

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 1

"Quality Beyond Testing with
DevOps: Jenkins to GitHub Actions

Migration for Enhanced Process
Optimization and Quality Assurance"

 Sagar Aghera Nikhil Yogesh Joshi Amit Bhanushali
 saghera@netskope.com nikhilyogesh.joshi@fiserv.com
amit.bhanushali@mail.wvu.edu

Abstract
DevOps integrates and automates software development (Dev) with IT operations (Ops), complementing
Agile SDLC by using automation tools to speed up software delivery. The choice of Continuous
Integration/Continuous Deployment (CI/CD) tools is crucial for streamlining these processes. This paper
presents our organization's migration from Jenkins to GitHub Actions for better scalability, security, and
integration.

Previously, our organization faced challenges with Jenkins regarding scalability, security vulnerabilities,
and complex third-party integrations. GitHub Actions provided a comprehensive platform for automating
tasks within GitHub repositories. Our DevOps team automated processes like Pull Request checks,
nightly builds, code coverage scans, and test executions. Integrations with JFrog Artifactory, Slack, Red
Hat Ansible, and Atlassian JIRA facilitated a smooth transition.

GitHub Actions' secret management eliminated the need for additional tools like HashiCorp Vault and
1Password, enhancing security and simplifying secret storage. Its multi-language support, compatibility
with major operating systems, and built-in secret management ensured a seamless migration. This paper
discusses the challenges, benefits, and key considerations of the migration process, demonstrating how
GitHub Actions improved our automation, workflow efficiency, and code quality assurance in a modern
DevOps environment. After migrating to Github Actions, developer efficiency increased by 35%.

Index Terms—DevOps, Automation testing, CI, CD, Jenkins, Github Actions.

Biography
Sagar Aghera holds a master’s in computer science and a bachelor in electrical engineering from
Florida Atlantic University, with over 10 years of experience in DevOps, CI/CD & test automation. He
has worked at Motorola, Qualcomm, Gracenote, VMware, and currently excels as a Sr Staff
Software Engineer at Netskope, focusing on testing frameworks, cloud infrastructure, and mentoring.
His commitment to Testing and DevOps is evident throughout his career.

Nikhil Yogesh Joshi, a Senior Manager in Software Engineering based in Cumming, Georgia, boasts
over 18 years of experience leading high-performing teams and delivering complex projects. His
career spans multiple industries, demonstrating his expertise in automation, cloud migration, and
strategic leadership.

Amit Bhanushali is a Manager, Software Quality Assurance at West Virginia University based in
West Virginia, United States and have more than 20 years of experience in BFSI and Higher Ed
Domains. He is a certified Scrum Master and holds a master’s degree in business data Analytics
from West Virginia University in West Virginia, United States.

mailto:saghera@netskope.com

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 2

1 Introduction
1.1 Background

DevOps has become an increasingly important practice for organizations that need to keep up with
the demands for rapid development and testing. In today’s evolving software development landscape
embracing DevOps practices has become crucial for companies looking to improve teamwork, between
their development and operations teams. This shift in approach aims to boost how often code is deployed
and enhance the quality of services. Contrary to popular belief, DevOps does not replace QA participation
or oversight requirements. However, It will necessitate a change in how QA plans and does testing in a
DevOps environment. DevOps quality assurance will require a considerable cultural shift away from
traditional testing methods and more development, operational, and QA team collaboration. In an earlier
study, the effectiveness of implementing DevOps practices in enhancing continuous delivery has been
demonstrated (Sharma 2018).

DevOps transcends mere tool adoption; it represents a transformation that demands a reexamination of
testing methods. This article delves into QAs evolving role in the age of DevOps focusing on the
strategies, obstacles and future paths for quality assurance testing. Continuous testing emerges as vital
in this scenario by weaving testing activities into every stage of development. As businesses strive to
deliver top notch software the importance of QA approaches grows more evident. Continuous testing
delivers continuous quality for any integrated CI/CD pipeline.

Traditionally the divide between Dev, QA & Ops teams – often termed as the "Wall of Confusion" –
impeded communication and collaboration. Wall of Confusion here stands for Separation Of Duties
(SOD). People often use this wall to get out undesirable tasks. To break this wall, DevOps practices were
introduced. One can promptly resolve many QA issues in a DevOps environment by continuous
improvement in communication and collaboration. The QA and development teams have traditionally
operated in isolated groups, thus it’s vital to initiate communication and ongoing feedback between them.
DevOps seeks to break down this barrier by fostering an ethos towards software delivery. This approach
stresses accountability, for service excellence with ongoing testing serving as a foundation. This provides
an opportunity for QA to add an invaluable skill set in their repertoire.

1.2 Objectives

This article delves into the foundation of DevOps discussing its principles, advantages and tools
particularly Jenkins and GitHub Actions which support CI/CD processes. Jenkins, an open-source
automation server or platform has been widely employed to automate tasks but it does come with
challenges such as maintenance overhead and security issues. Jenkins can be challenging to set up and
maintain with outdated UI & requires regular upkeep & maintenance. It also demands careful
configuration to ensure security, especially in public environments. On the other hand, GitHub Actions
offers a streamlined approach by seamlessly integrating with GitHub repositories and providing robust
support for automating workflows. GitHub Actions provides a user-friendly platform for developers &
testers. GitHub Actions removes the necessity of managing servers, which leads to a decrease in
operational expenses. GitHub Actions can run secluded jobs in secure environments, which come along
with modern safety features like secrets management, access control, etc.

The shift from Jenkins to GitHub Actions marks an advancement in optimizing QA & DevOps procedures.
This shift addresses issues linked to Jenkins like scalability problems and plugin dependencies while
boosting efficiency and collaboration. The migration process involves planning, testing and validation to
ensure a transition that upholds quality & DevOps standards.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 3

Through case studies and practical applications this article showcases the advantages of embracing
GitHub Actions for DevOps & QA purposes. These benefits include streamlined CI/CD workflows, quicker
execution times and enhanced collaboration while making no compromises on security. The transition not
only cuts down expenses but also elevates the overall reliability and security of the software delivery
pipeline.

In summary, incorporating DevOps methodologies into quality assurance is crucial for upholding top
notch standards in a changing software development landscape. With the increasing adoption of DevOps
by companies QA approaches need to adapt to address emerging obstacles and make use of cutting-
edge tools and practices. This document offers perspectives on the tactics and upcoming trends in QA
during the DevOps era highlighting the significance of enhancements and teamwork.

2 Understanding Jenkins
2.1 Overview

As per Jenkins documentation, Jenkins is a self-contained, open-source automation server which can be
used to automate all sorts of tasks related to building, testing, and delivering or deploying software
(Jenkins Documentation). It helps automate the parts of software development related to building, testing,
and deploying, facilitating DevOps practices by allowing developers to integrate changes into a shared
repository frequently and obtain rapid feedback. According to the Jenkins Documentation, the pipeline
features enable automation of software deployment processes effectively (Jenkins Documentation).

2.2 Strengths & weaknesses

Jenkins provides a high level of customization due to its open-source design, range of plugins and ability
to integrate with different CI/CD systems. However users need to invest time and effort in configuring and
maintaining it properly to deal with performance challenges, plugin compatibility issues and security
concerns, which can be demanding and intricate tasks. Table.1 highlights a few strengths and
weaknesses.

Strengths Weaknesses
Open Source Complex Configuration
Free to use and supported by a large
community.

Can be complex to set up and configure, especially for
beginners.

Flexible and Extensible Maintenance Overhead
Highly customizable to fit various CI/CD
workflows.

Requires regular maintenance and updates to ensure
stability and security.

Active Community and Documentation User Interface
Large, active community providing support
and comprehensive documentation.

The UI can be seen as outdated and not as user-
friendly as other CI/CD tools.

Cross-Platform Security
Runs on various operating systems including
Windows, macOS, and Linux.

Requires careful configuration to ensure security,
especially in public-facing environments.

Table.1 Jenkins strengths vs weaknesses.

3 Introduction of GitHub Actions
As described in GitHub Actions documentation, GitHub Actions is a continuous integration and
continuous delivery (CI/CD) platform that allows you to automate your build, test, and deployment

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 4

pipeline. You can create workflows that build and test every pull request to your repository or deploy
merged pull requests to production (GitHub Actions: Overview). It is an elegant solution that offers the
convenience of creating and managing CI and CD workflows from GitHub, the largest code-hosting
platform in the world (Heller 2021). There is a rich ecosystem of more than 20,000 3rd party actions, for
use. Fig.1 highlights the key components of GitHub Actions. GitHub Actions Marketplace provides all the
necessary integration points for most of the widely used tools & platforms such as slack, Azure, AWS,
JIRA, Artifactory etc.

Fig.1 Key components of GitHub Actions.

4 Benefits of migrating to GitHub Actions
GitHub is by far the largest social coding platform, hosting the development history of millions of
collaborative software repositories, and accommodating over 100 million users by January 2023 (100
Million Developers and Counting, 2023). GitHub Actions integrates closely with GitHub providing a safe
and budget friendly CI/CD experience supported by a range of marketplace options. It boosts developer
efficiency with an easy to use interface and adaptable workflows. Table.2 sheds light on key capabilities
of GitHub Actions.

Capability Description

Integration with GitHub
GitHub Actions is tightly coupled with the GitHub platform offering a unified workflow
experience. This close integration enables Devs & QA to automate, personalize, and
oversee their software development cycle within the GitHub repository.

Enhanced Developer
Experience

GitHub Actions provides a user-friendly platform for developers & testers. By using
YAML syntax to outline workflows, it becomes simple and approachable. Teams have
the option to utilize actions from the GitHub Marketplace or design personalized
actions tailored to their requirements.

Cost and Resource
Efficiency

Using GitHub Actions removes the necessity of managing CI/CD servers, which leads
to a decrease in operational expenses. It offers solutions that expand alongside the
project, guaranteeing resource utilization.

Reliability & Security
GitHub Actions can run secluded jobs in secure environments, which come along with
modern safety features like secrets management, access control, etc. It makes it
possible to preserve sensitive data and information.

Ecosystem and The GitHub Market provides a rich ecosystem of pre-built actions created by the

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 5

Capability Description

Marketplace community and industry leaders and curated by GitHub. This extensive library,
comprising more than 20,000 actions, allows developers to easily integrate 3rd party
tools into their workflows.

Table.2 GitHub Actions capabilities

5 Migration Process: Step-by-Step Guide
GitHub does provide Actions importer tool to facilitate migration from widely used tools like Azure
DevOps, Bamboo, Jenkins, CircleCI and BitBucket but we didn’t use this tool for our migration. As per
Rautiainen, the migration still requires a lot of manual transformation and verification especially when
custom scripts and nested and conditional steps are involved (Rautiainen, 2023). Migrate from Jenkins to
GitHub Actions by analyzing the current setup, planning the transition, converting pipelines to GitHub
workflows, testing in staging, and deploying to production while monitoring performance, as presented in
Fig.2 and discussed in below sub-sections.

Fig.2 Migration process

For a smooth migration, the first step is to methodically analyze the current Jenkins setup which includes
pipelines, freestyle jobs and configurations. Document it and additionally, identify any external plugins
and custom scripts. These dependencies will need to be addressed during the migration. The second
step is to plan the migration by identifying goals and objectives of migrating to the GitHub Actions. Mostly,
it has to do with understanding of capabilities, features, and understanding of workflow syntax and
available actions.

In the third step, the Jenkins job and pipeline are ported to GitHub action workflows. This will involve
translating the Groovy based pipeline syntax to the YAML based GitHub Actions workflow syntax. Minor
adjustment of the logic or functionality might be needed to align with GitHub Actions features. For 3rd

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 6

party plugins or custom scripts used in Jenkins, identify equivalent GitHub Actions built-in actions or 3rd
party actions. One of the most frequently made mistakes is trying to migrate workflows in as-is status, the
ability of GitHub Actions may allow us to simplify our workflows and reduce complexity, this often causes
a new user to go down a rabbit-hole and waste time & energy. For example, in one of the case studies
discussed in the next section, we were migrating a custom script to create tag and cut a release which
was readily available as a built-in action.

At last, setting up the staging environment to test the GitHub Actions workflows meticulously. This will
help in identifying any issues before we deploy to the production environment. Conduct comprehensive
testing, including edge cases & failure scenarios to make sure workflows are robust enough. And if the
performance gain was a criterion for migration, then make sure migrated workflows meet expectations.
Once testing & validation is done, deploy the GitHub Actions to the production environment. Continue to
monitor the performance & behavior of workflows and identify any areas of improvement if needed.

To further emphasize the key benefits of above migration practices, we compiled our results from 3 case
studies which are described in the next section.

6 Case Studies
6.1 Case Study 1: Client builds pipeline

Netskope encountered difficulties, with their Jenkins build process, for Endpoint DLP client product. The
challenges involved upkeep, intricate setup handling and prolonged build durations all of which impeded
engineering productivity and caused release delays at times. The approach included transitioning from
Jenkins to GitHub Actions to simplify and modernize the build pipeline. GitHub Actions was chosen for its
compatibility with GitHub repositories, easy setup and robust automation features. Table.3 covers the
pipeline steps involved when using Jenkins and after migrating to GitHub Actions. One notable advantage
we had with migration is use of readily available Built-in action to tag the build and release which was
done using custom script written & maintained by DevOps team. This resulted in per build time reduction
from 50 mins in Jenkins to about 40 mins in GitHub Actions which is about 20% reduction in execution
time. Additionally, we had more stable runs after migration, with failure rate reduction from 15% to 3%.

Pipeline Steps Jenkins GitHub Actions

Source code checkout GitHub plugin Built-in Action

Build product Built-in shell plugin Built-in Action

Run unit tests Built-in shell plugin Built-in Action

Upload artifacts JFrog plugin JFrog Action

Tag build & release Custom script Built-in Action

Send email Email-ext post build action Send Email Action

Slack notification Slack Notification plugin Slack API Action

Table.3 Pipeline steps – Jenkins vs GitHub Actions

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 7

6.2 Case Study 2: Pull request sanity

Given the Jenkins infrastructure and GitHub being in a separate network, Jenkins hosted in a local
datacenter, webhook to GitHub from Jenkins server was not configurable. Pull request sanity check was a
new addition to CI, given it was readily available with GitHub Actions. GitHub Actions is event driven and
one of the supported events is Pull request. This made the creation of pull request sanity check quite
trivial and many of the steps from client build pipeline in previous case study were reused. Fig.3 covers
the steps involved in Pull request sanity check. This PR sanity check was more effective because it
allowed us to isolate issues earlier, which would help in stopping issues entering the main branch.
Additionally, code coverage check helped in following TDD (Test Driven Development) principles.

Fig.3 Pull request sanity check steps

6.3 Case Study 3: Test automation run(s)

Before migration, test automation runs were done using Jenkins freestyle projects. There was usage of
3rd party plugins – source code checkout, test report parser, custom email plugin, and slack notification
plugin. Migrating to GitHub Actions involved matching with equivalent Actions and creating a workflow file
with the steps calling those actions. One notable point here, the resultant workflow file contained less
than 75 lines. Template of the workflow file in use is shown in Fig.4

The workflow had a trigger to run on schedule (every weekday). The workflow consisted on one job with
below steps in order,

1. Automation source code checkout
2. Run python tests
3. Parse the junit report
4. Post the results to slack channel

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 8

Fig.4 Template of workflow file for test automation run(s)

6.4 Results and outcome

According to Smith, GitHub Actions significantly enhance the efficiency of workflow automation in
development environments (Smith, 2020). The tight integration of GitHub Actions with GitHub streamlines
the entire workflow process, and hence eliminating the need to manage separate systems for version
control and CI/CD. By eliminating the costs associated with infrastructure maintenance, scaling, and
support, about 15% reduction in operational costs was achieved after migrating from Jenkins to GitHub
Actions. Developer productivity increased by about 10% due to tight integration and less context
switching. After migrating to GitHub Actions, developers & QA can manage their code repositories,
monitor CI/CD & automation runs all within the same platform and hence eliminate context-switching
between different tools & interfaces. Additionally, code formatting/linting, and dependency management
were also integrated using GitHub Actions built-in support, which helped in automating these repetitive
tasks thereby helping the team focus more on writing quality code. These outcomes were observed from
the three case studies conducted and mentioned in previous sections.

GitHub Actions provided highly optimized & scalable runners in form virtual machines & containers for
executing workflows. They were efficient & responsive which allowed faster execution of CI/CD and
automation runs when compared to self-hosted infrastructure. Additionally, the declarative YAML used to
write workflows was much simpler and more readable. This made it easier to setup and maintain CI/CD
pipelines, and thereby reducing the time spent on configuration and maintenance tasks. This led to about
10% less time spent on the CI/CD and automation after GitHub Actions migration.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 9

After migration, we did analysis of the time spent with GitHub Actions when compared to Jenkins before
migration. For every 100 hours spent with Jenkins, we were spending 65 hours with GitHub Actions. Thus
we can conclude that we achieved about 35% efficiency after migration.

7 Best Practices for Migration of GitHub Actions
7.1 Incremental migration

Incremental migration involves the transitioning of the workflows progressively. Rule of thumb here is to
start with a simpler and low-risk task. In this way, we minimize risks & disruptions by allowing exhaustive
testing and configuration for each flow before moving to the next one. Additionally, it enables continuous
learning and improvement, making the migration process more manageable and efficient.

7.2 Security Best Practices

Use GitHub Actions secrets management to store API keys, and passwords, ensuring they are not
hardcoded in workflows. Monitor and assess audit logs and workflows logs to monitor for any unusual
activities and any exposed secrets. Using the principle of least privilege, regularly review permissions for
actions and workflows. Keep the actions up to date to avoid any vulnerabilities, and possibly use signed
actions wherever possible. Another way of securing workflows is pin 3rd party actions. To ensure that the
source code of the version you’re using hasn’t been altered you must pin the action to the full-length
commit SHA. The value of commit SHA is unique for each commit and is immutable. This ensures that
your GitHub Actions workflows will always use the same release of the Action.

8 Common Challenges and Solutions
8.1 Technical challenges

Migrating to GitHub Actions offers exciting opportunities to modernize automation and CI/CD pipelines,
though it may pose a few technical challenges. Translating existing automation & CI/CD configurations to
the new syntax does involve careful planning and validation. Given the goal is to maintain or enhance
security posture while migrating, configuring secrets and permissions securely is essential. For someone
not familiar with GitHub UI and system and/or declarative YAML syntax, it may be a bit of a learning
curve. Thorough testing and documentation are necessary to ensure functionality and team readiness.
Tackling these challenges systematically can lead to a successful migration of GitHub Actions.

8.2 Organizational Challenges

One of the organization challenges faced in managing change resistance by team or team members
accustomed with existing tools. Additionally, coordinating across multiple teams and aligning on newer
workflows and best practices can get complex. Allocate sufficient resources and time for smooth transition
to avoid overburdening and maintaining productivity during migration. Organize Tech-talk(s), office hours
for collaboration and knowledge sharing. Comprehensive training and upskilling across board is required
to ease the migration process and avoid any disruptions or delays.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 10

9 Conclusion
9.1 Cultural Contribution

Over a period, which started with the migration process to its completion, the change/shift in the culture of
the team was starkly visible. From being multiple teams, and to catering multiple profiles [Dev vs QA vs
DevOps Engineer], we now noticed a uniformity in approach towards pipelines. The synergy that now
drives the overall process is geared towards keeping the pipeline a standard tool, which is the frontline
candidate for shipping a product.

The team was missing a mindset which was sustainable to maintain a DevOps lifestyle, with the advent of
GitHub Actions, we notice that the pipeline is now a first-class citizen, with SecOps as a front-end driver.
The security enhancements that we were able to introduce and provide have been a boon for the team.

9.2 Positive Impacts

As mentioned before, the change in mindset of the team has brought in multiple positives, e.g. with the
advent of GitHub Actions, the infrastructure management, and the constant maintenance and scalability
were now a worry of the past. The extra time can be utilized in improving the product and implementing
new ideas, the QA can focus on product automation and the DevOps can enable the team to sustain a
quality pipeline, which is not compromised by vulnerable artifacts. The standardization is a boon in terms
of Audits and Quality Checks which come as a part and parcel of Enterprise Software teams.

The Return of Investment is an often-discussed relevant topic, the total investment in terms of time and
cost, and the total man-hours saved by implementing GitHub Actions is a net positive number, which for
privacy reasons cannot be discussed, overall, the time saved is 35% more than when using the older
technology stack.

9.3 Quality beyond Testing

The biggest takeaway from this exercise was the improvement seen in Automation. Since the platform
was common and the exposure was greater it allowed the Automation code to be validated by Senior
Developers, giving the benefit of added reviews. It also brought in a common platform to secure the
libraries and ensure that the latest and often the greatest were parts of automation frameworks. This led
to better quality and stability in framework and in turn the automation caught more bugs than before.

9.4 Future Trends

The integration with CoPilot, is something to which the team is looking forward to, the hope that AI will
bring an efficiency jump and that the pipelines will be able to detect a CrowdStrike like failure well in
advance.

10 References
Mayank Sharma and Indrajit Rajput, "Enhancing Continuous Delivery Using DevOps Practices," Journal
of Systems and Software 136 (2018): 110-119.

Jenkins Documentation. "User Handbook Overview." Last modified 2024. Accessed July 14, 2024.
https://www.jenkins.io/doc/book/getting-started/.

Jenkins Documentation. "Pipeline Documentation." Last modified 2024. Accessed July 14, 2024.
https://www.jenkins.io/doc/book/pipeline/.

about:blank
about:blank
https://www.jenkins.io/doc/book/pipeline/

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 11

Thomas Dohmke, "100 Million Developers and Counting," The GitHub Blog, January 25, 2023,
https://github.blog/2023-01-25-100-million-developers-and-counting/.

GitHub. "GitHub Actions: Overview." GitHub Docs. Accessed July 14, 2024.
https://docs.github.com/en/actions.

Smith, John. "Automating Workflows with GitHub Actions." DevOps Journal 12, no. 3 (2020): 45-58.

Heller, Priscila. Automating Workflows with GitHub Actions: Automate software development workflows
and seamlessly deploy your applications using GitHub Actions. Packt Publishing Ltd, 2021.

Rautiainen, Olli. "GitHub Enterprise and Migration of CI/CD Pipelines from Azure DevOps to GitHub."
(2023).

https://github.blog/2023-01-25-100-million-developers-and-counting/
https://docs.github.com/en/actions
https://docs.github.com/en/actions

