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Abstract 

In the rapidly evolving landscape of software development, Application Programming Interfaces (APIs) 
are critical for enabling seamless integration and functionality across diverse systems. Ensuring their 
reliability and robustness is essential, yet traditional testing methods often struggle with efficiency and 
comprehensive test coverage, particularly in addressing complex interactions and edge cases. This paper 
presents an innovative approach that leverages Artificial Intelligence (AI) and Model Context Protocol 
(MCP) to automate the generation of test cases for APIs. By employing advanced Machine Learning (ML) 
algorithms and MCP interfaces, our system analyzes API specifications, historical usage patterns, and 
test data to intelligently generate a diverse and thorough set of test cases. This AI-driven methodology 
accelerates the testing process and enhances coverage by identifying and addressing edge cases that 
traditional testing might overlook. 
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1 Introduction 

1.1 Problem Statement and Motivation  

The growing complexity of modern API ecosystems presents significant challenges for software quality 
assurance teams. As Application Programming Interfaces (APIs) have become the backbone of modern 
software architecture, enabling seamless integration and functionality across diverse systems, the 
traditional approaches to API testing are increasingly proving inadequate. Manual test case creation faces 
inherent limitations in scalability and consistency, while coverage gaps in edge-case testing leave critical 
vulnerabilities undetected. Furthermore, the maintenance overhead associated with traditional test suites 
becomes prohibitive as API specifications evolve and expand, creating a bottleneck that impedes 
development velocity and compromises software reliability. 

1.2 Research Question and Current State 

Existing testing methodologies struggle to keep pace with the rapid evolution of API-driven applications, 
particularly in addressing complex interactions and identifying subtle edge cases that manual testers 
might overlook. This gap between testing capabilities and system complexity raises a fundamental 
research question: How can Artificial Intelligence (AI) and Model Context Protocol (MCP) be leveraged by 
testers to improve API test case generation efficiency and enhance test coverage? The current state of 
API testing relies heavily on static, predefined test scenarios that fail to adapt to changing specifications 
and usage patterns, highlighting the urgent need for intelligent, data-driven approaches that can 
automatically generate comprehensive and relevant test cases while reducing the burden on testing 
teams. 

2 Background and Related Work 

2.1 API Testing Fundamentals  

API testing has emerged as a critical component of modern software quality assurance, driven by the 
exponential growth of web and mobile applications and their significant role in software architecture. 
Effective API testing methodologies follow a multi-layered approach aligned with the test pyramid concept 
(Cohn 2009), including unit tests, integration test, and system-level testing coverage. Best practices 
emphasize the importance of implementing both automated and manual testing strategies (Briggs, et al. 
2019), where automated testing provides rapid feedback and regression detection and manual verification 
offers flexibility and the ability to identify subtle security and business logic issues that automated tools 
might miss. Organizations are increasingly adopting comprehensive testing techniques including golden 
or happy path testing (TechTarget 2024) for expected scenarios, edge case testing to validate boundary 
conditions, smoke testing for basic functionality verification, and combinatorial testing to achieve 
maximum coverage of parameter combinations. 

2.2 API Testing Challenges 

API testing faces significant challenges that span technical, organizational, and process-related domains. 
One of the most prominent is the complexity of maintaining test suites as API ecosystems grow and 
evolve rapidly, especially in environments where developers can deploy code changes to production in 
Continuous Integration / Continuous Deployment (CI/CD) environments. This acceleration creates 
pressure for test frameworks to keep pace with development velocity while maintaining comprehensive 
coverage. This challenge is compounded by the difficulty of achieving effective test automation 
repeatability.  
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Environmental consistency presents another major pain point for testers. Testing teams frequently 
encounter issues where breaking changes introduced in development environments go undetected until 
late in the development cycle. This is because tests run in different environments can generate 
indeterministic behavior. Organizations often face the dilemma of balancing automated testing coverage 
with the resource-intensive nature of comprehensive feature testing. Teams also struggle with the 
selection and evaluation of testing tools from an overwhelming marketplace of solutions. This leads to 
decision paralysis and tool choices that often fail to meet organizational needs for features, price, ease of 
use, community support, and automation capabilities. 

2.3 Artificial Intelligence in Software Testing 

AI and ML represent a revolutionary approach to automating software testing that mimics how humans 
learn and make decisions. Think of AI as teaching a computer that behaves intelligently. ML, which is a 
subset of AI, is the science of getting computers to learn and improve their performance without being 
explicitly programmed for every possible scenario (MIT Sloan. 2021). AI addresses a fundamental 
limitation of traditional automated testing: current test scripts are rigid, break easily when applications 
change, and cannot adapt to new situations the way human testers can. AI-driven testing solutions can 
perceive application states, act intelligently based on what they observe, and uncover defects through 
learned behavior rather than pre-written instructions. 

AI, a Large Language Model (LLM), serves as the intelligent core of the test generation system, using 
Claude AI advanced natural language processing and reasoning capabilities to analyze API specifications 
and generate comprehensive test cases. The engine employs a multi-layered neural network architecture 
that processes API documentation through both supervised and unsupervised learning approaches (Hou, 
Xinyi, et al. 2025). The supervised learning component is trained using historical test data and API 
specification patterns, enabling the system to recognize common endpoint structures to generate testing 
scenarios. Meanwhile, the unsupervised learning mechanisms excel at discovering edge cases and 
unusual parameter combinations that traditional testing approaches may miss. 

2.4 Model Context Protocol  

The MCP Server integration layer, shown in Figure 1, bridges the gap between various API specification 
formats and the AI engine's processing components. The MCP layer supports OpenAPI specifications 
directly (APImatic. 2023). The MCP Servers allow the AI to implement intelligent context extraction 
mechanisms that capture not just the structural information from API specifications but also the 
relationships between endpoints, data dependencies, and business logic patterns.  

Figure 1: MCP Architecture Layers 
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Advanced parsing capabilities if the AI include support for complex authentication schemes, nested 
parameter structures, and conditional request/response patterns that are often found in enterprise API 
environments. The integration layer also features dynamic content adaptation, where it can adjust its 
parsing strategies based on the quality and completeness of the source documentation, simultaneous 
testing of both the delivered API and its associated documentation.  

 

2.5 API Testing Approach  

For this research we used the JEST Test Execution framework. This tool is effectively native to our 
development environment, VS Code. The JEST test execution framework provides a robust and scalable 
foundation for running AI-generated test cases. JEST offers a JavaScript-based testing environment that 
implements an emphasis on modularity, maintainability, and extensibility while supporting both 
synchronous and asynchronous API testing patterns. The framework features intelligent test 
parallelization capabilities that can dynamically adjust execution based on API endpoint characteristics 
and system load, significantly reducing overall test execution time while maintaining test isolation and 
preventing interference between concurrent test runs (Jest Team. 2025). The JEST integration includes 
custom packages specifically designed for API testing scenarios. This enables more expressive and 
readable test case assertions and provides detailed failure diagnostics when tests do not pass.  

The results analysis and reporting system implements a flexible, multi-tiered approach that 
accommodates both generic JSON-based output for broad compatibility and specialized integration with 
Jira Xray for enterprise test management workflows. The specialized Jira Xray integration provides 
connectivity to enterprise test management processes, automatically creating test execution records, 
updating test case statuses, and generating requirements traceability matrices that link API testing results 
back to business requirements in Jira.  

3 Methodology 

3.1 System Architecture 

The test bench and technical stack consist of the following components: Microsoft Azure web hosted 
environment, Hosted servers to execute the JavaScript automation code, Claude with Sonnet 4 Desktop 
Application, and Jira test case management for reporting. The test bench is integrated with the following 
components via direct custom connection to MCP agent/servers: Swagger API Documentation, Actual 
API endpoints to be tested, log servers, Jira, and the Jira Xray testing plugin.  

The data flow and processing pipeline follows two paths. In the first path, See Figure 3, the prompted AI 
generates test cases based on the current state of the system to be tested, which is based on inputs from 
Swagger, log servers, load balancers, existing test cases and user stories in Jira, and other 
documentation from the release i.e. readme files and Claude markdown files, …, etc. The second path, 
see Figure 2, is the actual test case execution driven by the JEST test case execution framework. In this 
path, generated test cases and existing test cases are executed against the API’s to be tested, and the 
results of testing are sent to Jira Xray.    
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3.2 MCP Integration  

The MCP interface implements a standardized protocol that abstracts the complexities of direct API 
specification parsing while providing Claude Sonnet with structured, contextual information about the 
target APIs. The implementation featured a bidirectional communication system where the MCP server 
can dynamically load and parse Swagger/OpenAPI documents, transforming them into a normalized 
context format that Claude Sonnet can efficiently process. Authentication and security considerations for 
the API are built into the MCP layer.  

The context extraction process represents a sophisticated analysis engine that transforms static Swagger 
documentation into understandable tokens suitable for AI-driven test case generation. The system 
performs multi-layered parsing that goes beyond simple structural interpretation to understand the 
relationships between API endpoints, parameters, and business logic patterns. The extraction engine 
analyzes endpoint hierarchies to identify logical groupings and dependencies, recognizing patterns such 
as Create, Read Update, and Delete (CRUD) operations, pagination schemes, and nested resource 
relationships that inform comprehensive test scenario development. Parameter analysis includes deep 
inspection of data types, validation constraints, enumeration values, and format specifications, while also 
identifying implicit relationships between parameters across different endpoints that might indicate 
workflow dependencies or data consistency requirements.  

 

 

 

 

 

Figure 2: Test Execution Environment 
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Claude Sonnet's reasoning capabilities combined with extracted API context create intelligent, realistic 
test data. The system implements an approach that combines constraint-based test case generation, 
pattern recognition, and business logic understanding to produce comprehensive test datasets. The 
generator analyzes parameter schemas to understand not just basic data types but, also parameter 
meaning, generating values that respect format constraints, enumeration limits, and cross-parameter 
dependencies while creating both valid and invalid inputs for comprehensive positive and negative test 
case coverage. MCP agents and servers obtain context specific data for testing i.e., car makes and 
models and state, county and school district names and specific addresses. 

 

 

 

 

3.3 Test Case Generation and Data Flows 

Both test case generation data flows are orchestrated as GitHub Actions using YAML files as 
implementation and execution scripts. Additional guidance on test case development was provided to 
Claude AI via Claude’s markdown files and a Claude’s command folder embedded in the test automation 
source code. The code block, see Listing 1, shows the Claude configuration JSON file for implementing 
the servers in Figure 2 

 

 

 

Figure 3: Test Case Generation 
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Keyword descriptions: 

• "filesystem": Name for the server that will appear in the Claude Desktop user interface. 

• "command": "npx": Interpreter or another tool used to run the server. 

• "-y": Automatically confirms the installation integration of the server package. 

• "@modelcontextprotocol/server-filesystem": Package name of the Filesystem Server. 

• Additional optional arguments: Directories the server is allowed to access. 

Note: If your configured server fails to load, and logs indicate an error referring to ${APPDATA} within a 
path, you may need to add the expanded value of ${APPDATA}. 

 

 

{ 

"mcpServers":{ 

    "Jira":{"command":"npx", 

            "args":["-y","@modelcontextprotocol/server-filesystem", 

"~/MCP_SERVERS"], 

            "env":{"NODE_ENV": "staging"}}, 

    "GitHub":{"command": "npx", 

              "args": ["-y","@modelcontextprotocol/server-

filesystem", "~/MCP_SERVERS"], 

              "env":{"NODE_ENV": "staging"}}, 

    "DataDog":{"command": "npx", 

               "args": ["-y", "@modelcontextprotocol/server-

filesystem", "~/MCP_SERVERS"], 

               "env":{"NODE_ENV": "staging"}}, 

    "Swagger":{"command": "npx", 

               "args": ["-y", "@modelcontextprotocol/server-

filesystem", "~/MCP_SERVERS"], 

               "env":{"NODE_ENV": "staging"}}, 

    "XRay":{"command": "npx", 

            "args": ["-y", "@modelcontextprotocol/server-

filesystem", "~/MCP_SERVERS"], 

            "env":{"NODE_ENV": "staging"}}} 

} 

  

Listing 1: Configuration file used to integrate MCP servers with the Claude Client Desktop Application 
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4 Experimental Design and Evaluation  

4.1 Evaluation Methodology 

The hypothesis is that using AI tools like Claude would improve the performance of the QA Team leading 
to better testing with fewer resources. To prove this hypothesis, we needed to baseline the team’s 
existing performance using traditional manual testing and test automation scripts written by Software 
Development Engineer in Test (SDET’s). Then we compare the performance using AI tooling to the 
traditional testing approach. The delta between the two become the AI performance enhancement metric 
that could be measured over time to estimate future performance of the team. The API features have an 
easily quantifiable test space and coverage metrics.  

The following attributes measure the performance of the team’s ability to test APIs without AI tooling this 
includes overall endpoint coverage as a percentage; test cases developed per week. test cases executed 
per week. creation of new defects, and validation of fixed defects. We are specifically not measuring the 
quality of the delivered code i.e. defect density. Our initial performance benchmarks a listed in Table 1.  

Table 1: Team Performance Metrics 

 Manual 
Tests 

Without 
AI 

Manual 
Tests 

Using AI 

Automated 
Tests 

Without AI 

Automated Tests 
Using AI 

Test Cases Developed Per 
Week 

15 42 5 12 

Test Cases Executed Per 
Week 

77 77 356 356 

Defects Created Per Week 2 3 0 2 

Defects Validated {er Week 1 1 0 0 

Coverage 45% 55% 75% 78% 

 

4.2 Test Environments 

The testing environment consists of the target of evaluation (the ting to be test) in this case a set of API 
end points around a particular service and the test automation stack which is largely Postman tests driven 
by Newman driven by JEST. Manual testing is accomplished my manually executing Postman collections 
or Curl commands, see Figure 4. There are additional security components related to authorization that 
are not addressed in this paper.  
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Figure 4: Manual Test Case Execution 

 

4.3 Experiment Metrics and Data Collection    

The following metrics were captured for both the initial baseline (without A.I. tooling) and approximately a 
month later with A.I. tooling. See Table 2 for details and comparisons of test case generation speed 
metrics, Coverage improvement measures, edge case discovery rates, and false positive/negative 
analysis. For these metrics, the term coverage is defined as providing a test case for each scenario in a 
given feature.    

 

Table 2: Test Case Comparisons Traditional vs. AI Enhanced 

 
Manual Tests 

Without AI 
Manual Tests 

Using AI 
Automated 

Tests Without AI 
Automated Tests 

Using AI 

Happy Path 
Test Cases 

111 220 432 450 

Negative Test 
Cases 

217 250 545 562 

Edge Cases 0 3 35 72 

Performance  0 0 5 7 

Security 0 0 14 21 

False Positives 2 5 0 10 

Coverage 45% 55% 75% 78% 
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5 Results and Analysis 

5.1 Summary  

We observed an overall increase in the team’s ability to generate and execute test cases when leveraging 
AI. However, manual test executions were not impacted by the use AI. There was a measurable amount 
of false positive test results when relying on AI requiring manual validation.  

5.2 Qualitative Analysis 

While there was no appreciable increase in the overall quality of the product being tested, this is based on 
a definition of quality related to the defects detected in the final production environment and reported by 
the end users. The QA Team was able to demonstrate an increase in automated and manual test cases 
developed. Specifically in the areas of edge cases and test cases addressing security vulnerabilities i.e. 
HTTP parameter injection and insecure deserialization. See Table 2 for details.  

5.3 Quantitative Analysis 

Test case generation and test coverage metrics comparing traditional automated testing solutions and 
manual testing against testing solutions leveraging AI are listed in Table 1. Overall, the team was able to 
produce thirty-four more test cases per week. However, the number of false positives increased 
dramatically. In our exercises, AI had no impact on the team’s ability to execute test cases either manual 
or automated.  

6 Conclusions  

6.1 Key Finding  

The current state of AI, as of August 2025, shows that API testing can be a valuable addition to existing 
testing methods. However, most of the efficiencies gained by leveraging AI were offset by correcting AI’s 
fabrication or Synthetic misinformation. Given Moore’s Law of AI (METR 2025) that shows AI’s 
capabilities doubling every seven months, it is expected that AI will be providing more value for the API 
tester and software testers in general in the very near future.    

While AI can increase the number of test cases being developed by a test team, there was no impact on 
the overall quality of the product delivered and there was only a minimal impact on the team’s efficiency. 
Any efficiency gains realized by leveraging AI in generating test cases were offset by tracking down and 
troubleshooting false positives.  

When the user stories provided to the AI were written using the Gherkin Syntax (Matt Wynne, et al. 2017), 
AI generated better test cases. The structured description of features and scenarios is user stories 
appeared to generate higher quality test cases and yielded fewer false positives in later testing.  

It is important to note that the AI did provide valuable security tests that the QA Team did not have 
coverage for in their existing suite of tests. Specifically, the AI suggested and created test cases for 
Indirect Deserialization vulnerabilities (OWASP Foundation 2025) with multiple API endpoints.  
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6.2 Lessons Learned  

• For now, the best use of AI tooling in API testing is in manual test case generation. The AI 

was able to discover edge cases that the team had not thought of and provided valuable 

security tests.  

• Connecting the AI to the API’s Swagger documentation enabled the AI to generate a 

large volume of new test cases providing substantial labor efficiencies in test case 

generation.   

• Connecting the IA to the log server did not appear to impact the AI’s ability to generate 

new test cases.      

6.3 Limitations, Constraints and Challenges 

The support community for Model Context Protocol is chaotic and largely disorganized. MCP is an 
emerging industry standard that only a few AI vendors support as of August 2025. This necessitated the 
sole use of Claude AI for our AI tooling and MCP server setup and configuration. It is also almost 
impossible to keep pace with the pace of AI products, features, and innovations in the AI ecosystem. The 
implication is that newer and better products may exist in the marketplace that we were unaware of.    

6.4 Organizational Impact   

The API tested in the six-week period (spanning three agile sprints) showed no measurable increase in 
overall quality. Neither the defects found in our production environment, nor the defect density changed 
as a result of leveraging AI. However, we have positioned the organization to take full advantage of AI as 
it develops over time linking AI’s improvement to our own.     
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