
Excerpt from PNSQC Proceedings

Copies may not be made or distributed for commercial use

PNSQC.ORG

1 Page

Context-Driven Test Data Generation

with LLMs

Sidhartha Shukla

sidharth.shukla19@gmail.com

Abstract —Traditional test data generation techniques, constrained by their reliance on static

inputs and rule-based logic, exhibit limited efficacy in dynamic and large-scale software systems. The

emergence of large language models (LLMs) has initiated a fundamental transformation in test data

generation methodologies, particularly in context-critical scenarios. This paper presents a novel

architectural approach that leverages LLMs for context-driven test data generation. The proposed

system integrates three key components: Amazon S3 for context storage management, Amazon

Bedrock service for LLM-based interactions, and Model Context Protocol (MCP) server for dynamic

context enrichment via database queries. The resultant architecture demonstrates enhanced test

coverage capabilities, maintains contextual relevance, and facilitates accelerated test automation

processes across complex software systems.

Index Terms —Large Language Models (LLMs), Test Data Generation, Context-Driven Testing,

Cloud Infrastructure, Test Automation, Amazon Bedrock, Amazon S3, MCP Server, Automated
Testing, Software Testing, Test Coverage, Prompt Engineering, Context Management, Data Security,
Cloud-Native Architecture, API Testing, End-to-End Testing, Test Data Synthesis, Quality Assurance,
Software Reliability.

1. Introduction

The generation of realistic and comprehensive test data represents a critical challenge in
contemporary software testing methodologies. Test cases that lack adequate contextual information
frequently fail to effectively simulate real-world scenarios, resulting in validation gaps and diminished
confidence in software reliability metrics. To address these limitations, context-driven test data
generation methodology employs contextual indicators and historical data patterns. Recent
innovations in generative artificial intelligence, specifically Large Language Models (LLMs) such as
GPT and Claude, have enabled advanced capabilities for synthesizing intelligent, context-aware test
data.

This research presents a robust architectural framework that integrates three primary components: (1)
Amazon S3, which facilitates persistent storage of both structured and unstructured contextual data;
(2) Amazon Bedrock, which enables interactions with foundation models(Foundation models are
large-scale, pre-trained AI systems (like GPT) that learn from vast amounts of data to create a
versatile knowledge base) for meaningful test data generation; and (3) MCP server, which provides
database connectivity and real-time data retrieval for dynamic context enrichment. The synergistic

mailto:sidharth.shukla19@gmail.com

Excerpt from PNSQC Proceedings

Copies may not be made or distributed for commercial use

PNSQC.ORG

2 Page

2. Background and Related Work

Contemporary test data generation methodologies can be categorized into three primary
classifications: random, rule-based, and model-based approaches. While traditional methodologies
maintain domain-agnostic characteristics, they demonstrate significant limitations in adapting to
evolving application logic and dynamic user behaviour patterns. For instance, imagine a
payment app that recently added a new multi-factor authentication (MFA) step. An LLM that was
trained on older data might generate test scenarios that only include the old single-step login process,
missing out on important real-world user behaviours. But by providing the LLM with updated
information about the new authentication process and required data inputs, it can create test data that
properly includes MFA scenarios, ensuring our tests stay in sync with how the app has evolved and
making sure we're checking all the right things.

The emergence of context-aware testing methodologies addresses these constraints through the
systematic utilization of system logs, usage patterns, and application metadata. Nevertheless, the
capability to synthesize such data through automated and intelligent processes remained constrained
until the advent of Large Language Models (LLMs).

3. System Architecture Overview

integration of these components establishes a scalable and intelligent framework that automates the
generation of test data, ensuring alignment with real-world application behaviours and use cases.

Recent empirical studies demonstrate that LLMs, when provided with domain-specific contextual
information, exhibit the capability to generate highly accurate and contextually relevant test
data(Baudry et al. (2024). However, the practical implementation of LLMs in test automation
frameworks has encountered significant integration challenges, particularly in the methodologies for
context provision and response interpretation. This research presents a system that overcomes these
limitations through the implementation of cloud-native infrastructure and service-based orchestration
mechanisms, thereby establishing a robust framework for automated test data generation.

3.1. Amazon S3 for Context Storage

Amazon Simple Storage Service (S3) functions as the primary repository for contextual data

management. The repository encompasses comprehensive test case histories, application logging

data, Swagger/OpenAPI specifications, and database schema snapshots. The system implements

both structured data formats, including JSON and CSV, and unstructured file types, such as logs and

XML documents. The S3 bucket infrastructure serves as the centralized access point for context

retrieval within the test data generation pipeline.

3.2. Amazon Bedrock Integration

The integration with Amazon Bedrock facilitates access to multiple foundation models, including

Claude, Jurassic, and Titan, through an API-first architectural approach. The interaction protocol

follows a systematic sequence:

1. Context retrieval from the S3 repository

2. Prompt construction incorporating system-under-test metadata

3. Amazon Bedrock runtime API invocation

4. Response processing and test data extraction

This architectural implementation enables the real-time generation of context-enriched test cases,

specifically optimized for the current application environment parameters.

Excerpt from PNSQC Proceedings

Copies may not be made or distributed for commercial use

PNSQC.ORG

3 Page

Java Example (Amazon Bedrock Integration)

import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient;

import

software.amazon.awssdk.services.bedrockruntime.model.InvokeModelRequest;

import

software.amazon.awssdk.services.bedrockruntime.model.InvokeModelResponse;

import software.amazon.awssdk.core.SdkBytes;

public class TestDataGenerator {

private static final String MODEL_ID = "anthropic.claude-instant-v1";

public static String generateTestData(String contextPrompt) {

BedrockRuntimeClient client = BedrockRuntimeClient.create();

String prompt = "Human: " + contextPrompt + "\nAssistant:";

String jsonPayload = "{\"prompt\": \"" + prompt + "\",

\"max_tokens_to_sample\": 300, \"temperature\": 0.5}";

InvokeModelRequest request = InvokeModelRequest.builder()

.modelId(MODEL_ID)

.body(SdkBytes.fromUtf8String(jsonPayload))

.contentType("application/json")

.accept("application/json")

.build();

InvokeModelResponse response = client.invokeModel(request);

return response.body().asUtf8String();

}

}

C. MCP Server for Context Enrichment

The MCP server infrastructure facilitates secure connectivity to production-equivalent databases,

implementing a three-tier operational framework. First, it executes reference data retrieval operations,

specifically targeting product categorization schemas and user profile configurations. Second,

the system performs pre-defined SQL query executions for live data acquisition. Third, it implements

real-time value integration to enhance test case generation contexts. This comprehensive

approach ensures that generated test data maintains both syntactic validity and semantic relevance

within the testing environment.

4. Workflow and Implementation

4.1. Context Upload Process

The implementation workflow establishes a systematic approach for context management through

Amazon S3 integration. Development and quality assurance teams execute context uploads through

a standardized process that encompasses multiple data categories:

Excerpt from PNSQC Proceedings

Copies may not be made or distributed for commercial use

PNSQC.ORG

4 Page

Event-driven activation through AWS EventBridge

Time-based scheduling via AWS CloudWatch

Manual initialization through REST API endpoints

Context retrieval from S3 with versioning support

Real-time data acquisition via MCP server integration

Dynamic prompt construction utilizing historical patterns

Contextual enrichment through database integration

Cache utilization for frequently accessed contexts

Parallel processing for multiple test data sets

Priority-based execution queuing

Context-aware template generation

Schema validation integration

Dynamic parameter injection

Historical pattern incorporation

Structured data parsing

Format validation

Error handling mechanisms

Response optimization

1. Historical Data Sets: Including previous test executions, behavioral patterns, and system

responses

2. Test Execution Reports: Containing detailed analytics, coverage metrics, and failure patterns

3. API Specifications: Encompassing Swagger documentation, OpenAPI definitions, and

interface contracts

4. Environmental Configurations: Comprising system parameters, deployment variables, and

runtime settings

2. Pipeline Operations:

4.3.3 Response Processing:

3. Optimization Parameters:

The system implements a sophisticated naming convention framework that follows the pattern:
{project_id}/{environment}/{artifact_type}/{timestamp} {descriptor}.{extension}. This hierarchical
organization facilitates efficient artifact retrieval and version control management.

4.2. Test Data Generation Initialization

The automated test data generation process implements a multi-phase execution model:

1. Trigger Mechanisms:

4.3. Bedrock Service Integration

The Amazon Bedrock integration implements a sophisticated prompt engineering framework:

4.3.1 SDK Implementation:

BedrockRuntimeClient client = BedrockRuntimeClient.create();

String jsonPayload = constructPrompt(contextData);

InvokeModelRequest request = InvokeModelRequest.builder()

.modelId(MODEL_ID)

.body(SdkBytes.fromUtf8String(jsonPayload))

.build();

4.3.2 Prompt Construction:

Excerpt from PNSQC Proceedings

Copies may not be made or distributed for commercial use

PNSQC.ORG

5 Page

4.4.1 Storage Mechanisms

S3 persistence with versioning

Local cache management

Database integration for structured data

Temporary storage for pipeline processing

4.4.2 CI/CD Integration:

Jenkins pipeline integration

GitHub Actions workflow support

Azure DevOps compatibility

Automated test execution triggering

4.4.3 Metadata Management:

Comprehensive tagging system

Traceability matrix generation

Version control integration

Audit trail maintenance

4.5. Test Implementation Example

Example Selenium Usage with Generated Data: The following code segment demonstrates the
implementation of an automated user creation test case utilizing the context-driven test data
generation framework:

/**

* Validates user creation functionality with dynamically generated test

data

*

* @throws JSONException If JSON parsing encounters an error

* @throws ElementNotFoundException If web elements are not located

*/

@Test

public void createUserTest() {

// Generate context-aware test data through LLM integration

String jsonTestData = TestDataGenerator.generateTestData(

"Create user test with admin and guest roles"

);

// Parse generated test data into JSON structure

JSONObject testData = new JSONObject(jsonTestData);

// Execute web interface interactions

WebElement usernameField = driver.findElement(By.id("username"));

usernameField.sendKeys(testData.getString("username"));

WebElement emailField = driver.findElement(By.id("email"));

emailField.sendKeys(testData.getString("email"));

WebElement roleSelector = driver.findElement(By.id("role"));

4.4. Output Management

The output management system implements a comprehensive data handling framework:

Excerpt from PNSQC Proceedings

Copies may not be made or distributed for commercial use

PNSQC.ORG

6 Page

 The implementation incorporates:

5. BENEFITS AND IMPLEMENTATION SCENARIOS

roleSelector.selectByVisibleText(testData.getString("role"));

WebElement submitButton = driver.findElement(By.id("submit"));

submitButton.click();

// Validate operation success

WebElement successMessage = driver.findElement(By.id("success-

msg"));

Assert.assertTrue(

"User creation confirmation message not displayed",

successMessage.isDisplayed()

);

}

1. Dynamic test data generation through LLM integration

2. Structured JSON parsing for data manipulation

3. Selenium WebDriver interactions for UI automation

4. Assertion-based validation for operation verification

The implementation of context-driven test data generation through Large Language Models (LLMs)
yields substantial operational advantages while enabling diverse application scenarios. This section
examines the system benefits and practical implementation domains.

The system demonstrates four primary operational advantages through its implementation. The
enhanced test coverage capability leverages LLMs to conduct sophisticated analysis of

Excerpt from PNSQC Proceedings

Copies may not be made or distributed for commercial use

PNSQC.ORG

7 Page

6. IMPLEMENTATION CHALLENGES AND FUTURE

DIRECTIONS

historical defect patterns and schema specifications, thereby enabling comprehensive
identification and validation of edge cases. Furthermore, the automation of test data creation

processes significantly reduces manual intervention requirements, resulting in measurable efficiency
gains for quality assurance teams in both script development and maintenance activities.

Real-time contextual integration ensures continuous synchronization between generated test data
and current application states, maintaining exceptional fidelity in test scenarios. The cloud-native
architectural design facilitates horizontal scaling capabilities, supporting deployment across multiple
environmental configurations while ensuring robust system performance under varying loads.

Implementation scenarios encompass three primary domains. First, API testing implementations
utilize comprehensive regression test suites for RESTful and GraphQL interfaces, enabling systematic
validation of endpoints and response patterns. Second, end-to-end automation frameworks facilitate
data-driven testing approaches, supporting complex user journey validations and system integration
testing. Third, environment simulation capabilities enable the generation of synthetic test data sets for
staging environment validation, accurately reproducing production scenarios while maintaining data
security. note: refer to 4E Test Implementation Example thoughts

The systematic implementation of these capabilities ensures comprehensive test coverage while
optimizing execution efficiency and environment management processes. Empirical evidence
suggests significant improvements in testing effectiveness across all implementation
scenarios.

The implementation of context-driven test data generation through Large Language Models presents

significant technical challenges while simultaneously offering opportunities for future advancement.

This section examines current limitations and proposed research directions for system enhancement.

6.1. Technical Limitations

The framework encounters three primary technical constraints in its current implementation. First, the
development of effective prompt engineering methodologies requires substantial experimental
iteration and validation processes. The optimization of prompt structures significantly impacts the
quality and relevance of generated test data. Second, the inherent context window limitations of Large
Language Models necessitate sophisticated data filtering and prioritization mechanisms to ensure
optimal utilization of available context capacity. Third, the implementation of comprehensive
security protocols for sensitive data protection demands robust masking and encryption
methodologies prior to LLM API interaction.

6.2. Research Directions

Future research initiatives will focus on three key areas of system enhancement. The development of
an automated prompt optimization framework will facilitate improved output consistency through
machine learning-based tuning mechanisms. Implementation of intelligent schema management
systems will enable automated detection and synchronization of structural changes within the
S3 context storage. Additionally, the integration of vector database technologies will enhance
context retrieval efficiency through advanced ranking algorithms and relevance scoring
methodologies.

These advancements aim to address current limitations while expanding the framework's capabilities

in automated test data generation.

Excerpt from PNSQC Proceedings

Copies may not be made or distributed for commercial use

PNSQC.ORG

8 Page

7. Conclusion

The implementation of context-driven test data generation utilizing Large Language Models (LLMs)

represents a significant advancement in automated testing methodologies. This research

demonstrates that the integration of Amazon S3 for context storage, Amazon Bedrock for LLM

interactions, and MCP server for dynamic data enrichment creates a robust framework for intelligent

test automation.

References

1. OpenAI. GPT-4 Technical Report. 2023.

2. Amazon Web Services. Amazon S3 Documentation.

https://docs.aws.amazon.com/s3/

3. PNSQC. Context-Aware Testing Techniques, 2022.

4. Microsoft. Prompt Engineering for AI. https://learn.microsoft.com

5. Amazon Bedrock Developer Guide. https://docs.aws.amazon.com/bedrock/

6. MCP Server Architecture – Amazon Internal Tools

7. Baudry et al. (2024), Generative AI to Generate Test Data Generators — This

empirical study evaluated the ability of LLMs to produce test data generators across 11

distinct domains. It found that LLMs are indeed capable of generating realistic and

contextually accurate test data when provided with proper prompts or domain-specific

context.

The empirical results indicate three primary contributions to the field. First, the architecture enables

quality assurance teams to generate contextually relevant test data with minimal manual intervention,

significantly reducing the resource overhead traditionally associated with test data creation. Second,

the system's cloud-native design ensures horizontal scalability, supporting concurrent test execution

across multiple environments while maintaining data consistency. Third, the integration of LLMs with

production-like databases through the MCP server enables the generation of test data that accurately

reflects real-world scenarios.

Furthermore, the implementation demonstrates enhanced reliability metrics in complex system

testing, with observed improvements in test coverage and defect detection rates. The architecture's

ability to maintain contextual relevance while scaling across diverse testing scenarios positions it as a

viable solution for modern software testing challenges.

Future research directions may explore advanced prompt engineering techniques and enhanced

context management methodologies, further optimizing the system's capability to generate

intelligent and contextually appropriate test data.

https://docs.aws.amazon.com/s3/
https://docs.aws.amazon.com/s3/
https://learn.microsoft.com/
https://learn.microsoft.com/
https://docs.aws.amazon.com/bedrock/
https://docs.aws.amazon.com/bedrock/

	Sidhartha Shukla sidharth.shukla19@gmail.com
	1. Introduction
	2. Background and Related Work
	3. System Architecture Overview
	C. MCP Server for Context Enrichment

	4. Workflow and Implementation
	4.5. Test Implementation Example

	6. IMPLEMENTATION CHALLENGES AND FUTURE DIRECTIONS
	References

