RAG to the rescue: Reimagining
Enterprise Unit Test Management with Al

Gaurav Rathor | Ajay Bhosle | Nikhil Yogesh Joshi

g.rathor2210@amail.com ajaybhosle.sre.data1@gmail.com
nikhilyogesh.joshi@fiserv.com

Abstract

Unit testing in enterprise applications remains a persistent challenge—complexity, time investment, and
framework diversity hinder both novice and experienced developers. Legacy monolithic architectures
amplify these issues, as declining code coverage drives production defects, doubles bug-fix times, delays
releases, and inflates costs. In industries where software failures can threaten public safety or regulatory
standing, the stakes are even higher. With U.S. software defects estimated to cost $2.41 trillion [1],
automation is no longer optional.

We introduce an Al-driven unit test generation framework that fuses Retrieval-Augmented Generation
(RAG) with Model Context Protocol (MCP). Large Language Models (LLMs) have recently been applied
to various aspects of software development, including their suggested use for automated generation of
unit tests, but need additional training or few-shot learning on examples of existing tests [2]. LLM agents
employ RAG to retrieve functional specs, historical test cases, and domain docs, ensuring generated
tests validate business intent, rather than code structure alone. MCP then converts this enriched context
into maintainable, adaptive test suites that integrate seamlessly with ITIL/ITSM change control processes.

Robust oversight is built into three dimensions: Business Logic Assurance (ensuring test coverage aligns
with core functional requirements), Performance & Reliability Assurance (improving runtime efficiency and
minimizing flaky behavior), and Model & Data Stewardship (maintaining model accuracy, stability, and
trustworthiness). The framework is industry-agnostic yet particularly impactful for mission-critical,
compliance-heavy sectors such as fintech and medical systems, meeting global regulatory obligations
including SOX, PCI DSS, and SOC, across U.S., EU, and worldwide contexts.

Biography

Gaurav Rathor is a Performance Architect with 17 years of experience optimizing enterprise applications,
microservices, and infrastructure performance across diverse technology landscapes. He leads
performance benchmarking and optimization initiatives at Omnissa Inc., partnering with product and
engineering leadership to embed performance-first practices throughout the development lifecycle.

Ajay Bhosle is a Technical Account Manager at Accenture, based in Houston, Texas, with over 20 years
of IT experience across technology, consulting, management & operations supporting innovative cloud &
Al-based product development & operations for health care, Oil & Gas, BFSI clients, with strong roots in
software architecture, data & Al engineering.

Nikhil Yogesh Joshi, Director of Software Engineering based in Cumming, Georgia, brings in over 18
years of experience leading high-performing teams and delivering complex projects. His career spans
multiple industries, demonstrating his expertise in automation, cloud migration, and strategic leadership.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 1



1

1.1

Introduction

Background

Unit testing has long been regarded as a foundational practice in software engineering, ensuring that
individual code components function as intended before integration into larger systems. In the
financial services domain, where accuracy, reliability, and compliance are paramount, traditional unit
testing frameworks have played a critical role in mitigating operational and regulatory risks. These
frameworks help verify transaction processing, data integrity, and compliance with industry mandates,
forming an essential safeguard against both financial losses and reputational damage. However, as
financial applications scale in complexity and regulatory expectations expand, traditional unit testing
frameworks are increasingly strained to deliver the efficiency and assurance required in modern
enterprise environments. Manually writing these tests is time-consuming and tedious, which
significantly escalates the cost of software development [3].

1.2 Challenges

Despite their importance, traditional unit testing methods face persistent challenges. Historically, the
prevalence of monolithic systems and diverse testing frameworks has caused coverage gaps,
redundant effort, and brittle test designs. Financial and compliance impacts further magnify these
weaknesses—defects escaping into production can trigger financial penalties, regulatory scrutiny,
severe reputational consequences and actual financial losses to end users. The skills gap in
emerging Al-driven quality practices compounds the issue, as organizations often lack expertise to
modernize testing pipelines while maintaining regulatory confidence. Together, these challenges
create rising costs, longer MTTR, and an unsustainable testing burden that undermines both
operational efficiency and risk management. When application complexity increases and
modernization is attempted, there is an automatic drop in code coverage and makes it challenging to
sustain the same.

1.3 Objectives

To address these shortcomings, this paper introduces an Al-driven testing framework that combines
Retrieval-Augmented Generation (RAG) with Model Context Protocol (MCP). Retrieval Augmented
Generation (RAG) has emerged as a solution, enhancing LLMs by integrating real time data retrieval
to provide contextually relevant and up-to-date responses [4]. By leveraging enterprise
documentation, compliance rules, and historical test cases, the framework generates unit tests that
validate business logic as well as technical correctness. The objective is clear: to improve operational
efficiency, reduce the cost per bug by catching defects earlier, and shorten the MTTR by aligning
tests with regulatory and functional requirements at the outset. This positions Al-enabled testing not
as a replacement for traditional frameworks, but as a management-aligned capability that augments
enterprise resilience and accelerates delivery.

The target audience for this paper is enterprise management—CIOs, CTOs, QA leaders, compliance
officers, and program managers—who are responsible for balancing operational resilience with
regulatory compliance and cost efficiency. Instead of viewing unit testing as a purely technical activity,
this framework positions it as a management discipline that can be measured, governed, and
optimized. Executives can track KPIs such as defect leakage rates, MTTR, audit readiness scores,
compliance alignment, and cost per defect fixed, all of which directly impact business outcomes and
customer trust. By embedding Al-enabled frameworks into established management processes such
as ITIL/ITSM change control, risk management, and continuous improvement cycles, leaders can
transform testing from a cost center into a governance-driven capability that strengthens compliance
posture, accelerates delivery, and improves return on technology investment.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 2



2 Proposed Framework

2.1 Understanding the architecture

Vector Search
Initial Prompt | Vector Loader

MCP Server
Veclov DB
Business Context
o .

Generated Test Cases -

Push Tests Case

The framework consists of the following building blocks:

@ Al Agents - (Orchestrator)

@ Model Context Protocol (MCP) Integration Layer

o Retrieval-Augmented Generation (RAG) - Knowledge Layer
@ LLM Model - Generator

Agents act as the orchestrators in an Al-driven system. They interpret user intent, decide on actions,
and coordinate task execution across various components. Beyond generating responses, agents
leverage reasoning, memory, and external tools to solve complex problems. Key components include
a planner (breaking down goals into actionable steps), a memory module (short-term conversation
state and long-term knowledge persistence), and a tool interface (allowing it to call APIs, databases,
or retrieval systems). The agent itself does not directly access external knowledge stores; instead, it
relies on MCP to manage these interactions. Each Agent has their own MCP client to communicate
with the MCP server. When a request is made, for example, to generate or validate code, the agent
sends it to the MCP server, which manages the flow.

The Model Context Protocol (MCP) provides a standardized interface for the agent to interact with
external systems. MCP provides a client-server interface for secure tool invocation and typed data
exchange [5]. It defines schemas for requests and responses, connectors/adapters for integrating
with databases, APlIs, or test frameworks, and execution managers to coordinate with tools. By
following MCP standards, the agent can access tools and knowledge sources without needing to
understand their internal implementation, making system integration modular, robust, and
maintainable. Basically, MCP acts like a gatekeeper/ translator/auditor. It ensures that only the right
information, in the right format, securely, is passed from the RAG knowledge layer into the LLM so
that the generated test cases are accurate, compliant, and audit-ready.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 3



Retrieval-Augmented Generation (RAG) serves as the agent’'s dynamic knowledge engine, and the
vector database is its core component for fast, semantic retrieval. When the agent needs context-
specific or up-to-date knowledge, RAG converts the query into embeddings and searches the vector
DB for semantically similar documents. The vector DB stores embeddings, supports similarity
searches, and may include metadata filtering for relevance, as described in this paper [6]. Retrieved
content is then structured by RAG’s context builder and injected into the agent’s prompt via MCP.
This combination ensures the agent, reasons over accurate, current, and domain-specific information,
overcoming the limitations of static training data and enhancing real-time decision-making.

All these components are packaged into a microservice.

2.2 Data Flow Diagram

This diagram shows the practical flow of how Agent, MCP, and RAG with a vector database work
together to generate unit tests. When a client requests test generation, the agent initiates the process
by fetching the relevant code file and extracting metadata. Through the MCP layer, it issues a query
to the vector database—filtering by package and class name—to retrieve related classes and
supporting context. So, what exactly are these supporting contexts? It can be related classes,
interfaces, utility classes, dependencies in the form of mocks and libraries. It can be example test
cases, previous implementations, or reusable patterns stored as embeddings that are semantically
similar to the target class. It can also be documentation, comments or annotations relevant to the
package or module.

This retrieved knowledge, combined with the original file and metadata, is then packaged into a
structured prompt for the LLM. The LLM generates the unit test class, which is returned to the client.
The enhancements to the framework, such as class-level vector storage for better retrieval, using
direct SQL queries instead of additional frameworks, reducing AP| overhead, and skipping
unnecessary system message fetches. This workflow illustrates how the components collaborate to
provide accurate, efficient, and context-rich unit test generation.

Fetch and Consume Query the Vector DB,

Requtfjsr:ittqrg?:erate —— > Java Class to extract ———— > Filter by

Metadata package.Class
Generate User :
LLM Call to Generate Message Prompt, Retrieve the
z «——— = <«€—— requested relevant
Unit Tests Include Java file + e

metadata

l

Return Unit Tests
Class

2.3 Model Selection

To ensure the RAG framework could generate high-quality, domain-specific unit tests for fintech
applications, the team began by evaluating several LLMs for suitability. The evaluation criteria
focused on financial domain knowledge, code understanding, data privacy, and licensing compliance.
Management opted for models with enterprise-friendly licenses, ensuring legal clarity for production
use. Given the sensitivity of financial data, the LLM was deployed in an air-gapped environment,
completely isolated from the internet. This approach guaranteed that proprietary code and sensitive
test data remained secure throughout model training and usage. The training process involved
curating internal datasets including historical defects, code snippets, functional specifications, and
unit test cases. Subject matter experts collaborated with the technical teams to annotate data, define

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 4



prompts, and guide the fine-tuning process. lterative training cycles were performed to improve
accuracy, relevance, and the model’s ability to handle complex fintech-specific scenarios.

3 Data Governance & Security first approach

Enterprise adoption of Al-driven testing requires more than technical capability—it demands
seamless integration with existing governance frameworks while maintaining the highest security
standards. Our RAG-enhanced unit test generation platform embeds security-by-design principles
throughout the entire lifecycle, from code analysis to test deployment, ensuring compliance with
enterprise change management processes and regulatory requirements.

3.1 Change Control (ITIL/ITSM)

@ Automated Change Requests: Unit test updates map to ITIL workflows—e.g., standard
change for login validation updates, normal change for new KYC workflow tests (CAB
approval), and emergency change for fraud-detection defect fixes.

® ITsMm Integration: Connectors (ServiceNow, Jira) auto-create change records—e.g., Jira
ticket logs Al model version and unit test metadata for a new payment authorization module.

@ Pipeline Governance:

o Approval Gates: Unit test generation flows through staged checks: RAG context retrieval
— Al test generation — static/dynamic security validation — change approval —
deployment.

o Traceability: Every step records lineage - e.g., AML document retrieved as test context,
model prompts used, and reviewer approvals with timestamps.

@® Rollback & Recovery: Failed regression or coverage gaps trigger auto-rollback to last
stable test suite. Example: if new unit tests for transaction limits degrade fraud-detection
coverage, rollback is initiated.

o Emergency Disable: Al-generated tests can be temporarily disabled while keeping
manual test baselines active—critical for production banking environments where
availability is non-negotiable.

3.2 Model Integrity & Security

@ Model Provenance: All Al models must be cryptographically signed and versioned. Example:
fraud-detection unit tests can only be generated with an approved LLM version, preventing
use of tampered models. [7]

o Training Data Lineage: Documentation of data sources (e.g., regulatory guidelines, financial
specs) with bias indicators—ensuring AML/KYC tests aren’t skewed by incomplete rule sets.
8]

@ Secure Context Management: RAG vector databases storing proprietary fintech rules (e.g.,
card transaction thresholds) are encrypted at rest and in transit.

o Third-Party Integration Security:
o API Security: OAuth 2.0/0IDC enforced when pulling compliance rules (e.g., Basel Il
liquidity requirements) from external services. [9]
o Network Segmentation: Unit test generation runs in isolated environments to prevent
cross-contamination with production financial systems.
o Data Minimization: Least-privilege enforced—Al retrieves only the subset of financial
rules needed for the specific unit test (e.g., interest calculation, not full loan book).

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 5



Recent studies confirm that Al-generated code carries higher defect and vulnerability rates than
human-written code (Cotroneo, Improta, and Liguori 2025), making rigorous validation and
provenance controls essential in fintech environments. [10]

3.3 Security Reporting & Guidance

Al-generated unit tests provide regulator-ready visibility into security posture:

@ Executive Dashboards: Real-time risk scores across payment flows (e.g., PCI DSS
cardholder data tests, SOX reporting checks), with trend lines showing faster remediation of
flaws (e.g., crypto misuse reduced from 14 to 3 days).

o Compliance Reporting: Auto-generated evidence packages map unit tests to controls—e.g.,
PCI DSS 3.4 tied to AES-256 encryption checks. Full audit trails capture model prompts,
approvals, and exception handling for traceability.

@® Continuous Improvement: CVE feeds and fintech-specific threat models (fraud transfer race
conditions, double-spend checks) continuously refine test templates, while false positives
feed back to improve generation accuracy.

3.4 Implementation Considerations

Successful rollout depends on organizational readiness and measurable KPls:

@ Readiness: Teams trained to handle Al-test risks (e.g., no private key exposure), with clear
escalation playbooks for flagged unit tests and alignment to existing CAB/risk boards.

o Technology Fit: Integration with fintech-standard tools (SonarQube, ServiceNow), hybrid
deployment for sensitive AML/KYC data, and adapters for legacy mainframe-based
transaction systems.

@® KPIs: MTTSR cut from 52 days for fraud defects; coverage of payment edge cases raised
from 70%—95%; audit prep time reduced by 40%; zero-trust validation shown via
anonymized test data access.

This security-first approach ensures that Al-driven test generation becomes a force multiplier for
organizational security capabilities rather than introducing new attack vectors or compliance gaps.

4 Management Case Study

4.1 The Problem

The leadership team identified a series of systemic challenges that were increasingly impacting
delivery timelines, software quality, and cost efficiency. Several technical gaps had emerged over
time, particularly as systems evolved into monolithic structures. Legacy codebases were difficult to
maintain, and even small refactoring efforts frequently caused code breakages. The absence of
automated unit testing and performance checks at the method level left these applications fragile, and
the lack of standardized frameworks meant that the technical debt continued to grow unchecked.
Manual test case creation was slow and inconsistent, resulting in incomplete test coverage and
heightened risk of defects escaping into production.

In parallel, functional gaps were also apparent. Teams were under pressure to meet aggressive
deadlines, often leading to the bypassing of critical gating processes. Without strong controls, the
discipline of writing meaningful unit test cases deteriorated. Code coverage fell drastically, and
management’s ability to ensure consistent quality across releases diminished. The pressure to deliver
quickly created a trade-off where long-term quality was sacrificed for short-term gains, compounding

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 6



the technical debt problem and eroding customer trust. Furthermore, aged applications lacked proper
documentation, and functional insights were often trapped in siloed teams, making knowledge
transfer and test creation even more difficult.

The cost impact was significant. Bugs that escaped into production were expensive to fix, increasing
the overall cost per defect. Go-To-Market timelines stretched, release cycles slowed, and support
costs grew as rework became a norm. Customers were becoming increasingly dissatisfied due to
unpredictable delivery schedules and inconsistent release quality. In some cases, management even
faced the challenge of aligning internal teams and external stakeholders because expectations were
not properly managed. The pressure to deliver faster while reducing cost created an unsustainable
cycle of compromise.

Recognizing these risks, management realized that the problem was not only technical but also
cultural and procedural. The organization lacked discipline and governance around quality assurance.
Teams often generated technical debt to meet short-term delivery goals, and hard gates were either
softened or removed altogether to accelerate releases. This led to a decline in confidence—both
internally among leadership and externally with customers. These challenges created the urgency to
develop a robust, tool-driven framework that could reintroduce process discipline, reduce technical
and functional gaps, and deliver measurable value to the business.

4.2 Strategy Using the 4 P's: Planning, People, Process, and Performance

Planning: Leadership worked closely with technical leads to analyze the current state. They
documented technical and functional gaps, quantified the cost of rework, and mapped areas where
efficiency gains were possible. The roadmap included phased implementation, starting with pilot
projects to validate the framework's value. The plan outlined how integrating tools like agents, MCP,
RAG, and vector DB would create a cohesive ecosystem for test generation, functional quality
validation, static analysis, and performance metrics. An important consideration was the knowledge
base (KB) layer — validated and curated by business teams, as described in paper [11]. These KB
articles fed into a vector database, ensuring that the integration layer could query accurate, business-
aligned knowledge during test generation [12]. This eliminated functional blind spots and allowed the
framework to integrate context-aware insights into every test scenario. A data governance framework
was designed to ensure that only sanitized, business-approved knowledge base (KB) articles were
ingested into the vector database.

@ Role-based access control (RBAC) and encryption policies were defined to protect sensitive
data during storage and transmission.

@ Clear audit and retention policies were established to meet regulatory requirements (GDPR,
SOC 2). This ensured that the integration layer could query accurate, audit-compliant, and
business-aligned knowledge during test generation while maintaining the confidentiality and
integrity of the generated test cases.

People: Management identified that success depended on upskilling and creating a culture of
discipline. Developers were capable but needed enhanced technical skills to use advanced tooling.
Training programs and internal champions were introduced to accelerate adoption. Leaders also set
clear expectations for adhering to testing practices and gating processes, recognizing that discipline
had to be enforced at both technical and management levels. This shift required managers to protect
quality timelines and resist shortcuts, ensuring that customer expectations were managed
realistically.

Process: The framework enforced best practices to eliminate ad-hoc behaviors. The framework
promoted measurable and enforceable steps—defining thresholds for coverage, embedding quality
checks early, and reducing friction by automating retrieval and analysis using MCP, RAG, and vector
DB. This created transparency and predictability, even for complex refactoring tasks in legacy
applications. Standardized workflows were enhanced with governance checkpoints:

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 7



@ Al data entering the framework underwent classification and sanitization.

o Integration points (Agents, MCP servers, vector DB) were secured with encryption at rest and
in transit.

@ Test data followed least-privilege access principles, and secrets were kept out of source
code.

Management approved investments to automate static code analysis, unit test generation,
performance testing, and gating—while ensuring that every step was auditable. The focus was not
only on quality but also on traceability and security, giving leadership confidence in compliance and
risk management.

Performance: The business case demonstrated clear metrics to track value. Testing frequency
increased, developer efficiency improved, and critical modules could be tested with confidence. The
framework captured unit-level performance metrics, giving visibility into potential issues before
release. Leadership tied performance to business outcomes: reduced defect leakage, shorter release
cycles, lower cost per bug, and more predictable delivery timelines. These indicators became central
to evaluating ROI and ensuring continuous support for the initiative.

4.3 Implementation and Adoption Journey

Pilot Phase: Testing the Framework on a Microservice

To ensure the proposed framework was robust and practical, the development team initiated a pilot
by selecting a smaller but critical microservice. This provided a controlled environment to validate the
framework's components without disrupting larger monolith systems. Development teams worked on
automating unit test generation for critical modules, demonstrating quick wins like improved coverage
and reduced manual effort. Static code analysis was used to highlight technical debt and prioritize
refactoring, which resonated with management when presented as quantified risk reduction. The
MCP server integrated various tools, ensuring seamless orchestration and retrieval of supporting
context through the vector DB. Feedback loops were established to refine the framework with every
iteration.

Adoption was accelerated by transparent communication: dashboards showed time saved, defect
reduction, and faster turnaround times. Champions were identified in each team to drive adoption,
and leadership tracked KPIs like adoption rate, code coverage improvement, and defect leakage
reduction to validate impact.

4.4 ROI Analysis

In a real-world enterprise setting, below ROI analysis assumes a mid-sized development team
managing a critical microservice that undergoes frequent bug-fix releases. The baseline for
comparison is a manual unit testing process, where each test case requires approximately four hours
to design, implement, and review, factoring in team handoffs and code reviews. The automated
framework leverages a Retrieval-Augmented Generation (RAG) model integrated with orchestration
and knowledge base layers, reducing this effort to roughly one hour per case, including creation and
peer validation.

An initial one-time investment covers infrastructure setup, model license procurement, prep and
training, knowledge base curation, staff upskilling, and an estimated 10% attrition cost. Cost per
development hour is assumed to be $100/hr. Initially, our unit test case for the SUT microservice was
9,000 test cases, requiring significant design, implementation, and review effort. In subsequent
cycles, only smaller increments of test cases—reflecting new fixes or updates—need to be created or
reworked, reducing effort while maintaining coverage.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 8



Iteration Approx # Test Manual Manual RAG- RAG-Driven Cumulative
) Cases Efforts Cost Driven Cost Savings
(Bug-Fix | (new/updates) (hrs) Efforts
Cycle) (hrs)
1 1000 4000 | $400,000 1000 $100,000 + $150,000
$150,000
(setup) (saved, but
offset by setup)
= $250,000
2 800 3200 | $320,000 800 $80,000 $240,000
3 700 2800 | $280,000 700 $70,000 $350,000
4 600 2400 | $240,000 600 $60,000 $430,000
5 600 2400 | $240,000 600 $60,000 $510,000

Investment: One-time setup: $150,000

Effort-hour savings:

@ Manual cost: $1,480,000 (sum of all manual costs)
@ RAG-driven cost: $520,000 (including $150k setup)
@® Cumulative savings: $510,000
@ ROI % = (Savings — Investment) /Investment x 100 = (510,000-150,000)/150,000 * 100 =

240 %

Observations

o Significant upfront savings: ~75% reduction in effort per cycle after framework adoption, even

@ Break-even: Achieved after ~5 bug-fix cycles.

with initial setup costs.

o Scalability: Once implemented, the framework can support other microservices or additional

Qualitative Benefits

bug-fix streams without repeating setup costs.

@ Faster bug resolution reduces MTTR.

@ Consistent test coverage minimizes regression risk.

o Knowledge retention improves as the framework documents functional gaps.

4.5 Performance KPIs - Improvements

4.5.1 Reduced MTTR (Mean Time to Resolve)

Improvement: ~30—40% reduction in average resolution time.

Excerpt from PNSQC Proceedings

Copies may not be made or distributed for commercial use

PNSQC.ORG
Page 9



Cause Analysis:

o RAG-generated tests are context-rich: they include reproducible inputs, detailed assertions,
and environment stubs, reducing the time engineers spend reproducing issues.

@ Automated triage and prioritization highlight high-risk or customer-impacting defects earlier,
cutting the “diagnosis” phase.

@ As fixes are deployed, RAG automatically updates or creates regression guards, eliminating
repeat investigation cycles.

Impact: Faster turnarounds mean teams deliver bug fixes in hours or days instead of days or weeks,
which directly shortens release delays and improves customer confidence.

Detailed MTTR Breakdown - RAG Framework vs Manual

16 | HEE Manual Framework 16
B RAG Framework

14 -

=
N
s

=
o
L

Hours per Defect

Ao0 5€ Jo0 *
e PR pa pea®® o .

-.0€ N
129 \le‘\ (\Cat\o
8

4.5.2 Defect Leakage Reduction

Improvement: ~ 20-30% fewer escaped defects in UAT or production.

Cause Analysis:

® RAG leverages LLM along with a knowledge base to generate broader and deeper test

coverage, including boundary, negative, and integration scenarios that are commonly missed
in manual cycles.

o Knowledge retention: previously discovered issues are coded as reusable tests across
components, preventing re-introduction of the same class of bugs.

o Dynamic updates: as code changes, RAG can re-generate impacted tests, reducing “blind
spots” caused by stale or missing tests.

Impact: Fewer critical incidents and hotfixes in production, less firefighting, and lower support costs.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 10



RAG Improvement in Pre-release Defect Detection (~15% Better)
95

B Manual Framework
mmm RAG Framework

80

60 -

Count

20 -

con

0QU
o 10 P
\_ea\@q

4.5.3 Code Quality Improvements

Improvement: Notable reduction in code smells, security vulnerabilities, and compliance violations
flagged by SCA or static analysis tools.

Cause Analysis:

@ RAG can embed secure coding and compliance rules into test generation, ensuring risky
patterns are detected early.

@ Tests encourage design-for-testability: developers refactor code for clearer seams and fewer
hidden dependencies, reducing complexity and technical debt.

@ Automated guardrails catch misconfigurations or insecure defaults before they ship.

Impact: Cleaner, safer, and more maintainable codebase, reducing long-term remediation effort and
audit risk.

The RAG framework doesn'’t just reduce manual effort—it improves speed, quality, and risk
management simultaneously. By catching more defects early, reducing resolution time, ensuring
compliance, and lowering cost per defect, it provides measurable business value that compounds
over successive release cycles.

4.6 Lesson Learned

Lessons learned included the importance of aligning business and technical teams early, the need for
visible management support, and the impact of structured KB layers on functional accuracy. Most
importantly, the framework underscored that true ROI lies not just in tools, but in culture and
governance supported by disciplined leadership.

Lesson Learned Description Impact on KPIs

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 11



High Initial Investment

Significant upfront cost for
infrastructure, LLM fine-tuning,
training, and integration.

Requires budget approval, clear
ROl justification, and patience
before savings are realized (~4-5
cycles).

Training and
Onboarding

Teams need guidance on
interpreting RAG-generated tests.

Improves adoption rate, increases
test effectiveness, enhances
coverage improvement.

Early Knowledge

Codifying resolved defects as

Reduces defect leakage, lowers

cadence, and cost per defect.

Capture reusable tests early prevents cost per defect, improves pre-
repeat issues. release detection, accelerates
ROL.
Metrics & KPI Continuous tracking of MTTR, Provides management with
Alignment defect leakage, coverage, release visibility to measure ROlI, track

improvements, and make data-
driven decisions.

Technical Debt
Awareness

Design-for-testability drives code
refactoring.

Reduces hidden dependencies
and complexity, improves code
quality, lowers long-term
maintenance costs.

Compliance & Audit
Readiness

Embedding regulatory and internal
policy checks into the process.

Higher audit scores, reduced
manual compliance effort,
mitigates organizational risk.

Change Management &
Organizational

Framing RAG benefits in business
terms improves acceptance.

Teams embrace framework —

Governance Needs

redundant, overly complex, or
irrelevant tests if unchecked.

Adoption faster realization of MTTR,
leakage reduction, coverage, and
cost savings

Oversight & Al-generated tests may create Management must define review

processes, approval gates, and
metrics to maintain test efficiency.

Incremental ROI
Expectation

Benefits accumulate over multiple
release cycles; upfront investment
is significant.

Sets realistic expectations for
management; helps plan
resources, budgets, and timelines;
demonstrates compounding
business impact.

5 Conclusion

The RAG-driven unit test framework demonstrates a transformative approach to improving software
quality, efficiency, and governance. By integrating a domain-tuned, air-gapped LLM with a retrieval-
augmented knowledge base, the framework automates unit test creation and enforces guardrails,
resulting in reduced manual effort, faster release cycles, lower MTTR, and improved pre-release

Excerpt from PNSQC Proceedings

Copies may not be made or distributed for commercial use

PNSQC.ORG
Page 12



defect detection. Pilot implementations validated measurable business benefits while ensuring audit
readiness and compliance alignment.

However, the initiative also revealed key challenges. High initial investment, workflow integration
complexity, change management hurdles, and the need for ongoing governance require careful
management oversight. Teams must continually monitor metrics, refine test generation rules, and
maintain internal knowledge quality to maximize ROI.

Future improvements may include enhancing domain adaptation of LLMs through continual fine-tuning
with fintech-specific defect corpora to improve accuracy. Cross-team collaboration features such as
shared dashboards and approval workflows would reduce adoption friction across DevOps, risk, and
compliance teams. Finally, scaling for multi-service orchestration, coordinating tests across distributed
microservices and hybrid infrastructures, remains a key aspect to enable enterprise-wide adoption.

References

[1] Consortium for Information & Software Quality (CISQ). 2022. The Cost of Poor Software Quality in the
US: A 2022 Report. Retrieved September 2, 2025 (https://www.it-cisg.org/the-cost-of-poor-quality-
software-in-the-us-a-2022-report/)

[2] Yang, L., Yang, C., Gao, S., Wang, W., Wang, B., Zhu, Q., ... & Chen, J. (2024). An empirical study of
unit test generation with large language models. arXiv preprint arXiv:2406.18181.

[3] Kumar, D., & Mishra, K. K. (2016). The impacts of test automation on software's cost, quality and time
to market. Procedia Computer Science, 79, pages 8-15.

[4] Singh, A., Ehtesham, A., Kumar, S., & Khoei, T. T. (2025). Agentic retrieval-augmented generation: A
survey on agentic rag. arXiv preprint arXiv:2501.09136.

[5] Ehtesham, A., Singh, A., Gupta, G. K., & Kumar, S. (2025). A survey of agent interoperability
protocols: Model context protocol (mcp), agent communication protocol (acp), agent-to-agent protocol
(a2a), and agent network protocol (anp). arXiv preprint arXiv:2505.02279.

[6] Shin, J., Aleithan, R., Hemmati, H., & Wang, S. (2024). Retrieval-augmented test generation: How far
are we?. arXiv preprint arXiv:2409.12682.

[7] Marc Ohm, Arnold Sykosch, and Michael Meier. Towards detection of software supply chain attacks by
forensic artifacts. In Proceedings of the 15th international conference on availability, reliability and
security, pages 1-6, 2020

[8] Lida Zhao, Sen Chen, Zhengzi Xu, Chengwei Liu, Lyuye Zhang, Jiahui Wu, Jun Sun, and Yang Liu.
Software composition analysis for vulnerability detection: An empirical study on java projects. In
Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 960-972, 2023.

[9] Fett, Daniel, Pedram Hosseyni, and Ralf Kisters. 2019. “An Extensive Formal Security Analysis of the
OpenlID Financial-Grade APL.” arXiv. February 1. Preprint. arXiv:1901.11520

[10] Cotroneo, Domenico, Cristina Improta, Pietro Liguori. 2025. “Human-Written vs. Al-Generated Code:
A Large-Scale Study of Defects, Vulnerabilities, and Complexity.” arXiv. August 29. Preprint.
arXiv:2508.21634

[11] Johnsson, N. (2024). An in-depth study on the utilization of large language models for test case
generation.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 13



[12] OpenAl, 2025. ChatGPT (GPT-5) OpenAl URL: https://www.openai.com/

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 14



