.
Th. o p t i on. p a" • • r • •••• to b e b u g g V .
D • • c " i p t i on : I f th.". i . n o . p a c . aft.r t h e " - I " i n a c i f2p h l c OMmand l i n • •
t h e prog"a. can c or. d ump trll i n g t o r . a d t h e n. l t argum.nt a . a n i n t . g .r .

ANALYS I S SECTION

R e . p on s i b l e Eng i neer : J a V Ana l v s i s Da t e :
En g . P r i or i t v (c r i t i c a l /ma J orlmi n o r) : m i n o r
E f ' o r t t o F i x (manh o ur s) : 4
R e c ommen d e d Ac t i on - So f twa r e C h a n g e (V / n) : II

Man u a l C h a n g e (V /n) : n
De l e t e (n o t a b u g) : n
C h a n g e t o E n h a n c e m e n t : n

08/ 2 1 /84

Ana i ll s i s .
c i f 2 p h l .

T h i s i s a m i n o r p r o b l em w i t h t h e c omma n d l i n e o p t i on s i n
s h ou l d b e n o p r o b l em t o f i r

CCO STA TUS SEC T I ON
CCD Da t e : 08/2 1 /84

F i na l P r i o r i t v (c r i t i c a l /ma J o r / m i n o r) . m i n o r
C e D Ac t i on (' i x / e n h / d u p / d e l) · ' i x

Ac t i v i t y R e s p o n S I b I l i t y Ta r g l! t Da t e C o m p l e t i o n Oa t ",
s o.., twa r e ' i . J a y 1 1 / 1 5 /84 1 1 / 20 / 64

s o , tw a r e t e s t J a y 1 1 / 1 5/84 1 1 / 2 0 / 8 4

c h e c k - i n f or 3 . 0 J a y 1 1 /20/84 1 1 1 2 1 / 84
* * 1 ** 1 ** * * 1 ** / * *
* * 1 * * 1 ** * * 1 * * / * *
* * 1 ** 1 ** * * 1 * * 1 * *

C l o s u r e Da t e : 1 1 /2 1 /84

Figure 1. Example Problem Report

3 6 2

Schema Definition

The schema is easily defined just by typing in the name of the field, type of field and
descriptive name. Figure 3 shows what the on l ine entry screen for the schema
fields look like.

Enough space is allowed for the description to explain the field. It is a true rela
tional data base, and you may use combination fields to link up with a field in
another record type. Figure 4 shows the one page of the schema listing for the
problem report record type .

Screen Definition

Once you have what you think you want, a utility is provided to reconfigure the data
base and with that done , you can start defining your screens. Screen entry is quite
easy. You can let the system give you a default screen, or you can use the paint

+--+
[sysmenu] UNIFY SYSTEM

5 OCT 1 982 - 1 5 : 25
System Menu

1 . Schema Maintenance 9 . Da ta Base Test Driver

2 . Schema List ing 1 0 . KENUH Screen Menu

3 . Create Data Base 1 1 • KENUH Report Menu

II . SFORM Menu 1 2 . Reconfigure Data Base

'5 . ENTER Screen Registration 1 3 . Write Data Base Backup

I 6 . SQL - Query/DHL Language 1 11 . Read Data Base Backup

7 . SQL Screen Registration 1 5 . Da ta Base Maintenance Menu

8 . List ing Processor

SELECTION : 1 0
+--+

Figure 2. System Maintenance Mcnu

3 6 3

+---------------------------�--------------�--------------------------+
I [achent] UNIFY SYSTEM I
I 5 OCT 1 982 - 1 5 : 25 I
I Schema Maintenance r
I I
I RECORD : II&Dt I
I I
LN am FIELD KEY REF TYPE LEN LONG NAME COMB . FIELD I

I
t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t I

I
•• • " " " " . " " . " " " " " " tttt " " " " " " " " " " " .. ". ". " . . . ,, " " " " I
• • • " " . " . " .. " " " " " " " " " . " " " ,, . . " " . . . " . . " .. " ... " " ... ,, " " I
• • " " " " " .. " . " " " " " " " " " ." " ,, . . . " " " " . " " " "" ..
• • " " . " " " " " " " " " " " " " .". ". " " " . . " " . " " " ,, . " . " . . ,, " "
" " • "' .. " . " ,, . " . " " " " ,, .. " " . " " .. ". " " " " " " " . . ,, " " " " " . . " . ,, "
• • • " " " " " " " " " " " " " . " " . " " " " " " " " .,, " ... ,, " " "
" " " " " " " " " " " " " " " " " " . " " " " . ,, " " " " " " " " " " " " " " " " " " " . " " " " "
" " " "" " " " " " " " " " " " " " " " .,, " " " " " " " " " " " " " " " " " " " " " " " "" . " "
" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "" . " " " " " " " " ". " " " " " "
"" " " " " " " " " " " " " " " " " . . " " " " " " " " " " "

[N]ext page , [P]rev page , [A]dd l ine , or number al
+--+

• • t t • • • •
" " " " " " ""

-> field data entry area
-> field paging area

Figure 3, Field Data Entry

3 6 4

I p 1' 2000
* i p"no

. ubmtr
p rnm
r e l l d
r c omp
s u m l
s um2

d e . c l
d .s c 2
d • • c 3
d • • c 4
d e . c �
d e .c6
p"dt .
.n. l d t
· " e . p eng
eng p ,, 1
.... c h.ng .

DATE : 07/ 1 S/S� T I ME

RECORD/F I ELD

mp c h a n g e
d e l e t e
e n h
a n a l !
a n a 1 2
a n a 1 3
a n a l 4
a n a l :5
a n a l b
c c b d t
f' i n p r i
c c b a c t
a c t l
a c t 2
a c t 3
a c t 4
a c t 5
a c t 6
r e s p !
r e s p 2
r e s p 3
r e s p 4
r e s p 5
r e s p 6
t g t d t 1
t g t d t 2
t g t d t3
t g t d t4
t g t d t :5
t g t d t 6
c omo d t l

REF

NUMER IC
STR I Ng
STR I Ne
STR ING
STR ING
STR ING
STR I NG
STR ING
STR I Ng
STR ING
STR INe
STRING
STR ING
DATE
DATE
STR I NG
STR I NG
STR ING

20 : 42: 3 1

interim""pr
� p r _numb e"
S submi t t.r_nam.

20 pr ogT a m_name
a r e l e a s e_i d

24 r p t g _c omp a n �
7 0 s ummar � _l i n e l
7 S s ummar � _ l i n e2
66 d e s c r i p t i on l
78 d e . c r l p t l on2

78 d e sc r i p t i on3
78 d e sc r l p t i on4
78 d . s c r i p t i on�
78 d • • c r l p t i on6

P" _da t e
ana l � . l ._d a t e

8 r • • p on. i b l ._eng
8 .ng l n • • r • ...,Pr l
1 s o f twar._c h ang e

SCHEMA REPORTS
Sc h ema Li s t i n g

TYPE

STR I NG
STR I NG
STR I NG
STR I NG
STR I NG
STR I NG
STR I NG
STR I NG
STH I NG
DATE
STR I NG
STR I NG
STR I NG
STr� I NG
STR I NG
STR I NG
STR I NG
STR I NG
STR I NG
STH I NG
STR I NG
sm I NG
STR I NG
STR I NG
DATE
DATE
DATE
DATE
DA TE
DA TE
DAT E

LEN LONG NAME

m a n p a g e _c h a n g e
1 d e l
1 en h an c emp. n t

69 a n a l y s i s !

78 a n a l y s i s 2

78 a n a l Y 5 i s 3
78 a n a l y s i s 4
78 a n a l y s i s ::'·
78 a n a l y s i s 6

c c t. _d a t e

8 f i n a l _p r i o r i t �

3 c c b _a c t i IJ n
32 a c t i v i t y l
32 a c t i v i t � 2
3 2 a c t i v i t y 3
32 a c t i v i t y 4
32 a c t i v i t \1 5
32 a c t i v i t y 6

8 r e s p !

8 r e s p 2

8 r e s p 3
8 r e s p 4
8 r e s p 5
8 r e s p 6

t a r g e t _d t l
t a r g e t _d t 2
t a r g e t _d t 3
t a r g e t _d t 4
t a r g e t _d t :5
t a r g e t _d t b
c omp l e t e d t l

Figure 4. Schema Listing

3 6 5

facility. Figure 5 is an example from the Unify Tutorial Manual which shows a default
screen built with a record type which has three fields.

The default screen lakes all the fields in the record type and using lhe long name for
the prompt, puts them in columns on the screen.

The paint facility lets you enter your own prompts and field positions anywhere you
wish. It uses commands similar to vi, the screen oriented editor in Unil¢. For exam�
pIe : 'a' is to append, 'w' moves you across the line by word, and 'q' is quit. Figure "6
is the listing of the status screen for our problem report. It took about an hour to
enter this screen in paint.

When you finally have it the way you want it, you register it by executing another
utility and start entering data.

+--+
I [manf]

I number
I name
address :

UNIFY SYSTEM
5 OCT 1 983 - 1 5 : 25

Manufacturer Maintenance

[I]NQUIRE , [A]OO , [M]OOIFY , [O]ELETE a
+--+

Figure 6. Default Screen Example

* Unix is a Trademark of Bell Laboratories.

3 6 6

o I 2 3 4 � 6 7

0 1 234 56 7890 1 234567890 1 234 567890 1 2345678901 234567890 1 234567890 1 234567890 1 23456789

(j
-, L

3

SCREEN FORMATTER
SCREEN LAYOUT

p r s ta t u s

� PR .. P r o g r am Nam . : I
:. Summ.1l r 'l

c c n Oa t e ,
S F l n a l P n o r l t 'l (C Y' l t i c a l /ma J o r / m i n o r) : I
� c c n A c t i o n < f i l / e n h / d u p / d lP l l

1 0 * * S t a t u s .* I
1 1 A C t l v l t �
1 2
1 .3
1 4
1 '5

1 e
1 '7
1 6
I .. C l o s u r e Oa t e
20
2 1

R lP s p on s i b i l i t "
I
I

R e . p . Qrou p : I

Targ e t Da te C omp l e t i on Da t e
I I
I I
I I

I
I
I

---------------:

: 0

: 1

: 2

: 3

: 4

: �
: 6
: 7

: 8

: 9

: 1 0

: 1 1

: 1 2

: 1 3

: 1 4

: 1 5

: 1 6

' 1 7

: 1 8

: 1 9

: 20

, 2 1

: 22

: 23

0 1 23456 7�90 1 2345b 78q0 1 23 4 56 7890 12345b7890 1 234 5678901 2345678901234567890123456789 '

Figure 6. Problem Status Screen

Changing the Schema (Schema maintenance)

Generally. once you've designed a data base and the n starte d usi� it. you find lots
of things that you want to c hange The re i s ve ry l i tLie d i ffic u lty in mainLa i nmg th i s
data bas e , Changing it i s even easIer than de An ing I l : jus l modify t h e s c hema by
d e l eting . adding o r c ha ng i ng the fi e l d you want . The n reconfig u re the d a la base and
you are done . The screen is c hanged in a similar manner: delete o r add the field and
re- reg ister the s creen,

Input

Data input is accomplished by one of two means : mput throug h t h e screen you j llst
built or through a data base load (batch me thod) wl uch uses asc i i ti le:,;, The only
rules you have to remember for input through a screen is thaL car riag e return gets
you Lo the next field and <control > U gets you bac k . When I n d Oll bt. < control > L
like c razy and you wil l g e t out .

3 6 7

Querying and Report Ji'eature

The querying feature is a very powerful tool. It is an implementation of the IBM
Sequel(SQL) relational inquiry and data manipulation language based on an F.ngl ish
keyword syntax. Together with the report writer (RPT) it' s just about all you need to
get whatever information you want out of the data base.

You can query on any field, match keywords, ranges, etc. The results of the query
can be dumped to the screen, a unix tile , or a printer, or you can write a C program
or shell script and pipe it through any utility you like .

Figure 7 is an example of what kind of queries can be generated.

It is a Bourne shell script (batch command processor program on Unix) which
echoes SQL syntax into a temporary tile based upon the user' s choices and then exe
cutes that shell script and pipes it through the report formatter and to the printer.
This lS executed Crom a menu within the Unify environment. This is only one of
several ways that this type of report can be done. There are actually eaSler ways,
but this was an early attempt and one easily copied.

Using Unix ulililies

We use 'awk' scripts (a pattern scanning and processing language) and Unix mail to
notify or remind people of the action items which have been assigned to them. Fig
ure 8 is a diagram which demonstrates the process flow.

We have three different kinds of mailings. The first queries the data base for all new
problems (those not assigned to anyone) and then divides them up by development
group and m ai l s off a report to each m an ager informing them of the new prob l e m s
and ask that they assign someone to each one.

The second m ai l i ng l ooks at what reports have not yet been analyzed by an engi neer ,
but have been assigned. Mail is then sent to the assigned engineer with the mforma
Lion of which problems need to be analyzed by them.

The last mailing queries for all the action items which have been assigned to some
one and which have not yet been completed. It sends to the aSSigned engineer a list
of the problems which have actions aSSigned to them as a reminder. It also sends to
each manager, the entire lisL of open action iLems assigned La Lheir group. This is
all run once a week. Emergency bugs go through this process as well but are gen
erally expedited with a walkthrough by the concerned party. To keep things from
getLmg lost m a black hole, all the Items which have not been assIgned, analyzed.
been through a CCB meeting or are incomplete with past due target dates are put
together on a report once a week and go to the CCB meeting.

ThE: possibilities are mostly limited by the resources you wish to tie up in deve lop
ment to enhance the problem reporting system

Administrative Problems

As usual . there were some who found fault with our system. One of the perceived llm
italions was the fixed field lengths. To have a description which will accommodate a
loL of data, you would have to define a large amount of space in the record type j ust
t o give space to the few who n e e d i t . We have just l i mi t.e d our d e scri ption t.o s i x l i ne s
on the screen and encourage use of ascii Unix tiles in a related directory for any

3 6 8

. c h o

. c h o

. c h o " Th i s r . p art brinl • • c a.p l . t . c a p v a' t h e r.card. vau h.v. c h a •• n to t h . "

. c h a " l in. p r int.r. Yau .. v h.v • ••• rch •• •• d . w i t h the ' a l l awinl ' .V . : "

. c h a "Pralr •• n ••• , r •• pan� i b l . IrouP' r •• p on. i b l • • n l i n •• r, "

. c h o ".nd prob l ••• wh i c h ".v. 'or h.v. not b •• n ' i •• d e b ••• d on c l o . ur. d.t.) . "

.clla

. c h a "Wo u l d VOU Ii •• to .p.c i ' V • prolr •• n ••• e p n) , r •• pon. i b l . IroUp e rl) , "

. c h o "r •• p on.ib l • • nl i n •• r C .nl) ' . 1 1 prob l ••• C. l l) •

. c h o -n " or wou l d ,au l U . to ,u.i.�C')? • r •• d c h o i c •
• c h o
i f t •• t Sc h o i c • • • ,. I th .n

. . U
.1 ••

f l

c p I p fu l l • • l p f u l l . i
. c h o · P l iii· ... '·.,.c U V · if ';ou w.rit proU ••• · r. p ort . wh i c h .r. c l o u d I c 1) "
. c h o -n · C i . : ' i • • d .nd ch.c • • d i n) or not c l o •• d lnc) or b o th C b) :
r •• d . t.tu.

i' t • • t S c h a i c . - ·pn · I th.n
.cho
. c h o -n ·PI •••• • p . c i ' V prolr • • na • • d •• i r . d C .g . p h i . .. , s c h .) :
r . a d prOI
prag-, 'sprol'·"
c a •• s.t.tu. i n

• • a c

·nc·") . c h a wh.r. pralr.lII_n ••• - Sprag .nd c 1 osur._d t \ < 1 1 1 /80
· c l ") .cho wh.r. prolr •• _n ••• - Sprag and c l a. ur._d t \ ;. 1 / 1 / 90 I
.) .cha wh .r. pragr.lII_na •• - Sprag I » I p f u l l . I

. I i f t •• t ac h a i c . - -.ng " I th.n
. c h a
. c h a -n " P l • • • • • p .c i 'V r • • p an . i b l • • n g i n • • r l l ag i n nam.) ·
r.ad n •••
nam.-" Sn ••• '.\ '
c • • • sstatu. i n

• • • c

"nc ·) .cho wh.r. [[r . s p an s i b l ._eng - Sn ••• and a n a l � . l . _d . t e \
. c h a r.s p l - sn ••• or r • • p2 = ana •• or r e s p 3 : .nam� :
. c h o or r.sp4 - anam. or r e s p S • • name or r e s p 6 = s n a m _]
. c h o and c l o s ur._d t \< 1 1 1 190 I » l p f u l l i . .

" c l · ' .cho wh.r. [r e sp a n s i b l ._.ng = aname or �) I p f u l l 1
e c h o resp l - an ••• or r •• p2 • ana •• or r •• p3 - snamq
. c h o or r . s p 4 - Sna •• or r •• pS • an.m. or r e 5 p 6 - a n a m * l
. c h o .nd c l o s ur._d t \> 1 / 1 /80 I » I p f u l l . i ; • •) . c h o wh .re [r . s p ans i b l ._eng - an.me or » l p ' u l l i
. c h a r e . p l • an •• e or r • • p2 • aname or r • • p3 • • n a me
. c h o or r • • p4 - an.m. or r . s p S • aname or r e s p b • aname l

. I i ' t . s t ac h a i c • • c h a
. c h a -n · P l • • • e .p.c i fV r.sp ans i b l . graup l sv s . ' e , b • • 5 i ,. . man)
r •• d rgroup
r g r a up-\ 'argroup \."
c . s . a.tatus i n

• • • c

"nc ·) .cho wll .r. ,. •.• p n_liroup - srgroup and c l osure_d t \< 1 / 1 i80
" c l U j . c h o wh.r. r •• p n-lroup

.
- srgraup .nd c l o . u r e _d t \) 1 / 1 / 80

.) . c h o ",h.r. r . s p n_group • Srgroup I >:> I p ' u l I . i
. l i f t . s t ac h a i c . - "a l l " , t h en

. l s.

f l
. c h a

C . 5 e S s t.tu. i n

. c h a

"nc O) . c h o wh.r. c l asur._dt \< 1 / 1 /80 I » l p f u l l . I ; ;
" c l U j .cho wh.r. c l o sur._d t \> 1 / 1 /80 I » l p fu l l . i ; ;
.) .cho I » I p fu l l . i

. c h a ·You h.ve not .nt.r.d • v. l i d c h o i c •• p l • • • • trv .g. 1 n .

. I i t

. c h a [runn i n g] SOL. I p fu l l . i I RPT fro rp t - I l p r

Figure 7. Example Script for Generating Reports

3 6 9

SQl

AWK

scri pt
Ma i l

Figure 8. Process Flow for Notification Program

Users

additional doc umentation. This also enc ourages short desc riptions which are t o the
poi nt , which are usually more desirable I have found that maybe 1 of 30 re ported
problems really need more spac e . We overcame this problem by providing a direc
tory for any additional documentation ne eded to desc ribe the problem.

Also there are no editing c apabilitie s on a field unless you p rogram l t in. Thus if you
make a typing mIstake , you have to retype the whole field instead of jus t edi ting t he
mistak e s . This is irritating but not disastrous since none of the fields are larg er than
one screen line (80 c haracters) .

The last perc eived problem is that there doesn' t seem to be a way to chang e scre ens
an d keep working with the same record, without g oing t hrough the process of back
i ng out to the menu, choosing the menu and the mode of operation and the problem.
w(� have not yet found a wdy , althoug h we be lieve t.he problem can be solved t hrough
the optionill progrilmming .

I low Much Time Do I Have To Devote?

To design and implement this syste m including le arning Unify took around 100
hours. 1 would estimate that t o maintain this system on a minimal basis has Laken
an ilverage of one hour a we e k or less. To monitor the data e ntered is tnvial due to
the rcport i ng capabilities of Uni fy . It ' s a matte r of reading a report and ac ting on
t hr. i nformat ion

Wri tmg a new report is a func tion of what is already the re. If the output format i s the
<: il.m e , then I t m ight. take two mi nute s to devise an SQL script to pull the I n form ation
out that you want. On the other end of the scale , to put to�e ther a report for a new
rec ord typ e , it will probably take four hours or more depending upon the c omple xity

3 7 0

"
of the information you want.

Concerning enhancements. I just added a new record type to our data base. It took
me about two days (1 6 person hours) to enter the schema. set up the screens and
set up one report.

The only other time consuming item left is CCB meetings. This is probably the most
time consuming part of the system (besides actually fixing the bugs) because every
one has to discuss the problem. But it is likewise an important function because of
the ideas it generates and the awareness of how the system as a whole functions as
well the need for maintenance plans. This can take an hour a week if you have one
meeting and run it efficiently or an hour a week per engineering group. depending
on how you wish to schedule the meetings.

Conclusion

We have found the Unify DBMS system with the Unix access to be invaluable tools.
Time saving in problem status tracking alone has probably amounted to the work of
one full time person or more. When the tools are not used bugs seem to get lost.
The ftexibility of a good DBMS allows for changes like added projects, added fields,
and varying reporls as needs change.

This system provides a good record of the current status of projects, in terms or
quality, and provides up-to-date information to customers and managers alike.

Good tools do exist, and good use can be made of them. However, they are
ineffective without a joint commitment from management and engineering to pro
duce a quality product.

3 7 1

BIOGRAPHY

Susan Bartlett

Susan Bartlett joined Metheus Corporation in 1983. Previously she worked with
a software testing group at Johnson Controls after receiving a BS degree in
computer science at the University of Wisconsin at Madison. She is the project
leader for software test and evaluation at Metheus-CV, Inc., Hillsboro, Oregon.

3 7 2

