\ DCTOBER 10-12 2022
]
R
- | Vittalkumar Mirajkar
/| VitalkumarrMirajkar@gmail.com

P

-

/7 Defining data pointer for software

testing efficiency measurement

Defining data pointer for software testing
efficiency measurement

Problem statement:

* Measure how good current releases are in simple, quick
and repeatable way

* Define actionable approach to reduce customer bugs and
improve quality

40TH ANNUAL
® o Vittalkumar Mirajkar
o
. Defining data pointer for software testing efficiency measurement OCT10-12,2022

Why do we test software before release ?

* Release better product ? Better quality ? Achieve better user experience ?

* and the list goes on..

* All the motivation can be summarized as “To release better quality software to production ”

How do we measure software quality

—_

. Unit test coverage

. Path coverage

e Requirements coverage

o Number of defects

o Percentage of automated
test coverage

Inhouse bugs (IHB) Customer reported bugs (CRB)
reported by Dev and QA Timeline for
Customer reported
bugs
[\f \
[Development Phase :[Released product]

\

Regression Bugs (RB) reported by Dev/QA

—

® e Vittalkumar Mirajkar
°

Defining data pointer for software testing efficiency measurement

40TH ANNUAL

OCT.10-12,2022

Cost of fixing a bug

Despite religiously following the quality metrics, production bugs are a living reality.

Relative cost to fix bugs,

30 based on time of detection

* Current measurements does not give real
time data as to what will be the impact of
uncovering potential productions bugs.

25x

20x

* To measure production bugs real impact,
there is a need for post release impact
measurement, which is a lagging indicator
and not real time.

15x

10x

5x

0x
System /

Acceptance
Testing

Production /
Post-release

Integration /
Component Testing

Requirements /

Architecture Coding

40TH ANNUAL

® e Vittalkumar Mirajkar
°

Defining data pointer for software testing efficiency measurement T L

Quality Volatility

* In Derivative trading PUT and CALL open interests Ratio (aka PCR) PCR is widely used to forecast market direction
with Put/Call ratios.

* PCRratio between 0.10 to 10 determines the market Index range for the week.

» Below it the Open Interest Data for Nifty 50 for the current weekly expiry (10t Oct)

ol |cHnGINoI| voumE| v LTP | CHNG BID QTY | BID PRICE | ASK PRICE | ASK QTY | STRIKE PRICE | BID QTY BID PRICE | ASK PRICE ASKQT\;’ CHNG | LTP IV | VOLUME | cHNG INOI 0l ‘ PCR
105 4 30 : 7725 | -67.5 | 1,300 737.2 795.3 150 16,550.00 550 5.35 5.85 200 | -415 | 565 | 199 | 114,579 2,622 12,163 115.8380952
334 43 639 5 721.8 | -10.65| 5,950 7118 745.1 450 16,600.00 250 6.65 6.95 1,850 | -495 | 695 |19.57|3,33,038 | 11,380 42,868 128.3473054
85 -1 83 - 678 | -6.85 50 670,25 702.1 350 16,650.00 300 8.25 8.85 300 | -5.55 8.8 |19.35| L,13,401 6,670 10,353 124,1529412
798 71 1,509 : 6279 | -8.3 500 522,95 63125 100 16,700.00 330 10.85 11.15 250 | -6.65 | 10.85 |19.03|4,00,984 | 20,703 48,964 61.35839599
200 3 332 5 5748 |-15.35| 600 575.7 587.8 150 16,750.00 250 13.2 14.3 950 -6.5 | 14.35 |19.03 | 1,64,053 | 11,467 16,422 52.11
1,564 386 5,858 5 5349 | 9.8 50 533 535 250 16,500.00 150 16.75 17.6 1,250 -9 16.75 | 18.47| 573,600 | 33,041 64,355 41,275357545
137 48 463 " 434 | -16.3 50 458,95 | 509.95 | 4,350 | 16,850.00 100 211 21.2 1,700 | -9.95 | 2L1 |1B.29] 1,98,915 5,030 9,843 5263636364
| 1,588 14 7,399 - | 44165 |-1545| 100 440.3 449 150 16,300.00 550 25.9 26.05 50 |-1125| 259 |17.99| 566470 | 12,904 41,881 26.37342569
858 533 3,725 |12.68 | 40245 |-12.25| 100 395.9 402.85 50 16,350.00 30 32.25 32.95 100 | -10.7 34 1813 254,873 7,678 12,150 14.16083916
| 1214 -1,721 | 116,385 | 124 | 356.15 | -16.15| 300 335.7 339.75 200 17,000.00 100 39.55 40 350 | -13.6 40 |17.62 |13,61,714] 36,341 86,992 7.165142904
697 247 13,126 | 12.98 | 3154 | -17.8 | 11,650 | 310.1 3443 | 12,150 | 17,050.00 150 49.05 50.9 250 | -125 | 509 |17.69 | 422,065 | 22465 30,969 4443135079
| 5937 995 1,24,157 | 14.01 | 280.8 | -144 | 150 276.75 280 250 17,100.00 750 60.95 613 100 | -14.85 | 60.95 |17.35(11,58,131| 14,092 53,319 8.980798383
| 3,792 2,021 93,314 | 1417 | 2442 | -158 | 250 24155 245 100 17,150.00 100 74.2 76 5,750 | -14.25 75 17.3 | 5,08,553 6,924 12,712 3.352320675
23,875 9,911 796,539 | 13.594| 2074 |-1875| 100 2074 209.2 30 17,200.00 800 N 914 100 15 91 | 17.22 |18,65,018| 33,238 68,889 2385403141
| 17,275 | 14,318 | 7,77,815 | 1451 | 179.95 |-14.25| 950 1774 179 1,100 | 17,250.00 250 108.6 11045 300 | -15.9 | 10855 |17.04 (10,99,433| 14,646 21,975 1.272069465
| 65104 | 26,229 |23,80,340(14.07 | 147.15 |-1845| 50 147.15 150 50 17,300.00 | 3,350 131 132.8 100 | -12.25| 1325 |17.3121,15903| 22498 64,693 0.993687024
27481 | 13,238 | 759,811 (14.04| 121 | -17.8 | 450 121 124.4 50 17,350.00 250 153.75 155.05 30 -9.75 157 | 17.33 | 3,71,121 2,723 14,544 0.543793894
| 82,843 2,143 | 16,62,275| 14.13 99 -15.3 50 98.45 100 6,800 | 17,400.00 300 180.9 18245 200 9.4 | 18245 |17.18 | 571,399 | -16,049 23,935 0.288920005
19,794 8,053 486,924 (1417 797 | -131 | 200 79.1 79.7 900 17,450.00 150 211 214.05 750 | -8.05 | 213.15 | 17.33| 55,226 838 2,388 0.120642619
| 264658 7230724 12248476 640215 2419027575

® e Vittalkumar Mirajkar
°

Defining data pointer for software testing efficiency measurement - CONEIRE

Measuring Quality Volatility (QV)

Can we use something similar to PCR, simple yet effective way to measure Quality

direction?

Let’s build Quality Volatility:
In House Bugs (IHB):

e Bugs uncovered during the development
cycle by both Dev and QA

Customer Reported Bugs (CRB):

* Any bugs reported by the customer from
field

Production / Regression bugs:

* These are uncovered because the In-
House Testing phase did miss them.

Inhouse bugs (IHB) Customer reported bugs (CRB)
reported by Dev and QA
[Development Phase I Released product }

\ }

Regression Bugs (RB) reported by Dev/QA

S e

® e Vittalkumar Mirajkar

Defining data pointer for software testing efficiency measurement

40TH ANNUAL

OCT.10-12,2022

Defining Quality Volatility (QV)

Simple Quality Volatility can be defined as

Total number Customer Reported Bugs
Total number of In House Bugs

Quality Volatility =

*The weight associated with each bug is the same. A priority 5 (P5) bug is treated as same weight as priority 1 (P1) bug.

To make the Quality volatility more realistic, Weight needs to be associated with the respective priority of the bug reported.
Weights are { P1 = 5,P2 =4,P3 =3,P4 = 2,P5 = 1}, where P1is Priority 1 bug and so on.

CRB {(5 * P1count) + (4 * P2 count) + (3 * P3 count) + (2 * P2 count) + (1 * P5 count)}
IHB {(5 * P1count) + (4 * P2 count) + (3 * P3 count) + (2 * P2 count) + (1 * P5 count)}

Weighted Quality Volatility =

40TH ANNUAL

® o Vittalkumar Mirajkar
°

Defining data pointer for software testing efficiency measurement T L

What Quality Volatility indicates

QU al Ity volatil lty ratio represe nts Ratio Status What does it mean Suggested recommendation
. E 10 bugs found i
sta b | | |ty Of the P rOd uct 0-0.2 Green h\:)irsi, aft:rg;rg::ctilc?n we Add more test cases
) . can expect 2 bugs Increase test coverage
A series of these measurements give —
very < bugs fogged In Review existing test cases
us trend 0.2-0.5 | Yellow :S:tsoer,nirbug was logged by Add new test cases
Quality volatility is lagging indicator Identify testing gaps
. . . |
This ratio can be found when both data Every bug found in house; Make customer logged bugs as part of
. . 05-1 customer is matching the regression testing
points i.e CRB and IHB numbers are count Increase manual as well as
. Automation coverage
avallable Current testing has shortcomings
When we have a SerieS Of Qua I |ty Eo'architecture review of th'e- features
) . uilt and customer expectation

Volatility ratios from multiple releases -1 [e dentify customer user cases and

’ ugs than in house. build test scenarios for effective
it is possible to extrapolate the next testing
value in the series,

4UTHANNUAL
® e Vittalkumar Mirajkar COUAT

[]
Defining data pointer for software testing efficiency measurement

OCT.10-12,2022

Real time Quality Volatility Data:

Simple quality volatility

Volatility Index : In House reported Bugs (IHB) / Customer Reported Bugs (CRB) [EUrI v Xy N8

Product 1 Product 2 Product 3 Product 4 Product 5
Release
HB CRB QA Volatility HB CRB QA Volatility HB CRB QA Volatility HB CRB QA Volatility IHB CRB QA Volatility
N+4 20 7 0.35 25 9 0.36 10 4 0.40 4 1 0.25 10 4 0.40
N+3 12 6 0.5 15 8 0.53 9 4 0.44 12 1 0.08 13 2 0.15
N+2 15 16 1.07 17 22 1.29 4 8 2.00 3 8 2.67 10 7 0.70
N+1 15 13 0.87 26 24 0.92 7 9 1.29 18 10 0.56 14 8 0.57
N 25 16 0.64 20 23 1.15 9 15 167 7 19 2.71 18 10 0.56
Weighted quality volatility *The weights are Blocker = 5, Critical = 4, Major = 3
Product 1 Product 2 Product 3 Product 4 Product 5
Release |HB CRB QA |HB CRB QA |HB CRB QA IHB CRB QA Volati IHB (RB QA
BI| Cr [Ma | Total [BI | Cr | Ma | Total | Volatility |BI|Cr[Ma |Total |BI|Cr[Ma |Total | Volatility |BI|Cr|Ma|Total |BI|Cr[Ma |Total | Volatility |BI|Cr|Ma |Total | BI|Cr|Ma | Total y BI | Cr [Ma | Total | BI | Cr | Ma | Total | Volatility
N+4 517182 (22|37 035 [1(9f15(25 |3[2])4] 9 041 |2[1) 7|10 |1]1|2] 4 043 |1]2)1] 4 |0j1f0] 1 0.25 20414110 (1(2(1] 4 0.42
N+3 50314 12 (1(3|2] 6 047 |2(419 | 15 |1[4])3] 8 057 |2[2)5] 9 |1]2f11] 4 048 |0f0)12] 12 |0j1f0] 1 0.11 51612 13]0j2(0] 2 0.15
N2 | 2(7]6] 15 |3[8[5]16 L0 (04| B3| 17 [2]7|13| 22| 140 [2|1]1| 4 [2]6]0]| 8 200 |0[0]3] 3 |2(5]1] 8 367 |4|5]1]0]2(3]2] 7 0.65
N+1 41516] 152|183 13 08 [3[4]19| 26 |5(16)3 | 24 L0 (1204 7 |1]7]1] 9 144 (02|16 18 |1]9)0]| 10 0.73 21418 14 |1]6|1] 8 0.64
N S[11] 9] 25 [5(6[5| 16| 067 [2[3[15] 20 [4|17[2] 23| 140 [6[1[2] 9 [1|B3[L1]| 15 150 [0[3[4] 7 [6[12[1] 19 338 |1[1[16] 18 |0[4]6] 10| 060

** Our observation, between Simple QV and Weighted QV, there is a very minor change in Volatility

How do we use Quality Volatility ratio information to increase the quality ? Let's park that question for now

® e Vittalkumar Mirajkar
°

Defining data pointer for software testing efficiency measurement ocm_ﬂ,ﬁﬂﬁ

Test case effectiveness

Test case effectiveness is the test case’s
potential to uncover a bug.

* Once the code is fixed, the code is now
immune to the test case conditions

* Post fix, the test case is unlikely to break
same code flow

* Subsequent runs of the test case are
reconfirmation test case of regression cycles

Release over release if we do not uncover a
bug, the test Bug detection potential value
factor decrease. How do we measure this ?

Half Life Equation

Test case effective ness can be measured
using Half Life equation.

t

1\t
Neoy=Nwy* |5 ?

N = Potential value of test case to find a bug during test
design phase.

U The Value = “1” as each test case can find 1 bug for the
code flow it is/was designed to test.

N = Effectiveness retained of a test case at the end of “t”
release execution.

t = Number of releases / executions that have been completed.

t1/2) = Time taken for test case to reach half its effectiveness.

® e Vittalkumar Mirajkar
°

Defining data pointer for software testing efficiency measurement

40TH ANNUAL

OCT.10-12,2022

Test case effectiveness half life whent=1

Using the values of: N, =1, t=1ton (where nis current release number), t, ;=1

:f;;)s:::::tl Tes? case Probab!lity of
rel Effective ness | detection %
1 1.000000 100.000000
2 0.500000 50.000000
3 0.250000 25.000000
4 0.125000 12.500000
5 0.062500 6.250000
6 0.031250 3.125000
7 0.015625 1.562500
8 0.007813 0.781250
9 0.003906 0.390625
10 0.001953 0.195313
11 0.000977 0.097656
12 0.000488 0.048828
13 0.000244 0.024414
14 0.000122 0.012207
15 0.000061 0.006104
16 0.000031 0.003052
17 0.000015 0.001526
18 0.000008 0.000763
19 0.000004 0.000381
20 0.000002 0.000191

TEST CASE EFFECTIVENESS

1.2

0.8

0.6

0.4

0.2

-0.2

TEST CASE EFFECTIVENESS VS RELEASES

Effectiveness
exponential Trend Line

Effectiveness Linear
Trend line

S~
-
-
-~
-~
-
-~
~
-
-~
~
~
-~
-~
~
-~
-~
-~
-
S~
-~

~
S~
~
S~
-~

~
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16~<Z_18 19 20 21

~
-
-
-
-
-
-

RELEASES OVER TIME

Observations:

After 10 releases, probability
of test case uncovering a bug
is<0.01%

Post 15 release, potential
effectiveness =0

Best time to review a test
case is after 10 release cycles

*If a test case detects a bug in runs, reset the value of test case equal to the number of releases it was run.

® e Vittalkumar Mirajkar

Defining data pointer for software testing efficiency measurement

40TH ANNUAL

OCT.10-12,2022

What next do we do with Quality Volatility

QA Volatilely : Identify which components are concern for customer

Test Case effectiveness: ldentify which test cases / test groups are up for review

Steps we adopted to bring Quality Volatility <0.2 (a.k.a better quality)
* Incorporate Exploratory testing, Exploratory testing is one of the quickest ways to uncover bugs
* Using Test case effectiveness, identify test cases which need review

e Design review by QA : “Best place to find a bug is even before it is coded” This comes much
before code review and far more effective.

* For sustenance projects, last 3-6 release customer issues are must to be included in regression
cycles.

40TH ANNUAL

® e Vittalkumar Mirajkar
°

Defining data pointer for software testing efficiency measurement

OCT.10-12,2022

Result of we achieved

Product 1 Product 2 Product 3 Product 4 Product 5
Release IHB CRB QA IHB CRB Qlf. IHB CRB QA IHB CRB QA . IHB CRB QA :
Volatility Volatility Volatility Volatility Volatility
N+4 20 7 25 9 10 4 4 1 10 4
N+3 12 6 15 8 9 4 12 1 13 2
N+2 15 16 1.07 17 22 1.29 4 8 2.00 3 8 2.67 10 7 0.70
N+1 15 13 0.87 26 24 0.92 7 9 1.29 18 10 0.56 14 8 0.57
N 25 16 0.64 20 23 1.15 9 15 1.67 7 19 2.71 18 10 0.56
Product 1 Product 2 Product 3 Product 4 Product 5
Release IHB CRB QA IHB CRB Qe, IHB CRB QA IHB CRB Qe, IHB CRB QA
Volatility Volatility Volatility Volatility Volatility
N+4 20 7 0.35 25 9 0.36 10 4 0.40 4 1 0.25 10 4 0.40
N+3 12 6 0.5 15 8 0.53 9 4 0.44 12 1 0.08 13 2 0.15
N+2 15 16 1.07 17 22 1.29 4 8 2.00 3 8 2.67 10 7 0.70
N+1 15 13 0.87 26 24 0.92 7 9 1.29 18 10 0.56 14 8 0.57
N 25 16 0.64 20 23 1.15 9 15 1.67 7 19 2.71 18 10 0.56

® e Vittalkumar Mirajkar
°

. Defining data pointer for software testing efficiency measurement

OCT.10-12,2022

Key Takeaways

e We do not need complex measurements to track software quality

e Customer reported bugs is what matters

e Exploratory testing and QA teams’ involvement in feature design
review are most cost-effective technique for early bug detection

e Code does become immune to testing over multiple releases

e Moving from “test to pass” to “test to break” testing mindset is
critical for bug uncovering

e There is negligible difference between Simple QV and Weight QV. For
a start, we can begin with Simple QV to help identify concerning
products

40TH ANNUAL
2 H_‘T‘;,Q AR F
zJUI 1 YYANL

® e Vittalkumar Mirajkar
°

. Defining data pointer for software testing efficiency measurement oﬂ;(“g“g;z‘z

'"THANK YOU

/ Vittalkumar Mirajkar b
VitalkumarrMirajkar@gmail.com
-12,2022

