LLM-Powered Defect Triage: Intelligent
Root Cause Analysis in Minutes

Utsav Patel, PhD.

Researcher, Technologist, and Innovation Management Expert, uspatel535@gmail.com

Abstract

We have all heard how to build rather than quality test. However, what does building quality mean in
software processes when defect triage is still highly manual, reactive, and ineffective? Whereas some of
the traditional quality assurance literature focuses on the various post-development activities, such as
testing, auditing, and configuration management, it seldom refers to how one can go about engineering
quality into the very early stages of diagnosis and the feedback loops. In the meantime, the textbooks on
software engineering detail methods of building software systems but fall short of explicating the role of
the practice in producing systems that are reliable and resistant to defects.

This paper discusses how a new paradigm of building in quality is possible by using intelligent automation
with Large Language Models (LLMs) to start with the defect triage. LLMs informed with codebases, their
telemetry, and the history of their bugs can be used to automate the root cause analysis (RCA) of
software systems to cut Mean Time to Detect (MTTD) and Mean Time to Repair (MTTR) instead of
relying on human analysts to manually inspect logs and test artifacts. Triage systems equipped with LLM
identify repeating organizational errors, detect subtle indicators of failure, and choose the appropriate
prevention or detection solutions, all through adaptive learning and contextual reasoning in the software
maintenance processes.

The paper provides an overview of principles that make intelligent triage effective, shows tools needed to
use LLM-based RCA, and presents a list of selection criteria that follow the same factors to be used in
various organizational settings. At this level, we would like to assist teams as they look forward to
transcending the testing process to build quality (instead of testing it) into the essence of software
operations.

Biography

Utsav Patel is a technology strategist and Ph.D. in Technology and Innovation Management with over 15
years of experience driving quality engineering and digital transformation across diverse industries,
including healthcare, telecom, banking, retail, logistics, supply chain, and the agri-food sector. His focus
lies in integrating Al and automation into software development lifecycles to enhance reliability, speed,
and scalability. Utsav brings deep expertise in test automation, performance engineering, and DevOps,
and has led initiatives that embed intelligent systems into enterprise technology pipelines. He has worked
with both startups and Fortune 500 organizations to design and deploy solutions that deliver measurable
business value. With a strong foundation in both research and applied innovation, He is a frequent
speaker and mentor, dedicated to advancing emerging technologies and nurturing the next generation of
technology leaders.

Copyright Utsav Patel 2025

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 1



1 Introduction

Software defect triage forms a rather essential but potentially resource-consuming aspect of
contemporary software quality assurance (QA). It includes the detection, categorization, and prioritization
of software faults to resolve them in time and give high credibility of the system. Conventionally, this has
been a labor-intensive activity with QA analysts and engineers having to read logs, extract telemetry, test
failures, and source code changes to determine the cause of failure. Not only are such tasks many-
handed and acute and prone to human error, especially in many large, rapid development scenarios
using continuous integration, feature releases, and distributed microservice architectures (Nguyen et al.,
2023).

These high-speed development cycles generate such a large defect inflow that it is no longer possible to
cope with them by manual triage alone. The drawbacks of the traditional rule-based systems further
compound this. Such systems tend to be based on strict heuristics which do not generalize to manifests
with different defect distribution patterns or ice changes in data schema. Such systems are not scalable
and cannot dynamically adapt to changes in the code or the test environment (Gupta & Wang, 2020). As
a result, identifying the real cause of the software failures takes longer, leading to the rise of Mean Time
to Detect (MTTD) and Mean Time to Repair (MTTR), which influences the quality of the delivered product
and team efficiency.

Artificial intelligence (Al), especially the Large Language Model (LLM), such as the GPT-4 built by
OpenAl, has shown potential for resolving these bottlenecks in recent years. They have been designed
with powerful reasoning abilities, context sensitivity, and pattern recognition that may all be attributed to
the training of these models on large-scale corpora of text and source code, making them have software
engineering compatibility (OpenAl, 2024; Liu, Zhang, & Zhou, 2021). With LLMs customized on domain-
specific data, including historical bug reports, log files, and commit histories, intelligent triage may be
used, in real time, to infer causal relationships, discover common patterns of failure, and suggest
solutions that are most likely to succeed (Chen et al., 2022).

The discussed paradigm shift would encompass a more traditional approach to defect triaging based on
rules and heuristics, and bring intelligent models that employ the power of LLMs and offer real-time,
context-wise root cause analysis. The triage systems based on using LLM would not only take the
pressure off the QA teams cognitively and operationally. However, they would also improve defect
correction timelines by helping QA teams via adaptive learning and probabilistic inferences. The general
structure of the remaining parts of this paper is as follows: Section 2 describes the architecture and
mechanism of embedding LLMs in the process of defect triage; Section 3 represents the shortcomings of
legacy systems and the relative merits of LLMs; Section 4 is devoted to real-time RCA and quantifiable
performance improvements; Section 5 will address implementation issues; and Section 6 will discuss the
next potential step in Al-assisted triage in software engineering.

2 LLM Integration for Automated Defect Triage

2.1 Understanding LLM Capabilities

LLMs like GPT-4 by OpenAl and PaLM by Google recently set transformational changes in
the understanding of natural language, particularly when implemented in specific areas of
knowledge such as software engineering. Such models are trained on large datasets of human
language, code repositories and technical documentation to form a generalized semantic
representation of how software behaves, how bugs manifest, and how root behaviors can be
identified (OpenAl, 2024). When adjusted to the project-specific data, e.g., by using defect logs,

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 2



code changes, and test reports along with LLMs, deep correlations are often revealed that are
overlooked when using conventional approaches.

In contrast to static, rule-based systems, LLMs have a strong capability to deduce the
meaning of incomplete or noisy data and contextual predictions. For example, they can outline
the presence of nonobvious correlations between a stack trace and a recent commit or outline the
existence of outliers in telemetry logs regarding intermittent failures (Nguyen et al., 2023).
Besides raising the precision of triaging, the proposed contextual inference also enables the
triaging of large-scale and heterogeneous code on a broader scale.

In addition, LLMs are not designed with any domain in mind but can be fine-tuned or learned
a few-shot to become highly domain-specific; hence, they can generally handle industry-specific
jargon, acronyms, or codebase-specific terminology (Liu et al., 2021). All these features enable
them to reason over defects more holistically rather than linearly, merging evidence over logs,
snapshots of source control, past test cases, and placing large bets when it is likely.

2.2 Architecture and Methods

The architecture of an LLM-enabled defect triage usually consists of three core components.
First is prompt engineering, which is applied to provide direction to the model's reasoning.
Effective prompts enhance fidelity of the output by grounding the input data (examples, logs, test
failures, exceptions) in a directed query that will prove root cause investigation analysis (Gupta &
Wang, 2020).

Second, supervised fine-tuning increases the model's task-specific abilities. The training data
consists of historically identified defects, failure symptoms, corrective commits, and outcomes;
therefore, enabling the model to learn using previously found defects. This plays an important role
within high-stakes software when false positives or false diagnoses can delay production releases
(Chen et al., 2022).

Third, Retrieval-Augmented Generation (RAG) dynamically complements the model with
retrievals against a structured backend of source control data, documentation and past incidents.
At inference time, the model retrieves contextual snippets so that the system does not rely on
fixed model memory, but instead it can learn in real-time about new defect patterns (OpenAl,
2024).

2.3 Case Example: Log Parsing

In order to prove the practical benefit of using LLMs in triage, consider a situation in the
microservices environment where APIs have intermittent timeouts. Distributed dependencies and
log verbosity did not allow the traditional debugging methods to localize the issue. Fine-tuned
LLM with logs and defect solutions from the previous days was commissioned. On providing the
log input, the model was able to determine the anomaly correctly as a memory leak of a
downstream service component. It is an example of a diagnosis that engineers used to do in
several hours, but with intelligent automation, it was accomplished in a few minutes, and such
automation boosts speed, accuracy, and productivity of developers (Nguyen et al., 2023; Chen et
al., 2022).

3 Beyond Rule-Based and Legacy Systems

Defect triage systems, such as those based on legacy, rule-based automation, have been a
longstanding core process in software quality engineering. Such systems are based on a
predetermined set of heuristics and fixed mappings of error codes in logs and root causes they can
have. Although these systems have been found practical in the application in stable environments
when a predictable pattern of data has existed, they quickly become irrelevant in the world today
characterized by fast paces, agile, and constantly changing software systems (Gupta & Wang,

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 3



3.1

2020). The section explores the structural and functional weaknesses of legacy rule-based triage
systems. These weaknesses include being rigid, having exorbitant maintenance costs, a lack of
scalability and failure to adapt to schema drift or non-linear failures in demand. This makes them
increasingly obsolete in contemporary settings, where continuous integration/deployment (CI/CD),
containerization, and microservices architectures bring about complex and inter-reliant failure
modes.

Legacy systems are nothing but rule engines: they rely on deterministic pattern matching and
human maintenance of comprehensive sets of rules. They are created to solve a specific failure
case, narrowed down to a minor issue, and upon being presented with a new type of pattern or
unexpected form of error, the system cannot identify the fault or at best it identifies the wrong fault
and the system therefore cannot detect it within the required time or result in a wrong diagnosis,
requiring a further increase in the Mean Time to Repair (MTTR). Worse, due to the size of systems,
the log data, telemetry processing, and interactions with users increase exponentially. Rule-based
systems cannot keep up with this increase and must be manually configured to use them (Nguyen et
al., 2023). Therefore, these techniques have proved unsustainable and incompatible in dynamic and
heavy production systems.

On the contrary, based on LLM, automation challenges the change in defect triaging technology.
Using the potential of such GPT-4 models and the bodies of other transformer-based frameworks
trained in natural language and code, those systems supply contextual knowledge in real-time,
semantic deductions and estimable scenarios. Instead of drawing on hardcoded rules, LLMs are
trained on experience to memorize defect patterns directly without necessarily generalizing on a
particular set of error signatures or source contexts. This can help them find unsuspected
associations, draw conclusions from partial information, and become better with an extended
experience of real bug reports and test cases (Liu, Zhang, & Zhou, 2021).

Limitations of Legacy Systems

Legacy triage systems rely on rigid, hard-coded rules that are often brittle and incapable of
accommodating evolving software landscapes. These limitations fall into several key categories:

e Low Scalability: Rule libraries grow exponentially with software complexity. As
systems evolve and new features are introduced, maintaining a rule base that maps
every potential defect or failure condition becomes impractical.

e Manual Reconfiguration: Each new error signature, AP| behavior, or deployment
context requires manual analysis and rule revision. This dependency on expert
intervention slows down the triage process and introduces human error (Gupta &
Wang, 2020).

o Lack of Pattern Generalization: Traditional systems operate well only within the
scope of predefined heuristics. When faced with novel or mutated bug patterns, these
systems fail to extrapolate insights, resulting in false negatives or irrelevant
diagnostics.

3.1.1 Rigid Structural Dependencies

Excerpt from PNSQC Proceedings
Copies may not be made or distributed for commercial use

Legacy systems imply that the log record structure, configuration format, and error message
structure are usually assumed to be fixed. For example, replacing XML logs with JSON logs or
repairing diagnostic results can overturn the current rules. Such a strong dependence on the
structural representations significantly constrains adaptability and leads to repeated maintenance
cycles. Chen et al. (2022) demonstrate that rule-based systems are exceptionally inaccurate upon
encountering varied telemetry schemes, which is why structural flexibility is vital.

PNSQC.ORG
Page 4



3.1.2 Latency and Performance Bottlenecks

With the growth in volume/ variety of telemetry data, the duration of time needed to process data
and run rules against incoming logs is also rising. This bottleneck is especially troublesome in an
environment of real-time or near-real-time. The conventional systems tend to perform defective
matching operations that could result in extensive latency, compromising their promptness in fast-
response production systems (Nguyen et al., 2023)—by contrast, parallelized and vectorized results
mean that LLMs scale about the information instead of opposing it.

3.1.3 High Maintenance Overhead

Maintaining a rule-based system is a manual effort that constantly changes rules and checks the
results. This poses an uneven operational load on DevOps and QA teams, and they compromise on
the high-value activities such as code coverage enhancement, automating deployments, or security
audits. Also, there is a lack of coordination and operational silos due to a mismatch between
application teams and individuals overseeing the rule engines (Gupta & Wang, 2020).

3.1.4 Poor Handling of Ambiguous or Vague Errors

Rule engines usually use literal string references or deterministic rules to classify defects,
preventing them from capturing abstraction or contextual or multiple-level failure indicators. For
example, a message such as; unexpected behavior noticed in transaction processing may be terse
because it is not actionable, but would be a sign of a serious logical fault. Instead, LLMs are trained
with different linguistic corpora and code samples, and thus are more skilled at inferring the meaning
of ambiguous messages via contextual inferences (Liu et al., 2021).

3.1.5 Lack of Feedback Loops for Learning

The inability to learn from experience is one of the most vivid insufficiencies of legacy systems.
The rule that cannot be performed today will not be performed tomorrow when it is not manually
adjusted. No system is present to absorb labeled outputs, look up historical-based incidents, or
iterate rules with input. One of their main differences by comparison is that LLMs flourish on
feedback loops, re-training or fine-tuning after the results of a historical triage show them becoming
more accurate and resilient over time (Chen et al., 2022; OpenAl, 2024).

3.2 Advantages of LLM-Based Automation

LLM-based systems address these limitations through a paradigm of adaptive, intelligent
automation. Their key advantages include:

e Real-Time Learning: LLMs improve performance by ingesting feedback from every
triaged defect. They use supervised fine-tuning or reinforcement learning with human
feedback (RLHF) to refine predictions over time (OpenAl, 2024).

e Traceability: Unlike legacy systems, LLMs correlate diverse artefacts—test failures,
telemetry, code diffs, and commit history—to produce highly contextualized diagnoses.

e Subtle Clue Detection: LLMs identify weak signals and non-obvious associations. For
example, an anomalous memory leak could be linked to a deprecated configuration flag
several modules away—a pattern a rule engine might overlook entirely (Chen et al.,
2022).

LLMs also offer the ability to reason probabilistically, providing confidence levels for their
predictions and suggesting multiple hypotheses ranked by likelihood. This allows for more nuanced
decision-making in high-stakes environments.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 5



3.3 Comparison Table

Feature Rule-Based LLM-Based Systems
Systems
Adaptability Low High
Maintenance Effort High Moderate
Learning from New None Real-Time
Data
Pattern Recognition Rigid Flexible and Contextual

4 Real-Time RCA and Metrics-Driven Efficiency

The defect triage with the assistance of LLM has disrupted the process of Root Cause Analysis
(RCA), changing a manually intensive process into an action that would take place in nearly no time.
Traditionally, RCA took a large team of experienced engineers to wade through bulky records of log
files, compare them with source code modifications, and use manual testing to identify where a
failure occurred. This took up much time and brought in an element of human error and
inconsistency in the debugging procedure. In comparison, today, Large Language Models (LLMs)
can conduct RCA in real-time, stepping far beyond the limited use of human language pathfinders
and providing scalable, intelligent insights that elevate software quality-related metrics to a new
degree.

4.1 Root Cause Analysis (RCA)

Multi-data triangulation, the core of LLM-based RCA, is the ability to fuse log files, code commits,
telemetry, and test case results to guess the most likely source of a failure. The approach is that
LLMs rely on a vectorized semantic representation of text and code to make context-based, accurate
conclusions concerning the system's behaviors. These models become capable of reasoning with
complex logs and discovering patterns, which could point to deviations in performance, resource
conflicts, configuration inconsistencies, or semantic coding errors through probabilistic reasoning and
natural language cognition (Chen et al., 2022).

For example, LLMs trained on previous historical defect repositories can use ambiguous or
incomplete logs--like stack traces or general timeout failures--to provide a guess (using retrieval-
augmented generation (RAG)) of the most likely subsystem at fault. Through these methods, the
model can use previous data to look up similar problems and create explanations of diagnostics
(Nguyen et al., 2023). In contrast to legacy systems, where the rules match is important, LLMs can
evaluate loose patterns, allowing RCA in new or unseen situations. This is especially useful in
distributed systems where symptoms can be fragmented across log entries, and assets could involve
several services or service layering. As the technical documentation of OpenAl (2024) on GPT-4
states, modern LLMs can consume massive amounts of mixed-structured information in real-time. It
enables them to discover bi-dimensional connections among the failures, code shifts, and
environmental factors that the traditional tools or even an experienced engineer might miss. The
LLMs do not just point to where an error happens - they include information about why and how it
can spread, which is vital to prioritizing hotfixes and minimizing errors in production systems.

4.2 Efficiency Gains

The positive quantitative effects of employing LLMs in the defect triage process are also clear and
significant. Among the most significant improvements are the Mean Time to Detect (MTTD) and
Mean Time to Repair (MTTR), the two most important performance indicators in software
maintenance. Liu, Zhang, and Zhou (2021) state that companies implementing LLM-based RCA

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 6



reduced MTTD by nine hours (on average) to less than one hour, which is explained by the fact that
an LLM-based RCA model can work in real-time. Such acceleration enables the DevOps teams to be
more responsive and prevent incidents before becoming customer-facing. Likewise, MTTR has
decreased by more than 16 hours to as little as three or four hours, and this improvement is
explained by the fact that it takes less time to identify problematic modules and discover practical
and relevant path to solve the issue (Gupta & Wang, 2020). Conventional debugging can entail a
loop of symptoms, hypotheses and experimentation. LLMs compact such cycles by formulating root
cause hypotheses of high confidence levels, guided by historical patterns and correlations of many
bugs they have learned.

The other tangible result of this elevated level of diagnostic capability would be increasing the
productivity of the teams (with a 25 per cent change), especially when it comes to developers and
QA engineers who no longer have to waste their time searching through logs or having to run after
false positives. Developers are in a position to deal with solutions instead of problem diagnosis. The
second-order effect of this work-saving is practical as swift sprint closures, feature delivery
schedules, and team spirit, particularly in the fast-paced heat of continuous deployment. Also, the
overhead of context switching is much lower when using LLMs. Rather than needing someone to
manually collate logs, code history and ticket notes, an effectively implemented LLM can combine
such contextual indicators and present an overview of probable causes as a computer interface or
chatbot conversation. This implies that junior developers will be able to solve complex defects,
otherwise requiring the attention of a senior engineer, thus democratizing the expertise of solving
defects in the organization (Chen et al., 2022; OpenAl, 2024).

4.3 Visualization and Dashboards

Generating actionable visual insights through interactive dashboards is an underestimated
feature of triage systems created using the LLM. Although the defect tracking tools used by
organizations previously may show the number of issues or fixed-value priority, LLM-based
systems reveal such metrics as the model confidence rating, the accuracy of defect
characterization, and time-to-remediation trends by product and release.

LLM-powered dashboards do not merely report, but they make sense. As an example, a
measure of confidence could imply confidence (probability) that failure in a model is caused by a
particular module regression introduced in the previous commitment, allowing the prioritization of
the remediation activities by engineering leads. Such visual layers may contain time-series
graphs, heatmaps of defect concentration, and trendlines of MTTD and MTTR with time, which
can assist the stakeholders in acquiring RCA automation's short-term and long-term outcomes
(Nguyen et al., 2023). The latest implementation case studies showed that specific teams noticed
a 30 per cent reduction in unresolved defect backlogs even after a few sprints upon introducing
LLM-powered dashboards (Chen et al., 2022). The discussed reductions were primarily
associated with early detection and prioritization functionality that was present in the inference
engine of the LLM. Further, the dashboard-based real-time feedback loops enabled the model to
adapt to human corrections and better predict its results, which became more accurate over time.

Traceability visualizations are another important attribute and relate a reported defect to
particular test failures and recent code commits. This accountability enhances team responsibility
and eases compliance documentation, a critical element in the regulated sector, such as finance
or healthcare. Moreover, the dashboards are bi-directionally compatible with CI/CD pipelines so
that engineers can evaluate an RCA of unsuccessful builds in real-time, directly within their
current developer tooling. LLM-driven visual dashboards are diagnostics that fully close the
decision-making loop with focus and context-rich remediation paths. These dashboards will be
fundamental as organizations increase their adoption of intelligent triage systems in effectiveness
measurement, developer assurance, and on-going performance validation in a production
environment.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 7



5 Implementation Challenges and Considerations

Although the Large Language Models (LLMs) may change the processes of defect triage and root
cause analysis (RCA), organizations have to encounter a variety of practical dilemmas during
implementation. These issues cut across data integrity, developer confidence and governmental
conformity. Solving these problems comprehensively is important in the deployment and
sustainability of LLM.

5.1 Data Quality

The quality of data used to train the model and perform inference is perhaps one of the most
important roadblocks to the adequate performance of LLMs in software engineering tasks. In
contrast to artificially created datasets used to benchmark academic research, data on software
development in the real world is usually incomplete, inconsistent or noisy. One example is the log
files that might include ambiguous error messages, timestamp mismatch, or allowed formats
across various systems and environments. These gaps have terrible consequences on the
capacity of the LLM to generate reliable conclusions and projections (Liu, Zhang, & Zhou, 2021).
In order to deal with this, it is important that organizations focus on data preprocessing and
normalization activities. Defining standard fields in structures used in logging, including time
stamps, service ID, levels of the error, and message summaries, makes the logs consistent.
Moreover, there should be a thorough labeling of the historical defects, including metadata, like
the root cause category, time taken to resolve the issue, affected component, and associated test
cases (Nguyen et al., 2023). Contextual cues about a failure can also be augmented with a
description of the state of the rest of the system or environmental states, further increasing the
fidelity of the predictions made by LLCMs.

Since LLMs are very sensitive to the quality of training data, an early focus on data
governance, through deduplication, schema unification, and constant data validation pipelines, is
pay-forward and can lead to better generalization and fewer hallucinations (Chen et al., 2022).
Moreover, mislabeled defects that could in other cases be used to deceive the model in the
process of fine-tuning can be identified by using the human-in-the-loop validation process at the
time of data annotation.

5.2 Developer Trust and Buy-In

Software engineers and QA professionals might resist introducing LLM-enhanced defect
triage systems, especially when the Al suggestions go against the usual debugging instincts.
Trustworthy outputs of LLMs can be of particular concern to developers; when reasoning from
model predictions is complex to discern, model reliability may be of particular concern. The
inability to be interpretable might undermine confidence and limit adoption (Gupta & Wang, 2020).
The outputs of LLM should be rendered explainable and verifiable in order to create trust. Among
the measures that can be suggested is an enlargement of the scope of the prediction with
certainty levels and other evidence, such as the citation of log lines, pertinent code differences,
and links to previous occurrences of the same. As another example, a recommended memory
leak in an LLM must point out correlated patterns of heap allocation, past related bugs, and like
stacks on past events (Chen et al., 2022). Such explainable Al methods not only make it more
transparent but also improve the opportunities for developers to cross-check and verify the
reasoning of the Al.

Human-in-the-loop systems offer another degree of reliability. The ability of engineers to
override or confirm Al outputs during the triage process gives organizations a chance of
establishing a loop whereby the model can learn through corrections, but is subject to
accountability. Such corrections may be used to hone in pipelines over time to increase system
accuracy and contextual awareness (Nguyen et al., 2023). Training and documentation are also
essential. An operating knowledge of the capabilities and limitations of the model should be
provided to engineers. Joint learning, where the developers will discuss RCA results containing

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 8



explanations generated by Al, can be used to develop familiarity and encourage active utilization.
As Gupta and Wang (2020) propose, Al tools would help developers by raising their efficiency at
all levels, but Al tools should not be presented as the replacement but augmentative technology.

5.3 Security and Compliance

When dealing with production-level software quality processes, security, and regulatory
compliance are the essential factors to consider when integrating LLMs. Sensitive data, stored on
a defect log or telemetry, includes user identifiers, system IP addresses, authentication errors or
proprietary source code. Poor handling of such components may result in relatively high privacy
and intellectual property risks (OpenAl, 2024). When getting data ready regarding LLM ingestion,
organizations should ensure stringent access control and anonymization measures. One should
mask or filter out the Personally Identifiable Information (PIl), and security checks should be done
on the code snippets before inclusion. If LLM inference occurs on third-party platforms or via
APIs, information in transit must be encrypted with more modern protocols, including TLS 1.3.
Also, the companies can evaluate the on-premise deployment or in the public cloud to keep
complete control over their data residency.

This means that the data protection outlines like the General Data Protection Regulation
(GDPR) in Europe or the Health Insurance Portability and Accountability Act (HIPAA) in the U.S.
must be followed unconditionally. This requires minimization of data, explicit user approval of data
processing and auditability of Al decision-making procedures. As an illustration, according to
Article 22 of GDPR, the website user has the right not to be exposed to making decisions based
on an automated process alone. In these instances, human-in-the-loop must be present to
supersede the LLM triage choices (Liu, Zhang, & Zhou, 2021).

In addition to compliance, it is important to focus on whether model validation protocols are
implemented to help deal with liability. These can involve bias auditing, adversarial testing, drift
detection, and regularly re-training the model on new data. Their incident response plans should
also be modified to consider the possibilities of misdiagnosis because of having false positives or
of severe system failure as a result of the outputs of a model. Additionally, both models and any
datasets are version-controlled, facilitating reproducibility, which is important to regulated
industries. Having good versioning, organizations can recreate every defect triage prediction,
trace its inputs, and explain which logic the model employed at the moment of inference (Chen et
al., 2022).

6 Future Directions

With the steadily increasing popularity of Large Language Models (LLMs) and the latest
innovation of software engineering in the field of defect triage and root cause analysis (RCA), it is
likely that the future of intelligent automation will be much different from what it is presently. Although
the existing deployments demonstrate remarkable improvements in Mean Time to Detect (MTTD) and
Mean Time to Repair (MTTR), several proactive improvements are capable of further reshaping the
experience of development teams using defect triaging tools. These are the multimodal integration,
cross-project generalization and on-device inference. The combination of these innovations has the
potential to transform LLMs beyond the level of automation tools into capable agents that can
improve the decision-making process, collaboration, and development cycles.

6.1 Multimodal Integration

Currently, most of the LLMs employed in the defect triaging domain have been trained mainly
on text-oriented data; mainly log files, stack traces, commit messages, test results and the
documentation in natural language. However, recent software development has also produced a
veritable cornucopia of data besides plain text. Failed Ul screenshots, architecture diagrams,
configuration graphs, live sensors, and monitoring dashboard telemetry output are valuable assets
in the diagnostic process.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 9



6.2

6.3

Incorporation of multimodal data sources in LLM training and inference can achieve significant
improvement in the effectiveness of RCA. As an example, a faulty test case may contain a
screenshot of a misaligned Ul element, a log trace of a frontend-backend mismatch, and a spike on
the telemetry due to one of the user events. Although a text-only LLM may be able to figure out the
log anomaly, it may miss visual or time-based clues that can lead to an even greater analysis. The
gap can be closed by the multimodal LLMs that operate with text, images, and time-series
information at the same time. As Liu et al. (2021) claim, incorporating domain-specific metadata
and non-textual cues can substantially increase a model's capacity to generalize over edge cases.
Therefore, it is possible to understand them more comprehensively by constructing multimodal
architectures, which incorporate visual tokens, table-based data, and structured telemetry into the
input pipeline. This proposed research direction is favorable and by the recent trend in general-
purpose multimodal models, e.g., the vision of GPT-4 (OpenAl, 2024) itself, which is now ported to
specific engineering operations.

Cross-Project Generalization

Cross-project generalization is another apparent direction, i.e., the potential of LLM to
comprehend RCA and triage strategies in one software system and introduce a practice to other
projects, domains, or repositories. The fine-tuned models used today are usually highly coupled
with a given codebase or set of environments in which they were trained. Although this can apply to
excellent local performance, it restricts the ability to scale and transfer the solution to the broader
ecosystem. Cross-project generalization would enable LLMs to use generic patterns, like the same
bug patterns or API deprecation notices or common misconfigurations of various microservices,
platforms, or programming languages. Chen et al. (2022) underline the importance that many RCA
challenges share similar causal structures that large neural networks could formalize, despite the
situation taking place in a specific context. For example, memory leaks in Java-based systems and
their counterparts in Python programs may be expressed by increasing heap usage and timed-out
logs. Both could teach a generalized model as some lessons could be interchanged.

To empower such a degree of generality, scholars promote meta-learning and transfer learning
approaches when LLMs may investigate a particular problem and transfer the defect detection
mechanism information in varied data schemes and project topologies (Nguyen et al., 2023).
Knowledge sharing across organizations would also be possible to prevent leaking out of
proprietary code through implementing federated learning which could address privacy and
compliance issues.

On-Device Inference and Edge Deployment

By increasing both their size and power, LLMs end up needing considerable computational
infrastructure to use. Nonetheless, numerous companies and organizations, particularly in the
regulated sectors (healthcare, finance, or defence) experience data sovereignty, latency, and
compliance limitations. These industries are increasingly interested in running intelligent systems
on-prem or on-device to have better control over their data, along with swifter inferences. In-device
inference is technically challenging but offers a possible way forward as hardware acceleration
technology (e.g., GPUs, TPUs and NPUs) becomes more available and efficient. Moreover, the
active research of model distillation methods is pursued to transfer the intelligence of RCA tools to
local environments, i.e., to find methods to compress a bulky pre-trained model to a smaller, faster,
yet mostly preserving accuracy model.

According to Gupta and Wang (2020), since real-time defect triage is latency-sensitive,
particularly, in CI/CD pipelines, local inference can be used to both avoid the reliance on cloud
access and decrease latency. Defect triage options built into an integrated development
environment (IDE) or local build pipeline may provide recommendations and RCA in only a few
seconds, even when offline in such a configuration. Such autonomy and responsiveness may be
revolutionary in hazardous fields such as aerospace systems, sensitive infrastructure, or remote
operations development. Moreover, edge intelligence is an opportunity provided by on-device

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 10



LLMs, as defect detection is applied to embedded systems and loT devices. Such use cases
frequently have demanding real-time response requirements and may operate in bandwidth-
constrained or disconnected environments. Incorporation of RCA intelligence in these devices
guarantees resiliency and faster networks in cases where there are no guarantees on cloud
connections.

6.4 Augmentation Over Automation

The future of LLM-enabled defect triage tools is, after all, not about replacing human
engineers, but rather the enhancement of decisions and effects by the latter. Rather than seeing
LLMs as programs that automatically solve defects, in the future, the system will act as a
collaborative intelligence agent, providing advice and contextual evidence, past precedent, and the
degree of confidence in helping the engineer reach the best RCA. This trend has led to
transforming a tooling relationship into a partnership relationship between developers and models
that analyze issues simultaneously. This kind of synergy means that developers will keep control
and critical thinking. However, models will make the information less of a burden, taking away the
part of data wrangling, pattern recognition and cross-referencing of different artifacts. Such
strategies as building trust in Al based on explanations, transparency, and user intent have been
postulated by researchers such as OpenAl (2024) and others.

As it has been concluded, LLM-powered defect triage's future is richer inputs, more
prosperous, smarter generalization, secure deployment, and a cooperative posture. Such
developments will streamline engineering work and increase software systems' quality, reliability,
and maintainability in various industries.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 11



References

Liu, X., Zhang, J., & Zhou, M. (2021). "Leveraging Pre-trained Language Models for Software Engineering
Tasks." ACM Computing Surveys, 54(9), 1-38. https://doi.org/10.1145/3453473

Chen, Z., et al. (2022). "Towards Intelligent Root Cause Analysis with LLMs." /EEE Transactions on
Software Engineering. https://doi.org/10.1109/TSE.2022.3145670

Nguyen, A., et al. (2023). "Automatic Bug Triage Using Deep Language Models." Journal of Systems and
Software, 200, 111020. https://doi.org/10.1016/j.jss.2022.111020

Gupta, R., & Wang, X. (2020). "Beyond Rule-Based Bug Classification: A Neural Approach." Software:
Practice and Experience, 50(12), 2290-2304. https://doi.org/10.1002/spe.2821

OpenAl. (2024). "Technical Overview of GPT-4." https://openai.com/research/gpt-4

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 12



