

Cloud Chemistry: Making SaaS solutions play nice with your
application to ensure Enterprise IT Quality

Nikita Deepak Davda​ ​ ​ ​ ​ Ying Ki Kwong
 nikki.d.davda@hotmail.com​ ​​ ​ ying.ki.kwong@pnsqc.org​
​
Abstract
The global Software as a Service (SaaS) market size is projected to grow from $273.55
billion in 2023 to $908.21 billion by 2030 [1]. SaaS has revolutionized the way businesses
operate by providing lower upfront costs, scalability and on-demand access to software
applications. However, test strategies must adapt with a focus on cloud-based models and
ensuring Enterprise level IT quality is still maintained. In this paper, we will discuss SaaS
integrations and how to overcome common challenges. This paper will analyze enterprise
SaaS integration from the perspective of the four pillars of Enterprise level IT quality [2]:

●​ Data Quality – How to ensure data synchronization between your application and
the SaaS solution.

●​ Application Quality – How to ensure Functionality, Usability and Security
●​ Infrastructure Quality – How to ensure Reliability, Scalability and Security
●​ Enterprise Quality Management Systems

We will discuss lessons learned from various incidents and their implications to overall
quality of systems that utilize third-party SaaS services. The lessons learned include keeping
up with rapid development cycles of SaaS companies, third-party integration, security
concerns, and making sure applications are running as expected to meet business needs
during operational support & maintenance.

Biography

Nikita Deepak Davda is a Lead Test Software Engineer with over a decade of experience in
designing, implementing and managing test plans to build high quality software. She
believes that quality plays an important role in every stage of SDLC, right from when the
Requirements are written all the way until Post deployment. She has filed a patent with
USPTO with a solution for “Uninterrupted Usage and Access of Physically unreachable
managed handheld devices.” She is passionate about testing applications on the Cloud and
enjoys the challenge of testing integration between applications.

Ying Ki Kwong is an independent consultant. In the public sector, his roles with the state of
Oregon included: E-Government Program Manager, Statewide QA Program Manager, IT
Investment Oversight Coordinator, and Project Office Manager of the Medicaid Management
Information System. In the private sector, his roles included: CEO of a Hong Kong-based
internet B2B portal for trading commodities futures and metals, program manager in the
Video & Networking Division of Tektronix responsible for worldwide applications & channels
marketing in the video server business, and research engineer in Tektronix Labs. In these
roles, Dr. Kwong managed software-based business operations, systems, products, and
business process improvements. He received the doctorate in applied physics from Cornell
University and was adjunct faculty in the School of Business Administration at Portland State
University. He holds certifications in project management (PMP), ITIL, and IT Service
Management. He has served on the Board of PNSQC since 2021.

Excerpt from PNSQC Proceedings​ ​ PNSQC.ORG​
Copies may not be made or distributed for commercial use​ ​ Page 1

1. Introduction

Software as a Service (SaaS) is a way of delivering enterprise applications remotely over the
internet instead of local installations. Before SaaS, software was typically purchased or
licensed by an enterprise customer; often installed on its own servers and client devices. In
SaaS models, software or online services are rendered as a set of capabilities that an
enterprise customer subscribes to, with pricing options at different service levels for different
numbers of authorized users. Many SaaS vendors offer training to help enterprise customers
to make the most of their investments. Overall, SaaS simplifies software acquisition for
enterprise customers, providing cost-effective and convenient ways for an enterprise to
access powerful applications without the complexities in traditional software deployment.

From a financial accounting standpoint, traditional software acquisition models are typically
treated as capital investments, while SaaS models are typically treated as expenses. SaaS
models are often preferred by the executive management of an enterprise – because initial
investment is lower, even if total cost of ownership may end up being higher over time.

2. How does SaaS work?

When an enterprise customer subscribes to SaaS software, its users typically log in through
a web browser. The software runs on the service provider's servers, which handle all the
processing and data storage. This allows the users to access the software needed from any
authorized device with an internet connection and appropriate information security
safeguards – providing flexibility and mobility. The SaaS vendor manages software
maintenance, including updates, security, and backups, so enterprise customers have the
latest features and security patches. From a technical perspective, SaaS vendors may use
multi-tenant architecture, meaning a single instance of the software serves multiple
customers. This approach optimizes resources and reduces costs, as infrastructure and
maintenance expenses are shared across many customers. SaaS applications are often
architected to be highly scalable, allowing enterprise customers to easily adjust their
subscription levels based on their business needs, whether that means adding features,
increasing storage, supporting more users, or other quality of service criteria.[3][4]

Figure 1. SaaS Architecture.

Excerpt from PNSQC Proceedings​ ​ PNSQC.ORG​
Copies may not be made or distributed for commercial use​ ​ Page 2

https://trailhead.salesforce.com/content/learn/modules/starting_force_com/starting_understanding_arch?&utm_source=sfdc&utm_medium=web-landing-page&utm_campaign=trailhead

In this paper, we use the editorial “you” to denote an enterprise customer of SaaS vendors
and “we” to denote the authors of this paper.

3. Types of Application integrations

To highlight how SaaS differs from other integration patterns, we will group application
integrations into three broad types, with Type 3 being SaaS in nature. This classification is
conceptual and not based on a specific industry standard or generally accepted definitions..

Type 1: Integration with a privately hosted enterprise system or private cloud

Here, each enterprise customer operates its own fully dedicated application stack —
including software, database, and infrastructure — either on-premises or in a private cloud.
For example, a bank or a government organization may run Workday HR in an isolated
environment, separate from other Workday customers. This model gives organizations
maximum control: independent scheduling of software upgrades and patches, flexibility in
system configuration and integration with legacy systems, customer-specific performance
tuning (such as elastic scaling within a dedicated pool of servers), and stronger compliance
and audit capabilities.

Analogy: This is like owning or leasing your own house or building — you have maximum
control over how it is managed, used, maintained, and remodeled.

Type 2: Integration with API-based third-party services

An enterprise application connects to an external service in the cloud through standard APIs.
The enterprise customer subscribes to the service and accesses its data or functionality
programmatically. Examples include using a payment gateway like Stripe or a mapping
service like Google Maps.

Analogy: This is like subscribing to a utility service such as electricity or water. You don’t own
the infrastructure — you just pay for access and use the service when you need it.

Type 3: Integration with Software-as-a-Service (SaaS)

In this model, the enterprise customer integrates with a solution hosted by a SaaS vendor.
SaaS may be deployed in either a single-tenant or multi-tenant form.

In a single-tenant SaaS model, each enterprise operates in its own logically separated
tenant, with isolated application and data environments but shares infrastructure, patching,
and upgrade schedules as managed by the SaaS vendor. In a multi-tenant SaaS model,
many customers share the same application and infrastructure, with logical data separation.
Common SaaS like Salesforce can be subscribed in single-tenant or multi-tenant models.
Single-tenant SaaS offers stronger data segregation and may be chosen for easier
compliance with standards such as HIPAA in healthcare or FERPA in education. Multi-tenant
SaaS, by contrast, is usually more cost-effective and so more widely adopted.

Excerpt from PNSQC Proceedings​ ​ PNSQC.ORG​
Copies may not be made or distributed for commercial use​ ​ Page 3

Analogy: A multi-tenant SaaS model is like renting in an apartment building where many
residents share the same structure and common utilities, a swimming pool, and other

facilities; a single-tenant SaaS model is more like having your own townhouse in a managed
community — you share services like roads and landscaping, but your unit is separate,
secure and is used only by you.

4 What are the advantages & disadvantages of SaaS?

Because SaaS facilitates remote application hosting and delivery, its key advantage is easy
access across locations and devices. Although not widely talked about, there are also
disadvantages in using SaaS models.

Excerpt from PNSQC Proceedings​ ​ PNSQC.ORG​
Copies may not be made or distributed for commercial use​ ​ Page 4

Feature

Advantage

Disadvantage

Pay only for
what you use

Automatically scales up or down
based on usage.

Subscription payments can add up to
be expensive over time.

No need for local
installation

SaaS apps have the option to be run
on the browser thereby installation is
no longer mandatory.

You cannot control versions you want
to use. You can only use the latest
available version.

Lower initial
costs, Rapid
development

You generally don’t have to pay for
licenses, hardware and infrastructure.

You must pay for data migration and
consultation for setup.

Easy
Onboarding

SaaS vendors offer documentation
and training.

You’ll be tied to the platform they
provide, at least for some time. It
could be very time-consuming and
costly to switch down the road.

Frictionless
upgrades and
updates

Enterprise customers have access to
latest software releases, with more
features and enhanced security,
frequently and fast.

You cannot control versions you want
to use and there might be regression
bugs that get introduced.

Increased
customization

Developers often design SaaS
applications to be customizable. So,
you can tailor them to your needs.
SaaS vendors often offer APIs for
integrations as add-ons to enterprise
customers.

Developers can only pick from the
customization available.

Advanced
security

Most SaaS vendors invest heavily in
privacy and security.

It is your responsibility as a client to
verify that the SaaS vendor has all the
necessary certifications in place and
that partnering with them will not put
your data under risk.

Built-in
redundancy

With cloud-based SaaS, backups are
frequent and automatic.

N/A

 Table 1. Advantages and disadvantages of SaaS services in mission critical systems.

5 Software Engineering Quality Considerations
Integrating with SaaS software provides many advantages as seen above. However, with great
power comes great responsibility. There are many quality considerations that need to be taken
into account, to avoid pitfalls while integrating with these solutions. Let’s analyze common pitfalls
using our four pillars of Enterprise IT Quality by reviewing some sample incident scenarios.

5.1 Data Quality pitfalls during integration

During onboarding and data migration, it is important to ensure no data lost between the
systems.

●​ Sample Incident Scenario: When we integrated our product with a SaaS solution, we
designed the system to transfer data without errors. However, we saw data quality pitfalls
like data sync mismatches, delayed updates and data transformation errors.

○​ Lesson Learned: When two systems have to work as one solution, it is
important to maintain near real-time updates between them.

○​ Recommended Practices: Automated Integration testing between the systems
is a great way to ensure seamless data flow and thorough integration.
Change Data Capture (CDC) streamlines data integration processes by
identifying and extracting only the changes since the last update, eliminating
the need for bulk data transfers.

5.2 Application Quality during integration

When SaaS vendors update their system, one of two possible types of regression defects may
occur. The SaaS solution may contain defects, or updates may break integration with an
enterprise customer’s systems.

●​ Sample Incident Scenario: When SaaS vendors roll out a new update, there is often
a chance of regression defects being introduced. In some cases, existing
functionality may be removed or modified. The customer’s application quality takes a
hit when they don’t catch it in time and the existing functionality their customers love,
no longer exists or is broken.

Excerpt from PNSQC Proceedings​ ​ PNSQC.ORG​
Copies may not be made or distributed for commercial use​ ​ Page 5

Offline
functionality

Many solutions have an offline mode
that works regardless of internet
access. When connectivity returns,
data automatically updates.

Data is stored on the software
provider’s servers, and as a customer,
you must trust that the vendor
maintains confidentiality, integrity, and
security of the digital information.

Actionable
intelligence

Some SaaS solutions ingest data in
real time and from many sources. The
result is more accurate analytics and
reporting.

N/A

https://www.salesforce.com/analytics/
https://www.salesforce.com/analytics/

○​ Lesson Learned: API service contracts have to be defined and maintained.
Contract testing can easily catch contract breaking changes.

○​ Recommended Practices: Automate Continuous Regression testing to ensure
that existing functionalities remain unaffected.

5.3 Infrastructure Quality during integration

Some SaaS solutions provide both “out-of-the-box” functionality and third-party vendor
integrations to choose from. For example, eCommerce SaaS vendors usually provide third party
integrations like tax calculator APIs as a part of their contract.

●​ Sample Incident Scenario: While integrating with one such eCommerce solution, the

enterprise customer chose to use the tax calculator API that the SaaS vendor
integrated with. Right before a critical launch, the terms and conditions (T&Cs) of
third-party tax calculator API chosen in the integration changed. Since the enterprise
customer did not have enough time before launch to switch to a new tax calculator
solution, there were additional costs to maintain the integration.

○​ Lesson Learned: SaaS contracts should include any third-party integration
T&Cs. SaaS vendors must disclose their contract terms with the third-party
vendor with details like costs and when their contract ends.

○​ Recommended Practices: Have a fallback plan for when a third party service
becomes unavailable, to ensure system performance and to avoid any
downtime.

5.4 Enterprise Quality Management during integration

At an enterprise level, SaaS integrations should take into account all the metrics of quality. In
particular, Performance testing and Load testing. Customers must define Service Level
Agreements (SLAs) with SaaS vendors about Application performance metrics to match the
uptime of their product. If this is not specified clearly in the contract, the SaaS vendor becomes
a bottleneck in the customer’s application performance.

●​ Sample Incident Scenario: The peak traffic days vary by industry. For an eCommerce

domain in the United States, the “Cyber 5” weekend is a peak traffic period when the
maximum number of customers shop online. SaaS solutions supporting these
customers may not operate in the same domain, but have to be prepared to support
the load their customers could face.

○​ Lesson Learned: SLAs and preparation for the peak traffic days can play a
critical role. Advance Performance and Load testing on both the systems is
necessary.

○​ Recommended Practices: Once the SaaS integration is complete, during a
maintenance window, SaaS vendors will often switch to on-demand support.
However, during peak traffic days, the support contract must be revised so the
providers are available for support around the clock to mitigate any customer
blocking integration issues.

Excerpt from PNSQC Proceedings​ ​ PNSQC.ORG​
Copies may not be made or distributed for commercial use​ ​ Page 6

6 Operations & Maintenance Quality Considerations

As described in earlier sections, SaaS adoption has the potential to offer benefits in
scalability, availability, and cost-effectiveness. However, these advantages are
accompanied by new responsibilities for operations, support, and maintenance teams.
These teams must assure and sustain consistent IT service quality over time despite
diminished control over the complete stack of services. SaaS-based systems or system
components must be continuously monitored and managed across organizational and
technical system boundaries. This includes not only internal systems and infrastructure,
but also external vendor services that may update, scale, or fail independently of an
enterprise’s internal systems and their controls.

In this section, we examine how the four pillars of Enterprise IT Quality — data,
application, infrastructure, and management systems — manifest in operational settings.
We will use real-world scenarios experienced by the authors, as summarized in Table 2
and discussed in greater details below, to explore implications for monitoring, incident
response, and continuous improvement that are integral to today’s IT service management
(ITSM). These scenarios are illustrative and do not span the universe of possible incidents
in production environments.

Enterprise IT Quality
Pillar

Sample Incident Scenario

Lessons Learned

Data Quality
SLA compliance gaps with
insufficient monitoring

Internal & external monitoring
required to verify SLA compliance

Application Quality
SaaS performance
degradation under load

Monitor performance trends and test
under realistic usage conditions

Infrastructure Quality

DR failure from WAN
infrastructure without
sufficient redundancy

Ensure telecom redundancy with
physically separate carriers

SaaS outage misdiagnosed
due to failure of internal DNS
or other systems

Monitor both SaaS and internal
services for accurate RCA

Vanity domain names and
TLS certificate not well
maintained

Establish governance and automate
tracking of TLS certificates and
vanity domain names

Enterprise Quality
Management Systems

SaaS update and related
prohibitions during enterprise
blackout windows

Enforce change control procedures
and related governance – especially
compliance with blackout dates, as
well as related SLAs and T&Cs
(terms & conditions) in the contract

Table 2: Sample Incident Scenarios and Lessons Learned in Operations & Maintenance,
through the lens of the four pillars of Enterprise IT Quality in Reference 1.​
 ​
 6.1 Data Quality in Operations & Maintenance​
​

Excerpt from PNSQC Proceedings​ ​ PNSQC.ORG​
Copies may not be made or distributed for commercial use​ ​ Page 7

Operational risks to data quality include sync mismatches, stale data, and monitoring gaps
that delay detection of failed integrations. In a multi-vendor SaaS environment, the
enterprise often lacks direct visibility into the data handling practices of external systems or
services.​

●​ Sample Incident Scenario: SLA defines Severity 1 Outage to be sustained outage of
an application or a website for 4 minutes or longer; with attendant notification and
remedy requirements. However, internal monitoring was set up to ping at a frequency
of once every 10 minutes at 3 locations outside enterprise firewalls only. SLA
compliance requires improved monitoring of SaaS services in order to adopt a
posture of “trust but verify.”

○​ Lesson Learned: Internal monitoring in place may not be frequent enough to
ascertain SLA compliance. Monitoring needs to include dependent internal
services to differentiate internal outages from SaaS vendor service outages.
Also, monitoring should be deployed inside and outside the enterprise
firewall.

○​ Recommended Practices: Monitor data sync success and freshness at both
boundary and system-of-record levels. Cross-reference data latency and
integrity against SLA requirements and contract terms. Implement internal
and external monitoring probes to validate performance and availability
commitments.

​
 6.2 Application Quality in Operations & Maintenance​
​
SaaS applications can exhibit performance issues under peak usage conditions, including
instability in load balancing and degraded response times that impact user experience.

●​ Sample Incident Scenario: Performance of websites and apps provided by SaaS

vendors have load time and load balancing stability issues, as observed during
traffic surges that cause significant slowdowns.

○​ Lesson Learned: The enterprise needs to proactively monitor application
performance, especially under variable load conditions, to detect emerging
issues.

○​ Recommended Practices: Perform load testing aligned with real-world usage
patterns. Monitor response time trends and transaction drop-offs. Use
synthetic monitoring to simulate high-load scenarios and identify thresholds
and bottlenecks.

​
 6.3 Infrastructure Quality in Operations & Maintenance​
​
SaaS vendors often manage infrastructure across multiple layers and partners. This
introduces risk where dependency chains are obscured, poorly understood, or insufficiently
redundant.​

●​ Sample Incident Scenario: An unexpected DR (disaster recovery) failure occurred
when the SaaS vendor’s primary data center suffered a fiber breach, which disabled

Excerpt from PNSQC Proceedings​ ​ PNSQC.ORG​
Copies may not be made or distributed for commercial use​ ​ Page 8

primary and secondary connection because both relied on the same physical
infrastructure.

○​ Lesson Learned: SaaS services should be hosted in data centers with
WAN/telecom circuits provided by two different providers using physically
separate routes including power feeds.

○​ Recommended Practices: Confirm physical and provider diversity in vendor
DR infrastructure.

●​ Sample Incident Scenario: Unexpected SaaS service outage was traced to an
internal DNS failure and not the SaaS vendor's platform.

○​ Lesson Learned: Enterprises must monitor both SaaS availability and
dependent internal services to avoid misattribution and speed up root cause
analysis. Tools like New Relic or FireEye can be helpful.

○​ Recommended Practices: Implement layered observability that includes DNS,
routing, and app-level checks.

●​ Sample Incident Scenario: Information security hygiene gaps were found involving
vanity domain names and TLS certificate management.

○​ Lesson Learned: Outages or near outages can be caused by abandoned or
expired domain name registrations and expired TLS certificates. Enterprises
must manage these dependencies with clear governance and should
consider third-party scanning and related maintenance services.

○​ Recommended Practices: Automate renewal tracking for vanity domain
names and TLS certificates. Use external scanning tools to assess
information security posture for critical dependencies. Develop a cross
functional team within the enterprise and with relevant contractors that meet
regularly.

​
6.4 Enterprise Quality Management Systems (EQMS) in Operations & Maintenance​
​
SaaS operations challenge traditional IT service management processes and workflows by
introducing asynchronous changes and opaque vendor practices. Aligning operational
governance across internal and external boundaries is essential.​

●​ Sample Incident Scenario: An unexpected hardware outage during a scheduled
master template update occurred, and the SaaS vendor neglected to check
enterprise blackout dates. This disrupted operations during a prohibited change
window.

○​ Lesson Learned: Backout dates and maintenance windows must be clearly
governed and communicated per ITSM best practices using approved
change procedures.

○​ Recommended Practices: Incorporate vendor change activity into internal
change calendars. Require confirmation of blackout windows in service
agreements. Integrate vendor roles into incident response and root cause
analysis protocols. Conduct joint postmortems for major service interruptions,
paying close attention to recurring issues.

Excerpt from PNSQC Proceedings​ ​ PNSQC.ORG​
Copies may not be made or distributed for commercial use​ ​ Page 9

7 Conclusion

In this paper, we have reviewed a number of important concepts when an enterprise uses
SaaS to support its business needs. While there are advantages and disadvantages that
each enterprise must balance (Section 4), we have discussed important lessons learned
during system integration and ongoing support & maintenance.

Overall, SaaS is a transformative force but requires new thinking in software QA, as well as
software quality & risk management during the lifecycle of an enterprise system. Enterprise
IT Quality can and must adapt from test execution to integration assurance and a range of IT
services management (ITSM) considerations. Crucially important are proactive application
monitoring, robust administration of SaaS contracts, and coordination and related
expectation setting with internal and external stakeholders. Future directions in the use of
SaaS in enterprise system integration include AI-assisted integration testing, zero-trust
validation models, and lifecycle considerations.

In conclusion, test strategies must adapt to support cloud-based models. Software quality &
risk management during development and ongoing support & maintenance cannot be done
as if everything is within the control of executive management. Software QA must now be
part of overall change management, incident management, and ITSM of an enterprise for
which SaaS services are an integral part of the modern enterprise.

8 Acknowledgement & Disclosure

The authors thank John Cvetko for helpful discussions during the planning, preparation, and
review of this paper. ChatGPT was used to edit certain sections of this paper for
self-consistency and readability.

References

1.​ https://www.cloudwards.net/saas-statistics/ - last retrieved on 9/1/2025.
2.​ For one description of Enterprise IT Quality, see

https://www.pnsqc.org/docs/PNSQC_Brief_on_Enterprise_IT_Quality.pdf - last
retrieved on 9/1/2025.

3.​ https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-saas
- last retrieved on 9/1/2025.

4.​ https://www.velvetech.com/blog/saas-architecture/ - last retrieved on 9/1/2025.
5.​ https://www.salesforce.com/saas/ - last retrieved on 9/1/2025.

​

Excerpt from PNSQC Proceedings​ ​ PNSQC.ORG​
Copies may not be made or distributed for commercial use​ ​ Page 10

https://www.cloudwards.net/saas-statistics/
https://www.pnsqc.org/docs/PNSQC_Brief_on_Enterprise_IT_Quality.pdf
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-saas
https://www.velvetech.com/blog/saas-architecture/
https://www.salesforce.com/saas/

	Biography
	1. Introduction
	2. How does SaaS work?
	3. Types of Application integrations
	4 What are the advantages & disadvantages of SaaS?
	5 Software Engineering Quality Considerations
	6 Operations & Maintenance Quality Considerations
	7 Conclusion
	8 Acknowledgement & Disclosure
	References

