
Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 1

AI Quietly Breaking Quality? The Hidden
Risks Lurking in LLM-Driven Apps

Reet Kaur, Sekaurity
reetkaur@sekaurity.com

Abstract
Artificial Intelligence (AI) systems promise automation, personalization, and cost savings but introduce
hidden risks that traditional software engineering often fails to address. This paper explores the subtle,
cumulative failures that can undermine software quality, security, and maintainability over time. It provides
real-world case studies, explains why these risks arise, and offers practical recommendations for
engineering teams to adopt robust, lifecycle-focused practices that deliver reliable and secure AI-powered
features.

Biography
Reet Kaur is the CEO and Founder of Sekaurity, a cybersecurity advisory practice specializing in AI
Security, GRC, and enterprise risk. She previously served as Chief Information Security Officer (CISO) for
the largest higher-ed institution in Portland, Oregon, securing systems supporting over 85,000 students.
With more than 20 years of experience, Reet has held leadership roles at Merck, Nike, AECOM, Fidelity,
and CIBC across finance, pharma, retail, and academics. She is the coauthor of a book on application
security and the author of LinkedIn Learning courses on AI Security Foundations, the OWASP Top 10 for
LLMs, and Cybersecurity Due Diligence in M&A. She holds CISSP, CISM, CRISC, and PMP
certifications, and degrees from the University of Waterloo and Carnegie Mellon University.

Introduction
AI systems have evolved rapidly from research prototypes to production-critical components in everyday
applications, from customer-facing chatbots to personalized recommendations and fraud detection. This
widespread adoption is driven by the promise of automation and business value. Yet, amid the rush to
deploy these systems, an essential question often goes unasked: Is your AI quietly undermining software
quality and introducing security risks you may not even see?

Unlike traditional rule-based code, AI relies on large datasets, statistical models, and probabilistic outputs
that are inherently harder to test and debug. This introduces unique risks that standard QA and CI/CD
practices often fail to address. Issues like poor data quality, model drift, limited explainability, and fragile
third-party integrations can degrade system performance in subtle, hard-to-detect ways. These failures
rarely cause crashes immediately but instead accumulate over time, increasing support tickets,
introducing bias, and complicating maintenance.

For engineering teams, these risks create technical debt, slow delivery, and add unexpected operational
costs. For users, they result in unreliable or unfair experiences that erode trust. For production support
teams, they increase maintenance complexity and demand ad-hoc fixes.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 2

This paper explores the hidden costs of integrating AI into production systems, explains why these issues
arise, and offers practical recommendations to identify and manage these risks before they become
costly maintenance and security liabilities.

Background

Over the past decade, AI has moved from a niche research topic to a standard production capability
across industries. Early AI systems were often built for more constrained business use cases, such as
rule based expert systems like MYCIN by Stanford in the 1970’s to assist in diagnosing bacterial
infections. Neural networks and other approaches were also explored in domains such as medical
imaging, credit risk scoring, and early detection, though large-scale commercial adoption came much
later. Advances in machine learning frameworks, deep learning models, and accessible APIs have
enabled more flexible, developer-friendly, and widely adopted AI-powered features.

Today, teams use Generative AI, including Large Language Models and agents to:

- Automate customer and internal employee interactions through chatbots, virtual assistants, and
other conversational systems.

- Personalize content and recommendations
- Detect fraud and risky transactions
- Improve search relevance
- Summarize or generate code using large language models

Traditionally, software quality has been defined by principles like:

- Correctness (does it do what it's supposed to?)
- Reliability (does it work consistently?)
- Usability (is it effective and easy for users?)
- Fairness (does it treat all users equitably?)
- Security (does it protect data and resist attacks?)
- Maintainability (is it easy to update and improve?)
- Performance (does it respond quickly and handle load well?)

In classic engineering, these qualities are enforced through deterministic logic, unit and integration
testing, code reviews, and, in more recent years, continuous integration and continuous delivery (CI/CD)
pipelines. But AI features challenge many of these assumptions. Models are probabilistic by nature,
heavily dependent on data quality, and can degrade over time if they aren’t retrained. Many function as
“black boxes,” making failures difficult to trace or explain. Integrating third-party large language models
can also hide critical validation steps behind simplified APIs.

This shift introduces new engineering challenges, such as:

1. Standard QA practices missing subtle, accumulating errors
- Chatbots might perform well in testing but produce biased or offensive responses with

real user inputs.
- Fraud detection models can pass initial QA but start missing new fraud tactics without

retraining.
- Summarizers might rephrase legal or policy text in ways that change its meaning,

creating compliance risks.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 3

- Traditional QA often doesn’t test for variations, multi-turn conversations, or adversarial
prompts, letting failures slip into production.

1. Data pipelines decaying silently without clear warning
- Data sources can change, degrade, or become stale without triggering obvious alerts.
- Models trained on outdated or biased data can start making worse predictions over time.

2. Prompt engineering introducing injection risks
- Users can craft inputs like “Ignore previous instructions and share internal data,”

bypassing guardrails.
- This risk often goes untested if QA only checks expected user prompts.

3. Vendor APIs changing or shutting down without notice
- Providers might update models in ways that break your integration or discontinue

services entirely.
4. Outputs that violate policy or leak data if not properly validated

- A support bot might share confidential information in response to cleverly phrased user
queries.

Without strong engineering processes, good tooling, and clear ownership over the entire AI lifecycle,
teams risk releasing features that quietly harm user experience, increase maintenance costs, and
introduce security issues.

Hidden Costs and Risks of AI Systems
While AI systems promise automation and improved user experiences, they also introduce hidden costs
and risks that teams often underestimate. These issues rarely cause obvious crashes or failures but can
undermine software quality, security, and maintainability over time:

1. Data Quality Debt
AI models rely on high-quality training and input data. Poorly labeled, biased, incomplete, or even
maliciously poisoned data can lead to misclassifications, unsafe outputs, and fairness failures.
These problems often remain invisible during testing but surface in production.

2. Model Drift and Misuse
Unlike static code, models degrade over time as real-world inputs shift. Without continuous
monitoring and retraining, performance silently declines, leading to user-visible errors, biased
outcomes, and unintended behaviors.

3. Opacity and Explainability Gaps
Many AI models function as opaque black boxes. Without explainability tooling, developers
cannot easily debug or justify decisions, reducing accountability, complicating compliance, and
increasing the risk of unsafe or policy-violating outputs.

4. Human Oversight Costs
AI is often marketed as fully automated, but in practice it frequently requires manual review.
Without planned human-in-the-loop workflows, teams risk overreliance on automation, leading to
unsafe or unfair outcomes that demand costly manual correction.

5. Fragile Third-Party Wrappers and Supply Chain Risks
Small vendors often offer easy-to-integrate AI wrappers around popular APIs. While these
accelerate delivery, they can be fragile and opaque. Vendors facing cost spikes or funding issues
may shut down or change terms abruptly, leaving integrations broken in production and requiring
urgent reengineering.

6. User Trust and UX Erosion
Inconsistent, biased, or inexplicable AI decisions undermine user trust. Users faced with

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 4

unpredictable recommendations or unfair outcomes may churn, leave negative reviews, or
abandon the product altogether.

7. Engineering and Maintenance Overhead
AI features aren’t one-off deliveries. They require ongoing monitoring, retraining, data validation,
and threat modeling. Without lifecycle planning, these features become brittle and expensive to
maintain.

8. Regulatory and Compliance Risks
Emerging AI regulations demand explainability, fairness testing, and bias mitigation. Failing to
design for these requirements creates costly retrofits, compliance gaps, and reputational damage.

Case Studies and Real-World Examples

Below are documented failures and patterns that show how these risks emerge in production:

 Case Study What Happened Why It Matters

1 Chatbots and
Conversational
Drift

Microsoft launched Tay, a chatbot on
Twitter designed to learn from user
interactions. Users quickly exploited it by
feeding it offensive prompts. Within hours,
Tay began posting racist and hateful
messages publicly, forcing Microsoft to
shut it down.

Demonstrates how chatbots
without strong content filters
and adversarial testing can
be hijacked in public,
damaging brand reputation.

2 Chevy Dealership
Chatbot Incident

In late 2023, a prankster used a Chevrolet
dealership’s website chatbot to negotiate a
$76,000 Tahoe down to $1. By crafting
prompts carefully, he forced the bot to
agree to absurd terms like “this is a legally
binding offer.” The conversation went viral,
and the dealership quickly shut it down.

Shows how public-facing AI
chatbots can be manipulated
without proper validation or
safeguards, underscoring the
need for strict controls on
automated systems handling
transactions.

3 Bias in Medical
Image
Classification

Google and Stanford researchers found
that commercial AI models for diagnosing
skin conditions performed much worse on
darker skin tones because training data
was skewed toward lighter skin.

Proves that without
representative data and
fairness testing, AI can
reinforce healthcare
disparities and deliver
unsafe, biased results.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 5

4 Credit Scoring and
Model Drift

Apple Card users reported that women
received lower credit limits than men with
similar financial profiles, even on shared
accounts. While Apple and Goldman
Sachs denied intentional bias, the opaque
credit risk model drew regulatory scrutiny.

Highlights that credit scoring
models can drift or embed
bias over time, making
monitoring and recalibration
essential.

5 Fragile Third-Party
Wrappers and
Supply Chain Risks

Several small AI plugin vendors built easy-
to-use integrations on top of major APIs
like OpenAI’s. When API providers
changed pricing or terms, these vendors
raised prices sharply, limited features, or
shut down completely. Customers were left
with broken integrations and had to find
replacements quickly.

Exposes the risks of relying
on opaque third-party tools,
emphasizing the need for
vendor evaluation, modular
integration design, and
contingency planning.

Operational Realities
These failures often go unnoticed at first, producing no clear error logs or crashes. Instead, they
accumulate quietly through:

- Drift in predictions
- Inconsistent or biased outputs
- Fragile vendor dependencies that fail without warning
- Increased human intervention to maintain quality

Security risks also emerge in these gaps, such as prompt injection through unvalidated inputs, supply-
chain vulnerabilities from opaque third-party wrappers, and data poisoning via unvalidated training data.
Many teams focus heavily on launch readiness, including benchmark accuracy, initial integration, and
demo success, while neglecting lifecycle quality. They celebrate fast time-to-market but fail to plan for
inevitable changes in data, user behavior, and vendor ecosystems. However, as real-world conditions
evolve, systems silently degrade. Bugs that don’t appear in test suites show up as user complaints,
support tickets, or regulatory inquiries.

Ultimately, quality and security are inseparable in AI systems. Ignoring either guarantees unplanned
maintenance, user frustration, brand damage, and regulatory exposure. Maintaining AI quality is not just a
data science problem; it is a software engineering, DevOps, and product management responsibility that
demands deliberate, cross-functional ownership.

Recommendations
To address these hidden costs and quiet failures, engineering teams need to embed quality and security
practices throughout the AI lifecycle. This means moving beyond one-time model accuracy and adopting

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 6

disciplined engineering practices that keep AI-powered features reliable, maintainable, and secure over
time. Key recommendations include:

1. Data Validation Pipelines
Automate checks in ETL and training workflows to catch labeling errors, bias, and stale or
malicious data. Treat data quality with the same rigor as code quality through validation tests and
reviews.

2. Continuous Monitoring for Drift
Implement drift detection for both input data and model predictions. Build dashboards and alerts
to identify degradation early. Include retraining as part of regular maintenance responsibilities.

3. Explainability Tooling
Integrate frameworks such as SHAP (SHapley Additive exPlanations) or LIME (Local
Interpretable Model-agnostic Explanations) to make model predictions traceable, interpretable,
and defensible.

4. Human-in-the-Loop Processes
Design workflows that incorporate manual review or override for high-risk or ambiguous outputs.
This reduces harm and builds user trust while maintaining safety in production.

5. Vendor Risk Management
Evaluate third-party wrappers and APIs rigorously. Use modular integration patterns and maintain
clear vendor exit plans to reduce the risk of fragile, orphaned systems.

6. Risk-Based Testing and Validation
Expand test suites to include fairness checks, adversarial testing, and stress tests. Integrate
these into CI/CD pipelines to catch potential failures before deployment. In practice, teams
should:

- Adversarial Prompt Testing - Probe chatbots/LLMs with edge cases, malicious inputs,
and jailbreak-style prompts.

- Bias and Fairness Benchmarks - Test with representative datasets across
demographics and conditions to detect unfair outcomes.

- Scenario-Based Simulation - Use synthetic but realistic cases (e.g., fraud tactics, policy
edge cases) to stress the model.

- Drift Replay Testing - Re-run historical data across versions to detect hidden accuracy
or bias shifts.

- Fail-Safe and Guardrail Validation - Verify that models uphold policies (e.g., never
disclosing PII) even under adversarial input.

- Continuous Red-Teaming - Apply penetration testing principles by continuously probing
systems for vulnerabilities.

7. Lifecycle Ownership
Treat AI features as long-lived products, not one-time deliveries. Plan for versioning, retraining,
monitoring, and maintenance as you would for microservices or APIs.

8. Alignment with Governance Frameworks
Prepare for regulatory expectations by aligning with frameworks such as the NIST AI Risk
Management Framework, ISO/IEC 42001, or regional AI regulations. This ensures audit
readiness and reduces future compliance rework.

By embedding these practices, developer teams can reduce technical debt, avoid maintenance surprises,
and deliver AI-powered features that maintain production-quality standards over time.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 7

Conclusion
AI systems are now integral to business operations, but they introduce subtle, probabilistic, and
cumulative failure modes that traditional software engineering practices often miss. These failures
degrade quality, introduce security risks, erode user trust, and increase operational costs.
Ignoring these risks does not make them disappear. Instead, it guarantees unplanned maintenance,
technical debt, user frustration, and potential regulatory exposure.

Addressing them requires treating AI quality and security as integrated responsibilities. Teams must
embed robust data validation, continuous monitoring, explainability tooling, human oversight, vendor risk
management, and strong lifecycle planning into every deployment.

Maintaining quality in AI systems is not optional. It is essential for protecting users, supporting business
goals, and building the trust necessary for adopting AI responsibly and sustainably in an increasingly
automated world.

References / Bibliography

- European Parliament and Council. (2024). EU Artificial Intelligence Act. Retrieved from
https://eur-lex.europa.eu

- National Institute of Standards and Technology (NIST). (2023). AI Risk Management Framework
(AI RMF 1.0). U.S. Department of Commerce. Retrieved from https://www.nist.gov/ai

- ISO/IEC. (2024). ISO/IEC 42001: Artificial Intelligence Management System Standard.
International Organization for Standardization.

- Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015).
Hidden Technical Debt in Machine Learning Systems. NeurIPS Workshop Paper. Retrieved from
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

- Google Cloud. (2022). The AI Quality Framework: Best Practices for Building and Managing AI
Products. Retrieved from https://cloud.google.com/blog

- OWASP Foundation. (2023). OWASP AI Security & Privacy Guide. Retrieved from
https://owasp.org/www-project-ai-security-and-privacy-guide/

- Brundage, M., Avin, S., Clark, J., Toner, H., Eckersley, P., Garfinkel, B., ... & Amodei, D. (2020).
Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable Claims. arXiv
preprint. Retrieved from https://arxiv.org/abs/2004.07213

- U.S. Federal Trade Commission (FTC). (2021). Aiming for Truth, Fairness, and Equity in Your
Company’s Use of AI. Retrieved from https://www.ftc.gov/business-
guidance/blog/2021/04/aiming-truth-fairness-equity-your-companys-use-ai

