

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 1

Collaborating with Students to Produce
High-Quality Production Software

Sean Murthy, Andrew Figueroa, Steven Rollo

murthys@wcsu.edu, figueroa039@connect.wcsu.edu, rollo003@connect.wcsu.edu

Abstract
Agile and DevOps processes are generally considered beneficial to collaboratively producing high-quality
software. Thus, employers currently seek people with skills in these two areas, even for entry-level
positions which new Computer Science (CS) graduates often fill. However, undergraduate CS programs
generally only provide opportunities for students to practice core CS concepts in simple classroom
exercises and projects, instead of providing immersive experiences. Industry internships do expose
students to real-life development and maintenance (often with emphasis on maintenance), but interns
rarely experience the entire product life cycle; many do not even get to see the “big picture”.

In this paper, we share the experience of a hands-on co-curricular lab where students learn many
practical aspects of collaboratively building high-quality production software alongside faculty members.
The important bit is that the process of learning and practicing is itself agile-like, in the sense that
students are incrementally taught concepts and given opportunities to realize hands-on why a certain
process step is necessary and what some of the alternatives might be.

The lab was founded by a faculty member and has thus far engaged 12 CS undergraduate students
including sophomores, juniors, and seniors. The faculty member generally moderates discussions and
introduces new concepts, but no distinction is made among any team member based on their standing
(faculty or student). The lab is not part of any coursework, and all participation is voluntary. The lab has
thus far developed two products, but this paper focuses on just one product—called ClassDB—and
provides the perspectives of the faculty member and two student collaborators.

The following is a summary of the lab's progress in ClassDB: Development began in Summer 2017 with
pre-production versions released throughout summer, and the first production version released by the
term’s end. 20 students used the software during Fall 2017, and 20 more used it in spring after a major
update in winter. The software is rolled out to about 50 students this fall and is being prepared for use by
about 4,000 students across the university system. All source code, tests, issues, and documentation are
available in a public GitHub repository at http://bit.ly/ClassDBRepo.

Biography
Dr. Sean Murthy is a member of the CS faculty at Western Connecticut State University (WCSU) as well
as the founder and director of the Data Science & Systems Lab (DASSL, read dazzle). He has extensive
experience in software engineering and has developed several commercial software products including a
few for Fortune 100 companies. Andrew Figueroa is a CS undergraduate student at WCSU presently in
his senior year. Steven Rollo graduated from WCSU in Spring 2018 with a BS degree in CS and is now
employed at Fiber Mountain. Prior to graduation, Rollo completed two internships in software engineering
and systems integration at Seagate Technology. Murthy, Figueroa, and Rollo are all members of DASSL
where they co-develop ClassDB, Gradebook, and other products.

Copyright Sean Murthy, Andrew Figueroa, Steven Rollo. 2018. CC BY-SA-NC 4.0.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 2

1 Introduction
In the past few years, the software-engineering industry has seen rapid and extensive changes in tools,
approaches, and more importantly mindset. The changes are due to an explosion in the number of tools
that boost accessibility, productivity, and software quality. They are also due to improved access to
reliable information on technology, tools, and processes, as well as due to wider adoption of agile and
DevOps processes in both engineering and management.

Due to these changes, employers are naturally seeking people with skills in newer tools and approaches
and expect employees to have or develop an "Agile and DevOps mindset", even in entry-level positions
which new Computer Science (CS) graduates typically fill. However, universities have yet to change their
programs to meet employers' needs, largely because they focus on teaching core CS concepts such as
programming, algorithms and architecture. In fact, a typical undergraduate program requires students to
complete just one course in software engineering. Some programs offer courses on software quality, but
only as an elective. CS 320 at Whitworth University is one such elective course (Whitworth University
2018).

A common limitation of most undergraduate CS courses is that they can only afford to have students
practice simple exercises and projects, instead of providing an immersive experience. Students who
obtain industry internships do get exposure to real-life development and maintenance (often with
emphasis on maintenance), but they rarely experience the entire product life cycle. In fact, many interns
report they did not get to see the “big picture”.

We believe the typical undergraduate CS program is structurally unable (at least presently in the US) to
prepare new graduates to fully contribute to products and processes in this "agile era". We fear that the
new graduates' inability to fully and readily participate results in delayed hiring, and the delay can create a
vicious cycle where the graduates fall behind more as time passes.

Our solution to this problem is a hands-on co-curricular lab to introduce undergraduates to practical
aspects of building software, including an introduction to a lightweight “Agile and DevOps process”. The
emphasis is on faculty and students collaborating to build, deploy, document, and maintain high-quality
production software. (See Section 2.2 for a definition of terms.)

The solution was conceived by, and is led by, a CS faculty member (the first author of this paper) as part
of the Data Science & Systems Lab (DASSL, read dazzle) (DASSL 2017b) at Western Connecticut State
University (WCSU). The lab runs throughout the year, with special sessions in summer and winter.

Since its founding in Spring 2017, DASSL has engaged 12 undergraduates, including the second and
third authors of this paper. It has developed two products, including ClassDB (DASSL 2018a) which is
now in production for about 50 students, with plans to soon open it to about 4,000 students across four
universities and 12 community colleges in the Connecticut State Colleges and Universities system. Also,
including this paper, DASSL has thus far produced four peer-reviewed publications (Murthy 2018b,
2018a; Murthy, Figueroa, and Rollo 2018), two of which have student co-authors.

More importantly, each participating student has an online portfolio that readily demonstrates their accom-
plishments to prospective employers. Indeed, DASSL alumni report that their lab participation has given
them a competitive edge and that employers have appreciated their familiarity with modern software-
engineering processes and toolchains. (Section 6 provides some examples.)

In this paper, we share our experience with faculty-student collaboration to build and maintain high-quality
production software at DASSL. We mainly use ClassDB to provide examples and share our perspectives
as significant contributors to DASSL.

The rest of this paper is organized as follows: Section 2 introduces ClassDB and DASSL as well as some
terms. Section 3 outlines the educational and engineering processes used at DASSL. Section 4 highlights

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 3

the “team culture”. Section 5 describes DASSL’s effort specifically in two areas to maintain high quality.
Section 6 provides personal perspectives of each author, and Section 7 summarizes the paper.

2 Background
This section provides some background about the ClassDB application and DASSL, and also introduces
some terms. The information about ClassDB is limited to the needs of this paper, but details are available
elsewhere (DASSL 2018a; Murthy, Figueroa, and Rollo 2018). Also, later sections of this paper add
details.

2.1 ClassDB

Instructors can use ClassDB in teaching courses where students interact with databases. It can be used
in both introductory courses where students learn to write queries, and in upper-level courses where
students perform analytics and other advanced data-management activities. In addition, ClassDB itself
provides many case studies for data management and software engineering courses, as evidenced in
WCSU courses CS205 and CS305 (WCSU 2013).

Instructors use ClassDB to provide database sandboxes to students and student teams. Each student
has full control of their own sandbox. Likewise, each student team has its own sandbox and all team
members have full access to their team’s sandbox. No student is able to read another student’s sandbox,
but an instructor can read any sandbox. Instructors can also consult the detailed activity logs ClassDB
maintains to review student progress and analyze the logs to provide customized feedback to students.

Task API call
Add ‘edwall’ as a student SELECT ClassDB.createStudent('edwall', 'Ed Wall');

Create team ‘dragon’ SELECT ClassDB.createTeam('dragon');

Add ‘edwall’ to team ‘dragon’ SELECT ClassDB.addToTeam('edwall', 'dragon');

List currently registered
students

SELECT UserName FROM ClassDB.Student;

List activity summary for ‘edwall’ SELECT * FROM ClassDB.getUserActivitySummary('edwall');

List my DDL activity (any user) SELECT * FROM public.MyDDLActivity;

Table 1: Example calls to ClassDB API

ClassDB runs entirely within a server instance of a database management system (DBMS). Unobtrusive
by design, its existence is ordinarily not apparent to any DBMS user, including instructors, but especially
to students. It includes no user-interface elements (UI) and is usable through its application programming
interface (API) from any pre-existing DBMS client application. The ClassDB API includes about 100 func-
tions and views, a majority of which are accessible to instructors and a few are accessible to students.
Table 1 shows some example calls to the ClassDB API.

ClassDB is implemented in PostgreSQL (“Postgres”) using SQL with procedural extensions (PostgreSQL
Development Group 2017). The current version of ClassDB—Version 2.2—is comprised of 2,788 lines of
code (LOC) indicating that ClassDB is not a small application, given it is implemented in a declarative
language: 2,788 LOC in SQL translates to between 11,152 LOC and 27,880 LOC in the C programming
language according to Caper Jones’s Programming Language Tables (Wallshein 2010; Jones 2007).

The core of ClassDB is built using the following DBMS concepts: schemas (each sandbox is a schema),
role-based access control, triggers, and server logs. The use of role-based access control (Ferraiolo and
Kuhn 1992) is particularly important to simplify the system implementation but still provide the safeguards
necessary to maintain both data privacy (no student can see another student’s data) and data integrity
(not even the instructor can alter student data). Contrary to what the small LOC count might suggest, the
use and careful choreographing of these concepts makes ClassDB a relatively complex system.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 4

2.2 DASSL

DASSL is a research group with broad focus on data science and data-intensive systems, including the
creation and maintenance of software applications in these areas. Much of the work at DASSL is in
collaboration with CS undergraduates. (WCSU does not have a graduate CS program.)

Membership is open to all WCSU faculty and students. Students wishing to join are generally expected to
have completed CS205 (an introductory data-management course), and most students who have com-
pleted CS205 will likely also have completed CS140 and CS170 (WCSU 2013) which introduce Java and
C++ respectively. In this scheme, students are able to join DASSL after their 3rd semester, but due to a
variety of reasons, students are more likely to join after their 4th semester. Some students have even
joined DASSL in their senior year.

The first author of this paper is the lab director and is involved in all lab activity. The other two authors are
charter student members of DASSL and have been involved in most DASSL activities to date.

Participation in DASSL is not part of any coursework, and all participation is voluntary. Students do not
pay any fee or receive academic credit, and the faculty member does not receive any pay. When funds
exist, some students receive a small stipend if their role includes helping the lab director run DASSL.

DASSL builds non-trivial applications that address real needs of real end users, with emphasis on end-to-
end engineering including analysis, design, development, testing, documentation, deployment, and
maintenance. Most DASSL products are free and open source, and are generally distributed under a
Creative Commons Attribution-NonCommercial-ShareAlike license (Creative Commons 2013). As a rule,
all work products are stored in GitHub repositories (DASSL 2017a), with many repositories being public.

2.3 Quality orientation

We now introduce key notions of quality that drive software development at DASSL. Specifically, we intro-
duce the terms in this paper’s title: “collaborating with students to produce high-quality production
software”.

By “collaborating with students”, we mean both faculty members and students working as a team using
tools and processes comparable to those used in professional software development. Specifically, both
faculty and student members are expected to participate in all software-development activities and
subject their work to the same quality-assurance processes.

By “production software”, we mean:

• Software meant for use by people other than its developers, and actively used by others beyond the
semester or year in which the software is initially released.

• The development process has clear activities of design, implementation, testing, documentation, re-
lease, deployment, and maintenance.

• Software is developed and maintained with a process and fervor comparable to what a company in the
business of producing such software might use and possess. This criterion is particularly important
because one of DASSL’s goals is to introduce undergraduates to practical aspects of building
software.

By “quality software”, we mean software that is useful, usable, and maintainable. We omit discussing the
usefulness aspect of ClassDB, because that is not this paper’s focus. By usability, we mean ease of de-
ployment, operation, and maintenance. By “maintainable”, we mean low effort to find and fix issues as
well as to make enhancements.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 5

By “high-quality software”, we mean software that has few issues that prevent it from being useful,
usable, and maintainable. At this point, we have not defined quantitative limits for the number, nature, and
severity of issues that define “high quality”, but we are in the process of developing a simple model.

3 Processes
In this section, we outline the educational and engineering processes at DASSL.

3.1 Educational

Summer and winter sessions: In addition to regularly scheduled meetings throughout the academic
year, DASSL holds special sessions during summer and winter breaks. Students state their intent to join
these sessions 1-2 months prior and discuss previous experience, interests, and availability with the lab
director.

DASSL has thus far held three special sessions:

• Summer DASSL 2017 lasted six weeks and engaged eight students. It entailed 6-hour in-person meet-
ings four times a week for six weeks, for a total of 144 hours (the equivalent of three university
courses).

• Winter DASSL 2018 ran for two weeks and focused on developing ClassDB 2.0. It involved two
returning students and two new students.

• Summer DASSL 2018 was 10 weeks long with three returning students and two new students. The
main focus was to create ClassDB 2.1 and 2.2 as well as work on conference publications and
presentations.

Meetings: DASSL holds occasional meetings to keep track of progress, share ideas, and provide an
open environment to discuss project concerns. A majority of the meetings are online, which is particularly
helpful during summer and winter. During the academic year (fall and spring terms), DASSL meets in-
person once a month. These meetings discuss topics relevant to DASSL and also discuss issues in
DASSL products.

DASSL Day: DASSL students publicly present their work once a semester. In addition to helping
students develop skills in technical and scholarly communication, this event serves as a recruitment tool
for new students, and a means of informing university administrators of the lab’s progress and
contributions.

Agile-like learning: Students are introduced to key concepts and tools in an agile-like manner that em-
phasizes iterative learning through practical scenarios rather than initial mastery of the theory. Because
there are few concrete requirements to join DASSL, none involving prior knowledge of specific tools, an
agile learning process is essential to reduce onboarding time and allow students to start contributing
early.

3.2 Engineering

Milestone-driven development: Prior to starting development on a project or a product’s release, an
informal list of desired topics or features is created as a wiki page (DASSL 2018e). The list is discussed,
refined, and expanded (with links to additional wiki pages if necessary). Once consensus develops, the
list becomes a “to do” list for a new “milestone” and is assigned a completion date and the resulting
product version number. These milestones function much like “sprints” in a traditional agile process. The
wiki page for ClassDB Milestone 2 (DASSL 2018c) illustrates our approach.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 6

Issue-driven development: Issues are logged and managed in GitHub Issues (DASSL 2018b). Each
issue is classified by nature (wrong, missing, extra) and priority (low, medium, high). Where appropriate,
issues are grouped into “epics”. (ZenHub 2018b, 2018a). Section 5.2 details our issue-management
process.

Developers self-assign issues to work on and generally choose the next pending issue with the highest
priority. However, students new to DASSL tend to work on “easy to address” issues such as those
needing changes to a single region in a single file. Regardless of issue classification, all changes
committed to the repository are tagged with issues so that both issues and changes can be traced to
each other.

Version control: We require every artifact—both code and non-code—to be under version control. To
further ensure that work-in-progress does not interfere with a previous release, we use the GitFlow
strategy (Driessen 2010) and maintain two long-lived branches named “master” and “dev”. The master
branch contains only code that is released, whereas all work-in-progress is maintained in the dev branch
or in a sub-branch of the dev branch. Once a milestone’s tasks are complete, the dev branch is merged
into master, and that commit is tagged as a “release”.

Pull Requests: Pull requests (PRs) are GitHub’s mechanism to let a contributor inform other contributors
that they wish to merge changes in their own branch into another branch. We require PRs to merge
changes to the master or the dev branch on the server (DASSL 2018d). All PRs require approval from at
least two other contributors, but it is common for all team members to review every commit. Every PR is
expected to leave the dev branch stable with exceptions clearly noted in PR comments and discussion.

Code reviews: We review all code and non-code artifacts, including test scripts, prior to merging into the
dev branch. Examples of issues identified in reviews include repeated and overly-verbose code,
typographical errors, formatting inconsistencies, and unclear internal documentation. This attention to
detail often results in many revisions and review cycles, but we have found these cycles to be very
productive and illuminating for both the submitter and the reviewers. Also, frequent commits, each with
meaningful and incremental changes in an “agile” fashion, make reviews easier and more productive.

Testing: We require any code that implements new functionality to include corresponding unit tests, and
code that modifies existing functionality to also update existing unit tests. We also require that all code
revisions pass both existing and new unit tests after the dev branch is locally merged into the branch of
interest. Both the code submitter and all reviewers perform these tests in their own local repositories as
part of code review. Presently, unit tests are run manually, and we are investigating test automation.

In addition to unit tests, we also have a separate test suite which performs a full system test on the
privilege levels that each kind of ClassDB user has.

Agile-like development: The combination of short development cycles, milestone-driven development,
and issue-driven development has the effect of causing incremental changes to the product. Table 2
shows a summary of activity for each version of ClassDB. The data for versions 2.0 and 2.1 shows the
number of PRs match almost one to one with the number of issues addressed (defects fixed plus
enhancements made). The table also reflects the conscious change we made from Version 1.0 to 2.0 to
reduce the number of issues addressed in each PR.

 V1.0 V2.0 V2.1 V2.2 V1.0 V2.0 V2.1 V2.2

Commits 355 204 234 60 Tables 3 4 3 3

Branches 51 30 21 14 Attributes 34 34 15 15

Pull requests 52 29 23 14 Functions 25 59 84 85

Defects addressed 62 31 11 5 Views 0 14 16 16

Enhancements NA 2 12 7 Triggers 2 6 7 9

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 7

 Table 2: Activity across ClassDB versions Table 3: Number of ClassDB objects by type

Table 3 illustrates an effect of our agile-like approach on the functionality added with each release of
ClassDB, using the number of database objects as a proxy. The significant increase in the number of
functions and views from Version 1.0 to 2.0 is mostly due to the large number of API shortcuts added to
slice user activity logs, all of which are based on just three functions and one view. The significant drop in
the number of table attributes from Version 2.0 to 2.1 is due to a persistent table being replaced with a
temporary table as part of improving product quality.

Figure 1 shows how LOC is distributed across production and test scripts, clustered by product version.
The significant increase in LOC from Version 1.0 to 2.0 corresponds to the growth in the number of
functions and views. Section 5, specifically the discussion related to Table 4, further analyzes the data in
Figure 1.

Figure 1: Distribution of LOC in ClassDB by file purpose (production and test), clustered by version

4 Team Culture
We now share the ethos consciously practiced and improved at DASSL. These are the principles that
guide DASSL and enable its progress.

Mindset is a skill; the team is a product: As outlined in Section 2.2, students join DASSL any time be-
tween their sophomore year and senior year, leading to a large variation in skill levels among them. Thus,
DASSL aims to help students develop a mindset they can use to produce high-quality work regardless of
their skill level. This is done by encouraging a strong team culture where everyone has equal standing
and anyone can take leadership of any task. Also, all members are free to (and are encouraged to)
participate in the planning, development, and review process of any part of a DASSL product.

Acknowledge others’ contributions and provide feedback: Team members are encouraged to interact
with other members in a collaborative manner, providing honest suggestions, concerns, and
complements as appropriate. This discourse is aided by GitHub Issue and PR systems which allow
members to give feedback on others’ work. ClassDB PR #214 (DASSL 2018d) is an example of this
approach in practice.

Document everything: Everything is documented: code via comments, function usage and API in docs,
data and software design, development methods, design rationale, and so on. This effort is aided by the
ClassDB Wiki (DASSL 2018e) which allows any contributor to easily create and update docs.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 8

The “documenting everything” approach greatly improves productivity. Because there are large time gaps
between development cycles, the extensive documentation allows contributors to quickly refresh their
memory, both in terms of how ClassDB works (external docs) and what the code does (internal docs).	

Think first, code later: DASSL strongly encourages discussing and planning changes prior to coding.
We have several examples of practicing this philosophy, including large-scale changes that have been
discussed for days or weeks before implementation.

An example is the addition of disconnection activity logging to ClassDB in response to Issue #206
(DASSL 2018b). At its core, this enhancement required a single line of code that changed a Postgres
configuration parameter, but several other changes were needed to fully implement disconnection
logging. After an extensive analysis of the issue, we concluded that the best approach was to add several
new columns to a particular table. In the process, we identified several additional issues such as NULL
constraints on one of the new columns which required special attention to porting data in existing
ClassDB installations. By identifying such issues prior to implementation, we were able to come up with a
robust design that helped us easily add new features and also upgrade existing ClassDB installations.

Focus on building systems, not on writing programs: Although students develop core CS and
programming skills at DASSL, end-to-end engineering is the DASSL objective. An example of this
approach is our effort to maintain a property called idempotence in all ClassDB scripts which allows a
script to be safely run any number of times. Running an idempotent script for the first time makes all nec-
essary additions and modifications but re-running does not make additional modifications or cause errors.

In addition to greatly reducing testing effort, script idempotence is beneficial to users because it permits
easy installations and updates without having to remove any existing installation, and it is generally more
forgiving than non-idempotent code. Further, maintaining idempotence improves code quality because it
increases our awareness of what each line of code does.

Code like the world is watching (because it is): We expect to display not only our final product, but the
discussions and processes we use to get there as well. Posting code in a public repository and using
various GitHub features to discuss and comment our decisions compels us to be conscious of our actions
and decisions. For example, we closed ClassDB Issue #233 due to its changes being outside the scope
of the current milestone, but we left the discussion public so all could see the reason behind our decision.	

Always be learning, adopting, and adapting: Every member of DASSL is encouraged to continuously
learn new tools, methods, and then to use their learning to address new issues as well as to improve
existing solutions. This approach has helped us adopt new tools and methods throughout the
development of ClassDB. For example, during the development of ClassDB 2.0, we quickly evaluated
GitFlow and switched to it from a standard Git workflow. Similarly, when the university provided us
Microsoft Teams (Microsoft 2018), we quickly evaluated it and incorporated it into our process starting
with ClassDB 2.1. 	

Reciprocal, equitable, and voluntary participation: These three participation traits play a large part in
successful teamwork at DASSL. All three traits are evident in practically every ClassDB issue and PR, the
discussion on ClassDB Issue #206 being particularly demonstrative:

• Reciprocal: Team members respond to initiatives from others and return favors when helped by
others.

• Equitable: On the whole, every team member adds equal value. Members adding too little may be
viewed as not contributing their fair share; those adding too much could be perceived as dominating.

• Voluntary: Every team member willingly participates in team activities and does not feel they are being
forced.

Reciprocal and equitable participation occasionally adds a bit more work to all team members, but in our
experience, it also tends to produce better solutions faster, keep every team member more aware of the
product details, and generally strengthens the sense of team and teamwork.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 9

5 Focus on Quality
In this section, we discuss two specific aspects of our effort to produce high-quality software.

5.1 Maintainability

At a high level, DASSL emphasizes the following code characteristics and enforces them during reviews:

• Function and block structure: Organize code into functions and blocks; avoid lengthy functions.
• Code format: Choose identifier names to reflect their purpose; consistently indent code.
• Code chunks: Write code in chunks; perform one related task in each code chunk; keep chunks small.
• Comments: Comment each code chunk; say something that is not obvious in the code.
• External documentation: In the documentation, describe every API entry point available to end users.
We now present a brief quantitative analysis of LOC data to illustrate the impact of enforcing the code
characteristics outlined. We use data generated from the FOSS counting tool cloc (Danial 2018) in this
analysis.

Table 4 presents a summary of the number of files and LOC in production scripts broken down by version
and line type. The Count section of Table 4 shows the raw number of files and lines, with values in
parentheses showing percentage growth over the previous version. For example, the number of code
lines grew 96% Version 1.0 to 2.1, but it grew only 40% from Version 2.0 to 2.1.

The Distribution section shows the proportion of each line type: Generalizing across versions, 59% of all
lines are code lines (not comment or blank); 21% of lines are comments; and 20% of lines are blank. The
Ratio section provides an alternative view of this distribution showing that across all versions, the source
files contain one comment line and one blank line for approximately every three code lines.

Table 4 quantitatively supports our approach to writing code in small chunks and commenting chunks.
The consistency of the ratios across four versions also shows the consistency of our coding and review
practices. It is important we note that we did not set out to consciously arrive at the specific ratios seen in
Table 4. In fact, this data was gathered for the first time only after ClassDB 2.1 was released.

The Density section of Table 4 shows the average number of lines of each type per production script, with
the minimum and maximum number of lines shown in parentheses. Although the average values indicate
small files, which in turn point to higher maintainability, the value ranges indicate the existence of “heavy
hitters”. Indeed, an analysis of Version 2.1 shows that just four scripts contribute 66% of all code lines
and provides us a list of candidate files to refactor. However, refactoring files can be non-trivial because
that also requires refactoring unit tests, and potentially documentation as well in some cases. It will also
likely change the dependencies between scripts and thus require a revision to the product installation
process.

 Version 1.0 Version 2.0 Version 2.1 Version 2.2
Count (growth % from previous version)
Files 12 23 (90%) 24 (4%) 26 (8%)
Code lines 978 1915 (96%) 2699 (40%) 2788 (3%)
Comment lines 350 729 (108%) 972 (33%) 1031 (6%)
Blank lines 249 646 (159%) 869 (34%) 898 (3%)
Total lines 1577 3290 (108%) 4540 (38%) 4717 (4%)
Distribution: % of total lines
Code lines 62% 58% 59% 59%
Comment lines 22% 22% 21% 21%
Blank lines 16% 20% 20% 20%

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 10

Ratio of non-code lines to code lines
Comment to code 1 per 2.8 1 per 2.6 1 per 2.7 1 per 2.7
Blank to code 1 per 3.9 1 per 3.0 1 per 3.1 1 per 3.1
Density: average LOC per file (also min-max LOC)
Code lines 82 (4-284) 83 (2-347) 112 (2-610) 107 (2-610)
Comment lines 29 (7-64) 32 (8-134) 41 (8-163) 40 (8-152)
Blank lines 21 (3-69) 28 (4-109) 36 (4-184) 35 (3-184)
Total lines 131 (14-417) 143 (16-590) 189 (14-957) 181 (13-936)

Table 4: A summary of LOC data for ClassDB production code (corresponds to the first cluster in Figure 1)

5.2 Issue Management

We now present how we organize issue reports to help us analyze product quality and prioritize work.

We expect team members to log every potential issue they observe and require each issue report to
include the following parts (the first three parts are required):

• Title: For defects, the title concisely describes the problem; for enhancements, it states the
requirement.

• Description: The description clearly states the problem and where possible include links to the issue
location. We also encourage submitters to include proposed solutions in issue descriptions.

• Nature: Each defect is classified as Wrong, Missing, or Extra (or a combination). Enhancements and
non-issues are explicitly tagged as such. We use issue nature to summarize how many defects are
addressed and how many enhancements are made in a release. (See Table 2.)

• Related issues and PRs: Citations that tie the issue to other issues or PRs so the issue can be ad-
dressed comprehensively.

As part of issue management, the lab director assigns the following additional information to each issue.
We do not prevent any member from changing any of the assigned metadata, but prefer (and encourage)
all members debate any assignment in issue threads before changing the metadata:

• Priority: The urgency (high, medium, low) with which the issue needs to be addressed.
• Milestone: The product milestone in which the issue is to be addressed.
• Pipeline: A coarse-grained issue bucket, a feature available in ZenHub.

We presently do not assign severity and effort estimate to issues, but we are incrementally introducing
these and other concepts to the team.

As summarized in Table 2, we have thus far addressed 118 issues in ClassDB, including 104 defects and
14 enhancements. However, we emphasize that the count of 104 defects does not indicate poor quality,
because only 42 of those defects are logged after the first release, and none of those defects have been
“show stoppers”. In fact, to date, we have seen only one issue (Issue #200) in the deployed system that
prevented the use of a part of a system. We consider this a “low severity” issue because it did not impact
the overall system functionality or usability, and its occurrence required a power outage, disk crash, or
other rare event. Yet, we addressed this issue as high priority because it prevented the use of a particular
function an instructor is likely to perform frequently.

6 Perspectives
We now present individual perspectives of the three authors about their experience at DASSL. The writ-
ing in the rest of this section is intentionally in first-person singular.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 11

6.1 Andrew Figueroa (student)

DASSL presents its members with unique opportunities to analyze, build, and maintain data-intensive
systems in ways that are not possible in a classroom environment, or even an industry internship. Much
of what leads to this has been described earlier in this paper. However, one aspect not yet mentioned is
that by participating in DASSL, students such as myself are given real responsibility of a major project.

Classroom experiences are an inherently “sheltered” environment: instructors generally have a solution in
mind and can provide detailed feedback when students are headed in the wrong direction. Tasks have a
specific set of requirements that must be met. Additionally, there is only one element at risk if an attempt
goes wrong: a student’s grade. Although grades are an important aspect, the effects of a single failed
attempt are often remedied by the ability to make multiple attempts and by the weight of other
assignments.

However, experiences at DASSL differ in that there is no immediately clear potential loss: all work
performed is voluntary, ungraded, and not as time-sensitive as in a classroom. However, this is replaced
with the responsibility of collaboratively undertaking research or developing a system that will undergo an
actual publication or release. A mistake could result in the whole group having to later lose precious time
fixing it. Even worse, some mistakes could result in major research efforts being for nothing, or security
vulnerabilities in production software. Additionally, at least for our software projects, the entire process is
publicly viewable. At times this fact is stressful, but this is also a significant part of what makes the whole
experience as educational and enjoyable as it is.

Responsibility, among the other aspects of DASSL’s culture, encourages me to always gradually improve
as opposed to simply meeting the requirements (which for the types of projects implemented in DASSL,
are usually either non-concrete or are set by us in the first place). The effects of this encouragement can
be seen through the consistent quality improvement of code, documentation, and discussions in ClassDB
contributions in which I have been involved.

One of my early contributions to ClassDB was Commit 494ed85 as part of PR #9. Although I had a basic
understanding of using Git and GitHub, this commit shows several practices I now avoid, such as a non-
specific subject line and including multiple unrelated changes in a single commit. Also, this PR itself has
several issues such as having over 50 commits with major changes to a script and changes to unmen-
tioned files. Contrast this PR with the later PR #92 in which all included commits were related to each
another, had descriptive subject lines, and each commit made just one significant change. PR #92 also
includes a detailed description of the changes made, their effects, and potential situations where the
changes may behave unexpectedly.

Beyond developing software products, DASSL has encouraged me to participate in writing several papers
that summarize the work done at DASSL, including this paper. I would otherwise have not even
considered writing any academic papers during my undergraduate years. Beyond helping to further
develop my understanding of the topics at hand, these papers have presented me with several
opportunities that I would otherwise not have even imagined having, not the least of which being
attending and presenting at an ACM conference in London, UK (Murthy, Figueroa, and Rollo 2018). Prior
experience presenting new topics to other DASSL members and presenting DASSL work to other
students and faculty at WCSU helped prepare me for this international conference and led to it being a
success.

6.2 Steven Rollo (student)

I strongly feel DASSL helped me develop a competitive software-engineering skillset by providing op-
portunities to participate in challenging real-world projects. Learning the modern software-engineering
practices described in this paper is attractive to any employer because modern workflows are based
around these tools and techniques. While it is possible to grasp basic tool usage in the classroom, devel-
oping mastery requires practice in real-world scenarios.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 12

DASSL provides a unique opportunity for students to extensively learn and practice a full range of
software-engineering techniques with strong emphasis on teamwork and team communication, which I
found to be particularly valuable. Prior to my participation in DASSL, I put little effort into developing an
effective teamwork skillset. Between never being assigned group work in class and only working on
relatively small personal projects, it felt unnecessary to develop these skills. The Summer 2017 session of
DASSL placed a large emphasis on effectively documenting work, communicating issues, and developing
a working relationship with other team members. Learning these skills allowed me to function effectively
in the team projects I participated in at DASSL.

My experience at DASSL also shows that learning these skills requires practice and is evident in the pro-
gression of my work at DASSL. For example, large improvements in clarity can be seen between Issue
#18 and Issue #243 I logged respectively during Milestones 1 (2017) and 3 (2018) of ClassDB. The title of
Issue #18 (“The object name should be recorded in the student table on sql_drop events”) is relatively
unhelpful. Also, the problem stated in the issue description is only tangentially related to the title. Overall,
though this issue does contain helpful information, it failed to communicate the actual problem effectively.
In comparison, Issue #243 is much more effective. This issue’s title explicitly states what exactly is wrong
with the product. The issue description then provides a diagnosis of the problem, an example of what
causes the problem, and three possible solutions. I was able to gain the ability to communicate in such a
mature way only due to the practice from my experience at DASSL.

I feel these improvements in communication skills greatly helped me when I looked for a job after
graduating from WCSU. My ability to communicate effectively has made me more confident about my
ability to work on a team, instead of just being a lone programmer. When interviewing for a job, I was able
to easily convince others that I have experience working in an agile environment. Additionally, I was able
to quickly grasp the workflow of the department I was interviewed at, which allowed me to make a more
informed choice about my suitability to work there.

6.3 Sean Murthy (faculty member)

I believe the student perspectives in Sections 6.1 and 6.2, and similar feedback from other students,
testify to DASSL’s effectiveness in preparing students for software-engineering careers by helping them
learn and practice modern tools and processes of software engineering. I am pleased to lead this effort.

I feel my experience in commercial software development as well as my experience teaching a variety of
CS topics have been helpful in leading DASSL. The following factors have also played a significant role:

• Spend much of summer and winter breaks with students: I spend about 80% of the break with
students.

• Work long hours, about 8 hours a day: For example, I spent about 115 hours on just development and
management of ClassDB 2.0 (over 5 hours a day). In addition to product development and
management, I customize plans for each student because every student learns differently and is
motivated by different things. I also meet each new student member one-on-one about one hour each
week.

• Lead by example: Participate in every aspect of product development and management; submit own
work for review; share critical review of own work to set a model for students and to make students
feel comfortable enough to submit their work for review.

• Earn and maintain student trust: Always have student interest in mind and practice it visibly in both
words and deed. No action or activity should hurt students’ main purpose of being at a university. No
activity can be solely to the benefit of a faculty member unless separate and appropriate employment
terms are negotiated with students.

• Continuously learn new tools and techniques.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 13

I feel the DASSL process is repeatable but is not necessarily scalable or easily sustainable because It
takes considerable amount of time to provide high-quality mentoring while also producing high-quality
work. Also, DASSL tasks are in addition to publication, teaching preparation, administrative tasks, family
time, and other commitments that need equal or greater attention.

The following factors are also potential hindrances to scalability and sustainability:

• Small student pool: Many students are interested in the benefits of DASSL, but few are able to spend
the necessary effort, largely because they need to work or they do not live on or near campus.

• Different engagement mode for new members: Online meetings can help enlarge the student pool, but
intense daily in-person meetings are necessary for new students. Additional online engagement with
seasoned students requires additional time and energy on the part of faculty members.

• Large portfolio: The lab needs to start a new product or module about every two years in order to
expose students to different stages of product life cycle, which results in a large product portfolio over
time.

• Short engagement and availability: Engagement is only over summer and winter breaks, and students
spend at most four term breaks in DASSL, which results in frequent changes to the team composition.

The following actions can address the aforementioned challenges to scalability and sustainability:

• Increase faculty participation: Small faculty size makes additional faculty participation hard. However,
different faculty members can (and do) organize DASSL-like effort. For example, Dr. William Joel in-
volves students in his Graphics & Interactive Technologies Research Group at WCSU (Joel 2010).

• Maintain “anchor students”: Anchor students are those with commitment to quality and have the
industry to learn a variety of topics. It is especially helpful if anchor students join the effort soon after
their third semester so they are around to gain extensive practice which they can use to lead sub-
projects and semi-independently assist new student members.

• Offer paid positions: Paid positions recognize students who contribute significantly to the cause. They
also permit students to continue in the lab instead of pursuing “non-tech jobs” elsewhere for
sustenance.

• Raise funds: Stipends can increase both faculty and student participation, but stipends obviously
require funding. Funding can realistically be from prospective employers who stand to gain from these
efforts.

• Add an “engineering bent” to the academic program: Most CS courses rightfully focus on
programming, algorithms, architecture, and other core concepts. Yet, there is scope for introducing the
concepts of requirements, design, milestones, and other engineering aids early in the academic
program. I use this approach for term projects in the CS205 and CS305 courses I teach (WCSU
2013).

• Offer an early “DevOps” course: A course targeting 4th-semester students to introduce topics such as
version control, testing, issue management, and continuous integration can be quite helpful. Such an
early course provides students additional opportunities to practice “DevOps” in labs and in later
courses in the academic program. I am scheduled to teach such a DevOps course in Spring 2019.

In short, the continued success of DASSL and similar efforts requires support from university
administrators and the industry. The combined effort can improve the quality of CS education and of
software in the large.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 14

7 Summary
Employers expect employees to possess an "Agile and DevOps mindset" and produce “high quality”
software using sophisticated tool chains. Increasingly, they do not exclude even new CS graduates from
this expectation. However, undergraduate CS programs are structurally unable to produce new graduates
who meet this requirement. Hands-on co-curricular labs can fill this gap by introducing students to key
aspects of building high-quality software and help meet employer expectations. Alternatively, employers
will likely prefer new graduates who possess these skills over those who do not.

Being such a hands-on lab, since Spring 2017, DASSL has infused 12 undergraduates with many of the
modern skills and the mindset employers seek. It does so by engaging students in every stage of the
product life cycle using much of the same processes and tools professionals use. In the process, students
collaborate with faculty members to build and maintain non-trivial products that meet a relatively high
standard of quality. As illustrated in Sections 2-5, ClassDB is one such high-quality product DASSL has
produced.

Efforts such as DASSL are reproducible and repeatable, but are not easily scaled or sustained. Their con-
tinued success depends on a sustained “critical mass” of compatible students, and on faculty members
with significant experience building high-quality production software. Also, both faculty and students need
to spend (or lose) considerable amount of time, energy, and money outside regular academic
commitment. Small changes in CS programs and support from administrators and industry beneficiaries
can address these and other impediments.

8 Acknowledgments
We thank the faculty and administrators of Western Connecticut State University, particularly the CS de-
partment, for encouraging DASSL. We thank Kevin Kelly, a student member of DASSL, for assistance
with compiling some of the data included in this paper. We are also thankful for the generous educational
licensing policies of GitHub and ZenHub. Finally, we thank the reviewers of this paper for their feedback
on drafts.

References
Creative Commons. 2013. “CC BY-NC-SA 4.0.” Creative Commons - Attribution-NonCommercial-
ShareAlike 4.0 International. 2013. https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.

Danial, Al. 2018. Cloc. https://github.com/AlDanial/cloc.

DASSL. 2017a. “DASSL GitHub Repositories.” GitHub Organization. 2017. https://github.com/DASSL.

DASSL. 2017b. “Data Science & Systems Lab Home Page.” 2017. http://dassl.github.io.

DASSL. 2018a. “ClassDB Documentation.” 2018. https://dassl.github.io/ClassDB/.

DASSL. 2018b. “ClassDB Issues.” 2018. https://github.com/DASSL/ClassDB/issues.

DASSL. 2018c. “ClassDB Milestone M2.” 2018. https://github.com/DASSL/ClassDB/wiki/Milestone-M2.

DASSL. 2018d. “ClassDB Pull Requests.” 2018. https://github.com/DASSL/ClassDB/pulls.

DASSL. 2018e. “ClassDB Wiki.” 2018. https://github.com/DASSL/ClassDB/wiki.

Driessen, Vincent. 2010. “A Successful Git Branching Model.” January 5, 2010. https://nvie.com/posts/a-
successful-git-branching-model/.

Ferraiolo, David F., and D. Richard Kuhn. 1992. “Role-Based Access Controls.” National Computer
Security Conference 15: 554–63.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 15

Joel, William. 2010. “Graphics & Interactive Techniques Research Group.” January 5, 2010.
http://www.wcsu.edu/cs/sample-page/computer-science-research/computer-science-grg/.

Jones, Capers. 2007. Estimating Software Costs: Bringing Realism to Estimating. 2nd Edition. McGraw-
Hill Education.

Microsoft. 2018. Microsoft Teams. Microsoft Corporation. https://products.office.com/en-US/microsoft-
teams/group-chat-software.

Murthy, Sean. 2018a. “Employing FOSS Tools to Improve Learning and Increase Opportunities.”
Presented at the Northeast Regional OER Summit 2018, University of Massachusetts, Amherst, MA.
https://drive.google.com/drive/folders/1I8gd_dQEIzgfaawltCXgXL6vXazgvlb3.

Murthy, Sean. 2018b. “Shared Governance by Design: Employing FOSS Tools to Improve Learning,
Reduce Cost, and Increase Opportunities.” Presented at the 4th Annual Conference on Shared
Governance and Student Success, Southern Connecticut State University, New Haven, CT, April 13.

Murthy, Sean, Andrew Figueroa, and Steven Rollo. 2018. “Toward a Large-Scale Open Learning System
for Data Management.” Presented at the Fifth Annual ACM Conference on Learning @ Scale. London,
UK. https://doi.org/10.1145/3231644.3231673.

PostgreSQL Development Group. 2017. “PostgreSQL 9.6.9 Documentation.” 2017.
https://www.postgresql.org/docs/9.6/static/index.html.

Wallshein, Corinne C. 2010. “Estimating Software Effort Hours for Major Defense Acquisition Programs.”
Dissertation, George Mason University.
http://ebot.gmu.edu/bitstream/handle/1920/6025/Wallshein_Dissertation_Spring_2010.pdf.

WCSU. 2013. “Computer Science Course Catalog.” 2013.
http://www.wcsu.edu/catalogs/undergraduate/sas/courses/computer-science/.

Whitworth University. 2018. “Mathematics & Computer Science Course Catalog.” 2018.
http://catalog.whitworth.edu/undergraduate/mathcomputerscience/#courseinventory.

ZenHub. 2018a. “An Intro to ZenHub Epics.” 2018.
https://help.zenhub.com/support/solutions/articles/43000010341-an-intro-to-zenhub-epics.

ZenHub. 2018b. “ZenHub.” 2018. https://www.zenhub.com/.

