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Abstract

In light of rising cybersecurity threats, data center providers face growing pressure to protect their own
management infrastructure from Distributed Denial-of-Service (DDoS) attacks. While tenant-managed
cages generally fall outside the data center's direct security purview, a successful DDoS assault on core
provider systems can indirectly disrupt network services. To address this availability assault, the authors
developed a Graph Neural Network (GNN) based detection system which leverages Graph U-Nets to
automatically classify and mitigate DDoS traffic. Although the model was developed using open-source
network flows rather than proprietary data center logs, the model effectively identifies multi-layer DDoS
attacks that resemble the malicious patterns threatening modern data centers.

Adopting this system to data center environments requires minimal changes to existing operational
workflows and processes. Specifically, the GNN based system can be integrated at critical areas within a
data center's network infrastructure. Our model achieved an F1 score of over 95% when evaluated on
various open-source datasets, significantly reducing the likelihood of service disruptions and reputational
damage. This Graph U-Nets architecture delivers unprecedented precision (98.5%) in complex cloud
environments, thereby helping data center operators uphold reliable service availability and increase
customer trust and goodwill in an era of increasingly sophisticated cyber threats.
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1. Introduction

1.1 The Growing Threat Landscape for Data Centers

The data center industry faces an unprecedented surge in cybersecurity threats, with DDoS attacks
primarily impacting availability. According to recent industry reports, the global data center market is
projected to reach $340.20 billion in 2024, with an annual growth rate of 6.56% through 2028 (Volico Data
Centers 2024). This rapid expansion has made data centers increasingly attractive targets for malicious
actors. As organizations migrate more critical workloads to colocation facilities and cloud environments,
the potential impact of successful DDoS attacks grows exponentially.

The evolution of DDoS attacks has been particularly alarming. While early attacks measured in megabits
per second, modern assaults routinely exceed terabits per second. Microsoft recently mitigated attacks
exceeding 3.47 Tbps, representing a five-fold increase from the 623 Gbps Mirai botnet attack of 2016
(Kleyman 2023). These volumetric attacks, combined with sophisticated application-layer assaults, pose
existential threats to data center availability.

1.2 Challenges in Traditional DDoS Detection

Traditional DDoS detection methods in data centers rely heavily on signature-based approaches and
static threshold monitoring (Ahmed et al. 2024). These detections suffer from several critical limitations.
First, they generate excessive false positives, disrupting legitimate traffic while attempting to filter
malicious flows. Second, manual intervention requirements create unacceptable delays between attack
detection and mitigation. Third, signature-based systems fail to detect previously unseen attack
techniques.

The heterogeneous nature of modern data center traffic further complicates detection efforts. With diverse
applications, protocols, and traffic patterns coexisting within the same infrastructure, distinguishing
between legitimate traffic spikes and actual attacks becomes increasingly challenging. Traditional
approaches lack the contextual awareness necessary to make these distinctions accurately.

1.3 Problem Statement and Motivation

Data center providers face a critical challenge in protecting their own management and infrastructure
systems from DDoS attacks. While tenants are responsible for securing their own servers, the data
center's core infrastructure, including power management systems, cooling controls, network backbone,
physical security systems, and management platforms remains a high-value target for attackers. A
successful DDoS attack on these provider-owned systems can cause cascading failures that affect all
hosted tenants, regardless of their individual security measures.

The limitations of traditional detection methods creates a single point of failure where an attack on the
provider's infrastructure indirectly impacts every tenant by disrupting the fundamental services they
depend on. High false positive rates lead to unnecessary service disruptions and alert fatigue for security
teams, while missed attacks (false negatives) can result in prolonged outages affecting multiple tenants.
The inability to distinguish between legitimate traffic spikes (such as flash crowds or legitimate bulk
transfers) and actual DDoS attacks in heterogeneous data center environments compounds these
challenges. This motivates the need for a sophisticated detection approach that can protect the data
center's own critical infrastructure while maintaining the high availability that tenants expect.

1.4 Contributions

This paper presents four key contributions to the field of data center security:
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1. Novel Graph U-Nets Architecture: The authors introduce a heterogeneous Graph U-Nets
specifically designed for network traffic analysis, incorporating temporal context through our
Temporal-Enhanced Host-Connection Graph representation.

2. Comprehensive Evaluation Framework: The authors evaluate their approach across three
diverse datasets (CIC IDS 2017, CIC DDoS 2019, and BCCC CPacket Cloud DDoS 2024),
demonstrating robust performance across different attack types. While the first two datasets
cover curated enterprise traffic, the third dataset provides more realistic network traffic where the
approach still maintains strong performance.

3. Practical Integration Strategy: The authors provide detailed guidance for integrating GNN-
based detection into existing data center infrastructure with minimal operational disruption.

4. Performance Analysis: The authors achieved F1 scores exceeding 95% across all evaluated
datasets, significantly outperforming baseline approaches.

2. Related Work

2.1 Traditional DDoS Detection Methods

Traditional DDoS detection algorithms predominantly relied on signature-based and threshold-based
approaches. Signature-based intrusion detection systems like SNORT (Li et al. 2019) have been widely
deployed, which use predefined attack patterns to identify malicious traffic. These systems, while effective
against known attacks, suffer from inability to detect novel attack variants and require constant signature
updates. Statistical methods have also been employed, with researchers utilizing Hurst coefficients,
autoregression models, and variance analysis to distinguish normal traffic from attack patterns
(Hajtmanek et al. 2022). Fundamentally, these statistical techniques are threshold detectors at their core,
they monitor a derived statistic and trigger only when it exceeds (or falls below) a limit. This design
struggles with non-stationary baselines and adaptive adversaries.

Machine learning techniques emerged as a significant advancement over signature-based systems.
Traditional ML approaches including Support Vector Machines, Random Forests, and k-nearest
neighbors have demonstrated effectiveness in intrusion detection tasks. SVM-based approaches, often
combined with optimization algorithms like Particle Swarm Optimization (Salam 2021), have shown
particular promise in Internet of Things (IoT) DDoS detection scenarios. However, these methods typically
operate on engineered features extracted from individual flows, failing to capture the relational
dependencies crucial for understanding coordinated attack patterns.

Despite their widespread adoption, traditional methods face fundamental limitations in modern network
environments. While computationally efficient, these methods suffer from an inability to adapt to legitimate
traffic variations and evolving attack patterns. Furthermore, the heterogeneous nature of network traffic,
with diverse device types and communication protocols, presents scalability challenges for traditional
detection approaches. These limitations have driven the research community toward more adaptive and
context-aware detection mechanisms.

2.2 Deep Learning for DDoS Detection

Convolutional Neural Networks have been extensively applied to DDoS detection, particularly for
analyzing packet-level features. CNN-based approaches transform network packets into matrix
representations, treating them as 2D images for classification between normal and malicious traffic.
Recurrent neural networks, particularly Long Short-Term Memory (LSTM) networks, have shown promise
in capturing temporal dependencies in network traffic. LSTM-based approaches, sometimes combined
with Bayesian methods or optimization algorithms like Bacterial Colony Optimization (BCO), have
demonstrated improved detection accuracy for time-series network data (Li and Lu 2019; Alamer and
Shadadi 2023). Standardized RNN architectures have also been employed for detecting and classifying
various types of network intrusions (Muhuri et al. 2020). These temporal models can effectively capture
attack progression patterns but struggle with the inherently graph-structured nature of network
communications.
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Recent developments have explored more sophisticated deep learning architectures for DDoS detection.
Generative Adversarial Networks (GANs) have been employed to generate synthetic attack data for
improving detection model training, particularly effective for detecting novel attack variants (Shroff et al.
2022). Deep Belief Networks utilizing Restricted Boltzmann Machines have shown effectiveness in
intrusion detection with limited labeled data (Manimurugan et al. 2020). Auto-encoders have been applied
to anomaly detection tasks, learning normal behavior patterns to identify deviations (Nguimbous et al.
2019). Despite these advances, traditional deep learning approaches treat network flows as independent
entities, missing crucial structural relationships between communicating hosts.

2.3 Graph-Based Methods

Graph Neural Networks represent a paradigm shift in DDoS detection by explicitly modeling the relational
structure of network communications. Works by Zhou et al. (2020) and subsequent improvements using
GCN and XG-BoT have shown significant advancement in botnet detection through topological pattern
recognition. These approaches leverage the inherent graph structure of network communications to
identify coordinated attack patterns that traditional methods might miss.

Advanced GNN architectures have been specifically developed for network intrusion detection scenarios.
E-GraphSAGE (Lo et al. 2022) emerged as a notable advancement, enabling edge-level classification for
flow-based detection. Custom Message Passing Neural Networks (MPNNs) have been designed with
distinct aggregation functions for different node types, effectively handling heterogeneous network graphs
(Pujol-Perich et al. 2022). Heterogeneous graph attention networks utilizing hand-designed meta-paths
have demonstrated effectiveness in capturing complex attack semantics (Zhao et al. 2020). Self-
supervised learning methods like Anomal-E (Caville et al. 2022) were developed to address the scarcity
of labeled attack data, using mutual information maximization for representation learning. These
specialized architectures address the unique challenges posed by network security applications.

While previous GNN based Network Intrusion Detection System (NIDS) approaches demonstrated
significant advantages in leveraging network topology and relational structure, they were not able to
simultaneously capture both fine-grained local attack signatures and global coordination patterns across
multiple scales of the network hierarchy. Heterogeneous Graph U-Nets fills this gap through its
hierarchical encode-decoder architecture with pooling and unpooling operations which enables multi-
scale feature learning that can detect both localized flow anomalies and distributed coordination patterns
characteristic of sophisticated DDoS attacks. The empirical results also validate this design choice as the
Heterogenous Graph U-Nets performs the best on the realistic BCCC-cPacket-Cloud-DDoS 2024 dataset
when compared to the baselines, showing that hierarchical multi-scale processing is crucial for accurate
DDoS detection in complex cloud environments.

3. Heterogeneous Graph U-Nets Architecture for Traffic
Analysis

3.1 Network Traffic Graph Representation

This paper’s approach introduces a novel graph-based representation for network traffic that captures
both structural and temporal dynamics of network communications. Unlike traditional flow-based
approaches that analyze connections in aggregate, we model traffic as a heterogeneous graph
comprising two node types: hosts (network endpoints identified by IP addresses) and flows (individual
communication sessions). This dual-node representation preserves critical relational information that
would otherwise be lost in conventional traffic analysis methods. The foundation builds upon the host-
connection graph concept from Pujol-Perich et al. (2021), which demonstrated the effectiveness of graph-
structured data for capturing attack patterns.

The graph structure follows a directed tripartite pattern where each flow connects to its source and
destination hosts through directed edges. Host nodes are initialized with uniform features to maintain
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anonymity and prevent IP-specific learning that would limit generalization. Flow nodes contain rich
statistical features extracted from packet-level data, including packet sizes, inter-arrival times, duration,
and protocol characteristics. This heterogeneous structure reflects the fundamental asymmetry in network
communications, where hosts serve as persistent entities while flows represent transient interactions.

The key innovation lies in our temporal-enhanced design that introduces a sliding window mechanism for
maintaining historical context. As the system processes flows sequentially, it maintains a dynamic
memory of previously encountered flows, enabling detection of sophisticated attacks that manifest across
extended time periods. When constructing subgraphs for new flow batches, the system identifies and
incorporates relevant historical flows that share common endpoints, creating temporal edges that link
current and past network activities.

Memory management balances computational efficiency with temporal coverage through a configurable
limit on historical flow connections. This approach prevents unbounded memory growth while ensuring
sufficient context for detecting multi-stage attacks, slow-rate denial-of-service attempts, and coordinated
botnet activities. The sliding window mechanism transforms static graph analysis into a dynamic process
capable of capturing the evolutionary nature of modern cyberattacks.

from_ //\\ to_
Host A =Qou) »| Host D

|Current Flow Batch

K
4 £
) {ha2 )
I .
{ h8s |
@ Host !
os
) Flow Previously Seen Flows
7 Flow (hist) (Memory; cap = M)
+ from_
7
: Egét from 2 ot1 ot t+1
> hist to Sliding window W

Maintain up to M prior flows per batch

Figure 1: Network Traffic Graph
3.2 Heterogeneous Graph U-Nets Design

The Graph U-Nets (Gao and Shuiwang 2019) architecture adapts classical U-Net (Ronneberger et al.
2015) principles to heterogeneous graph processing through an encoder-decoder structure with skip
connections. The encoder path implements hierarchical feature extraction using specialized graph
convolution layers that respect the heterogeneous nature of the input while learning increasingly abstract
representations. Initial embedding layers transform raw features into a unified hidden space using
separate networks for host and flow nodes, followed by residual heterogeneous graph attention
convolution layers that aggregate neighborhood information while maintaining distinct processing paths
for different edge types.
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A critical component is the heterogeneous attention pooling mechanism, which implements adaptive
graph coarsening through attention-based scoring. Operating independently on host and flow nodes, it
computes multi-head attention scores to identify the most informative nodes at each hierarchy level.
Pooling ratios decay exponentially with depth (0.5 — 0.4 — 0.32), implementing progressive refinement
that preserves more information in deeper layers. During training, controlled noise injection prevents
deterministic patterns, while the multi-head design captures diverse importance criteria for robust node
selection.

The bottleneck layer employs Graph Attention Networks (GAT) (Veli¢kovi¢ et al. 2018) with multiple
attention heads for enhanced message passing at the most abstract graph representation. This layer
synthesizes global patterns before reconstruction begins, capturing both attack-specific structural patterns
and normal network behavior baselines. The decoder path then implements progressive reconstruction by
combining coarse-grained patterns from deeper layers with fine-grained details preserved through skip
connections. The unpooling mechanism maps features back to original node positions using stored
indices, while skip connections provide direct pathways for detailed information to bypass the bottleneck.
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Figure 2: The architecture of Heterogeneous Graph U-Nets

The architecture concludes with a sophisticated three-layer classification head operating exclusively on
flow nodes, implementing gradual dimensional reduction to binary decisions (benign/attack). Heavy
regularization through layer normalization and dropout prevents overfitting and ensures robust
generalization. This design is resilient against adversarial attacks by learning structural patterns rather
than flow-level features, which theoretically should make it more resistant to evasion techniques that
manipulate packet-level characteristics While we have not explicitly tested against adversarial attacks
designed specifically for GNNs, the hierarchical nature of the architecture with multiple pooling levels
should provide some inherent robustness against structural perturbations. The implementation is open
source and publicly available at https://github.com/kartikeyas00/heterogeneous-graph-unets-ddos
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4. System Design and Implementation

4.1 Data Processing Pipeline

The detection platform operates as a continuous, three-stage pipeline (Figure 3).
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Figure 3: System Design

Data Ingestion occurs at the network perimeter, where lightweight collectors tap NetFlow, sFlow, IPFIX,
or mirrored packets from switch SPAN ports. Each collector normalizes field names, verifies basic
integrity, and suppresses duplicates before forwarding the cleansed records to a site-local buffering layer
built on a distributed message-queue abstraction. This design decouples traffic spikes from downstream
analytics and sustains multi-gigabit rates per node while keeping end-to-end latency in the
sub-millisecond range.

In the Graph Builder stage, records are grouped into windows of size At seconds or B flows, whichever
limit is reached first. Using the graph schema introduced in Section 3, the builder enriches every node
with both static and dynamic traffic descriptors e.g., ACK-Flag Count, Initial-Window-Bytes-Forward,
Minimum-Segment-Size-Forward, Forward-Inter-Arrival-Time {Mean, Max}, Flow-IAT {Mean, Max},
Forward-Packet-Length-Std, and specialised Web-DDoS indicators. Host attributes that remain stable
across windows are cached in a key-value store to avoid recomputation, and a sliding-window
mechanism re-uses previously emitted host nodes, thereby reducing memory churn. Feature tensors are
concurrently streamed to an immutable object store so that any experiment can be reproduced exactly.

Batched graphs advance to the GNN Inference state where the engine runs the HeteroGraph U-Net
model on dedicated accelerators. The engine returns a probability score p /0, 7] for each flow; scores

and attendant mis-classifications are archived in a forensic log that later seeds nightly retraining and
drift-analysis jobs.

4.2 Integration with Data Center Infrastructure

The platform is designed to slip into a data-center network with minimal fabric changes and can operate
alone or in tandem with an upstream DDoS-mitigation service (e.g., Akamai, Cloudflare, or an
on-prem appliance). Two deployment modes are possible:

e Inline mode. A lightweight enforcement module, for example, an eBPF filter inside the software
switch receives all traffic that survives the upstream scrubber and can drop or rate-limit flows
immediately when the model assigns a probability above a configurable threshold _auto. Flows
whose score falls into the grey zone 1_analyst s p <r1_auto are tagged and mirrored to a

security-operations console for human adjudication. Analyst feedback is fed back into the feature
store so that future retraining cycles can tighten the grey zone.
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e Passive mode. A hardware tap or SPAN port can clone packets or alternatively routers/switches
can export flow telemetry (NetFlow/IPFIX/sFlow) to our collectors. The production packets stay on
their normal path, so the model inspects them with zero added delay and zero chance of
accidental drops. In this setup, the model’s verdict is an auxiliary signal that analysts can
compare with the primary DDoS provider’s logs; any pattern the model flags repeatedly with high
confidence can then be turned into a new blocking rule on the main DDoS platform.

Because each pipeline stage is stateless, horizontal scaling is a matter of adding additional processing
nodes; a lightweight coordinator ensures that, should any node fail, its share of the workload is
redistributed instantly, preventing ingestion lag. A staged roll-out is recommended:

1. Phase 0 (alert-only). Deploy on the management network and send detections to the Security
Operations Center (SOC) without enforcement.
2. Phase 1 (rate-limit). Extend coverage to inter-data-center links; enable automated rate-limiting

for flows with p = 1_auto.

3. Phase 2 (full-block). After a two-week user acceptance test confirms an acceptably low
false-positive rate; permit hard blocking on tenant-edge routers; and feed recurring signatures
back to the upstream DDoS provider for pre-emptive filtering.

In all phases the model’s verdict is presented to SOC analysts as an extra datapoint rather than a
replacement for the existing defense stack, allowing gradual trust-building and continuous improvement of
both systems.

4.3 Mitigation and Response Mechanisms
The decision engine maps the model’s confidence score to a tiered set of actions.

o High-confidence detections trigger automatic blocking at enforcement points such as edge
firewalls, load balancers or the upstream DDoS-mitigation service by pushing short-lived policy
updates via API/SDN. These controls auto-expire unless renewed by continuing evidence.

e Medium-confidence events invoke adaptive rate-limiting: a traffic-shaping policy is applied to
the offending flow and tightened progressively while suspicious activity persists.

e Low-confidence scores generate notifications to the SOC via the existing Security Information
and Event Management (SIEM) platform and analyze workflow, allowing analysts to review the
evidence before any hard enforcement occurs.

Every mitigation decision can be archived in tamper-evident object storage for a fixed retention period. A
recurring analytics job would fold these outcomes back into the feature store and would recommend when
the model or policy thresholds should be retrained or tuned.

4.4 Analyst Workflow and Feedback Loop

When flow enters the grey zone (1_analyst < p < 1_auto), the SOC analyst receives an alert containing:

e Flow metadata (source/dest IPs, ports, protocol, timestamp)
¢ Model confidence score and top contributing features
o Visual graph representation highlighting the suspicious subgraph

The analyst reviews this information and takes one of three actions: approve (legitimate traffic), block
(confirmed attack), or rate-limit (suspicious but uncertain). These decisions are logged along with
rationale that can be incorporated into nightly retraining and can progressively improve the model's
accuracy on site-specific traffic patterns and reduce the grey zone boundaries over time.
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5. Experimental Evaluation

5.1 Experimental Setup
5.1.1 Datasets

We use three publicly-available datasets, each captured under different operating conditions, to train and
evaluate the detection model.

CICIDS 2017 (Sharafaldin et al. 2018): After stripping every non-DDoS record, our working copy holds
2,399,345 flows: 128,025 LOIC-generated attack flows and 2,271,320 benign flows. Each flow is
described by the original 84 CICFlowMeter features—packet-length statistics, directional inter-arrival
times, and flow duration among the most salient dimensions. Removing brute-force, Heartbleed (CVE-
2014-0160), and web attacks yields a clean binary label space while preserving the realistic background
traffic captured in the five-day experiment. This focused version allows the model to learn
volumetric-flood behavior without distraction from unrelated threats.

CIC-DDoS 2019 (Sharafaldin et al. 2019): CIC-DDoS 2019 was built in a dual-day testbed that replayed
11 high-volume and low-volume attack families (e.g., DNS, LDAP, UDP-Lag, SYN) against a mix of
Windows and Linux victims. All benign background traffic was kept, yielding a fully DDoS -centric corpus
totalling 20, 640,509 flows across the 12 labelled classes, including the benign baseline. Its scale and
diversity make it ideal for learning both reflection-based and exploitation-based flooding patterns in
modern networks.

BCCC-cPacket-Cloud-DDoS 2024 (Shafi et al. 2024): This dataset was captured inside an AWS VPC
with VXLAN mirroring and parsed by NTLFlowLyzer, this modern corpus supplies 700,774 flows:
228,469 DDoS, 59,106 “suspicious” and 413,199 benign. Its 322-dimensional feature set emphasises
traffic-volume and window-size statistics, for example, packets_count, fwd_packets_count,
payload_bytes std, fwd_init_win_bytes and ack_flag_counts. Seventeen TCP-SYN variants (Valid-SYN,
Flag-MIX, Killer-TCP, etc.) plus control/killer sequences provide a diverse attack portfolio, while benign
days include e-mail, SSH/FTP and multimedia browsing. The authors retain all three labels to test the
detector’s ability to distinguish outright floods from ambiguous “suspicious” activity in elastic cloud
environments.

5.1.2 Baseline Models

To compare the performance of Heterogeneous Graph U-Nets, we contrast it with two GNN-based
intrusion detection models.

E-GraphSAGE: This baseline builds on inductive GraphSAGE but preserves the original flow-graph
structure, treating every net-flow as an edge and every (IP, port) endpoint as a node, so the detector
learns to classify edges directly from raw traffic features. The public implementation makes deployment
straightforward and keeps the computational footprint low, which is useful when benchmarking against
heavier graph models. Across the two evaluation corpora, E-GraphSAGE delivered strong results
(weighted F1=0.942 on CTU-13 and 0.978 on ToN-loT).

GNN-RNIDS: This model works on a host-connection graph that contains two node types: hosts and
flows, linked with directed edges to preserve upstream and downstream semantics. A custom
message-passing routine handles the heterogeneous neighbourhoods, allowing embeddings to capture
structural signatures of multi-flow threats such as DDoS. On CIC-IDS 2017 the authors report a weighted
F1 close t0 0.99, and the detector maintains its accuracy even when attackers perturb packet sizes or
inter-arrival times which is an evidence of strong adversarial robustness.

5.1.3 Evaluation Metrics

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 9



We assess model performance with four standard classification metrics: accuracy, precision, recall, and
F1-score. Accuracy captures overall correctness, precision gauges the proportion of predicted attacks
that are truly malicious, and recall measures the fraction of real attacks our model successfully flags. F1-
Score, which is the harmonic mean of precision and recall, balances false positives and false negatives to
provide a single, robust indicator of effectiveness.

5.2 Results

The model performs 10-fold cross-validation: for each fold one-tenth of the data is held out as the test set,
the remaining nine-tenths are shuffled, then 20 % of that training portion is stratified into a validation set,
yielding roughly 72 % training, 18 % validation, and 10 % test per fold.

TABLE 1: RESULTS ON CIC IDS 2017

Model Accuracy Precision Recall F1 Score
Het. Graph U-Nets | 1.000 £+ 0.000 | 1.000 + 0.000 0.999 + 0.002 0.999 + 0.001
GNN RNIDS 0.999 + 0.000 | 0.993 £ 0.006 0.999 + 0.002 0.999 + 0.001
E-GraphSage 1.000 £ 0.000 | 1.000 + 0.000 1.000 + 0.000 0.999 + 0.000

Across the two traditional benchmarks CIC IDS 2017 (TABLE 1) and CIC DDoS 2019 (TABLE 2), all three
models achieve exceptional performance, with every evaluation metric above 0.999 with tiny dispersion
(standard deviation (SD)<0.002). E-GraphSAGE posts the single highest recall on both corpora (0.9999
and 0.9998), indicating it rarely misses an attack once the traffic patterns are well-defined. The overlap of
the £ SD intervals shows that the small gaps between models (e.g., E-GraphSAGE'’s slightly higher recall
on CIC IDS 2017) are not statistically significant. In practice, every model is indistinguishable within
measurement noise on these two well-curated datasets.

TABLE 2: RESULTS ON CIC DDoS 2019

Model Accuracy Precision Recall F1 Score
Het. Graph U-Nets | 1.000 + 0.000 | 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000
GNN RNIDS 1.000 = 0.000 | 1.000 + 0.000 1.000 £ 0.000 1.000 + 0.000
E-GraphSage 1.000 + 0.000 | 1.000 + 0.000 1.000 £ 0.000 1.000 + 0.000

The modern cloud scenario (BCCC CPacket Cloud DDoS 2024) is markedly tougher. The background
traffic is more diverse and attack signatures are subtler. Heterogeneous Graph U-Net achieves the best
F1 score (0.960 + 0.002), thanks to the highest precision (0.985 + 0.002) while keeping recall above
0.945+0.010. E-GraphSAGE sees its F1 tumble to (0.914 + 0.021), primarily due to a precision drop
(0.922 + 0.029). GNN-RNIDS trails Heterogeneous Graph U-Net with a F1 score (0.940 + 0.007), 0.015
below Heterogeneous Graph U-Net.
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TABLE 3: RESULTS ON BCCC-cPacket-Cloud-DDoS 2024
Model Accuracy Precision Recall F1 Score
Het. Graph U-Net 0.972 + 0.001 | 0.985 + 0.002 0.945 + 0.010 0.960 + 0.002
GNN RNIDS 0.957 £ 0.005 | 0.946 + 0.016 0.982 + 0.018 0.940 £ 0.007
E-GraphSage 0.947 £ 0.014 | 0.922 + 0.029 0.994 + 0.010 0.914 + 0.021

These findings show that when attack patterns are clean and voluminous, lightweight inductive models
like E-GraphSAGE suffice, but once traffic grows multifaceted and irregular (as in cloud environments),
the explicit host-flow heterogeneity and hierarchical pooling of Heterogeneous Graph U-Net materially
reduces false positives without sacrificing recall. The consistent precision and recall along with minimal
standard deviation (< 0.005) on the cloud dataset showcases Heterogeneous Graph U-Net’s ability for
practical real-world deployment where stability is most important.

6. Limitations and Future Work

6.1 Current Limitations

Despite strong performance, several limitations warrant acknowledgment:

Open-source Data Constraints: Training on publicly available datasets may not fully capture
specific data center attack patterns.

Scalability Boundaries: While efficient, processing graphs for networks exceeding 100,000
concurrent flows requires distributed implementations,which we have not yet developed or tested.
Feature Engineering: Optimal feature selection remains dataset-dependent, requiring domain
expertise.

Adversarial Robustness: While the architecture should theoretically provide resilience against
adversarial attacks through its hierarchical structure, we have not explicitly tested against GNN-
specific adversarial examples or structural perturbations designed to evade detection.
Performance Benchmarking: While the system architecture is designed for low-latency
operation, we did not measure actual inference times or throughput rates in our experiments.
Production deployment would require comprehensive performance benchmarking to validate the
system's ability to process traffic efficiently.

Ablation Study: We have not conducted an ablation study to determine which components of the
Graph U-Nets architecture (hierarchical pooling, skip connections, heterogeneous processing, or
temporal sliding window) contribute most to the performance gains. Understanding the relative
importance of each component would help optimize the architecture and potentially reduce
computational overhead.

6.2 Future Research Directions

Several promising avenues for future work are:

Adaptive Learning: Incorporate online or continual-learning routines so the detector can update
itself as new attack behaviors emerge.

Multi-site Coordination: Explore cross-site or federated learning schemes that allow multiple
datacenters to share model updates without exposing raw traffic. This would require addressing
significant privacy challenges including preventing model inversion attacks, ensuring differential
privacy in gradient updates, and coordinating update synchronization.
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e Hardware Acceleration: Evaluate Graphics Processing Units (GPU) and Field-Programmable
Gate Arrays (FPGA) pipelines to push inference latency into the sub-millisecond range for
high-throughput networks.

e Encrypted Traffic Analysis: As traffic encryption becomes ubiquitous, future work should
explore how to adapt the graph-based approach when traditional flow features are obscured. This
might involve leveraging timing-based side channels, TLS handshake patterns, and graph
structural features that persist despite encryption. New statistical features based on encrypted
payload characteristics would need to be developed and validated.

e Zero-Day Attack Evaluation: Conduct systematic evaluation of the model's performance against
completely novel attack types through leave-one-attack-out cross-validation and testing on
emerging threats not represented in current datasets. Depending on dataset availability,
extending this analysis to known DDoS attacks not seen within the aforementioned datasets e.g.
Protocol Exploits (e.g., CoAP, WS-DD, ARMS, Jenkins) - 2020, TP240PhoneHome - 2023,
HTTP/2 Rapid Reset - 2023, etc.

e Ablation Study: Conduct systematic ablation experiments to quantify the contribution of each
architectural component (hierarchical pooling layers, skip connections, heterogeneous node
processing, temporal sliding window) to overall performance. This would guide architectural
optimization and potentially enable simpler, more efficient variants.

e Adversarial Robustness Testing: Evaluate the model against adversarial attacks specifically
designed for GNNs, including graph structure perturbations, node feature poisoning, and edge
manipulation attacks.

7. Conclusion

This paper presented a novel Graph U-Nets architecture for DDoS detection in datacenter environments.
Our study shows that modelling network traffic as a heterogeneous host-flow graph and processing it with
a Graph U-Net yields exceptional detection accuracy across both legacy and modern DDoS corpora. On
the well-curated CIC IDS 2017 and CIC DDoS 2019 benchmarks, all contenders already operate near
perfection, yet the model matches this performance while keeping the harmonic balance of precision and
recall tight, demonstrating that the richer representation does not sacrifice efficiency in straightforward
scenarios. The Graph U-Nets algorithm excels in the cloud-native BCCC CPacket dataset where the
Graph U-Nets’ hierarchical pooling and type-aware message passing cut false-positives dramatically,
lifting precision to 0.985 and F1-score to 0.960, improving over the next-best baseline (GNN RNIDS) by
3.9 and 2.0 points respectively while trading some recall for a substantially lower false-positive rate.

Beyond raw metrics, the proposed pipeline integrates into existing data-center operations; it scales
horizontally, supports “alert-only” or inline enforcement, and preserves sub-millisecond latency through
decoupled ingestion and batching. This flexibility allows data center operators to start conservatively and
progress toward automated blocking as confidence grows. Importantly the model’s superior precision in
irregular, multi-tenant traffic means fewer distracting alerts for analysts and quicker mitigation of real
threats, translating into tangible availability and reputational benefits.

Nevertheless, several avenues remain open. Our evaluation still relies on public datasets whose attack
mix may differ from proprietary environments; future work should explore online or federated learning to
adapt to unseen patterns. We also aim to profile throughput on very large graphs (>100 k concurrent
flows) and investigate hardware acceleration. Finally, enriching the feature space with encrypted-traffic
markers and integrating cross-site threat intelligence could further harden defenses as adversaries
evolve.
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