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Abstract 
 
Metrics provide insight into system health, performance, and stability and must be monitored throughout 
the software release process to catch issues before they reach production. Therefore, a fast, effective 
method of identifying deviant metrics is necessary to more quickly identify and stop regressions. However, 
manual analysis of hundreds of metrics is time-consuming, subjective, and error-prone. Some automation 
can be achieved by alerts that trigger when metrics cross a hardcoded threshold, but smaller changes 
with a noticeable but less severe impact would not be picked up. 
 
In this paper, we introduce a technique we developed to automate building a model of expected behavior 
for each metric based on its previous data and using it to compute variable thresholds for the current 
metric data. We then describe our experience using it in our own deployment process. 
 
We found that all metrics flagged as deviant were confirmed by human analysts to be so, including subtle 
cases where the deviation was not immediately obvious. Our technique also streamlined our deployment 
process by reducing the number of metrics our analysts had to review by 92-98%, and manual review of 
the remaining 2-8% was only needed to use the flagged metrics to diagnose the problem. 
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1   Introduction 
 
Metrics provide insight into system health, performance, and stability and must be monitored throughout 
the software release process as new software is deployed first to the testing, staging, and then production 
environments. They are needed to catch issues before they reach the latter and affect end users, as well 
as to detect issues that do slip into production. However, manual analysis of hundreds of these metrics, 
usually by visual inspection of their graphs, is time-consuming, subjective, and error-prone. 
 
Some automation may be achieved by setting alerts that automatically trigger when a particular metric 
crosses some critical threshold, but it may take time for the metric to reach them, or the metric may just 
never reach a level that triggers it, thereby allowing moderately severe issues to slip through. Therefore, it 
is still necessary to inspect metrics for anomalous behavior that occurs below the critical level. 
 
One way this can be done, whether through manual inspection or an automated detection algorithm, is by 
comparing metric data from after a deployment, which we call test data against metric data from before 
the deployment, which is selected to exhibit the expected behavior of the metric and which we call model 
data. Another method, used by Elasticsearch's X-Pack extension [1], is to look for individual anomalous 
points within a dataset. 
 
Many algorithms have been proposed to do one or the other. Some can find individual anomalous points, 
such as one algorithm that compares a data point to those around it and flags the point if it differs from its 
neighboring points by more than some threshold [2]. Others instead detect general changes in behavior 
between the model and test data, including algorithms that encode time series data as strings and 
generate detector strings that do not match the string for the model data [3], or use the edit distance 
between model and test data strings [5]. 
 
However, while solutions that detect individual anomalous points can help identify exactly when a metric 
deviated, they do not indicate whether the deviation was temporary noise or a change in the metric’s 
behavior. On the other hand, algorithms that detect overall changes based on how different the encoded 
datasets are do not identify individual anomalies that could help diagnose whether a deviation is ongoing 
or was resolved. 
 
In this paper, we describe an algorithm for automated detection of both individual anomalies and overall 
changes in metric behavior, which allows us to determine not only whether a metric's behavior has 
changed after a deployment, but also which data points in the time series contributed to the change. A 
model of expected behavior is built and used to predict the test data values, and anomalous points are 
identified based on how far off the predictions are from the actual observed values. Then, the number of 
anomalous points and how recent they are used to determine whether the test data exhibits different 
behavior from the model data. Human involvement is necessary only when alerts have been generated 
for the flagged metrics, and only to review them and make a call on the deployment based on them. 
 
2   Methodology 
 
The detection algorithm we describe below is entirely automated except for the one-time, initial 
configuration setup and runs as a cron job that sends notification emails listing the flagged metrics when 
alerts are triggered. 
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For the purposes of this paper, we will focus on the detection algorithm and minimize implementation 
details, such as configuration file formatting and the underlying statistical packages used, to what is 
necessary to understand the algorithm. 
 
2.1  Initial setup 
 
The initial setup step involves the creation of configuration files that describe the metrics to be monitored 
and is the only manual step in the otherwise automated detection algorithm. 
 
Configuration files contain a list of metrics and their metadata. Each job has its own configuration file, and 
we define a job as a set of related metrics to be monitored, e.g. metrics for the staging environment. 
 
Metadata for each metric will be explained in the algorithm below as they turn up but include the source to 
retrieve the metric data from, time ranges to use for the model and test data, season size to use when 
modeling a metric that exhibits seasonal behavior, etc. These are fed as parameters into the algorithm 
and used to customize modeling and detection for each metric. 
 
2.2  Modeling the expected behavior 
 
For each metric to be monitored, the following steps are performed when building a model of the metric’s 
expected behavior to compare against its behavior in the test data: 
 

● Get the model data based on the data source and model data time range metadata given in the 
configuration file. The data source is queried for the metric values within the time range and 
returned as a time series, where the metric values are matched with their corresponding 
timestamps. 

 
For our own use case, we selected the metric’s data from midnight to noon of the second most 
recent day of data available. This was done since our deployments almost never occur during 
that time range, so the metric should be most stable and best demonstrate the ideal behavior for 
that metric. 

 
● Similarly, query for the test data that needs to be checked for anomalies and behavioral changes, 

also using the data source, as well as the test data time range. 
 

For our own use case, we select the most recent hour of data available for a metric as its test 
data. This time range was selected to give our deployed application just enough time to warm up 
and receive enough traffic to stabilize the metric, and to allow us to evaluate the deployment 
without losing several hours or an entire day while accumulating data. 

 
● Remove outliers from the model data so that they do not affect the model. Here, we use the 

interquartile range (IQR) method to find outliers rather than the mean and standard deviation 
method, since the latter depends on the data being normal. However, since this is often not the 
case with time series data, as can be seen by visual inspection of the graphs of ours and other 
time series, we use the more generic IQR method. 
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Using this method, we define any data point below p25 - n*IQR or above p75 + n*IQR as an 
outlier, where p25 and p75 are the 25th and 75th percentiles of the model data, respectively. 

 
For normally-distributed data, the commonly used value in statistics for n is 1.5, but since time 
series data often does not appear normal, we make n a parameter in the configuration file so that 
it can be customized depending on how sensitive we want the alert to be. Larger values of n 
generally result in less sensitive alerts that tolerate more deviation before flagging the metric. 

 
● Build the time series model for model data. 

 
We use the autoregressive integrated moving average (ARIMA) class of models to model the 
data. Since ARIMA models are well-known and common models in time series analysis and 
statistics in general, we will not explain them in detail in this paper. 

 
The algorithm may select either an ARIMA model or a seasonal variant of it as the model to fit the 
model data to. Which one the algorithm chooses to use is determined as follows: 

○ If a metric is marked as seasonal in the configuration file, the seasonal variant is selected. 
To use this model, the seasonal difference of the data is computed, and the resulting time 
series is used to build an ARIMA model. 

○ Otherwise, the algorithm checks that the conditions for using ARIMA, such as stationarity 
of the data, are satisfied. If not, the data is processed so that the resulting time series 
satisfies the condition; else, the original time series is used. The model is then built using 
the resulting time series. 

 
Note that, though the model orders are usually chosen by inspecting a graph of the data, we use 
an information criterion to estimate them so that we could automate the process of building the 
model. Maximum likelihood estimation is then used to estimate the best-fitting model coefficients. 
Since both are done via the Python statsmodels package, we do not go into more detail here on 
how model for the model data is developed. 
 

● Compute the prediction errors between the actual observed model data points and the values 
predicted by the model. These are the model prediction errors, and we call the distribution of 
these errors the model error distribution. 
 
Models are expected to exhibit some prediction error, as the model may otherwise be overfitted 
and unsuitable for forecasting on new data. We use the model error distribution to determine 
approximately how much error is expected for a given model. 
 
This distribution will then be used to determine whether the errors for the model’s prediction for 
the test data points are within the expected errors for the model, or if the test point value deviates 
significantly from the expected value and is likely an anomaly. 

 
2.3  Finding anomalous data points in the test data 
 
Once the model for a given metric has been generated, we compare its predictions with the actual test 
data. If the behavior of the metric hasn’t changed between the model and test data, the test data 
predictions should have approximately the same distribution of errors as the model data predictions. Any 
test point that is too far from the prediction would be flagged as an anomaly. 
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The following is done to determine whether the error between the actual value of a test point and its 
prediction is too large: 
 

● Forecast the predicted values for the test data point values using the ARIMA (or seasonal ARIMA) 
model generated for the model data. 

 
● Similar to what was done to get the model prediction errors, compute the prediction errors 

between the actual test data points and the predicted values from the model. 
 

● Check whether each test point's prediction error is an outlier with respect to the model error 
distribution, using the same IQR method and parameter n to identify outliers as was used to 
remove outliers from the model data. Any test point whose prediction error is an outlier with 
respect to the model errors is flagged as an anomaly. 

 
We do this because the model error distribution gives the approximate amount of error to expect 
from predicting with the model, since the model points are known to exhibit expected behavior. 
So if a test point's prediction error is too large, whether in the positive or negative direction, that 
point’s actual value exhibits a greater deviation from the forecasted value than expected, and are 
thus anomalous. 

 
2.4  Identifying overall changes in metric behavior 
 
After identifying individual anomalies, we use the number of anomalies and their times of occurrence to 
determine whether a given metric is currently exhibiting different behavior from the model data. 
 
Essentially, if most of the points in the test data are anomalous and the anomalies are relatively recent in 
the test data, then the metric behavior is flagged as anomalous. We consider how recent an anomaly is 
so that a metric isn't flagged for possibly unrelated behavioral changes if it was behaving differently earlier 
in the test data but has returned to expected behavior. Such anomalies may be caused by factors like 
unusually high spikes in traffic or load to the deployed application that are independent of the deployment 
itself. 
 

● If the majority of the test data points are flagged as anomalies and the majority of those 
anomalies are in the more recent half of the test data, then that metric's behavior is flagged as 
changed. 

 
In our own default use case, we defined majority as at least half of the test data points, so a 
metric is flagged only if it has been consistently deviating. However, we also did not want the alert 
to trigger only when all of the test data points deviated since it is possible that there are still 
occasional test points that occur within expected levels. Requiring that multiple, but not all, test 
points deviate is done so that a temporary anomaly will not generate noisy alerts, but also so that 
the metric need only be deviating consistently and repeatedly, without errors having to be 
permanently elevated. 
 
For example, consider a latency metric that measures how long an application took to handle a 
request. A spike in the number of requests may cause the metric to deviate temporarily, even if it 
was unrelated to the deployment being tested and was resolved by itself. Or an actual 
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performance issue in the deployment could cause the latency to increase most of the time but 
sometimes fall within the error range due to multiple requests that were not affected by the issue. 
 
In the case where a metric’s trigger should be more or less sensitive, our algorithm does allow a 
value to be passed in in each metric’s configuration. With this, a lower threshold for majority can 
be used to create more sensitive alerts that are triggered by fewer anomalies and vice versa. 

 
● Send an email alert detailing which metrics were flagged for changes in behavior and which 

points in each of the metric’s test data were anomalies (i.e., contributed to that metric's behavior 
being flagged as changed). 

 
2.5  Making a call on a release 
 
Once all metrics in a job have been analyzed, a single alert email is sent to the interested developers for 
all metrics flagged in that job. 
 
Since the algorithm only automates the detection of anomalies and behavioral changes, human 
involvement is still required after it is run to make a call on whether to proceed with deploying a release to 
the next environment in the release process, or whether the build has an issue and needs to be blocked 
and reworked. 
 
This involves reviewing the alert to determine what metrics were flagged and whether the anomalies and 
changes in those metrics were expected and/or acceptable since depending on the metric, some 
increases or decreases are considered improvements, or a new feature could cause a metric’s behavior 
to change. 
 
For example, if a computationally-heavy new feature was added, it may be expected that latency metrics 
would increase. Or if latency decreased, the release would be considered an improvement and allowed to 
proceed. However, if error rates also increased, the build may be blocked pending an investigation since 
that would suggest that the system is encountering problems that cause it to terminate early, thus 
decreasing latency. 
 
In short, our algorithm analyzes the metrics and provides the results, but not the final call on a release, so 
the final decision on whether a release moves forward depends on the human analyst and whether they 
are able to use the information in the alerts to make a judgement. 
 
2.6  Related works 
 
A similar approach to ours was proposed in an earlier work by Laptev et al. [4], where expected behavior 
is modeled by an ARIMA time series model and anomalous points are identified by the prediction error of 
a test point. 
 
The primary difference is that Laptev et al. compared a given test point's prediction error with that of other 
test points and flagged a given point when its error was an outlier with respect to other test point errors. In 
contrast, we compare with the prediction errors of the model points and flag a given test point whose error 
is an outlier with respect to the model errors. 
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This is significant, as it allows our algorithm to flag an entire test data set whose overall behavior differs 
from the expected. It also allows us to detect when all test points are anomalous. Additionally, if all test 
data points deviate from the model by approximately the same amount, even if the test point values are 
visibly behaving differently from the model, the test points would not be flagged due to all of them having 
approximately the same amount of prediction error. Therefore, none of the test points would appear to be 
an outlier when compared to each other. 
 
Other differences also include our support for seasonal ARIMA models and our use of the IQR method of 
identifying outliers rather than the standard deviation method, so that the algorithm is viable even in the 
case where the prediction error distribution does not fit a normal distribution and thus cannot use the 
three-sigma rule. 
 
3   Results 
 
Using our own deployment process and its associated set of metrics, we ran this algorithm and also had 
our human analysts perform manual metrics analysis to compare the algorithm's ability to detect 
anomalies and overall changes against that of the analysts. 
 
We found that the algorithm was at least as capable of identifying changes in metric behavior as manual 
monitoring by a human. In some cases, the algorithm was also able to pick up changes that were missed 
during a manual inspection of a metric's graph (e.g., a slow but persistent increase in a latency metric that 
suggested a growing problem but that was not steep enough to be flagged during a manual analysis). 
Some changes were too subtle for the human to notice, depending on the resolutions of the graphs they 
used for manual inspection. 
 
We also greatly reduced the amount of time spent on inspecting metrics since we now need to manually 
review only the flagged metrics. The need to manually review metrics was not eliminated as it is still 
necessary to figure out, when diagnosing a problem with a deployment, what metrics were flagged and in 
which direction they deviated. There is no need, however, to analyze the data and make a decision on 
whether the metric is deviant. 
 
This resulted in a reduction of about 92-98% in the number of metrics that our human analysts needed to 
review, where the type and magnitude of the issue in a deployment affected the number of deviant 
metrics that were flagged. For the purpose of the comparison, metrics that were not flagged were also 
reviewed to ensure that they did not exhibit deviant behavior that was missed by the algorithm. But when 
using this algorithm in practice, the non-flagged metrics, which made up 92-98% of the total number of 
metrics, need not be manually inspected. 
 
Additionally, no further analysis of the metric's behavior needed to be done during the review; only a 
go/no-go decision on the deployment needed to be made based on which metrics were found to exhibit 
changed behavior. 
 
Overall, use of this algorithm has allowed us to greatly reduce the time spent on metrics monitoring while 
increasing the rate of detection of both individual anomalies and overall changes in metric behavior. Use 
of the algorithm also made the metrics analysis results less subjective than “eyeballing” the metrics 
graphs since the data models and error distributions could be used to justify the decision on whether a 
metric’s behavior changed. 
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3.1  Example analysis 
 
The figure below shows a graph of several of the metrics we monitor during the deployment process. The 
four metrics are the maximum (lightest grey), 99th percentile (lighter grey), 95th percentile (darker grey), 
and median (black) values at a given time of a metric being collected by our application. 
 
The model data was taken from 6:00 to 9:00, and the test data was taken from 15:00 to 16:00. 
 

 
 
 
Based on a visual manual inspection, the 95th percentile appears to exhibit a visible increase from the 
model to the test data, while the 99th percentile and maximum metrics’ behaviors may have changed, 
though it is hard to tell whether the increase is due to a few spikes from noise or if the increase is 
persistent. And without much closer inspection, for which there is not often time when analyzing hundreds 
of metrics for a deployment, it is not noticeable that the median metric also increased. 
 
Meanwhile, our algorithm was able to correctly flag all four of the metrics for an overall increase in the test 
data when compared to the model data. Not only do the model parameters and other data provided by 
the algorithm reduce the subjectivity of the judgement, but the algorithm also runs in less time than it 
takes for a human analyst to retrieve and inspect the metric graphs; approximately one to two minutes 
compared to ten to fifteen seconds. It is also worth noting that since dozens of analyses can be run in 
parallel, the percentage reduction in time spent when using the algorithm is even greater for larger 
numbers of metrics. 
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4   Conclusion 
 
In this paper, we have described a new algorithm to automate the detection of both individual anomalies 
and overall changes in metrics behavior. The algorithm offers an improvement on methods that detect 
only individual anomalous points by analyzing overall behavior within the data points being tested. It also 
improves upon previous methods that measured overall changes by using the individual anomalies to 
identify what times in the test data exhibited the most deviant behavior and contributed most to the 
change in metric behavior. 
 
We found that the algorithm could identify changes in our deployment metrics at least as well as manual 
monitoring of metrics graphs by human analysts. In some cases, the algorithm was also able to identify 
more subtle changes in metric behavior that were missed during manual inspection, and reduced the time 
spent on analyzing metrics, in addition to reducing the subjectivity of the analysis. 
 
4.1  Future work 
 
Future work would include expanding the types of models available beyond ARIMA and experimenting 
with other time series-specific models, and even non-time series models to better support the rare metrics 
that do not behave like typical time series. 
 
We also plan to gather results and feedback from more teams, including those with fewer metrics but who 
still prefer to automate the monitoring process. While we have made most of the parameters involved 
customizable via the job configuration file, we would like to receive feedback on what other options other 
teams would like to have control over. 
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