
Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 1

Changing Engineering Culture with
SDETs

Sheetal Hulloli, Santosh Sahu, Mayur Premi

sheetal_hulloli@mcafee.com, santosh_sahu@mcafee.com ,mayur_premi@mcafee.com

Abstract

Often, the silos of Development and Blackbox Testing groups within an Engineering team result from
issues that are more than mere skill differences. There is a much larger cultural aspect that usually needs
addressing for an engineering team that has clear cut Development and Blackbox Testing roles but
struggles to deliver quality software. While an all-round engineering team must have various skills, we
want to highlight the importance and the role of "Software Development Engineers in Test" (SDET) in
bringing about a culture change in engineering paradigm. When our own team at McAfee made the
conscious decision to arm the team with SDETs, little was known as to what they would do and how their
role would be different than the clear-cut demarcations that already existed. As we found out, it was a
journey that resulted in greater collaboration, testing of areas unheard of in the team, increased
operational efficiencies and a mature engineering team. In this paper we want to share our experience of
how SDETs were change agents in the evolution of our engineering team, what challenges we faced
along the way and how we were able to overcome barriers as a team. We hope to highlight the following:

1. What a model testing team should be comprised of in skill sets (SDET, Automation, and Product

Experts)

2. How the role of SDETs differ from Blackbox/System testing roles

3. Why SDETs are important in fast paced engineering environments (with our own example of a

complex product platform)

4. How to hire, train and engage successful SDETs

5. What metrics to introduce to measure success

6. Making role models out of SDETs

7. Seeing measurable improvements in product quality by using SDETs

8. Using SDETs to take the team to the next level

Our paper will cite real examples and we hope that our experience will give engineering leaders an insight
into how they can bring about change in their teams but more importantly that we will encourage young
engineering professionals to look at becoming future SDETs.

Biography

Sheetal Hulloli is a Senior SDET in McAfee with twelve years of industry experience in software testing
and quality assurance.

Santosh Sahu is a Senior Software QA Engineer in McAfee with around nine years of industry
experience in software development, testing and quality assurance.

Mayur Premi is a Senior Software Engineer in McAfee with around ten years of industry experience in
software development.

mailto:sheetal_hulloli@mcafee.com
mailto:santosh_sahu@mcafee.com
mailto:mayur_premi@mcafee.com

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 2

Introduction

Software is always evolving and growing in complexity. In a typical environment where multiple security
software co-exist depending on a single platform product, the software quality and early availability of the
dependent software becomes paramount.

Being a platform product, multiple security solutions (products) had to be integrated with us to make them
extremely powerful to fight cyber-attacks. To cater newer business and security needs, we decided to
revamp our product architecture and design. As we embraced the new design, technology and
implementation, we felt it was also time to re-think on the process that we had been following for our
sustenance projects - traditional approach of Dev team and QA (Quality Assurance) team. The process
followed being Agile, which required a parallel code and test development.

Thinking beyond the traditional approach

The new design and implementation gave us an opportunity to try out our new idea - test the code before
the build with the core modules integrated was ready, so that this could be consumed by our internal
security software products. This demanded the team have engineers adopting the new role of software
test developers a.k.a. SDET (Software Development Engineer in Test) s.

Being a team that followed the traditional software procedure having virtually two groups - software
development and Testing group (QA) despite working for the same product, the first thought was to look
outside for engineers to fit this new role in the team. After hiring a few SDETs, we came to realize this
was an uphill task as there aren’t many who could effectively satisfy our need.

The thought crossed our minds – Why shouldn’t we look for our own teammates who could fit this role by
following a few transitioning steps to become SDETs? But there were a few storms that had to be
weathered – How to change the engineering culture? What are the transition steps? How do we measure
and appreciate success?

Challenges – Weather the Storm

We also knew this transition could not be done overnight because it involves

1. Addressing the cultural change in the team.

2. Removing Engineers’ stigma to adopting the new role, as they were not sure about the expectation

for this role.

3. Coming onboard the required skills and meeting the expectations.

Considering a team such as the one mentioned under modern approach - having an SDET engineer,
who could be a developer willing to test software or a black box QA engineer who could write tools to
test the software, will help in early identification of defects. With automation engineers available,
automating end-to-end scenarios during early phase of software development would drastically bring
down the manual regression time and increases the team's confidence in the software.

Traditional Approach Modern Approach

1. Developers 1. Developers

2. Black Box QA 2. Software Development Test Engineers (Dev/QA)

3. Process - Water Fall/Agile 3. QA Engineers as Product Champions (PCs)

 4. Automation Engineers (Develop the automation frame work)

 5. Process – Agile

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 3

SDETs are Change Agents – How?

The team’s composition being this – Developers, SDET, PC (Product Champion) s, and Automation
Engineers to bring in early defects and confidence, greater collaboration amongst them was needed.

1. As the product design discussion started, the SDETs and PCs (aspiring to become SDETs) were very

much part of the discussion to understand and provide constructive feedback on the design.

2. SDETs worked collaboratively with developers to come up with UT (Unit Test) and WB (White Box)

Framework and to add test cases incrementally.

3. After the Design Commit phase, in parallel to the development activity, SDETs were made available

with a prototype of the module (in the form of header files) to start test preparation.

4. SDETs also worked with the PCs to help them understand the test frameworks (UT and White Box

Testing), provide training on development and testing tools (Visual Studio, WinDbg, Valgrind,

BullsEye, Coverity)

5. SDETs and PCs came up with test plan and test cases for modules under development and seek

early feedback from developers.

6. Module development was done in phased manner where, upon every module phase completion, the

library was available for SDETs to work on the following checks: Unit Testing, Error Conditions, Test

for buffer overflow error, Memory Leak errors, Design deviation, False Positive behavior tests,

Boundary Value Checks.

7. Being a product that will be integrated by multiple internal security products, conscious decision to

test modules used by them was taken as part of SDK (Software Development Kit) testing. As part of

this activity, exposed APIs for integration would be tested in a WB framework. The focus was on

Argument errors, functional behavior, and scenario-based testing.

8. Based on the results of above tests, the module was either re-worked or made available as part of

nightly builds.

The other area of focus was Automation where, automation engineers came up with an automation
framework to test E2E scenarios.

1. They worked closely with PCs on the end-to-end scenario identification and get early feedback
from the developers.

2. PCs (aspiring to become automation experts) where given training on scripting language, working
and execution of automation framework.

Finally, with all the collaborative work, on the nightly build with incrementally developed modules,
following validations are done in parallel - UT suite, static Analysis check and automation would be run.

Additionally, these builds were used to measure the code coverage against the available UTs. This code
coverage results also facilitated the SDETs to add more UT cases to identify negative scenarios and
dead-code. This activity ensured that “the code” is tested to the maximum using WB methodology.

Now comes the million-dollar question – How QA engineers were transformed to SDETs and Automation
Experts? What are transition steps? Our long journey on product development provided the answer - in
order to adopt the above said new approach we came across the following transition phases in our team.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 4

The Transformation Approach

Based on the current role an engineer plays in the software industry, we would like to propose different
approaches for transformation to SDET considering the current role of team member.

Approach 1 - Transition of Black Box QA engineer to SDET:

The first approach is for an engineer who currently performs quality assurance and testing using typical
black box methodology and aspires to be a SDET

1. Identify a black box QA engineer willing to transform into a SDET.

2. Provide the language training related to software, if required.

3. Undergo training from developers on product implementation and design.

4. Participate on code reviews and design discussions.

5. Start developing UT and tools that tests software modules

Approach 2 - Transition of Black Box QA engineer to Automation Engineer:

The second approach is for an engineer who currently performs quality assurance and testing using
typical black box methodology and aspires to be an automation engineer who basically writes code to test
the commonly used functionality of the software to provide quick confidence on the software builds.

1. Identify a black box QA engineer willing to transform into an automation engineer.

2. Provide the language training related to automation, if required.

3. Undergo training from product champions on software from end-to-end user perspective.

4. Identify features or test cases that could be automated.

5. Design Automation frameworks.

6. Start automating feature test cases.

Undergo
Training from

Developers
on Design

and
Implementati

on

Identify
the

Engineer

Provide
Language
Training

Participate
on Code
Reviews

Start Developing
UTs and Tools to

Test Code

Identify features to
could be automated

Design
Automation
Framework

Automate Test
Cases

Identify the
Engineer

Provide Language
Training

Undergo Training
from PCs

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 5

Approach 3 - Transition of a developer to SDET:

The third approach is for an engineer who currently develops software is aspiring to perform the role of an
SDET.

1. Undergo training from PC understand the software from end-to-end user perspective.

2. Identify the features that could be tested using test tools.
3. Start developing test tools on the features.

4. Integrate with automation framework for daily run.

Results

Traditionally team’s release check-list would e – BVT (Basic Verification Test), FVT (Functional
Verification Test), Soak, Regression, Open Defects etc.

With the new approach the check-list was modified as – Unit Test, Memory Leak check, Scenario based
white box testing, Static Analysis, FVT, BVT, Soak, Automation Results, Number of high severity open
defects.

Advantage of a PC (one who is aware of the end-to-end functionality of the product) transitioning as an
automation engineer would ensure the presence of better automation framework that suits the product
and yield better test coverage.

Source: The Economics of Software Quality by Capers Jones, Olivier Bonsignour

Undergo Training from
PCs on End-to-End

Software Perspective

Identify features to
could be automated

Integrate with
Automation
Framework

Develop Test Tools

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 6

How gaps in the Testing life cycle were filled by SDET activity’s and their early feedback right from design
discussion phase to actual end to end scenario testing. This will help to get quality product at the end of
the life cycle.

Understanding Product Enhancement Requirement

Test Plan Identification/Review

Identify /Create Feature Based Test Suites/Cases

Understanding Design Implementation and

providing design changes if any.

Creation of test framework,Unit Test,Test scenarios

Perform Code reviews and provide feedback

Create test code to test product functionality,

performance ,Memory leak

Automate End to End Scenarios

Suggest design/implementation changes

 Integration/System Testing/Regression

Testing

Identify and resolve functional defects

Release Quality Product

Design And

Coding Phase

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 7

References.

The Economics of Software Quality by Capers Jones, Olivier Bonsignour

Acronyms

QA - Quality Assurance

SDET - Software Development Engineer in Test

PC - Product Champion

UT - Unit Test

WBT - White Box Testing

VS - Visual Studio

SDK - Software Development Kit

FVT - Functional Verification Test

BVT - Basic Verification Test

