A Deep Dive Into Exploratory Testing

By Anna Sharpe

asharpe213@gmail.com

Abstract

In software development, ensuring quality is crucial for delivering reliable, efficient, and user-
friendly applications. There are many methods available to quality engineers today and exploratory
testing can be a strong tool in an engineer’s toolbox. Exploratory testing is an approach which
differs from traditional scripted testing in its adaptability, creativity, and focus on learning while
testing. This paper explores the concept of exploratory testing, its benefits, challenges, and best
practices, as well as a case study in how to apply exploratory testing to your team.

Biography

| graduated with a BS in computer science from Whitworth University in 2014 and started my
career as an intern test engineer in 2012. | am now a full time software test engineer with a part-
time passion for writing websites for non-profits. This is my second paper for PNSQC and along
with attending the conference six times over the years, | have also presented a poster for PNSQC.
| am thoroughly invested in continuing to add new tools to my testing toolbox and sharing my
experiences with my teammates. | am currently employed remotely out of Sacramento, Ca working
with healthcare software.



1. What is exploratory testing?

Exploratory testing is a software testing technique where testers actively explore the application
without predefined test scripts. It is often referred to as "testing as learning" because testers
investigate the software in real time using their intuition, experience, and insights to identify
defects. Unlike scripted testing, where each step is predetermined and executed systematically,
exploratory testing allows testers to simultaneously design and execute tests, fostering a deeper
understanding of the system and its functionality as a whole.

The tester's primary goal during exploratory testing is not only to identify defects but also to
uncover edge cases which might not be obvious through standard test cases. Testers leverage
their domain knowledge, creativity, and critical thinking skills to interact with the software in
unpredictable ways, enabling the discovery of bugs which otherwise would have been missed.

2. Why do we care about exploratory testing?

An expert quality assurance engineer needs a toolbox full of tools. While testing software is
inherently tedious and redundant, there needs to be a tool to test outside the box. Exploratory
testing can be that tool when applied with a clear motive and knowledge of the software under test.
Additionally, running the same static tests over and over again can only find so many bugs.
Whereas exploratory testing allows the engineer to flex their creative muscles and find the bugs no
one else can.

3. Characteristics of exploratory testing

Several key characteristics define exploratory testing:

1. Creativity and flexibility: Testers apply creativity to explore unexpected paths or
combinations of inputs which may lead to potential failures.

2. Focus on learning: Exploratory testing aims to learn about the software's functionality,
which helps give insight into where to focus a tester’s energy.

3. Bug bashes: Exploratory testing is also useful in bug bash sessions where there might be
guidelines about a new feature, but no exact test scripts. These sessions can help uncover
questions not asked during development and bugs around the new feature.

4. Time-bound sessions: Exploratory testing typically involves time-boxed sessions, where
testers work within a fixed duration (e.g., 1 hour) to explore the system and document
findings.

4. Benefits of exploratory testing

Exploratory testing offers several benefits which make it a powerful addition to a software testing
toolbox. By testing in an unscripted and unpredictable manner, exploratory testing is more likely to
uncover edge cases, usability issues, and critical bugs traditional tests may miss. Exploratory
testing can adapt to changes in the software, including new features or unexpected behavior. Since



there are no predefined scripts, exploratory testing eliminates the need for test case creation,
making it ideal for projects with tight deadlines or rapidly changing requirements. Exploratory
testing also encourages testers to actively engage with the software, utilizing their domain
knowledge and creativity, which can lead to higher motivation and improving critical thinking with
each session. Having tests which do not set a limit on what needs to be tested forces the tester to
interact with the software in an unstructured manner, which can lead to previously untested
scenarios in the software. Thus the tester is exploring the software with different paths in each test
session with the goal of finding new bugs.

5. Challenges of exploratory testing

While exploratory testing has numerous benefits, it also presents certain challenges:

1.

Lack of documentation: Since there are no predefined test scripts, exploratory testing can
suffer when there is insufficient documentation. Insufficient documentation causes the
tester to have unanswered questions during testing which would lead to a bug being
ignored because the observed behavior was assumed to be correct due to a lack of
documentation.

Inconsistent results: Because the tests are not standardized, exploratory testing may not
always result in bugs found nor confidence in the product’s quality.

Requires experienced testers: Exploratory testing demands a high level of experience,
intuition, and domain knowledge from testers. Inexperienced testers may struggle to
identify critical defects or focus their exploration effectively.

Difficult to measure coverage: Unlike scripted testing, where it's easier to measure how
much of the application has been tested, exploratory testing does not lend itself easily to
measuring test coverage.

Time constraints: Although exploratory testing can offer quick feedback, it can also be
time-consuming, particularly when testers are not familiar with the application, leading to
longer test sessions and potentially missing key defects.

6. Best practices for exploratory testing

To overcome the challenges associated with exploratory testing and maximize its effectiveness,
testers should have a guideline for best practices. Time-boxing allows testers to focus their efforts
and make the most of their exploration within a fixed period. For example having a one hour
session after the completion of an epic with other testers is a great way to utilize the collective
team’s testing power. Testers should create a testing goal for each session. The goal guides the
tester's exploration and ensures the session is focused on specific areas of the application. It is
also very helpful to have a leader for the meeting who can give a demo of the work to be tested to
define the testing goal for the group. Exploratory testing may uncover unanswered questions or
holes in existing documentation. It is always helpful to document findings or update existing
documentation to avoid confusion in the future. Having a collective document the group can use to
write down questions and bugs is a great way of keeping everything in one place. Bug bashes can



be a more structured approach to exploratory testing where a feature is demoed and then testers
are asked to find bugs. This can be extremely helpful because fresh eyes are going to see the
feature in a new way. Also, the additional testers are not going to be as familiar with the feature,
thus are going to ask difficult questions which may uncover new bugs. Collaboration is key to
understanding the software’s functionality and identifying areas which require deeper exploration.
Testers should work closely with developers, product owners, and other stakeholders to ensure
they are targeting the most critical aspects of the application. As a group, discuss new bugs, how
they were found and the priority of the bug.

7. How to educate new testers

New testers can benefit greatly from exploratory testing if they are given the right guidance.
Sharing results of previously found bugs for an epic they are involved in can give them some ideas
of where potential issues might be. Every tester has critical thinking skills, however, it is not always
obvious to new testers how to use those skills. Showing new testers how to recognize patterns can
help them come to their own conclusions later on. Also, newer testers might not be confident
enough to question the status quo, so it is important to communicate to them questions are good.
Making assumptions is not a good practice and new testers should be informed as such. Involve
the new testers in bug triage meetings to show them where customers are having issues so they
know the important scenarios in the application.

8. Exploratory testing in Agile and DevOps

Exploratory testing is particularly well-suited for Agile and DevOps environments, where fast-paced
iterations and continuous delivery are essential. In these environments, software requirements may
evolve rapidly, making it difficult to maintain extensive test scripts. Exploratory testing offers a
flexible approach to ensure software quality remains high, even as the software evolves.

In Agile teams, exploratory testing fits well within the iterative development process. Testers can
explore new features during each sprint, providing valuable feedback to the development team.
Furthermore, the collaborative nature of exploratory testing aligns with Agile principles, allowing
testers to communicate with developers and product owners to address issues promptly.

In DevOps environments, where continuous integration and continuous delivery (CI/CD) pipelines
require fast-paced testing, exploratory testing can complement automated tests. Testers can focus
on areas which are difficult to automate, such as user experience, usability, and edge cases, while
relying on automated tests for repetitive, predictable tasks.

9. How to integrate exploratory testing into the SDLC

Developing software always has deadlines which makes it difficult to budget time for exploratory
testing. It is the responsibility of the lead tester for the project to schedule time for testing
scenarios outside the direct scope of the work done by the team. It can be an easy trap to fall into
where testers are only testing the acceptance criteria outlined in the project and not testing
adjacent domains which might also be unknowingly impacted. Time can be set aside each week of
the project to ensure testing is happening throughout the development process and avoid a mad



scramble of testing at the end. The team can even set up a reoccurring meeting each week, every
Friday at 10am for an hour for example, to ensure exploratory testing becomes routine. These hour
sessions could be done solo or additional people could be brought in to bounce ideas off of.

10. Case study of exploratory testing
Description of work completed
This project’s goal was to add a login functionality to the existing checkout process to help
customers expedite checkout of future purchases. Additional work done was to collect the user’s
data for future analysis.
If you find a bug:
Open a bug for team Cobalt

Add a label Wave _1_Bug Bash

Scenarios to test:

Test steps Expected Screenshot Tester
Customer logs in with Customer should see Billy
valid credentials their previous

purchases
Customer is denied Customer should see a Anna
login with invalid link to reset their
credentials password
Customer has zero Customer’s previous Emily
previous purchases purchases should not

give an error, just be

blank
Customer has a large The page should not fail David
amount of purchase and all purchases
history should show correctly
View data on the back = Customer’s data is Frank
end accurate

Accounts to login with:

Username Password Tester
anna.anna@gmail.com AnnasPassword!
sharpe.sharpe@gmail.com SharpesPassword!


mailto:anna.anna@gmail.com

Username Password Tester

bob.bob@hotmail.com BobsPassword!
andy.andy@icloud.com AndysPassword!
julia.julia@aol.com JuliasPassword!

Known issues:

» Customers with purchases older than 2020 are not appearing correctly

» Customers with exactly five purchases have a distorted view of the list

The above is an example of documentation to have ready for running a successful bug bash. The
tester leading the bug bash should outline the work completed with as much detail as possible to
give the testers a general idea of the work completed. They also should give a demo of this work to
ensure everyone is clear about what is being tested. There should be steps on what to do if a
tester finds a bug. Your company might have standards on how to title the bugs to indicate it was
found as part of the bug bash or maybe adding a label indicating as such. Also, it is important to
list any known issues to avoid duplicate bugs being opened.

The coworkers joining the bug bash, bashers, should be given some scenarios to follow to get the
session started. The scenarios should follow a similar path to what was demoed at the start of the
meeting and the bashers can spring board from there. It can be helpful to have the scenarios
assigned to bashers to ensure everyone isn’t picking the first scenario and there is some
accountability for who tested what. Additionally, where necessary there should be logins created
prior to the bug bash for use and again the accounts should be assigned.

Inviting a variety of coworkers to these bug bashes is the ideal scenario. If possible, invite the
stakeholders of the feature so they can have a say in the quality of the work done. Most people
want to see the company they work for succeed and having a bug bash with people from other
departments and teams is a great way for everyone to be involved in the quality of the product. If
your company has never had a bug bash, it might seem silly to invite 50 people to an hour long bug
bash, but the meeting can be optional. Over time, the test team can show the value of these bug
bashes to get more involvement.

Upon completion of the bug bash, the tester leading the meeting needs to meet with the team who
originally completed the work to triage the bugs found. These bugs might spawn further questions
or uncover missed requirements. It is important to get these bugs addressed as soon as possible
since there might be an upcoming deadline for the project. Having stakeholders or product
managers in these triage meetings can help speed up the process and keep them informed on the
status of the project.


mailto:bob.bob@hotmail.com
mailto:andy.andy@icloud.com
mailto:julia.julia@aol.com

These bug bash meetings almost always lead to bugs being found and thus fixed before the
customers can complain about them. While the meeting does have an up front cost, potentially 10
engineers for two hours in the bug bash, the reward can be invaluable. Let’s imagine the bug bash
above yields one high severity bug and three medium severity bugs, the bugs are then triaged out
and fixed before the code goes to customers. Depending on the number of customers a company
has, this one bug bash eliminated potentially hundreds of complaints from customers. It also
eliminated the need for a patch and fewer patches means less stress on the engineering team.
These statistics on value provided are easy to see, no one wants to patch software after customers
complain and a planned out bug bash can eliminate the likelihood of high severity bugs being
shipped. If your company has never organized a bug bash, it might be necessary to review past
high severity bugs found by customers and discuss with stakeholders if a bug bash is a process
improvement your team can make.

11. Conclusion

Exploratory testing is a vital software testing technique which promotes creativity, adaptability, and
learning during the testing process. Its flexibility and ability to uncover hidden defects make it an
essential tool for software quality assurance. While it presents challenges, such as documentation
and coverage measurement, these can be mitigated through best practices like time-boxing,
session-based test management, and collaboration with stakeholders. In Agile and DevOps
environments, exploratory testing is particularly valuable, allowing teams to rapidly test and ensure
the quality of software in dynamic, fast-paced development cycles. By combining exploratory
testing with other testing strategies, organizations can build more robust, reliable, and user-friendly
software.

12. References
Book:

James A. Whittaker. 2005. Exploratory Software Testing: Tips, Tricks, Tours, and Technique to
Guide Test Design. Boston: Addison-Wesley Professional

Cem Kaner, and Rebecca L Fiedler. 2013. Foundations of Software Testing. Florida: Context-
Driven Press

Mauricio Aniche. 2022. Effective Software Testing: A Developer’s Guide. New York: Manning

Atul Gawande. 2011. The Checklist Manifesto: How to Get Things Right. New York: Metropolitan
Books

Gene Kim, Kevin Behr, and George Spaffron. 2013. The Phoenix Project: A Novel About IT, DevOps
and Helping Your Business Win. Oregon: IT Revolution Press



