
 

Excerpt from PNSQC Proceedings  PNSQC.ORG 

Copies may not be made or distributed for commercial use  Page 1 

Cucumber 3.0 and Beyond 

Thomas Haver 

tjhaver@gmail.com 

Abstract 

Cucumber is a tool that supports Behavior Driven Development (BDD), a software development practice 
that promotes collaboration. Cucumber will execute specifications written in plain language and generate 
reports to reveal the behavior of software against expectations. In the Fall of 2017, the Cucumber core 
team formally released Cucumber version 3.0.0, introducing changes that will shift how developers use the 
tool. Among those changes are Cucumber Expressions, updated Tag Expressions, Retry & Flaky Status, 
Strict Mode, and a new Events API. This paper will present the new features of Cucumber and how to 
integrate them into an existing automation suite. 

Biography 

Thomas is presently serving as a Senior Application Architect for Huntington National Bank. He is 
responsible for the conversion from manual testing to Ruby/Cucumber automation for the entire enterprise. 
Originally accountable for the development and maintenance of automation frameworks for Digital 
Channels, he now leads the automation effort for 73 applications across Huntington that encompass testing, 
metrics & reporting, data, and environment. Thomas leads the training & technical support for both on-site 
employees as well as offshore contractors. He has developed test strategies and assisted in coordination 
between multiple lines to improve delivery effectiveness & resource flexibility. 

  



 

Excerpt from PNSQC Proceedings  PNSQC.ORG 

Copies may not be made or distributed for commercial use  Page 2 

1 Introduction 

The goal of Behavior Driven Development (BDD) is to combine automated acceptance tests, functional 
requirements, and software documentation into a single format that’s understandable by the entire team 
(North, 2006). The core feature of BDD is collaboration, through which a shared understanding of delivering 
features to the user is independent of role. In BDD, the "definition of done" is agreed to by the entire team. 
The development team focuses on making requirements pass in the form of tests. These tests are typically 
written in a business readable format to emphasize the purpose of creating a shared understanding. 

Originally developed by Aslak Hellesoy in 2008 (Hellesoy, 2017), the tool called “Cucumber” can be 
leveraged to support BDD in creating automated tests, executable specifications, and living documentation. 
In describing the tool, Aslak wrote, “Cucumber was born out of the frustration with ambiguous requirements 
and misunderstanding between the people who order the software and those who deliver it” (Hellesoy, 
2014). The business readable language for implementing Cucumber scenarios is called Gherkin. Chris 
Matts is credited with originally inventing the “Given-When-Then” keyword format for examples written as 
test scenarios (Wynne & Hellesoy, 2012). The Gherkin template implies “Given” some initial context, 
“When” an event occurs, “Then” ensure some outcome. Following BDD principles, the features written in 
Gherkin are intended to drive development, not follow it. The top-layer of Cucumber is the Gherkin, and will 
be the starting point for discussion of this paper. 

The development team behind Cucumber implemented changes in five core areas for Cucumber 3.0: (1) 
Cucumber Expressions; (2) Tag Expressions; (3) Retry & Flaky Status; (4) Strict Mode; and, (5) new Events 
API (Wynne, 2017). Cucumber Expressions are intended to replace Regular Expressions for matching 
patterns of user behavior in Gherkin. The Tag Expressions replace prior tag standards to enhance 
readability. The Retry & Flaky status are intended to identify tests that flicker from pass to fail. The Strict 
Mode will provide more options with Gherkin that is unimplemented or unfinished. Lastly, the new Events 
API has been updated to model the execution of automation as a series of distinct events. 

2 Cucumber Expressions 

Cucumber Expressions are simple patterns for matching Step Definitions with Gherkin steps. The 
Cucumber development team wanted to replace Regular Expressions with something more user friendly 
and powerful (Wynne, 2017). Cucumber Expressions are an expression language for matching text and the 
syntax is altered for legibility. In comparison, Regular Expressions were previously used for more flexibility 
and control.  The development team for Cucumber reasoned that automation developers don’t need all the 
power of Regular Expressions, and that legibility is more important to Gherkin (Wynne, 2017). 

Whereas Regular Expressions use capture groups to extract pieces of text, Cucumber Expressions use 
output parameters (Hellesoy, 2017). An output parameter is simply a name between curly braces. The 
sample scenario below shows a simple example of using a Cucumber Expression versus earlier versions 
of Cucumber.  

@cucumber_expressions_example 

Scenario: sample scenario for cucumber expressions using an integer 

  Given the user navigates to the Example Search page 

  And the user fills in "money" for search field 

  When the user selects the 3rd predictive question result 

  And the user waits for 2 seconds 

  Then the user validates the url of the browser window contains search 

 

It’s not advisable to use explicit sleeps in test automation, but for the purpose of this example it fits. Prior 
to Cucumber 3.0, the underlying step definition would be implemented like this: 

 



 

Excerpt from PNSQC Proceedings  PNSQC.ORG 

Copies may not be made or distributed for commercial use  Page 3 

When(/^the user waits for (\d+) seconds$/) do |time| 

  sleep time.to_i 

end 

 

The step would accept one or more digit characters as a parameter, and the sleep method call would wait 
a certain period of time. With the advent of Cucumber Expressions, the integer is a built-in parameter type. 
The step definition would now look like this: 

When("the user waits for {int} second(s)") do |time| 

  sleep time 

end 

 

The above expression passes an Integer from the Gherkin by explicitly calling for an “int” in the step 
definition. However, the expression would match 2 seconds but not 1.5 seconds. Integers are not the only 
new parameters added – Float is a valid, built-in parameter type: 

When("the user waits for {float} second(s)") do |time| 

  sleep time 

end 

 

Now the associated sample scenario will accept fractions of a second because the parameter type was 
changed to Float. 

@cucumber_expressions_example 

Scenario: sample scenario for cucumber expressions using an integer 

  Given the user navigates to the Example Search page 

  And the user fills in "money" for search field 

  When the user selects the 3rd predictive question result 

  And the user waits for 1.5 seconds 

  Then the user validates the url of the browser window contains search 

 

Another change was made to the step definition example in addition to using a double quoted String in 
place of “Regexp” and a parameter type. Cucumber Expressions allow for optional text. The step definition, 
“And the user waits for 1 seconds” is grammatically incorrect. Surrounding the text with parentheses 

makes the text inside optional. 

When("the user waits for {float} second(s)") do |time| 

  sleep time 

end 

 

@cucumber_expressions_example 

Scenario: sample scenario for cucumber expressions using an integer 

  Given the user navigates to the Example Search page 

  And the user fills in "money" for search field 

  When the user selects the 3rd predictive question result 

  And the user waits for 1 second 

  Then the user validates the url of the browser window contains search 

 

Before Cucumber 3.0, typically a non-capturing group with optional repetition parameter would be used. 

When(/^the user waits for (\d+) second(?:s)?$/) do |time| 

  sleep time.to_i 

end 



 

Excerpt from PNSQC Proceedings  PNSQC.ORG 

Copies may not be made or distributed for commercial use  Page 4 

 

Using an Integer parameter is more appropriate when decimals will never be needed. Cucumber 
Expressions also allow for alternative text. Sometimes the Gherkin needs two or more options from non-
capturing groups to make the Step flow. Instead of using pure regexp to indicate multiple options within a 
non-capturing group, a forward slash works between two or more options: 

Step for Cucumber < 3.0: 

When(/^the user selects the (\d+)(?:st|nd|rd|th)? (.*) result$/) do |index, 

page_element| 

 

Step for Cucumber 3.0 and beyond: 

When("the user selects the {int}st/nd/rd/th {page_element} result") do |index, 

page_element| 

 

The current built-in parameter types are: 

{int}  # for example 71 or -19 

{float}  # for example 3.6, .8 or -9.2 

{word}  # for example bacon (but not bacon cheeseburger) 

{string}  # for example “money" or ‘money'. The quotes are removed from the match. 

Custom Parameter Types can be defined to represent types for any Cucumber suite. The benefits are: (1) 
automatic conversion to custom types; (2) document and evolve ubiquitous domain language (living 
documentation of variables); and, (3) enforce certain patterns (Wynne, 2017 and Hellesoy, 2017). Start by 
creating a Parameter Types Ruby file in the Support directory. 

Under Parameter Type (reference shown below), “name” is the name of the parameter type, “regexp” (Array 
format) list of regexps for capture groups, “type” is the return type of the transformed, “transformer” is the 
lambda that transforms a String to another type, “use_for_snippets” is a Boolean that can be used for 
snippet generation, and “prefer_for_regexp_match” is a Boolean that should set preference over similar 
types (Wynne, 2017 and Hellesoy, 2017).  

ParameterType( 

    name: 'name', 

    regexp: //, 

    type: Type, 

    transformer: lambda {|foo| foo.to_type_change}, 

    use_for_snippets: true or false, 

    prefer_for_regexp_match: true or false 

) 

 

Custom parameter types are new to Cucumber 3.0. In prior versions, regexp for each step was the common 
practice. Now it’s possible to develop a set of parameters relevant to the application under test, as a form 
of business logic documentation about application specific criteria. An example is shown below: 

 

 



 

Excerpt from PNSQC Proceedings  PNSQC.ORG 

Copies may not be made or distributed for commercial use  Page 5 

ParameterType( 

    name: 'page_element', 

    regexp: /.+/, 

    type: String, 

    transformer: lambda {|s| s.gsub(/\\"/, "'")}, 

    use_for_snippets: true, 

    prefer_for_regexp_match: false 

) 

 

The example using "page_element" for snippets on web applications is not an ideal implementation. When 
Cucumber encounters a Gherkin step without a matching Step Definition, it will print a Step Definition 
snippet with a matching Cucumber Expression as a starting point. Thus, the regexp will match one or more 
characters, so "page_element" will be recommended for snippet generation everywhere. Therefore, it’s 
important to utilize as specific matchers as possible. Examples would be account numbers of a specific 
length, dates in a particular format, or word characters that must be phrased in a redundant manner 

Regular Expressions will not disappear from Cucumber. A regular expression used with a capture group 
for an integer, such as (\d+), the captured String will be transformed to an Integer before being passed to 
the step definition. The Cucumber Expression library's support for Regular Expressions pass capture 
groups through parameter types’ transformers, same as Cucumber Expressions. Cucumber will no longer 
suggest Regular Expressions in snippets. Cucumber Expressions will instead be recommended. 

Step for Cucumber < 3.0: 

When(/^the user waits for (\d+) second(?:s)?$/) do |time| 

  sleep time.to_i 

end 

 

Step for Cucumber 3.0 and beyond: 

When(/^the user waits for (\d+) second(?:s)?$/) do |time| 

  sleep time 

end 

 

At the time of this writing, there are multiple unresolved issues with Cucumber Expressions as currently 
implemented. For one, RubyMine has a difficult time recognizing the Cucumber Expressions, giving the 
appearance of unimplemented steps when using that particular IDE. Another is when several parameter 
types share the same Regexp, only one of the parameter types can be preferential.  If two parameter types 
are defined with the same regular expression that are both preferential, an error will be thrown during 
matching. Execution will have infinite hang-time with an invalid match with Parameter Type from the 
Gherkin. Typos will ultimately wreck execution. Both “use_for_snippets” and “prefer_for_regexp_match” 
parameters don’t get passed through with the ruby interpreter using RubyMine. Lastly, Flags for regexp 
area are not recognized; instead, multiline, ignore case, and extended will throw a Cucumber Expression 
error that the Parameter Type cannot use that option.  

 

3 Tag Expressions 

The new Tag Expressions are Boolean expressions of tags with the logical operators "and", "or", and "not". 
The new Tag Expressions replace the old syntax with a new, plain language readable syntax to specify 
which scenarios to run. The intention was for Cucumber can store and reuse commonly used cucumber 
command line arguments for a project in a cucumber.yml file (Wynne, 2017). Now, defining a template 

requires a name and the command-line options to execute with a profile. 



 

Excerpt from PNSQC Proceedings  PNSQC.ORG 

Copies may not be made or distributed for commercial use  Page 6 

Tags are identified within Feature files or Hooks by an “@” symbol. Cucumber uses them as a query 
language; they help organize features and scenarios, as well as selectively run tests. The new Tag 
Expressions are used to: (1) run a subset of scenarios and (2) specify a hook that should be executed or 
excluded for a subset of scenarios (Wynne, 2017). 

The command line arguments for execution are stored in the cucumber.yml file.  Defining a template 
requires a name and various command-line options to execute with the profile. The execution of a profile 
requires the --profile or -p flag. The default profile is named default (the profile will execute if a profile is 
not specified). All common profiles exclude any Features or Scenarios with the @wip or @manual tags 
by using the tilde (~) in front of the tag.  

default: --format pretty --tags ~@wip --tags ~@manual 

run: --format pretty --tags @run --tags ~@wip --tags ~@manual 

regression: --format pretty --tags @regression --tags ~@wip --tags ~@manual 

jenkins: --format json -o cucumber.json --tags ~@wip --tags ~@manual 

devops: --format json -o cucumber.json --tags ~@wip --tags ~@manual 

 

Cucumber uses tags in multiple ways. With hooks, tags can be added to “Before”, “After”, “Around”, or 
“AfterStep” (Wynne & Hellesoy, 2012). This will execute hooks for only those scenarios with the given tags. 
A Feature Tag is located above the feature header. Multiple tags can be applied to a feature (separated 
with a space or newline). A Scenario Tag is located above the scenario header. Multiple tags can be applied 
to a scenario (separated with a space or newline). Any tag that exists on a Feature will be inherited by each 
Scenario, Scenario Outline, and Example. The new Tag Expressions for Cucumber 3.0 and beyond will 
use Boolean expressions of tags with the logical operators “and”, “or” and “not”.  

Tag Expressions for Cucumber < 3.0: 

sample_or_tags_profile: --format pretty --tags @smoke_test,@pbi12345,@pnsqc 

sample_and_tags_profile: --format pretty --tags @smoke_test --tags @pbi12345 --

tags @pnsqc 

sample_excluding_tags: --format pretty --tags ~@manual --tags @smoke_test 

 

Tag Expressions for Cucumber 3.0 and beyond: 

sample_or_tags_profile: --format pretty --tags '@smoke_test or @pbi12345 or 

@pnsqc' 

sample_and_tags_profile: --format pretty --tags '@smoke_test and @pbi12345 and 

@pnsqc' 

sample_excluding_tags: --format pretty --tags '@smoke_test and not @manual' 

 

A parentheses can be used for clarity or to change operator precedence: 

sample_parantheses_profile: --format pretty --tags '@regression and not (@wip or 

@manual)' 

sample_parantheses_profile: --format pretty --tags '(@pnsqc or @smoke_test) and 

(not @manual)' 

sample_parantheses_profile: --format pretty --tags '(@smoke_test) and (not 

@manual) and (not @wip)' 

 

All new Cucumber profiles must use Strings around the tag expression and use logical operators. The 
optional parentheses are best used for clarity or precedence. Multiple usages of the --tags flag in a profile 
is still allowed. The new syntax also applies to the aforementioned tagged Hooks. There are no changes to 
how tags are written in Features or Scenarios. There is no change in behavior due to underlying code 
changes in the Rakefile, Cucumber Profile, or Hooks. There is, however, one warning to note: Cucumber 



 

Excerpt from PNSQC Proceedings  PNSQC.ORG 

Copies may not be made or distributed for commercial use  Page 7 

will yield a warning in the console to update the profile usage of tag expressions, but the old way of 
identifying tags won’t be deprecated until cucumber –v 4.0.0 (Wynne, 2017). 

 

4 Retry and Flaky Status 

A Retry flag has been introduced to retry any scenario that fails a given number of times. Scenarios that 
pass on a subsequent execution are given a “flaky” status. The Cucumber development team wanted to 
address flickering scenarios, since they reasoned automation developers were implementing their own 
solution to retry failed scenarios (Wynne, 2017). Retry is now an optional command line argument, which 
will accept integer values. Any scenario that fails is assigned the "flaky" status upon success after a prior 
failure. Example execution result is shown below: 

Flaky Scenarios: 

cucumber features/gherkin/sample.feature:3 

 

3 scenarios (1 flaky, 2 passed) 

23 steps (1 failed, 2 skipped, 20 passed) 

1m1.651s 

 

The usage of “retry” is questionable because it already exists as a keyword in Ruby, which can lead to 
confusion and potential misuse. Also, Flaky status is not present in outputted HTML report or JSON 
report, but the execution result is present for Rerun. 

 

 

5 Strict Mode 

The updated Strict Mode is more flexible about enforcing rules on the result of Scenarios compared to prior 
versions of Cucumber. The Cucumber development team changed the original strict mode, which failed if 
there were any undefined, pending, or failing results. One consequence of the old implementation was any 
execution in continuous integration (CI) tool such as Jenkins resulted in failures from the execution of many 
scenarios if just a single issue was present (non-zero exit code). The new Strict Mode implementation is 
intended to provide more flexibility for execution (Wynne & Hellesoy, 2017). Details of the command options 
are shown the table below: 



 

Excerpt from PNSQC Proceedings  PNSQC.ORG 

Copies may not be made or distributed for commercial use  Page 8 

 

A Scenario with an undefined step will have two different exit codes depending on Strict mode. If the profile 
has nothing defined, the exit code is 0. If the profile has --no-strict-undefined, the exit code is also 0. If 
the profile has --strict-undefined, the exit code is 1. The console yields a Cucumber exception for that 

step. 

Profile with nothing defined: 

  Then undefined step 

 

2 scenarios (1 undefined, 1 passed) 

5 steps (1 undefined, 7 passed) 

0m13.087s 

 

You can implement step definitions for undefined steps with these snippets: 

 

    Then("undefined step") do 

      pending # Write code here the phrase here into concrete actions 

    end 

     

Process finished with exit code 0 

 

 

Profile with strict undefined set: 

  Then undefined step 

    Undefined step: "undefined step" (Cucumber::Undefined) 

    features/gherkin/sample.feature:66:in 'Then undefined step' 

 

Undefined Scenarios: 

cucumber features/gherkin/sample.feature:63 

 

2 scenarios (1 undefined, 1 passed) 

5 steps (1 undefined, 7 passed) 

0m17.919s 

 

You can implement step definitions for undefined steps with these snippets: 

 

Then("undefined step") do 

  pending # Write code here the phrase here into concrete actions 

end 

 

Process finished with exit code 1 



 

Excerpt from PNSQC Proceedings  PNSQC.ORG 

Copies may not be made or distributed for commercial use  Page 9 

 

 

A Scenario with a pending step will have two different exit codes depending on Strict mode. If the profile 
has nothing defined, the exit code is 0. If the profile has --no-strict-pending, the exit code is also 0. If the 
profile has --strict-pending, the exit code is 1. The console yields a Cucumber exception for that step. 

 

Profile with nothing defined: 

  Then pending step 

    TODO (Cucumber::Pending) 

    ./features/step_definitions/custom_steps.rb:19:in '/^pending step$/' 

    features/gherkin/sample.feature:66:in 'Then pending step' 

 

2 scenarios (1 pending, 1 passed) 

5 steps (1 pending, 7 passed) 

0m19.316s 

     

Process finished with exit code 0 

 

Profile with strict pending set: 

  Then pending step 

    TODO (Cucumber::Pending) 

    ./features/step_definitions/custom_steps.rb:19:in '/^pending step$/' 

    features/gherkin/sample.feature:66:in 'Then pending step' 

 

Pending Scenarios: 

cucumber features/gherkin/sample.feature:63 

 

2 scenarios (1 pending, 1 passed) 

5 steps (1 pending, 7 passed) 

0m18.079s 

 

Process finished with exit code 1 

 

A Scenario with a flaky step will have two different exit codes depending on Strict mode. If the profile has 
nothing defined, the exit code is 0. If the profile has --no-strict-flaky, the exit code is also 0. If the profile 
has --strict-flaky, the exit code is 1.  

Profile with nothing defined: 

Flaky Scenarios: 

cucumber features/gherkin/sample.feature:63 

 

2 scenarios (1 flaky, 1 passed) 

14 steps (2 failed, 12 passed) 

0m36.332s 

 

Process finished with exit code 0 

 

  



 

Excerpt from PNSQC Proceedings  PNSQC.ORG 

Copies may not be made or distributed for commercial use  Page 10 

Profile with strict flaky defined: 

    Then flaky step 

 

Flaky Scenarios: 

cucumber features/gherkin/sample.feature:63 

 

2 scenarios (1 flaky, 1 passed) 

11 steps (1 failed, 10 passed) 

0m21.935s 

 

Process finished with exit code 1 

 

 

A Scenario with all failure types will have two different exit codes depending on Strict mode. If the profile 
has nothing defined, the exit code is 0. If the profile has --no-strict- the exit code is also 0 so long as 
pending or undefined occurs first. Even in --no-strict mode, a flaky scenario followed by a pending or 
undefined step will yield an exit code of 1. If the profile has --strict, the exit code is 1 regardless of order.  

For any implementation beyond Cucumber 3.0.0, new profiles for strict mode conditions can be created in 
the cucumber.yml file. However, that would require many additional profiles without being able to modify 
the existing profiles. Instead, any existing profiles prior to version 3.0.0 should remain the same, with 
optional strict parameters. The strict flag can be passed in dynamically via environment variable. Without 
being set, the strict environment variable will default to the --no-strict flag (the default in Cucumber as 

before). 

Strict Mode will not show you Flaky status either or provide additional context in the output HTML or JSON 
report. The existing color schemes provided in the formatter will have to be used for guidance.  Even in --
no-strict mode, a flaky scenario followed by a pending or undefined step will yield an exit code of 1; the 

result should be exit code 0. 

 

6 Events API 

The Cucumber development team updated the test automation execution of compiling and running features 
into a series of accessible events. The intent was for events to be read-only, which are used by writing 
formatters and output tools (such as test result persistence stored in database tables). Many of formatters 
prior to version 3.0.0 have been rewritten to use the new API, though some still use the old formatter API. 
The events are described as follows (Wynne, 2017): 

• StepDefinitionRegistered: “event when the step_definitions directory is read”. 

• GherkinSourceRead: “event when Cucumber reads a Feature file”.  



 

Excerpt from PNSQC Proceedings  PNSQC.ORG 

Copies may not be made or distributed for commercial use  Page 11 

• StepActivated: “events are fired as each step is activated when the Feature file is compiled into 

test cases”.  

• TestRunStarted: “event describes what will run after the test cases are compiled”.  

• TestCaseStarted: “event fires for each test case before any steps run”.  

• TestStepStarted: “event (including hooks) fire for each Test Step”.  

• TestStepFinished: “event contains the result and duration of that step”.  

• TestCaseFinished: “event fires when all the steps have run, and includes the overall result of the 
test case”.  

• TestRunFinished: “event fires when all test cases are done”. 

 

There are still unresolved implementations for the new events API. The event, TestRunFinished, contains 
no data. Events API is a work in progress for many formatters. Lastly, the Cucumber Reports Jenkins plugin 
must be updated to parse Cucumber v. 3.0.0 results. 

 

7 Additional Changes Beyond Cucumber 3.0 

There are a few other changes to consider: 

• Support for Ruby 1.9 and 2.0 has been dropped. 

• Transforms have been removed in favor of Parameter Types (Cucumber Expressions). 

• The Cucumber Core Team plans to open up contributions to more users in an effort to clean up 
the code base. The code base will be simplified. 

• The old formatter API will be deprecated in Cucumber –v 4.0.0 

• Existing Tag Expressions will be supported until Cucumber –v 4.0.0. 

 

 

8 Appendix: Installation for Ruby with RubyMine IDE 

Ruby-Cucumber can be installed via command line directly, bundle installation in the console, or within an 
IDE such as RubyMine. When the gem version is excluded from the command (e.g., –v 0.0.0), RubyGems 
will pull the most recent version by default. To install a specific version, include the –v tag in your install 
command with the specific version number. Alternatively, type "gem install cucumber –v 3.0.0". 



 

Excerpt from PNSQC Proceedings  PNSQC.ORG 

Copies may not be made or distributed for commercial use  Page 12 

 

For RubyMine, include ‘cucumber’ in the Gemfile so the bundle installation will install the other required 
project gems. If the version number is not included with the gem, bundler will install the most recent version. 
To update the project suite with PDF Reader, follow these steps in RubyMine: Tools -> Bundler -> Install -
> click ‘Install’. 

source 'http://rubygems.org' 

 

group :default do 

 

  gem 'rake' 

  gem 'cucumber', '=3.0.0' 

  gem 'rspec' 

  gem 'page-object' 

  gem 'watir' 

  gem 'selenium-webdriver' 

  gem 'cuke_sniffer' 

  gem 'rspec_junit_formatter' 

  gem 'pdf-reader' 

  gem 'certified' 

 

end 

 

For Console Bundle Installation (within the project directory), include ‘cucumber’ in the Gemfile so the 
bundle installation will install the other required project gems. If the version number is not included with the 
gem, bundler will install the most recent version. 

 

 
 



 

Excerpt from PNSQC Proceedings  PNSQC.ORG 

Copies may not be made or distributed for commercial use  Page 13 

References 

1. North, Dan. 2006 “Introducing BDD.” Dan North & Associates. https://dannorth.net/introducing-
bdd/ (accessed November 12, 2017). 

2. Hellesoy, Aslak. 2017. “Why is the Cucumber Tool for BDD Named as Such?.” Cucumber 
Limited.  https://www.quora.com/Why-is-the-Cucumber-tool-for-BDD-named-as-such (accessed 
September 27, 2017). 

3. Hellesoy, Aslak. 2014. “The World’s Most Misunderstood Collaboration Tool.” Cucumber Limited. 
https://cucumber.io/blog/2014/03/03/the-worlds-most-misunderstood-collaboration-tool (accessed 
September 27, 2017). 

4. Wynne, Matt, and Aslak Hellesøy. The Cucumber Book: Behavior-driven Development for 
Testers and Developers. Dallas, TX: Pragmatic Bookshelf, 2012. 

5. Wynne, Matt. 2017. “Announcing Cucumber-Ruby v3.0.0.” Cucumber Limited. 
https://cucumber.io/blog/2017/09/27/announcing-cucumber-ruby-3-0-0 (accessed September 27, 
2017). 

6. Hellesoy, Aslak, 2017. “Parameter Types Examples.” Cucumber Limited. 
https://github.com/cucumber/cucumber-
ruby/blob/master/features/docs/writing_support_code/parameter_types.feature (accessed 
November 12, 2017). 

7. Hellesoy, Aslak. 2017. “Announcing Cucumber Expressions.” Cucumber Limited. 
https://cucumber.io/blog/2017/07/26/announcing-cucumber-expressions (accessed July 26, 
2017). 

8. Wynne, Matt. 2017. “Cucumber Expressions.” Cucumber Limited. 
https://docs.cucumber.io/cucumber-expressions/ (accessed November 12, 2017). 

9. Wynne, Matt. 2017. “Tag Expressions.” Cucumber Limited. https://docs.cucumber.io/tag-
expressions/ (accessed November 12, 2017). 

10. Wynne, Matt. 2017. “Retry and Flaky Status.” Cucumber Limited 
https://app.cucumber.pro/projects/cucumber-
ruby/documents/branch/master/features/docs/cli/retry_failing_tests.feature (accessed November 
12, 2017). 

11. Wynne, Matt, Hellesoy, Aslak & various contributors. 2008-2018. Full Change Log: 
https://github.com/cucumber/cucumber-ruby/blob/master/CHANGELOG.md (accessed November 
12, 2017). 

12. Wynne, Matt. 2017. “Events API.” Cucumber Limited. 
http://www.rubydoc.info/github/cucumber/cucumber-ruby/Cucumber/Events (accessed November 
12, 2017). 

13. Adzic, Gojko. Specification by Example: How Successful Teams Deliver the Right Software. 
Shelter Island, NY: Manning, 2011. 

 

 

 

https://cucumber.io/blog/2017/09/27/announcing-cucumber-ruby-3-0-0
https://cucumber.io/blog/2017/09/27/announcing-cucumber-ruby-3-0-0
https://cucumber.io/blog/2017/07/26/announcing-cucumber-expressions
https://cucumber.io/blog/2017/07/26/announcing-cucumber-expressions
https://docs.cucumber.io/cucumber-expressions/
https://docs.cucumber.io/cucumber-expressions/
https://docs.cucumber.io/cucumber-expressions/
https://docs.cucumber.io/tag-expressions/
https://docs.cucumber.io/tag-expressions/
https://docs.cucumber.io/tag-expressions/
https://app.cucumber.pro/projects/cucumber-ruby/documents/branch/master/features/docs/cli/retry_failing_tests.feature
https://app.cucumber.pro/projects/cucumber-ruby/documents/branch/master/features/docs/cli/retry_failing_tests.feature
https://app.cucumber.pro/projects/cucumber-ruby/documents/branch/master/features/docs/cli/retry_failing_tests.feature
https://github.com/cucumber/cucumber-ruby/blob/master/CHANGELOG.md
https://github.com/cucumber/cucumber-ruby/blob/master/CHANGELOG.md
http://www.rubydoc.info/github/cucumber/cucumber-ruby/Cucumber/Events
http://www.rubydoc.info/github/cucumber/cucumber-ruby/Cucumber/Events
http://www.rubydoc.info/github/cucumber/cucumber-ruby/Cucumber/Events

