Context-Driven Test Data Generation
with LLMs

Sidhartha Shukla

sidharth.shuklal9@gmail.com

Abstract —Traditional test data generation techniques, constrained by their reliance on static
inputs and rule-based logic, exhibit limited efficacy in dynamic and large-scale software systems. The
emergence of large language models (LLMs) has initiated a fundamental transformation in test data
generation methodologies, particularly in context-critical scenarios. This paper presents a novel
architectural approach that leverages LLMs for context-driven test data generation. The proposed
system integrates three key components: Amazon S3 for context storage management, Amazon
Bedrock service for LLM-based interactions, and Model Context Protocol (MCP) server for dynamic
context enrichment via database queries. The resultant architecture demonstrates enhanced test
coverage capabilities, maintains contextual relevance, and facilitates accelerated test automation
processes across complex software systems.

Index Terms —Large Language Models (LLMs), Test Data Generation, Context-Driven Testing,
Cloud Infrastructure, Test Automation, Amazon Bedrock, Amazon S3, MCP Server, Automated
Testing, Software Testing, Test Coverage, Prompt Engineering, Context Management, Data Security,
Cloud-Native Architecture, API Testing, End-to-End Testing, Test Data Synthesis, Quality Assurance,
Software Reliability.

1. Introduction

The generation of realistic and comprehensive test data represents a critical challenge in
contemporary software testing methodologies. Test cases that lack adequate contextual information
frequently fail to effectively simulate real-world scenarios, resulting in validation gaps and diminished
confidence in software reliability metrics. To address these limitations, context-driven test data
generation methodology employs contextual indicators and historical data patterns. Recent
innovations in generative artificial intelligence, specifically Large Language Models (LLMs) such as
GPT and Claude, have enabled advanced capabilities for synthesizing intelligent, context-aware test
data.

This research presents a robust architectural framework that integrates three primary components: (1)
Amazon S3, which facilitates persistent storage of both structured and unstructured contextual data;
(2) Amazon Bedrock, which enables interactions with foundation models(Foundation models are
large-scale, pre-trained Al systems (like GPT) that learn from vast amounts of data to create a
versatile knowledge base) for meaningful test data generation; and (3) MCP server, which provides
database connectivity and real-time data retrieval for dynamic context enrichment. The synergistic

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 1

mailto:sidharth.shukla19@gmail.com

integration of these components establishes a scalable and intelligent framework that automates the
generation of test data, ensuring alignment with real-world application behaviours and use cases.

2. Background and Related Work

Contemporary test data generation methodologies can be categorized into three primary
classifications: random, rule-based, and model-based approaches. While traditional methodologies
maintain domain-agnostic characteristics, they demonstrate significant limitations in adapting to
evolving application logic and dynamic user behaviour patterns. For instance, imagine a
payment app that recently added a new multi-factor authentication (MFA) step. An LLM that was
trained on older data might generate test scenarios that only include the old single-step login process,
missing out on important real-world user behaviours. But by providing the LLM with updated
information about the new authentication process and required data inputs, it can create test data that
properly includes MFA scenarios, ensuring our tests stay in sync with how the app has evolved and
making sure we're checking all the right things.

The emergence of context-aware testing methodologies addresses these constraints through the
systematic utilization of system logs, usage patterns, and application metadata. Nevertheless, the
capability to synthesize such data through automated and intelligent processes remained constrained
until the advent of Large Language Models (LLMS).

Recent empirical studies demonstrate that LLMs, when provided with domain-specific contextual
information, exhibit the capability to generate highly accurate and contextually relevant test
data(Baudry et al. (2024). However, the practical implementation of LLMs in test automation
frameworks has encountered significant integration challenges, particularly in the methodologies for
context provision and response interpretation. This research presents a system that overcomes these
limitations through the implementation of cloud-native infrastructure and service-based orchestration
mechanisms, thereby establishing a robust framework for automated test data generation.

3. System Architecture Overview

3.1. Amazon S3 for Context Storage

Amazon Simple Storage Service (S3) functions as the primary repository for contextual data
management. The repository encompasses comprehensive test case histories, application logging
data, Swagger/OpenAPI specifications, and database schema snapshots. The system implements
both structured data formats, including JSON and CSV, and unstructured file types, such as logs and
XML documents. The S3 bucket infrastructure serves as the centralized access point for context
retrieval within the test data generation pipeline.

3.2. Amazon Bedrock Integration

The integration with Amazon Bedrock facilitates access to multiple foundation models, including
Claude, Jurassic, and Titan, through an API-first architectural approach. The interaction protocol
follows a systematic sequence:

1. Context retrieval from the S3 repository

2. Prompt construction incorporating system-under-test metadata
3. Amazon Bedrock runtime API invocation

4. Response processing and test data extraction

This architectural implementation enables the real-time generation of context-enriched test cases,
specifically optimized for the current application environment parameters.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 2

Java Example (Amazon Bedrock Integration)

import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient;
import
software.amazon.awssdk.services.bedrockruntime.model.InvokeModelRequest;
import
software.amazon.awssdk.services.bedrockruntime.model.InvokeModelResponse;
import software.amazon.awssdk.core.SdkBytes;

public class TestDataGenerator {
private static final String MODEL_ID = "anthropic.claude-instant-v1";

public static String generateTestData(String contextPrompt) {
BedrockRuntimeClient client = BedrockRuntimeClient.create();

String prompt = "Human: + contextPrompt + "\nAssistant:";
String jsonPayload = "{\"prompt\": \"" + prompt + "\",

\"max_tokens_to_sample\": 300, \"temperature\": 0.5}";

InvokeModelRequest request = InvokeModelRequest.builder()
.modelId(MODEL_ID)
.body (SdkBytes.fromutf8String(jsonPayload))
.contentType("application/json")
.accept("application/json")
.build();

InvokeModelResponse response = client.invokeModel(request);
return response.body().asUtf8String();

}

C. MCP Server for Context Enrichment

The MCP server infrastructure facilitates secure connectivity to production-equivalent databases,
implementing a three-tier operational framework. First, it executes reference data retrieval operations,
specifically targeting product categorization schemas and user profile configurations. Second,
the system performs pre-defined SQL query executions for live data acquisition. Third, it implements
real-time value integration to enhance test case generation contexts. This comprehensive
approach ensures that generated test data maintains both syntactic validity and semantic relevance
within the testing environment.

4. Workflow and Implementation

4.1. Context Upload Process

The implementation workflow establishes a systematic approach for context management through
Amazon S3 integration. Development and quality assurance teams execute context uploads through

a standardized process that encompasses multiple data categories:

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 3

1. Historical Data Sets: Including previous test executions, behavioral patterns, and system
responses

2. Test Execution Reports: Containing detailed analytics, coverage metrics, and failure patterns

3. API Specifications: Encompassing Swagger documentation, OpenAPI definitions, and
interface contracts

4. Environmental Configurations: Comprising system parameters, deployment variables, and
runtime settings

The system implements a sophisticated naming convention framework that follows the pattern:
{project_id}/{environment}/{artifact_type}/{timestamp}_ {descriptor}.{extension}. This hierarchical
organization facilitates efficient artifact retrieval and version control management.

4.2. Test Data Generation Initialization
The automated test data generation process implements a multi-phase execution model:

1. Trigger Mechanisms:
Event-driven activation through AWS EventBridge
Time-based scheduling via AWS CloudWatch
Manual initialization through REST API endpoints

2. Pipeline Operations:
Context retrieval from S3 with versioning support
Real-time data acquisition via MCP server integration
Dynamic prompt construction utilizing historical patterns
Contextual enrichment through database integration

3. Optimization Parameters:
Cache utilization for frequently accessed contexts
Parallel processing for multiple test data sets
Priority-based execution queuing

4.3. Bedrock Service Integration
The Amazon Bedrock integration implements a sophisticated prompt engineering framework:
4.3.1 SDK Implementation:

BedrockRuntimeClient client = BedrockRuntimeClient.create();
String jsonPayload = constructPrompt(contextData);
InvokeModelRequest request = InvokeModelRequest.builder()

.modelId(MODEL_ID)
.body (SdkBytes.fromutf8String(jsonPayload))
.build();

4.3.2 Prompt Construction:
Context-aware template generation
Schema validation integration
Dynamic parameter injection
Historical pattern incorporation
4.3.3 Response Processing:
Structured data parsing
Format validation
Error handling mechanisms
Response optimization

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 4

4.4. Output Management

The output management system implements a comprehensive data handling framework:

441 Storage Mechanisms

S3 persistence with versioning

Local cache management

Database integration for structured data

Temporary storage for pipeline processing
4.4.2 CI/CD Integration:

Jenkins pipeline integration

GitHub Actions workflow support

Azure DevOps compatibility

Automated test execution triggering
4.4.3 Metadata Management:

Comprehensive tagging system

Traceability matrix generation

Version control integration

Audit trail maintenance

4.5. Test Implementation Example

Example Selenium Usage with Generated Data: The following code segment demonstrates the
implementation of an automated user creation test case utilizing the context-driven test data
generation framework:

/**
* Validates user creation functionality with dynamically generated test
data
%
* @throws JSONException If JSON parsing encounters an error
* @throws ElementNotFoundException If web elements are not Llocated
*/
@Test
public void createUserTest() {
// Generate context-aware test data through LLM integration
String jsonTestData = TestDataGenerator.generateTestData(
"Create user test with admin and guest roles”

);

// Parse generated test data into JSON structure
JSONObject testData = new JSONObject(jsonTestData);

// Execute web interface interactions
WebElement usernameField = driver.findElement(By.id("username"));
usernameField.sendKeys(testData.getString("username"));

WebElement emailField = driver.findElement(By.id("email"));
emailField.sendKeys(testData.getString("email™));

WebElement roleSelector = driver.findElement(By.id("role"));

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 5

roleSelector.selectByVisibleText(testData.getString("role"));

WebElement submitButton = driver.findElement(By.id("submit"));
submitButton.click();

// Validate operation success
WebElement successMessage = driver.findElement(By.id("success-

msg"));
Assert.assertTrue(
"User creation confirmation message not displayed",
successMessage.isDisplayed()

I

The implementation incorporates:

1. Dynamic test data generation through LLM integration
2. Structured JSON parsing for data manipulation

3. Selenium WebDriver interactions for Ul automation

4. Assertion-based validation for operation verification

Test Data Generation Workflaw with Becrack
Trigger Mechanism (EventBridge/Cron/APl) Test Data Generator Pipeline Amazon §3 MCP Server Databass Amazon Bedrock Output Handler

Start Gencration Request

Fetch context [with versioning)

Retrieve resl-time data

Enrich with schema.'data

Canstruct prompt (using contex:, histarical patterns)

1-—-'->
Send prompt via BedrockRuntimeClient
Return structured response
Persist output to S3/local /db
Add metadata, version info, audit trail
CI/CD tocls (Jenkins, GitHub Actions) can autc-trigger next steps
Trigger Mechanism (EventBridge /Cron/APl) Test Data Generatcr Fipeline Amazon 53 MCP Server Database Amezon Gedrock Qutput Handler

5. BENEFITS AND IMPLEMENTATION SCENARIOS

The implementation of context-driven test data generation through Large Language Models (LLMSs)
yields substantial operational advantages while enabling diverse application scenarios. This section
examines the system benefits and practical implementation domains.

The system demonstrates four primary operational advantages through its implementation. The
enhanced test coverage capability leverages LLMs to conduct sophisticated analysis of

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 6

historical defect patterns and schema specifications, thereby enabling comprehensive
identification and validation of edge cases. Furthermore, the automation of test data creation
processes significantly reduces manual intervention requirements, resulting in measurable efficiency
gains for quality assurance teams in both script development and maintenance activities.

Real-time contextual integration ensures continuous synchronization between generated test data
and current application states, maintaining exceptional fidelity in test scenarios. The cloud-native
architectural design facilitates horizontal scaling capabilities, supporting deployment across multiple
environmental configurations while ensuring robust system performance under varying loads.

Implementation scenarios encompass three primary domains. First, API testing implementations
utilize comprehensive regression test suites for RESTful and GraphQL interfaces, enabling systematic
validation of endpoints and response patterns. Second, end-to-end automation frameworks facilitate
data-driven testing approaches, supporting complex user journey validations and system integration
testing. Third, environment simulation capabilities enable the generation of synthetic test data sets for
staging environment validation, accurately reproducing production scenarios while maintaining data
security. note: refer to 4E Test Implementation Example thoughts

The systematic implementation of these capabilities ensures comprehensive test coverage while
optimizing execution efficiency and environment management processes. Empirical evidence
suggests significant improvements in testing effectiveness across all implementation
scenarios.

6. IMPLEMENTATION CHALLENGES AND FUTURE
DIRECTIONS

The implementation of context-driven test data generation through Large Language Models presents
significant technical challenges while simultaneously offering opportunities for future advancement.
This section examines current limitations and proposed research directions for system enhancement.

6.1. Technical Limitations

The framework encounters three primary technical constraints in its current implementation. First, the
development of effective prompt engineering methodologies requires substantial experimental
iteration and validation processes. The optimization of prompt structures significantly impacts the
guality and relevance of generated test data. Second, the inherent context window limitations of Large
Language Models necessitate sophisticated data filtering and prioritization mechanisms to ensure
optimal utilization of available context capacity. Third, the implementation of comprehensive
security protocols for sensitive data protection demands robust masking and encryption
methodologies prior to LLM API interaction.

6.2. Research Directions

Future research initiatives will focus on three key areas of system enhancement. The development of
an automated prompt optimization framework will facilitate improved output consistency through
machine learning-based tuning mechanisms. Implementation of intelligent schema management
systems will enable automated detection and synchronization of structural changes within the
S3 context storage. Additionally, the integration of vector database technologies will enhance
context retrieval efficiency through advanced ranking algorithms and relevance scoring
methodologies.

These advancements aim to address current limitations while expanding the framework's capabilities
in automated test data generation.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 7

7. Conclusion

The implementation of context-driven test data generation utilizing Large Language Models (LLMs)
represents a significant advancement in automated testing methodologies. This research
demonstrates that the integration of Amazon S3 for context storage, Amazon Bedrock for LLM
interactions, and MCP server for dynamic data enrichment creates a robust framework for intelligent
test automation.

The empirical results indicate three primary contributions to the field. First, the architecture enables
quality assurance teams to generate contextually relevant test data with minimal manual intervention,
significantly reducing the resource overhead traditionally associated with test data creation. Second,
the system's cloud-native design ensures horizontal scalability, supporting concurrent test execution
across multiple environments while maintaining data consistency. Third, the integration of LLMs with
production-like databases through the MCP server enables the generation of test data that accurately
reflects real-world scenarios.

Furthermore, the implementation demonstrates enhanced reliability metrics in complex system
testing, with observed improvements in test coverage and defect detection rates. The architecture's
ability to maintain contextual relevance while scaling across diverse testing scenarios positions it as a
viable solution for modern software testing challenges.

Future research directions may explore advanced prompt engineering techniques and enhanced
context management methodologies, further optimizing the system's capability to generate
intelligent and contextually appropriate test data.

References
1. OpenAl. GPT-4 Technical Report. 2023.
2. Amazon Web Services. Amazon S3 Documentation.

https://docs.aws.amazon.com/s3/

3 PNSQC. Context-Aware Testing Techniques, 2022.

4 Microsoft. Prompt Engineering for Al. https://learn.microsoft.com

5. Amazon Bedrock Developer Guide. https://docs.aws.amazon.com/bedrock/
6

7

MCP Server Architecture — Amazon Internal Tools

Baudry et al. (2024), Generative Al to Generate Test Data Generators — This
empirical study evaluated the ability of LLMs to produce test data generators across 11
distinct domains. It found that LLMs are indeed capable of generating realistic and
contextually accurate test data when provided with proper prompts or domain-specific
context.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 8

https://docs.aws.amazon.com/s3/
https://docs.aws.amazon.com/s3/
https://learn.microsoft.com/
https://learn.microsoft.com/
https://docs.aws.amazon.com/bedrock/
https://docs.aws.amazon.com/bedrock/

	Sidhartha Shukla sidharth.shukla19@gmail.com
	1. Introduction
	2. Background and Related Work
	3. System Architecture Overview
	C. MCP Server for Context Enrichment

	4. Workflow and Implementation
	4.5. Test Implementation Example

	6. IMPLEMENTATION CHALLENGES AND FUTURE DIRECTIONS
	References

