
Vittalkumar Mirajkar

Defining data pointer for software testing efficiency measurement

SPEAKER NAME
TOPIC

Defining data pointer for software
testing efficiency measurement

Vittalkumar Mirajkar
VitalkumarrMirajkar@gmail.com

Vittalkumar Mirajkar

Defining data pointer for software testing efficiency measurement

Problem statement:

• Measure how good current releases are in simple, quick
and repeatable way

• Define actionable approach to reduce customer bugs and
improve quality

Defining data pointer for software testing
efficiency measurement

Vittalkumar Mirajkar

Defining data pointer for software testing efficiency measurement

Why do we test software before release ?

• Release better product ? Better quality ? Achieve better user experience ?
• and the list goes on..

• All the motivation can be summarized as “To release better quality software to production ”

How do we measure software quality

Development Phase Released product

Timeline

Inhouse bugs (IHB)
reported by Dev and QA

Customer reported bugs (CRB)

Regression Bugs (RB) reported by Dev/QA

 Unit test coverage
 Path coverage
 Requirements coverage
 Number of defects
 Percentage of automated

test coverage

Timeline for
Customer reported
bugs

Vittalkumar Mirajkar

Defining data pointer for software testing efficiency measurement

Cost of fixing a bug

• Current measurements does not give real
time data as to what will be the impact of
uncovering potential productions bugs.

• To measure production bugs real impact,
there is a need for post release impact
measurement, which is a lagging indicator
and not real time.

Despite religiously following the quality metrics, production bugs are a living reality.

Vittalkumar Mirajkar

Defining data pointer for software testing efficiency measurement

Quality Volatility
• In Derivative trading PUT and CALL open interests Ratio (aka PCR) PCR is widely used to forecast market direction

with Put/Call ratios.
• PCR ratio between 0.10 to 10 determines the market Index range for the week.
• Below it the Open Interest Data for Nifty 50 for the current weekly expiry (10th Oct)

Vittalkumar Mirajkar

Defining data pointer for software testing efficiency measurement

Measuring Quality Volatility (QV)
Can we use something similar to PCR, simple yet effective way to measure Quality
direction?

Let’s build Quality Volatility:

In House Bugs (IHB):

• Bugs uncovered during the development
cycle by both Dev and QA

Customer Reported Bugs (CRB):

• Any bugs reported by the customer from
field

Production / Regression bugs:

• These are uncovered because the In-
House Testing phase did miss them.

Development Phase Released product

Timeline

Inhouse bugs (IHB)
reported by Dev and QA

Customer reported bugs (CRB)

Regression Bugs (RB) reported by Dev/QA

Vittalkumar Mirajkar

Defining data pointer for software testing efficiency measurement

Simple Quality Volatility can be defined as

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝐵𝑢𝑔𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛 𝐻𝑜𝑢𝑠𝑒 𝐵𝑢𝑔𝑠

Defining Quality Volatility (QV)

*The weight associated with each bug is the same. A priority 5 (P5) bug is treated as same weight as priority 1 (P1) bug.

To make the Quality volatility more realistic, Weight needs to be associated with the respective priority of the bug reported.
Weights are { 𝑃1 = 5, 𝑃2 = 4 , 𝑃3 = 3 , 𝑃4 = 2, 𝑃5 = 1}, where P1 is Priority 1 bug and so on.

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 =
𝐶𝑅𝐵 {(5 ∗ 𝑃1 𝑐𝑜𝑢𝑛𝑡) + (4 ∗ 𝑃2 𝑐𝑜𝑢𝑛𝑡) + (3 ∗ 𝑃3 𝑐𝑜𝑢𝑛𝑡) + (2 ∗ 𝑃2 𝑐𝑜𝑢𝑛𝑡) + (1 ∗ 𝑃5 𝑐𝑜𝑢𝑛𝑡)}

𝐼𝐻𝐵 {(5 ∗ 𝑃1 𝑐𝑜𝑢𝑛𝑡) + (4 ∗ 𝑃2 𝑐𝑜𝑢𝑛𝑡) + (3 ∗ 𝑃3 𝑐𝑜𝑢𝑛𝑡) + (2 ∗ 𝑃2 𝑐𝑜𝑢𝑛𝑡) + (1 ∗ 𝑃5 𝑐𝑜𝑢𝑛𝑡)}

Vittalkumar Mirajkar

Defining data pointer for software testing efficiency measurement

What Quality Volatility indicates

• Quality volatility ratio represents
stability of the product

• A series of these measurements give
us trend

• Quality volatility is lagging indicator
• This ratio can be found when both data

points i.e CRB and IHB numbers are
available

• When we have a series of Quality
Volatility ratios from multiple releases,
it is possible to extrapolate the next
value in the series,

Ratio Status What does it mean Suggested recommendation

0 - 0.2 Green
Every 10 bugs found in
house, after production we
can expect 2 bugs

 Add more test cases
 Increase test coverage

0.2 - 0.5 Yellow
Every 2 bugs logged in
house, 1 bug was logged by
customer.

 Review existing test cases
 Add new test cases

0.5 - 1 Red
Every bug found in house;
customer is matching the
count

 Identify testing gaps
 Increase coverage
 Make customer logged bugs as part of

regression testing
 Increase manual as well as

Automation coverage

> 1 Black
Customer is logging more
bugs than in house.

 Current testing has shortcomings
 Do architecture review of the features

built and customer expectation
 Identify customer user cases and

build test scenarios for effective
testing

Vittalkumar Mirajkar

Defining data pointer for software testing efficiency measurement

Real time Quality Volatility Data:

Release

Product 1 Product 2 Product 3 Product 4 Product 5

IHB CRB QA Volatility IHB CRB QA Volatility IHB CRB QA Volatility IHB CRB QA Volatility IHB CRB QA Volatility

N+4 20 7 0.35 25 9 0.36 10 4 0.40 4 1 0.25 10 4 0.40

N+3 12 6 0.5 15 8 0.53 9 4 0.44 12 1 0.08 13 2 0.15

N+2 15 16 1.07 17 22 1.29 4 8 2.00 3 8 2.67 10 7 0.70

N+1 15 13 0.87 26 24 0.92 7 9 1.29 18 10 0.56 14 8 0.57

N 25 16 0.64 20 23 1.15 9 15 1.67 7 19 2.71 18 10 0.56

Simple quality volatility
Volatility Index : In House reported Bugs (IHB) / Customer Reported Bugs (CRB) 0 – 0.2 , 0.2 – 0.5 , > 0.5

Bl Cr Ma Total Bl Cr Ma Total Bl Cr Ma Total Bl Cr Ma Total Bl Cr Ma Total Bl Cr Ma Total Bl Cr Ma Total Bl Cr Ma Total Bl Cr Ma Total Bl Cr Ma Total
N+4 5 7 8 20 2 2 3 7 0.35 1 9 15 25 3 2 4 9 0.41 2 1 7 10 1 1 2 4 0.43 1 2 1 4 0 1 0 1 0.25 2 4 4 10 1 2 1 4 0.42
N+3 5 3 4 12 1 3 2 6 0.47 2 4 9 15 1 4 3 8 0.57 2 2 5 9 1 2 1 4 0.48 0 0 12 12 0 1 0 1 0.11 5 6 2 13 0 2 0 2 0.15
N+2 2 7 6 15 3 8 5 16 1.11 0 4 13 17 2 7 13 22 1.40 2 1 1 4 2 6 0 8 2.00 0 0 3 3 2 5 1 8 3.67 4 5 1 10 2 3 2 7 0.65
N+1 4 5 6 15 2 8 3 13 0.88 3 4 19 26 5 16 3 24 1.11 1 2 4 7 1 7 1 9 1.44 0 2 16 18 1 9 0 10 0.73 2 4 8 14 1 6 1 8 0.64

N 5 11 9 25 5 6 5 16 0.67 2 3 15 20 4 17 2 23 1.40 6 1 2 9 1 13 1 15 1.50 0 3 4 7 6 12 1 19 3.38 1 1 16 18 0 4 6 10 0.60

QA
Volatility

QA Volatility
QA

Volatility
Release CRB IHB CRB IHB CRBQA

Volatility
QA

Volatility

Product 1 Product 2 Product 3 Product 4 Product 5
IHB CRB IHB CRB IHB

Weighted quality volatility *The weights are Blocker = 5, Critical = 4, Major = 3

** Our observation, between Simple QV and Weighted QV, there is a very minor change in Volatility

How do we use Quality Volatility ratio information to increase the quality ? Let's park that question for now

Vittalkumar Mirajkar

Defining data pointer for software testing efficiency measurement

Test case effectiveness

Test case effectiveness is the test case’s
potential to uncover a bug.

• Once the code is fixed, the code is now
immune to the test case conditions

• Post fix, the test case is unlikely to break
same code flow

• Subsequent runs of the test case are
reconfirmation test case of regression cycles

Release over release if we do not uncover a
bug, the test Bug detection potential value
factor decrease. How do we measure this ?

Half Life Equation

𝑁 ௧ ୀ 𝑁 ∗
1

2

௧
௧భ

మ

Test case effective ness can be measured
using Half Life equation.

• N(0) = Potential value of test case to find a bug during test
design phase.

 The Value = “1” as each test case can find 1 bug for the
code flow it is/was designed to test.

• N(t) = Effectiveness retained of a test case at the end of “t”
release execution.

• t = Number of releases / executions that have been completed.

• t(1/2) = Time taken for test case to reach half its effectiveness.

Vittalkumar Mirajkar

Defining data pointer for software testing efficiency measurement

Test case effectiveness half life when t = 1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

TE
ST

 C
AS

E
EF

FE
CT

IV
EN

ES
S

RELEASES OVER TIME

T EST CASE EFFECT IVE NESS VS RELEASES

Effectiveness Linear
Trend line

Effectiveness
exponential Trend Line

Using the values of: N(0) = 1, t = 1 to n (where n is current release number), t(1/2) = 1

Observations:
• After 10 releases, probability

of test case uncovering a bug
is < 0.01%

• Post 15 release, potential
effectiveness = 0

• Best time to review a test
case is after 10 release cycles

*If a test case detects a bug in runs, reset the value of test case equal to the number of releases it was run.

N(t) = Every
subsequent

release

Test case
Effective ness

Probability of
detection %

1 1.000000 100.000000
2 0.500000 50.000000
3 0.250000 25.000000
4 0.125000 12.500000
5 0.062500 6.250000
6 0.031250 3.125000
7 0.015625 1.562500
8 0.007813 0.781250
9 0.003906 0.390625

10 0.001953 0.195313
11 0.000977 0.097656
12 0.000488 0.048828
13 0.000244 0.024414
14 0.000122 0.012207
15 0.000061 0.006104
16 0.000031 0.003052
17 0.000015 0.001526
18 0.000008 0.000763
19 0.000004 0.000381
20 0.000002 0.000191

Vittalkumar Mirajkar

Defining data pointer for software testing efficiency measurement

What next do we do with Quality Volatility

QA Volatilely : Identify which components are concern for customer

Test Case effectiveness: Identify which test cases / test groups are up for review

Steps we adopted to bring Quality Volatility <0.2 (a.k.a better quality)

• Incorporate Exploratory testing, Exploratory testing is one of the quickest ways to uncover bugs

• Using Test case effectiveness, identify test cases which need review

• Design review by QA : “Best place to find a bug is even before it is coded” This comes much
before code review and far more effective.

• For sustenance projects, last 3-6 release customer issues are must to be included in regression
cycles.

Vittalkumar Mirajkar

Defining data pointer for software testing efficiency measurement

Result of we achieved

Release
Product 1 Product 2 Product 3 Product 4 Product 5

IHB CRB
QA

Volatility
IHB CRB

QA
Volatility

IHB CRB
QA

Volatility
IHB CRB

QA
Volatility

IHB CRB
QA

Volatility
N+4 20 7 25 9 10 4 4 1 10 4
N+3 12 6 15 8 9 4 12 1 13 2
N+2 15 16 1.07 17 22 1.29 4 8 2.00 3 8 2.67 10 7 0.70
N+1 15 13 0.87 26 24 0.92 7 9 1.29 18 10 0.56 14 8 0.57

N 25 16 0.64 20 23 1.15 9 15 1.67 7 19 2.71 18 10 0.56

Release
Product 1 Product 2 Product 3 Product 4 Product 5

IHB CRB
QA

Volatility
IHB CRB

QA
Volatility

IHB CRB
QA

Volatility
IHB CRB

QA
Volatility

IHB CRB
QA

Volatility
N+4 20 7 0.35 25 9 0.36 10 4 0.40 4 1 0.25 10 4 0.40
N+3 12 6 0.5 15 8 0.53 9 4 0.44 12 1 0.08 13 2 0.15
N+2 15 16 1.07 17 22 1.29 4 8 2.00 3 8 2.67 10 7 0.70
N+1 15 13 0.87 26 24 0.92 7 9 1.29 18 10 0.56 14 8 0.57

N 25 16 0.64 20 23 1.15 9 15 1.67 7 19 2.71 18 10 0.56

Vittalkumar Mirajkar

Defining data pointer for software testing efficiency measurement

Key Takeaways

 We do not need complex measurements to track software quality
 Customer reported bugs is what matters
 Exploratory testing and QA teams’ involvement in feature design

review are most cost-effective technique for early bug detection
 Code does become immune to testing over multiple releases
 Moving from “test to pass” to “test to break” testing mindset is

critical for bug uncovering
 There is negligible difference between Simple QV and Weight QV. For

a start, we can begin with Simple QV to help identify concerning
products

Vittalkumar Mirajkar

Defining data pointer for software testing efficiency measurement

SPEAKER NAME
TOPIC

THANK YOU
Vittalkumar Mirajkar
VitalkumarrMirajkar@gmail.com

