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Abstract

Hardware Security at Willamette is a Willamette University affiliated research group studying the
hardware-software interface of security critical services. Within our program, we noticed many
researchers spent considerable development time learning to understand and manually parse traces-of-
execution of hardware designs which are used to identifying whether vulnerabilities or weaknesses arise
at the hardware, software, or interface level. We propose the "RTL-Arrow" framework, a framework to
compile performant binaries which bridge the hardware/data divide. We translate the outputs of simulated
hardware execution, as “value change dumps” into modern data science workflows as cloud-ready
“dataframes”, to standardize program verification across the hardware and software levels. We describe
our approach, its benefits, and lessons learned from the process of packaging and distributing these
libraries for our security research program.
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1 Introduction

As hardware security researchers, we regard the current paradigm in computing hardware as emerging
following the collapse of MOSFET scaling (also called Dennard scaling, for Robert H. Dennard), a sibling
of Moore’s Law. In brief, CPU Clock Rates increased exponentially from 1975, when the scaling first
gained its name, until 2006. In 2006, a “power wall” emerged — chips could continue to become more
complex, but if all of their circuitry was active at once, they would melt as heat could not be dissipated
quickly enough. This led to a marked change in the design of computer hardware, that has had two broad
impacts on our research.

First, one response to the end of MOSFET scaling was the emergence of “dark silicon” - portions of a
computer chip that are not currently powered. The most obvious example of this is integer versus floating
point arithmetic, which take place on different hardware within CPUs. But in modern devices, there are
now a wide ranged of specialized, application-specific instructions that are essentially hardware
accelerators for different tasks, ranging from cryptographic units to caches. This is a dramatic increase in
hardware complexity, and introduces far greater possibilities for security vulnerabilities to exist and be
exploited.

Second, the emergence of GPU-centric computing, especially in data scientific applications, has allowed
the scaling of computing performance past the power wall by using increasingly parallelized processes.
Essentially, GPUs in 2006 were linear algebra accelerators (and still are, to some degree), and many
computational tasks can be completed as vector, matrix, or tensor operations rather than scalar
operations performed by CPUs. What this means is that in 2025, any computationally expensive workload
should be considered for GPU acceleration and, if at all possible, executed on GPU (or some other ASIC)
rather CPU circuitry.

These changes, emergent from underlying physical processes, have worked up the abstraction stack and
now see relevance in software in two specific ways. First, the importance of dark silicon for physical
reasons has dramatically increased the importance of Electronic Design Automation (EDA, or ECAD) to
design increasingly sophisticated and application-specific circuits. For our purposes, the most important
EDA tools are Hardware Description Languages (HDLs), which are like programming languages that
instead describe integrated circuits at register transfer level (RTL), and simulators, which we use to model
the behavior of a hardware system for study. Second, the emergence of GPU acceleration as the
dominant paradigm in compute and data analytics tasks has, with it, led to the overwhelming importance
of specific tabular or columnar data storage methods in order to leverage to device-specific APIs. That is,
EDA has itself become EDA-accelerated, though predominantly through the same mechanism that GPU
acceleration is applied to any given task.

However, to our knowledge there is no existing framework that allows study of designs at RTL using
existing data scientific methodologies. In our initial work in this area, we have relied on various
application-specific technologies — a simulator, an inference engine, and a custom translator between the
two — but found this approach had poor performance, parallelized poorly, and had many dependencies,
including a Python runtime and Java Virtual Machine.

We propose RTL-Arrow, a Rust language framework that translates simulated traces-of-execution of
hardware designs into ASF Arrow’s tabular format, which is well-suited to both GPU acceleration and a
massive parallelization via cloud technologies should as Hadoop or Spark. We describe our problem
statement, our proposed solution, discuss the open-source codebase implementing our solution, and
provide an example of a case study in which our codebase improved the performance of a hardware
security validation task over open-source silicon.
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2 Problem Statement

To specifically formulate our problem and our requirements, we will consider it as an iterative
improvement to the naive “Myrtha” tool. Myrtha, introduced in our prior work “Test, Build Deploy” is a
proof-of-concept container package for cloud-native, CI/CD hardware development (Deutschbein and
Stassinopoulos, 2025). Many of limitations we discovered while developing Myrtha motivated the
formulation of the RTL-Arrow bridge we propose.
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Figure 1: The “Myrtha” container package for hardware specification.
We see here the three stages of trace-based hardware validation:

(1) A design is simulated to create a value change dump (.vcd) based on some inputs.

a. Inthe diagram, we use Icarus Verilog (iverilog) to simulate based on a testbench.
(2) The value change dump is translated into a trace of execution

a. Inthe diagram, testbench.vcd is translated via the Python script rtlkon.py
(3) The trace of execution is used to infer a specification.

a. Inthe diagram, inference is performed via the Java program daikon.jar.

In Myrtha, each of these steps are implemented distinctly. The simulator, Icarus Verilog, is written in C
and compiled into an executable binary. The translator, “rtikon.py”, is written in Python and requires a
Python runtime. The specification miner, the Daikon Dynamic Invariant Detector, is Java (.jar) application
that requires a Java Virtual Machine. Each of these contributes to container size — even Icarus Verilog,
which requires the use of a full compiler toolchain and a libc implementation, making extremely
lightweight containers difficult.

In our use case, where we are extensively studying hardware designs for difficult-to-detect vulnerabilities,
we often use hundreds or more traces to study a single aspect of a design, so any inefficiency within a
single container is duplicated many times across our architecture. As it stands, Myrtha is a useful tool for
hardware security specification already, but scales poorly. For example, we consider the case of transient
execution CPU vulnerability.
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2.1 Transient Execution CPU Vulnerabilities

Transient Execution CPU Vulnerabilities arise from speculative execution, a processor optimization
wherein, when a pipelined process encounters a branch based on some yet-incomplete computation or
memory read, the CPU executes both possible paths pending the result of conditional expression. Branch
prediction, and speculative execution are major contributors to modern hardware performance. However,
in 2018, the Meltdown (Lipp et al., 2018) and Spectre (Kocker et al., 2019) vulnerabilities were
discovered, that made processors utilizing these performance enhancements exceedingly insecure. In
brief, an attacker could manipulate branch prediction to speculative issue illegal memory read directives,
which would speculatively load privileged data into a software visible cache. When the branch was found
to be illegal and terminated, the CPU state would reset, but memory state would not and other attacks
could be used to read the sensitive data in memory.

These attacks are elusive because they involve unrecognized disclosure and can be difficult to study for
this reason. We think of this in terms of traces — no single trace reveals that a CPU is vulnerable to attack.
Instead, multiple traces must be studied, and it must be determined that under no trace does a
speculative memory load occur (or some other action) occur.

2.2 Scaling and Parallelism

The Myrtha workflow above supports exactly one frace of execution at a time, and as a container can be
scaled but has scaling performance based on container size and speed. Since we will necessarily use at
least one compiled binary for our simulator (whether Icarus Verilog or some other tool, the most likely of
which is Verilator), we believe it will be most efficient to generate stand-alone binaries for the remaining
stages, containerize these binaries, and then broadly apply the framework to the generation of — and then
specification over — many traces. Doing so, we hope to capture specifications that either preclude or
detect transient execution CPU vulnerabilities in relatively little real time, and with managably low cloud
compute costs. Ideally, we will identify use cases for GPU acceleration for inference tasks versus the
CPU-based inference used in earlier tools.

3 Proposed Solution

We regard Rust as an industry-standard language for generating performant binaries and have been
working to translate our translation and inference stages into Rust for that reason. Alongside other high
performance lower-level languages like C++ and Go, Rust has become a popular language for writing
cloud-compute lambda functions and has extremely precise memory usage due to borrow checking,
which removes the need to include garbage collection in a binary. Rust also supports modern error-
handling, which is highly useful to maintain our project across different versions of Verilog and potentially
different simulators.
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Figure 2: Proposed Use Case of RTL-Arrow in Cluster

3.1 IEEE 1364 VCD and Daikon

In the “Myrtha” tool, both value change dumps and traces of execution were stored in an ASClI-based
format — the IEEE 1364 VCD format for value change dumps, and the traces in a two-file format specific
to Daikon, a dynamic invariant detector which extracts trace properties from simulated traces — and can
be used to automatically generate security properties. Both formats utilize a header, which enumerates
the registers (and wires) of a design.

The value change dump then logs any changes to register values from the starting, uninitialized value. By
contrast, the Daikon trace enumerates the value of every register at every clock tick — which is modelled
as a program point. Internally, Daikon models the hardware as a program, and each clock tick of the
processor is modelled as a method or function call with its own name space.

When initially released in 2004 (Ernst, 2007), and even when initially applied to hardware in 2017, the
computing ecosystem was entirely different, and Daikon’s trace format was unremarkable. This no longer
the case.

While Python has been the most popular language year-on-year since 2017, and boasts a wide range of
inference and analytics libraries, in 2004 there were not existing interchange formats — even Hadoop had
not yet been released — and even in 2017 GPU acceleration inference was in its infancy and rarely
applied to domains outside of vision.

Now, in 2025, there are well-supported and generalized cloud and GPU capability data interchange
formats that suitable any number of tasks, including program and hardware validation. As recently as the
past 12 months in the past year, we have seen two major developments that impact the relevance of our
work. The most popular tabular format in Python — pandas - released a new version that is now ASF
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Arrow-backed. Separately, the ubiquitous cloud compute technology ASF Spark has released a Rust
kernel to support Rust and Python user-defined functions. These design decisions were made with good
reason and should be applied to hardware validation as well.

3.2 Arrow

Internally, we can eliminate both ASCII-formatted write-to-disk memory costs by utilizing the Arrow format:

"universal columnar format and multi-language toolbox for fast data interchange and in-memory
analytics” (Apache Arrow, 2025)

We can do so even with minimal modifications to the existing simulator by piping the data from the
simulator to our encoding process. The capturing application need only then maintain minimal working
state — current values of all registers — and then write the values to a dataframe at each time point.

Arrow helpfully has first-class support in a variety of languages, ranging from interpreted scripting
languages like R and Python to systems languages like C/C++ and Rust.

Once a trace of execution has been placed in an Arrow format, it can be written to disk in a machine-
readable binary format, either the Arrow format itself for zero-copy reads or the compressed Parquet
format used for storage. In general, we expect to write to Parquet anticipating revisiting trace data
numerous times during the security research process.

3.3 Polars

To meet our requirements for a compact binary, we wanted to use a compiled language with no garbage
collector, eliminating a variety options, perhaps most obviously Go. Fortunately, Rust has excellent library
support for working with Arrow, much like C/C++ which have Arrow libraries, but Rust additionally has a
native, Arrow-backed dataframe library — Polars (to the best of our knowledge, C++ has both dataframe
support and first-class Arrow support, but does not have an Arrow-backed dataframe library).

We plan to use Polars to translate our value change dump files into Arrow dataframes, which can be
accepted by a variety of modern inference engines implementing many of the clustering algorithms used
within Daikon. We propose a performant RTL-to-Arrow stage combining a high-performance Verilog
compiler with a high-performance Arrow binary, each in a compiled language with no garbage collection.

3.3.1 LazyFrames

A core feature of Polars is the LazyFrame — a dataframe that delays evaluations of transforms until being
queried. Within a data science technology stack, this can lead to considerably improved performance by
optimizing the sequences of transforms and operations. For our purposes, we have no real benefit to
using LazyFrames are we simply treat Polars as an Arrow API.

We do, however, intend to take advantage of LazyFrames within our analytics frameworks after
completing translation, and still regard the LazyFrame as a core benefit of our language selection for that
reason. We motivate the benefits with an example.

Suppose we are considering a design with 1000 registers, of which 200 each are distributed over an ALU,
FPU, MMU, debug interface (DBG), and interrupt handler (IRQ). We may wish to validate the memory
calculations of this design to ensure that no arithmetic errors contribute to illegal reads. To do so, we
likely will complete two tasks:

1. Functional validation of the ALU’s arithmetic capabilities
2. Information flow analysis from the FPU to MMU to ensure float values are not dereferenced.

In both cases, we will issue queries not over the entire dataframe, but over subsets of the dataframe, and
compose queries across multiple subsets (especially in the case of two).
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By executing lazily, these queries may be fully specified and then reordered by the underlying library into
a performance optimized sequence. This can avoid redundant or unnecessary calculations, and exploit
performance optimizations not exposed to the end user. Rather than learn the intricacies of optimizing
dataframe queries, we can use LazyFrames as a best effort optimizer, and only manually optimize in the
case of specific performance requirements for specific queries.

Lazy evaluation is non-trivial to implement in languages without built-in support (and in fact the Python
implementation is simply a Rust API) and our impressive of the dramatic rise in the popularity of Polars is
consistent with this implementation detail driving major performance improvements across a range of
domains, including, we hope, hardware validation.

4 Design Decisions

4.1 Nullable types

One of the great benefits of working with Rust/Polars/Arrow triple is the treatment of nullable integers,
which are a common and important case when studying hardware traces. Hardware signals generally are
treated as binary, but IEEE 1364 they are more properly quartrenary values which can be represented at
bit level as ‘0’, ‘1’, ‘X, or ‘Z’. In particular, ‘X’ values are extremely common to represent hardware signals
which have not yet been initialized to values. In a security context these signals are often important due to
many security agreements around design states before and across the time point when a hardware

device comes out of reset.

In prior work (vcd2df, 2025 and Deutschbein, 2025), it was difficult to represent these values as many
data-oriented scripting languages lack graceful support for nullable integers of fixed width. In a 32 bit
design, for example, there are many registers which are 32 bits in size but many represent greater than
232 distinct values, but far fewer than 2%4. Neither Python nor R, for example, can store these values
efficiently. However, Rust supports an “Option” type:

“Type Option represents an optional value: every Option is either Some and contains a value, or
None, and does not.”

This is precisely what our implementation demands. Either register either is initialized and holds a
numerical value, or is not and does not.

Separately, Arrow supports nullable data at dataframe level by maintaining a validity bitmask, stored
adjacent to the dataframe in memory (Tustvold, and Alamb, 2022).This validity bitmask allows storing
options with the minimal cost of a single additional bit per value — effectively allowing 32 bit option storage
within only 33 bits.

And finally, the Polars dataframe library helpful stores Rust options directly as nullable data within Arrow
dataframes, posing no additional implementation overhead to us as designers or clients of the software.

4.2 Columnar vs. Record-Based

A natural question about using a dataframe format is the trade-offs between columnar formats, which
represent some observations as a matrix or two-dimensional array, or record-based formats like JSON
which represent observations as leaf nodes in a tree.

One common benefit to dataframe encoding is compression, which importantly is not a benefit in our
case. When modelling hardware designs, most registers are unchanged cycle-to-cycle, so we experience
massive data duplication and frequently binary dataframe formats have larger storage footprints than text-
based record formats. And we do consider memory in our case, especially for larger designs or longer
test suites.
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That said, the overwhelming benefit of dataframe support for queries cannot be understated. Prior efforts
in hardware validation often had to develop sophisticated, custom parsers to infer relatively simple
relationships between registers, such as clustering algorithms or binary relations. In our experience, any
query required extensive implementation time to interface directly with the underlying trace data.

Dataframes offer high performance due to vectorization and parallelization to most forms of queries, and
often support predictable, constant-time memory access. We have found dataframe storage to be
accelerant for hardware security research within our group, and believe the storage costs are justified by
the increased development speed.

That said, it merits further investigation to determine what, if any, benefits can be derived by introducing
both utilities for translation to record-based types, and the usage of a binary record-based storage
medium such as bincode (bicode-org, 2025), especially over larger designs.

5 Results

To assess the comparative performance of RTL-Arrow versus the state-of-the-art, we will compare our
RTL-Arrow implementation against libraries in Python and to translate VCD files to Arrow formats. In a
few cases, we will have to modify the packages slightly, but the points of comparison are helpfully open-
source and we are able to make minor changes.

To do so, we implemented a crate in Rust and performed a simple example, based on a use case
involving a map of information flow detection across 181 value change dump files. In both cases, we
output a series of pairwise information flow events as JSON.

5.1 Compilation Cost

To provide a fair comparison to interpreted languages, we believe the closest point of comparison will be
to use a build container to configure a cluster container. The best point of comparison, we believe, is
comparing the container build time for either (1) installing the relevant runtime on the cluster container for
an interpreted technology or (2) installing the compiler toolchain on the build container, compiling, and
copying to the cluster container for a compiled technology.

We do not necessarily expect RTL-Arrow to be particularly competitive at this stage. Both the Rust
compiler installation (rustup) and compiling with the Polars crate are fairly involved.

In practice, we found that through the use a build container we were able to avoid the costly Rust
installation using a community-provided pre-built image, but we still experienced costly installation of
Arrow and Polars, which we used to interface with Arrow.

Ouir first effort to instantiate a Python container completed in 74.795 seconds on our reference system. By
contrast, the Rust variant required 291.691 seconds. Testing locally, we found Rust compilation took
19.600 seconds after installing dependencies.

We did not see significant differences between the use of Podman or Docker and saw only a spread of a
few seconds across repeated trials. In both cases, we began with a pre-built image maintained by the
language foundation, installed all language packages through the language package manager (“pip” for
Python and “cargo” for Rust) and used a “git” binary to retrieve the files for the tests from a reference
repository (cd-public, 2025).

5.2 Container Size

Our Python image, which contained the Python based images and the minimal Python “vcd2df” library,
required 1.76 GB of storage, of which approximately 1.11 GB was the base image and the remaining was
“pandas” dataframe library and its dependencies.
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Our Rust build image was 2.59 GB in size, of which approximately 1.79 was the base image and the
remainder was Arrow and Polars dependencies. Importantly, we note this also must contain a linker, for
which we used “gcc”.

Our Rust cluster image was 778 MB in size, which we expect to overwhelmingly be Arrow, as this
memory footprint is quite similar to the additional size needed for a Python image to interface with Arrow,
and the cluster image should contain little else beyond a minimized OS (for which we used Debian).

5.3 Run speed

Running locally, we found Python completed the security characterization task in 28.468 seconds.
Repeated runs fell within a second.

By contrast, our Rust implementation, which we had regarded as almost fully unoptimized, ran in 2.217
seconds. Repeated runs fell within a tenth of a second.

We found this performance unexpectedly high. Having specifically worked in Python for this research
direction for close to a decade, we have few remaining optimizations to accelerate our Python code
beyond deploying a cluster. By contrast, we do not regard ourselves as beyond entry-level Rust
programmers and were concerned a lack of familiarity with the language may incur heavy costs due to
unnecessary borrows or poor choice of types. In point of fact, we appeared to approach the I/O bound
without optimizations, falling with an order of magnitude of “wc” (at .285 seconds).

6 Conclusion

Despite relatively high costs for development and compilation, the usage of a Rust binary markedly
reduced our memory footprint on highly parallelizable process for hardware security research. We also
found several unexpected benefits — first class support for an option type in Rust greatly improved our
ability to interface with nullable integers, a natural implementation for potentially uninitialized hardware
signals, and the Rust string APIs greatly simplified the process of parsing an relatively undocumented file

type.

We encourage similar organizations preparing to scale to larger data science applications to consider
moving repeated and parallelizable routines into the Rust language, and look forward to how it can
accelerate our own research efforts in the coming years.

We found less than half the memory footprint and over ten times the performance for fairly minimal
development costs.
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