Data-Driven API Test Case Generation
Using Al and Model Context Protocol

Harold Wilson and Joseph Petsche

hwilson@CovertCoders.DEV and Joe@CovertCoders.DEV
Covert Coders LLC

Abstract

In the rapidly evolving landscape of software development, Application Programming Interfaces (APIs)
are critical for enabling seamless integration and functionality across diverse systems. Ensuring their
reliability and robustness is essential, yet traditional testing methods often struggle with efficiency and
comprehensive test coverage, particularly in addressing complex interactions and edge cases. This paper
presents an innovative approach that leverages Artificial Intelligence (Al) and Model Context Protocol
(MCP) to automate the generation of test cases for APIs. By employing advanced Machine Learning (ML)
algorithms and MCP interfaces, our system analyzes API specifications, historical usage patterns, and
test data to intelligently generate a diverse and thorough set of test cases. This Al-driven methodology
accelerates the testing process and enhances coverage by identifying and addressing edge cases that
traditional testing might overlook.

Biography

Harold Wilson is a distinguished software quality assurance professional with extensive experience
leading QA teams. His career highlights include serving as a Test and Reliability Consultant for the United
States Space Force and as Director of Quality Assurance at Entercom Digital (radio.com). Harold has
expertise in software testing, reliability, and security including compliance with PCl and HIPAA standards,
Harold has consistently developed robust QA processes from the ground up. He began his career as an
Electronics Technician in the United States Navy and is a decorated Gulf War veteran. Harold holds a
Bachelor of Science in Computer Science from the College of Santa Fe.

Joseph Petsche is a seasoned Software Architect with over two decades of experience, specializing in
automation, integration, and quality assurance. Currently serving as an Automation Architect at
EverDriven, he streamlines DevOps pipelines and fosters cross-team collaboration to deliver high-quality
software. His career includes automating data flows at WebMD and building resilient software through
automated testing at Red Rock Tech Solutions. Joseph is passionate about solving complex problems
and ensuring client satisfaction. An avid mountain climber, he approaches challenges with strategic
determination. Joseph holds a degree in Computer Science & Engineering from the University of Toledo.

Copyright H. Wilson and J. Petsche 2025

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 1

1 Introduction

1.1 Problem Statement and Motivation

The growing complexity of modern APl ecosystems presents significant challenges for software quality
assurance teams. As Application Programming Interfaces (APIs) have become the backbone of modern
software architecture, enabling seamless integration and functionality across diverse systems, the
traditional approaches to API testing are increasingly proving inadequate. Manual test case creation faces
inherent limitations in scalability and consistency, while coverage gaps in edge-case testing leave critical
vulnerabilities undetected. Furthermore, the maintenance overhead associated with traditional test suites
becomes prohibitive as API specifications evolve and expand, creating a bottleneck that impedes
development velocity and compromises software reliability.

1.2 Research Question and Current State

Existing testing methodologies struggle to keep pace with the rapid evolution of API-driven applications,
particularly in addressing complex interactions and identifying subtle edge cases that manual testers
might overlook. This gap between testing capabilities and system complexity raises a fundamental
research question: How can Artificial Intelligence (Al) and Model Context Protocol (MCP) be leveraged by
testers to improve API test case generation efficiency and enhance test coverage? The current state of
API testing relies heavily on static, predefined test scenarios that fail to adapt to changing specifications
and usage patterns, highlighting the urgent need for intelligent, data-driven approaches that can
automatically generate comprehensive and relevant test cases while reducing the burden on testing
teams.

2 Background and Related Work

2.1 API Testing Fundamentals

API testing has emerged as a critical component of modern software quality assurance, driven by the
exponential growth of web and mobile applications and their significant role in software architecture.
Effective API testing methodologies follow a multi-layered approach aligned with the test pyramid concept
(Cohn 2009), including unit tests, integration test, and system-level testing coverage. Best practices
emphasize the importance of implementing both automated and manual testing strategies (Briggs, et al.
2019), where automated testing provides rapid feedback and regression detection and manual verification
offers flexibility and the ability to identify subtle security and business logic issues that automated tools
might miss. Organizations are increasingly adopting comprehensive testing techniques including golden
or happy path testing (TechTarget 2024) for expected scenarios, edge case testing to validate boundary
conditions, smoke testing for basic functionality verification, and combinatorial testing to achieve
maximum coverage of parameter combinations.

2.2 API Testing Challenges

API testing faces significant challenges that span technical, organizational, and process-related domains.
One of the most prominent is the complexity of maintaining test suites as API ecosystems grow and
evolve rapidly, especially in environments where developers can deploy code changes to production in
Continuous Integration / Continuous Deployment (CI/CD) environments. This acceleration creates
pressure for test frameworks to keep pace with development velocity while maintaining comprehensive
coverage. This challenge is compounded by the difficulty of achieving effective test automation
repeatability.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 2

Environmental consistency presents another major pain point for testers. Testing teams frequently
encounter issues where breaking changes introduced in development environments go undetected until
late in the development cycle. This is because tests run in different environments can generate
indeterministic behavior. Organizations often face the dilemma of balancing automated testing coverage
with the resource-intensive nature of comprehensive feature testing. Teams also struggle with the
selection and evaluation of testing tools from an overwhelming marketplace of solutions. This leads to
decision paralysis and tool choices that often fail to meet organizational needs for features, price, ease of
use, community support, and automation capabilities.

2.3 Artificial Intelligence in Software Testing

Al and ML represent a revolutionary approach to automating software testing that mimics how humans
learn and make decisions. Think of Al as teaching a computer that behaves intelligently. ML, which is a
subset of Al, is the science of getting computers to learn and improve their performance without being
explicitly programmed for every possible scenario (MIT Sloan. 2021). Al addresses a fundamental
limitation of traditional automated testing: current test scripts are rigid, break easily when applications
change, and cannot adapt to new situations the way human testers can. Al-driven testing solutions can
perceive application states, act intelligently based on what they observe, and uncover defects through
learned behavior rather than pre-written instructions.

Al, a Large Language Model (LLM), serves as the intelligent core of the test generation system, using
Claude Al advanced natural language processing and reasoning capabilities to analyze API specifications
and generate comprehensive test cases. The engine employs a multi-layered neural network architecture
that processes API documentation through both supervised and unsupervised learning approaches (Hou,
Xinyi, et al. 2025). The supervised learning component is trained using historical test data and API
specification patterns, enabling the system to recognize common endpoint structures to generate testing
scenarios. Meanwhile, the unsupervised learning mechanisms excel at discovering edge cases and
unusual parameter combinations that traditional testing approaches may miss.

2.4 Model Context Protocol

The MCP Server integration layer, shown in Figure 1, bridges the gap between various API specification
formats and the Al engine's processing components. The MCP layer supports OpenAPI specifications
directly (APImatic. 2023). The MCP Servers allow the Al to implement intelligent context extraction
mechanisms that capture not just the structural information from API specifications but also the
relationships between endpoints, data dependencies, and business logic patterns.

MCP Servers Services Data
P i Service
Service API Service
Data
- ‘]I [W i
Swagger Swagger
Swagger 99
Web Page JSON
Jira Jira API [J)"a
- =
- DataDog Logs
DataDog AP 9
" | [citup | GitHub
GitHub Rest API Repos

Excerpt from PNSQC Proceedings
Copies may not be made or distributed for commercial use

Figure 1: MCP Architecture Layers

PNSQC.ORG
Page 3

Advanced parsing capabilities if the Al include support for complex authentication schemes, nested
parameter structures, and conditional request/response patterns that are often found in enterprise API
environments. The integration layer also features dynamic content adaptation, where it can adjust its
parsing strategies based on the quality and completeness of the source documentation, simultaneous
testing of both the delivered APl and its associated documentation.

2.5 API Testing Approach

For this research we used the JEST Test Execution framework. This tool is effectively native to our
development environment, VS Code. The JEST test execution framework provides a robust and scalable
foundation for running Al-generated test cases. JEST offers a JavaScript-based testing environment that
implements an emphasis on modularity, maintainability, and extensibility while supporting both
synchronous and asynchronous API testing patterns. The framework features intelligent test
parallelization capabilities that can dynamically adjust execution based on API endpoint characteristics
and system load, significantly reducing overall test execution time while maintaining test isolation and
preventing interference between concurrent test runs (Jest Team. 2025). The JEST integration includes
custom packages specifically designed for API testing scenarios. This enables more expressive and
readable test case assertions and provides detailed failure diagnostics when tests do not pass.

The results analysis and reporting system implements a flexible, multi-tiered approach that
accommodates both generic JSON-based output for broad compatibility and specialized integration with
Jira Xray for enterprise test management workflows. The specialized Jira Xray integration provides
connectivity to enterprise test management processes, automatically creating test execution records,
updating test case statuses, and generating requirements traceability matrices that link API testing results
back to business requirements in Jira.

3 Methodology

3.1 System Architecture

The test bench and technical stack consist of the following components: Microsoft Azure web hosted
environment, Hosted servers to execute the JavaScript automation code, Claude with Sonnet 4 Desktop
Application, and Jira test case management for reporting. The test bench is integrated with the following
components via direct custom connection to MCP agent/servers: Swagger APl Documentation, Actual
API endpoints to be tested, log servers, Jira, and the Jira Xray testing plugin.

The data flow and processing pipeline follows two paths. In the first path, See Figure 3, the prompted Al
generates test cases based on the current state of the system to be tested, which is based on inputs from
Swagger, log servers, load balancers, existing test cases and user stories in Jira, and other
documentation from the release i.e. readme files and Claude markdown files, ..., etc. The second path,
see Figure 2, is the actual test case execution driven by the JEST test case execution framework. In this
path, generated test cases and existing test cases are executed against the API's to be tested, and the
results of testing are sent to Jira Xray.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 4

3.2 MCP Integration

The MCP interface implements a standardized protocol that abstracts the complexities of direct API
specification parsing while providing Claude Sonnet with structured, contextual information about the
target APIs. The implementation featured a bidirectional communication system where the MCP server
can dynamically load and parse Swagger/OpenAPI documents, transforming them into a normalized
context format that Claude Sonnet can efficiently process. Authentication and security considerations for
the API are built into the MCP layer.

The context extraction process represents a sophisticated analysis engine that transforms static Swagger
documentation into understandable tokens suitable for Al-driven test case generation. The system
performs multi-layered parsing that goes beyond simple structural interpretation to understand the
relationships between API endpoints, parameters, and business logic patterns. The extraction engine
analyzes endpoint hierarchies to identify logical groupings and dependencies, recognizing patterns such
as Create, Read Update, and Delete (CRUD) operations, pagination schemes, and nested resource
relationships that inform comprehensive test scenario development. Parameter analysis includes deep
inspection of data types, validation constraints, enumeration values, and format specifications, while also
identifying implicit relationships between parameters across different endpoints that might indicate
workflow dependencies or data consistency requirements.

Azure C|°U# Test Service To
Test E’“‘-‘C“t!"" Execution Be Tested
and Reporting Server
N * API's)
— Jira
— JEST * Swagger)
Test Data ’| | Execution R
— .
Script \ J ay
~—
“-_________../
Auth Tokens API)
—— Test
Case —
Scripts
Test Results
Data Store
Figure 2: Test Execution Environment
Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 5

Claude Sonnet's reasoning capabilities combined with extracted API context create intelligent, realistic
test data. The system implements an approach that combines constraint-based test case generation,
pattern recognition, and business logic understanding to produce comprehensive test datasets. The
generator analyzes parameter schemas to understand not just basic data types but, also parameter
meaning, generating values that respect format constraints, enumeration limits, and cross-parameter
dependencies while creating both valid and invalid inputs for comprehensive positive and negative test
case coverage. MCP agents and servers obtain context specific data for testing i.e., car makes and
models and state, county and school district names and specific addresses.

Test Case -
. Ira
Generation Azure Cloud Service To J
Be Tested
MCP Servers XRay
Services | | APTS ™
Claude
Swagger L
API
VS Code Jira
Client i
DataDog
XRay System
J— API Logs
DataDog -
— | GitHub
GitHub
I > API)
Repositories
—_— Test Data

Figure 3: Test Case Generation

3.3 Test Case Generation and Data Flows

Both test case generation data flows are orchestrated as GitHub Actions using YAML files as
implementation and execution scripts. Additional guidance on test case development was provided to
Claude Al via Claude’s markdown files and a Claude’s command folder embedded in the test automation
source code. The code block, see Listing 1, shows the Claude configuration JSON file for implementing
the servers in Figure 2

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 6

{

"mcpServers": {
"Jira":{"command":"npx",
"args":["-y","@modelcontextprotocol/server-filesystem",
e /MCP_SERVERS "1,

"env":{"NODE_ENV": "staging"}},
"GitHub": {"command": "npx",
"args": ["-y","@modelcontextprotocol/server-

filesystem", "~/MCP_SERVERS"],
"env": {"NODE_ENV": "staging"}},

"DataDog": {"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-
filesystem", "~/MCP_SERVERS"],
"env":{"NODE_ENV": "staging"}},
"Swagger": {"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-

filesystem", "~/MCP_SERVERS"],
"env'":{"NODE _ENV": '"staging'"}},
"XRay":{"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-
filesystem"”, "~/MCP_SERVERS"],
"env'":{"NODE _ENV": "staging'"}}}
}

Listing 1: Configuration file used to integrate MCP servers with the Claude Client Desktop Application

Keyword descriptions:

o "filesystem": Name for the server that will appear in the Claude Desktop user interface.
e "command": "npx": Interpreter or another tool used to run the server.

e "-y™ Automatically confirms the installation integration of the server package.

o "@modelcontextprotocol/server-filesystem": Package name of the Filesystem Server.
o Additional optional arguments: Directories the server is allowed to access.

Note: /f your configured server fails to load, and logs indicate an error referring to ${APPDATA} within a
path, you may need to add the expanded value of ${APPDATA}.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 7

4 Experimental Design and Evaluation

4.1 Evaluation Methodology

The hypothesis is that using Al tools like Claude would improve the performance of the QA Team leading
to better testing with fewer resources. To prove this hypothesis, we needed to baseline the team’s
existing performance using traditional manual testing and test automation scripts written by Software
Development Engineer in Test (SDET’s). Then we compare the performance using Al tooling to the
traditional testing approach. The delta between the two become the Al performance enhancement metric
that could be measured over time to estimate future performance of the team. The API features have an
easily quantifiable test space and coverage metrics.

The following attributes measure the performance of the team’s ability to test APIs without Al tooling this
includes overall endpoint coverage as a percentage; test cases developed per week. test cases executed
per week. creation of new defects, and validation of fixed defects. We are specifically not measuring the
quality of the delivered code i.e. defect density. Our initial performance benchmarks a listed in Table 1.

Table 1: Team Performance Metrics

Manual Manual Automated Automated Tests
Tests Tests Tests Using Al
Without Using Al Without Al
Al

Test Cases Developed Per 15 42 5 12
Week
Test Cases Executed Per 77 77 356 356
Week
Defects Created Per Week 2 3 0 2
Defects Validated {er Week 1 1 0 0
Coverage 45% 55% 75% 78%

4.2 Test Environments

The testing environment consists of the target of evaluation (the ting to be test) in this case a set of API
end points around a particular service and the test automation stack which is largely Postman tests driven
by Newman driven by JEST. Manual testing is accomplished my manually executing Postman collections
or Curl commands, see Figure 4. There are additional security components related to authorization that
are not addressed in this paper.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 8

Manual
Test Case
Execution

Jira
XRay Extension

Test Execution

Test
Cases

Tester

Newman

Test Agent Server

newman run collection.json -e env.json

Postman

—_—

Service To
Be Tested

Figure 4: Manual Test Case Execution

4.3 Experiment Metrics and Data Collection

API's)
Swagger)

S—

The following metrics were captured for both the initial baseline (without A.l. tooling) and approximately a
month later with A.l. tooling. See Table 2 for details and comparisons of test case generation speed
metrics, Coverage improvement measures, edge case discovery rates, and false positive/negative
analysis. For these metrics, the term coverage is defined as providing a test case for each scenario in a

given feature.

Table 2: Test Case Comparisons Traditional vs. Al Enhanced

Manual Tests Manual Tests Automated Automated Tests
Without Al Using Al Tests Without Al Using Al
Happy Path 111 220 432 450
Test Cases
Negative Test 217 250 545 562
Cases
Edge Cases 0 3 35 72
Performance 0 0 5 7
Security 0 0 14 21
False Positives 2 5 0 10
Coverage 45% 55% 75% 78%
Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use

Page 9

5 Results and Analysis

5.1 Summary

We observed an overall increase in the team’s ability to generate and execute test cases when leveraging
Al. However, manual test executions were not impacted by the use Al. There was a measurable amount
of false positive test results when relying on Al requiring manual validation.

5.2 Qualitative Analysis

While there was no appreciable increase in the overall quality of the product being tested, this is based on
a definition of quality related to the defects detected in the final production environment and reported by
the end users. The QA Team was able to demonstrate an increase in automated and manual test cases
developed. Specifically in the areas of edge cases and test cases addressing security vulnerabilities i.e.
HTTP parameter injection and insecure deserialization. See Table 2 for details.

5.3 Quantitative Analysis

Test case generation and test coverage metrics comparing traditional automated testing solutions and
manual testing against testing solutions leveraging Al are listed in Table 1. Overall, the team was able to
produce thirty-four more test cases per week. However, the number of false positives increased
dramatically. In our exercises, Al had no impact on the team’s ability to execute test cases either manual
or automated.

6 Conclusions

6.1 Key Finding

The current state of Al, as of August 2025, shows that API testing can be a valuable addition to existing
testing methods. However, most of the efficiencies gained by leveraging Al were offset by correcting Al's
fabrication or Synthetic misinformation. Given Moore’s Law of Al (METR 2025) that shows Al’s
capabilities doubling every seven months, it is expected that Al will be providing more value for the API
tester and software testers in general in the very near future.

While Al can increase the number of test cases being developed by a test team, there was no impact on
the overall quality of the product delivered and there was only a minimal impact on the team’s efficiency.
Any efficiency gains realized by leveraging Al in generating test cases were offset by tracking down and
troubleshooting false positives.

When the user stories provided to the Al were written using the Gherkin Syntax (Matt Wynne, et al. 2017),
Al generated better test cases. The structured description of features and scenarios is user stories
appeared to generate higher quality test cases and yielded fewer false positives in later testing.

It is important to note that the Al did provide valuable security tests that the QA Team did not have
coverage for in their existing suite of tests. Specifically, the Al suggested and created test cases for
Indirect Deserialization vulnerabilities (OWASP Foundation 2025) with multiple API endpoints.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 10

6.2 Lessons Learned

e For now, the best use of Al tooling in API testing is in manual test case generation. The Al
was able to discover edge cases that the team had not thought of and provided valuable
security tests.

e Connecting the Al to the API’s Swagger documentation enabled the Al to generate a
large volume of new test cases providing substantial labor efficiencies in test case
generation.

e Connecting the IA to the log server did not appear to impact the Al’s ability to generate
new test cases.

6.3 Limitations, Constraints and Challenges

The support community for Model Context Protocol is chaotic and largely disorganized. MCP is an
emerging industry standard that only a few Al vendors support as of August 2025. This necessitated the
sole use of Claude Al for our Al tooling and MCP server setup and configuration. It is also almost
impossible to keep pace with the pace of Al products, features, and innovations in the Al ecosystem. The
implication is that newer and better products may exist in the marketplace that we were unaware of.

6.4 Organizational Impact

The API tested in the six-week period (spanning three agile sprints) showed no measurable increase in
overall quality. Neither the defects found in our production environment, nor the defect density changed
as a result of leveraging Al. However, we have positioned the organization to take full advantage of Al as
it develops over time linking Al's improvement to our own.

References

Cohn, Mike. 2009. Succeeding with Agile: Software Development Using Scrum. Addison-Wesley
Professional.

Briggs, K., Santiago, D., Adamo Jr., D., Daye, P., & King, T. M. (2019). Semi-Autonomous, Site-Wide
A11Y Testing Using an Intelligent Agent. PNSQC Conference Proceedings, 356.

TechTarget. 2024. "What is Happy Path Testing? | Definition from TechTarget."
https://www.techtarget.com/searchsoftwarequality/definition/happy-path-testing (accessed August 2,
2025).

MIT Sloan. 2021. "Machine learning, explained." MIT Sloan Ideas Made to Matter, April 21.
https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained (accessed August 2, 2025)

Hou, Xinyi, et al. 2025. "Model Context Protocol (MCP): Landscape, Security Threats, and Future
Research Directions." arXiv:2503.23278 [cs.CR], Cornell University. https://arxiv.org/abs/2503.23278

APImatic. 2023. "Top API Specification Trends: 2019-2022." APImatic Blog, December 18.
https://www.apimatic.io/blog/2022/03/top-api-specification-trends-2019-2022 (accessed August 4, 2025)

Jest Team. 2025. "Jest: Delightful JavaScript Testing." Jest Documentation. https://jestjs.io/ (accessed
August 2, 2025)

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 11

OWASP Foundation. "Insecure Deserialization." OWASP Community Vulnerabilities. Available at:
https://owasp.org/www-community/vulnerabilities/Insecure_Deserialization (accessed August 13, 2025)

METR. (2025, March 19). Measuring Al Ability to Complete Long Tasks. METR Blog.
https://metr.org/blog/2025-03-19-measuring-ai-ability-to-complete-long-tasks/ (Accessed August 20,
2025)

Matt Wynne, Aslak Hellesoy, and Steve Tooke. The Cucumber Book. 2nd ed., Pragmatic Bookshelf,
2017.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 12

