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Abstract —Traditional test data generation techniques, constrained by their reliance on static 

inputs and rule-based logic, exhibit limited efficacy in dynamic and large-scale software systems. The 

emergence of large language models (LLMs) has initiated a fundamental transformation in test data 

generation methodologies, particularly in context-critical scenarios. This paper presents a novel 

architectural approach that leverages LLMs for context-driven test data generation. The proposed 

system integrates three key components: Amazon S3 for context storage management, Amazon 

Bedrock service for LLM-based interactions, and Model Context Protocol (MCP) server for dynamic 

context enrichment via database queries. The resultant architecture demonstrates enhanced test 

coverage capabilities, maintains contextual relevance, and facilitates accelerated test automation 

processes across complex software systems. 
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Cloud-Native Architecture, API Testing, End-to-End Testing, Test Data Synthesis, Quality Assurance, 
Software Reliability. 

 

1. Introduction 

The generation of realistic and comprehensive test data represents a critical challenge in 
contemporary software testing methodologies. Test cases that lack adequate contextual information 
frequently fail to effectively simulate real-world scenarios, resulting in validation gaps and diminished 
confidence in software reliability metrics. To address these limitations, context-driven test data 
generation methodology employs contextual indicators and historical data patterns. Recent 
innovations in generative artificial intelligence, specifically Large Language Models (LLMs) such as 
GPT and Claude, have enabled advanced capabilities for synthesizing intelligent, context-aware test 
data. 

 

This research presents a robust architectural framework that integrates three primary components: (1) 
Amazon S3, which facilitates persistent storage of both structured and unstructured contextual data; 
(2) Amazon Bedrock, which enables interactions with foundation models(Foundation models are 
large-scale, pre-trained AI systems (like GPT) that learn from vast amounts of data to create a 
versatile knowledge base) for meaningful test data generation; and (3) MCP server, which provides 
database connectivity and real-time data retrieval for dynamic context enrichment. The synergistic 
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2. Background and Related Work 

Contemporary test data generation methodologies can be categorized into three primary 
classifications: random, rule-based, and model-based approaches. While traditional methodologies 
maintain domain-agnostic characteristics, they demonstrate significant limitations in adapting to 
evolving application logic and dynamic user behaviour patterns. For instance, imagine a 
payment app that recently added a new multi-factor authentication (MFA) step. An LLM that was 
trained on older data might generate test scenarios that only include the old single-step login process, 
missing out on important real-world user behaviours. But by providing the LLM with updated 
information about the new authentication process and required data inputs, it can create test data that 
properly includes MFA scenarios, ensuring our tests stay in sync with how the app has evolved and 
making sure we're checking all the right things. 

The emergence of context-aware testing methodologies addresses these constraints through the 
systematic utilization of system logs, usage patterns, and application metadata. Nevertheless, the 
capability to synthesize such data through automated and intelligent processes remained constrained 
until the advent of Large Language Models (LLMs). 

 

 

 
3. System Architecture Overview 

 

 

 

integration of these components establishes a scalable and intelligent framework that automates the 
generation of test data, ensuring alignment with real-world application behaviours and use cases. 

Recent empirical studies demonstrate that LLMs, when provided with domain-specific contextual 
information, exhibit the capability to generate highly accurate and contextually relevant test 
data(Baudry et al. (2024). However, the practical implementation of LLMs in test automation 
frameworks has encountered significant integration challenges, particularly in the methodologies for 
context provision and response interpretation. This research presents a system that overcomes these 
limitations through the implementation of cloud-native infrastructure and service-based orchestration 
mechanisms, thereby establishing a robust framework for automated test data generation. 

3.1. Amazon S3 for Context Storage 

Amazon Simple Storage Service (S3) functions as the primary repository for contextual data 

management. The repository encompasses comprehensive test case histories, application logging 

data, Swagger/OpenAPI specifications, and database schema snapshots. The system implements 

both structured data formats, including JSON and CSV, and unstructured file types, such as logs and 

XML documents. The S3 bucket infrastructure serves as the centralized access point for context 

retrieval within the test data generation pipeline. 

3.2. Amazon Bedrock Integration 

The integration with Amazon Bedrock facilitates access to multiple foundation models, including 

Claude, Jurassic, and Titan, through an API-first architectural approach. The interaction protocol 

follows a systematic sequence: 

1. Context retrieval from the S3 repository 

2. Prompt construction incorporating system-under-test metadata 

3. Amazon Bedrock runtime API invocation 

4. Response processing and test data extraction 

This architectural implementation enables the real-time generation of context-enriched test cases, 

specifically optimized for the current application environment parameters. 
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Java Example (Amazon Bedrock Integration) 

 
import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; 

import 

software.amazon.awssdk.services.bedrockruntime.model.InvokeModelRequest; 

import 

software.amazon.awssdk.services.bedrockruntime.model.InvokeModelResponse; 

import software.amazon.awssdk.core.SdkBytes; 

 
public class TestDataGenerator { 

private static final String MODEL_ID = "anthropic.claude-instant-v1"; 

 
public static String generateTestData(String contextPrompt) { 

BedrockRuntimeClient client = BedrockRuntimeClient.create(); 

 
String prompt = "Human: " + contextPrompt + "\nAssistant:"; 

String jsonPayload = "{\"prompt\": \"" + prompt + "\", 

\"max_tokens_to_sample\": 300, \"temperature\": 0.5}"; 

 
InvokeModelRequest request = InvokeModelRequest.builder() 

.modelId(MODEL_ID) 

.body(SdkBytes.fromUtf8String(jsonPayload)) 

.contentType("application/json") 

.accept("application/json") 

.build(); 

 
InvokeModelResponse response = client.invokeModel(request); 

return response.body().asUtf8String(); 

} 

} 

 
C. MCP Server for Context Enrichment 

The MCP server infrastructure facilitates secure connectivity to production-equivalent databases, 

implementing a three-tier operational framework. First, it executes reference data retrieval operations, 

specifically targeting product categorization schemas and user profile configurations. Second, 

the system performs pre-defined SQL query executions for live data acquisition. Third, it implements 

real-time value integration to enhance test case generation contexts. This comprehensive 

approach ensures that generated test data maintains both syntactic validity and semantic relevance 

within the testing environment. 

 

 

 
4. Workflow and Implementation 

 

4.1. Context Upload Process 

The implementation workflow establishes a systematic approach for context management through 

Amazon S3 integration. Development and quality assurance teams execute context uploads through 

a standardized process that encompasses multiple data categories: 
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Event-driven activation through AWS EventBridge 

Time-based scheduling via AWS CloudWatch 

Manual initialization through REST API endpoints 

 
Context retrieval from S3 with versioning support 

Real-time data acquisition via MCP server integration 

Dynamic prompt construction utilizing historical patterns 

Contextual enrichment through database integration 

 
Cache utilization for frequently accessed contexts 

Parallel processing for multiple test data sets 

Priority-based execution queuing 

 

 

 

 

Context-aware template generation 

Schema validation integration 

Dynamic parameter injection 

Historical pattern incorporation 

 
Structured data parsing 

Format validation 

Error handling mechanisms 

Response optimization 

1. Historical Data Sets: Including previous test executions, behavioral patterns, and system 

responses 

2. Test Execution Reports: Containing detailed analytics, coverage metrics, and failure patterns 

3. API Specifications: Encompassing Swagger documentation, OpenAPI definitions, and 

interface contracts 

4. Environmental Configurations: Comprising system parameters, deployment variables, and 

runtime settings 

2.  Pipeline Operations: 

4.3.3 Response Processing: 

3.  Optimization Parameters: 

The system implements a sophisticated naming convention framework that follows the pattern: 
{project_id}/{environment}/{artifact_type}/{timestamp} {descriptor}.{extension}. This hierarchical 
organization facilitates efficient artifact retrieval and version control management. 

4.2. Test Data Generation Initialization 

The automated test data generation process implements a multi-phase execution model: 

1.  Trigger Mechanisms: 

4.3. Bedrock Service Integration 

The Amazon Bedrock integration implements a sophisticated prompt engineering framework: 

4.3.1 SDK Implementation: 

BedrockRuntimeClient client = BedrockRuntimeClient.create(); 

String jsonPayload = constructPrompt(contextData); 

InvokeModelRequest request = InvokeModelRequest.builder() 

.modelId(MODEL_ID) 

.body(SdkBytes.fromUtf8String(jsonPayload)) 

.build(); 

4.3.2 Prompt Construction: 



Excerpt from PNSQC Proceedings 

Copies may not be made or distributed for commercial use 

PNSQC.ORG 

5 Page 
 

 

4.4.1 Storage Mechanisms  

S3 persistence with versioning 

Local cache management 

Database integration for structured data 

Temporary storage for pipeline processing 

4.4.2 CI/CD Integration:  

Jenkins pipeline integration 

GitHub Actions workflow support 

Azure DevOps compatibility 

Automated test execution triggering 

4.4.3 Metadata Management:  

Comprehensive tagging system 

Traceability matrix generation 

Version control integration 

Audit trail maintenance 

 

4.5. Test Implementation Example 

Example Selenium Usage with Generated Data: The following code segment demonstrates the 
implementation of an automated user creation test case utilizing the context-driven test data 
generation framework: 

 
/** 

* Validates user creation functionality with dynamically generated test 

data 

* 

* @throws JSONException If JSON parsing encounters an error 

* @throws ElementNotFoundException If web elements are not located 

*/ 

@Test 

public void createUserTest() { 

// Generate context-aware test data through LLM integration 

String jsonTestData = TestDataGenerator.generateTestData( 

"Create user test with admin and guest roles" 

); 

 
// Parse generated test data into JSON structure 

JSONObject testData = new JSONObject(jsonTestData); 

 
// Execute web interface interactions 

WebElement usernameField = driver.findElement(By.id("username")); 

usernameField.sendKeys(testData.getString("username")); 

 
WebElement emailField = driver.findElement(By.id("email")); 

emailField.sendKeys(testData.getString("email")); 

 
WebElement roleSelector = driver.findElement(By.id("role")); 

4.4. Output Management 

The output management system implements a comprehensive data handling framework: 
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 The implementation incorporates:  
 

 

 
 

 

5. BENEFITS AND IMPLEMENTATION SCENARIOS 
 

roleSelector.selectByVisibleText(testData.getString("role")); 

 
WebElement submitButton = driver.findElement(By.id("submit")); 

submitButton.click(); 

 
// Validate operation success 

WebElement successMessage = driver.findElement(By.id("success- 

msg")); 

Assert.assertTrue( 

"User creation confirmation message not displayed", 

successMessage.isDisplayed() 

); 

} 

1. Dynamic test data generation through LLM integration 

2. Structured JSON parsing for data manipulation 

3. Selenium WebDriver interactions for UI automation 

4. Assertion-based validation for operation verification 

The implementation of context-driven test data generation through Large Language Models (LLMs) 
yields substantial operational advantages while enabling diverse application scenarios. This section 
examines the system benefits and practical implementation domains. 

The system demonstrates four primary operational advantages through its implementation. The 
enhanced test coverage capability leverages LLMs to conduct sophisticated analysis of 
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6. IMPLEMENTATION CHALLENGES AND FUTURE 

DIRECTIONS 
 

historical defect patterns and schema specifications, thereby enabling comprehensive 
identification and validation of edge cases. Furthermore, the automation of test data creation 

processes significantly reduces manual intervention requirements, resulting in measurable efficiency 
gains for quality assurance teams in both script development and maintenance activities. 

Real-time contextual integration ensures continuous synchronization between generated test data 
and current application states, maintaining exceptional fidelity in test scenarios. The cloud-native 
architectural design facilitates horizontal scaling capabilities, supporting deployment across multiple 
environmental configurations while ensuring robust system performance under varying loads. 

Implementation scenarios encompass three primary domains. First, API testing implementations 
utilize comprehensive regression test suites for RESTful and GraphQL interfaces, enabling systematic 
validation of endpoints and response patterns. Second, end-to-end automation frameworks facilitate 
data-driven testing approaches, supporting complex user journey validations and system integration 
testing. Third, environment simulation capabilities enable the generation of synthetic test data sets for 
staging environment validation, accurately reproducing production scenarios while maintaining data 
security. note: refer to 4E Test Implementation Example thoughts 

The systematic implementation of these capabilities ensures comprehensive test coverage while 
optimizing execution efficiency and environment management processes. Empirical evidence 
suggests significant improvements in testing effectiveness across all implementation 
scenarios. 

The implementation of context-driven test data generation through Large Language Models presents 

significant technical challenges while simultaneously offering opportunities for future advancement. 

This section examines current limitations and proposed research directions for system enhancement. 

 

6.1. Technical Limitations 

The framework encounters three primary technical constraints in its current implementation. First, the 
development of effective prompt engineering methodologies requires substantial experimental 
iteration and validation processes. The optimization of prompt structures significantly impacts the 
quality and relevance of generated test data. Second, the inherent context window limitations of Large 
Language Models necessitate sophisticated data filtering and prioritization mechanisms to ensure 
optimal utilization of available context capacity. Third, the implementation of comprehensive 
security protocols for sensitive data protection demands robust masking and encryption 
methodologies prior to LLM API interaction. 

6.2. Research Directions 

Future research initiatives will focus on three key areas of system enhancement. The development of 
an automated prompt optimization framework will facilitate improved output consistency through 
machine learning-based tuning mechanisms. Implementation of intelligent schema management 
systems will enable automated detection and synchronization of structural changes within the 
S3 context storage. Additionally, the integration of vector database technologies will enhance 
context retrieval efficiency through advanced ranking algorithms and relevance scoring 
methodologies. 

These advancements aim to address current limitations while expanding the framework's capabilities 

in automated test data generation. 
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7. Conclusion 

 
The implementation of context-driven test data generation utilizing Large Language Models (LLMs) 

represents a significant advancement in automated testing methodologies. This research 

demonstrates that the integration of Amazon S3 for context storage, Amazon Bedrock for LLM 

interactions, and MCP server for dynamic data enrichment creates a robust framework for intelligent 

test automation. 
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