Cypress to Playwright migration guide

Ryan Song

ryan.song@iterable.com

Abstract

Cypress has served as our E2E testing tool for several years, offering simplicity and developer-friendly
syntax. However, limitations such as performance issues with large test suites, and memory leak have
surfaced as our testing needs evolved. To support a smooth transition from Cypress to Playwright as our
end-to-end (E2E) testing framework, this proposal outlines the creation of a comprehensive Cypress to
Playwright Migration Guide. The guide will serve as a hands-on reference for engineering teams,
ensuring minimal disruption, knowledge transfer, and successful re-implementation of tests using
Playwright.

Biography

Ryan Song is a Staff Test Engineer at Iterable with over 10 years of experience in the quality engineering
field. He has contributed to projects across a wide range of environments—ifrom startups and
federal/defense sectors to Fortune 50 enterprises. Ryan is passionate about automation testing and
continuous integration/continuous deployment (Cl/CD), with a strong focus on system optimization and
operations research. He holds a degree in Industrial and Systems Engineering from Texas A&M
University and is currently based in Los Angeles.

Page 1

Hackathon week

During lterable’s hackathon week, our quality engineering team explored whether a faster, more reliable
alternative to Cypress could meet our growing testing needs. Cypress had served us well, but as our
codebase expanded, we faced slower execution times for large test suites and recurring memory leaks
that disrupted CI pipelines. Playwright quickly emerged as the top candidate thanks to its modern
architecture, native parallel execution, robust cross-browser support, and strong community. To test its
potential, we built a representative set of tests, ran them alongside Cypress, and tracked execution speed
and memory usage. The results were clear: Playwright consistently ran faster, used fewer resources, and
produced more stable results. This hackathon project provided the technical evidence and team
confidence needed to form the cornerstone of our migration plan and begin a strategic, phased transition.

/\ Incomplete

* We detected that the Chromium Renderer process just crashed.
This can happen for a number of different reasons.
If you're running lots of tests on a memory intense application.
- Try increasing the CPU/memory on the machine you're running on
- Try enabling experimentalMemoryManagement in your config file.
- Try lowering numTestsKeptInMemory in your config file during '
You can learn more here:

https://on.cypress.io/renderer-process-crashed
38 of 181 specs skipped

Figure 1 Example of Cypress out of memory issue

Introduction of the migration

Our transition from Cypress to Playwright is a deliberate, organization-wide effort to modernize our end-
to-end testing framework, improve test performance, and reduce long-term maintenance costs. Cypress
served us well for years with its developer-friendly syntax and ease of integration, but as our application
and test coverage grew, we began encountering slower execution times, higher resource usage, and
recurring memory leaks that affected CI stability. This migration guide is designed to support developers
of all experience levels through a structured, practical approach. Migrating to a new framework is not just
a technical change—it requires planning, shared understanding, and consistent best practices to ensure
long-term success.

Our approach spans five key areas:

1. Proof-of-Concept Validation — Using a PoC to compare Playwright and Cypress head-to-head in
speed, memory usage, and stability, providing the technical evidence to secure leadership buy-in.

Page 2

2. Migration Tooling — Leveraging Al-assisted translation and specialized tools like Cursor.io to
accelerate conversion while handling framework-specific differences.

3. Folder & Test Structure Improvements — Refactoring from ad-hoc selectors to a Page Object
Model (POM) for cleaner, more maintainable, and scalable tests.

4. Timeline & Strategy — Executing migration in deliberate phases, starting with the most complex
tests and including buffer time for staffing changes.

5. Final Touch-Up & Ongoing Support — Delivering documentation, utilities, and stability
improvements to ensure long-term adoption and measurable ROI.

1. Proof-of-Concept: Validating Playwright

When adopting a new framework like Playwright, the first and most critical step is to create a proof-of-
concept (PoC) that demonstrates clear, measurable value. A migration of this magnitude is more than a
tooling swap—it represents an organizational shift that impacts workflows, long-term maintainability, and
CI/CD stability. Building trust and confidence early is essential to secure buy-in from both leadership and
developers.

Our PoC began after the Iterable’s Hackathon Week, when the quality engineering team used the
opportunity to evaluate whether Playwright could not only match Cypress’s capabilities but also address
its long-standing weaknesses. We designed the PoC to cover a range of scenarios, from basic functional
tests that confirmed Playwright’s syntax and API suitability, to complex cases involving database reads
and writes through third-party libraries, and API response interception with mocked data. Each Playwright
test was paired with an equivalent Cypress test, run side-by-side, and measured on execution time, CPU
usage, and memory consumption.

The results were compelling: Playwright matched all of Cypress’s features, performed just as well without
running into memory issues, and executed faster in local environments. Its open-source nature also
presented cost savings by eliminating hosting fees. We shared these findings in a demo to the
engineering organization, emphasizing both the performance improvements and the potential reduction in
Cl resource usage. To validate the developer experience, we invited several front-end engineers to write
Playwright tests and share feedback. Their responses were overwhelmingly positive, further convincing
engineering leadership to support the migration.

2. Migration Tooling

Our next focus is migration tooling, because moving large amounts of tests to a new framework
is time consuming and complicated. Cypress and Playwright differ substantially in syntax,
selector strategies, and architectural patterns, which makes direct translation challenging and
prone to subtle errors. We evaluated several migration methods, starting with manual rewriting,
which provided high accuracy but was too slow to be practical for hundreds of tests. We also
experimented with Al-assisted translation, leveraging GitHub Copilot and ChatGPT to generate
Playwright equivalents from Cypress examples. While this approach accelerated the process, it
still required manual adjustments to account for framework-specific behaviors—particularly
replacing Cypress’s implicit assertions with Playwright’s explicit expectations.

Ultimately, we adopted Cursor.io, a specialized migration tool that outperformed other options
by parsing page structures and auto-generating Playwright code directly from existing Cypress

Page 3

files. Cursor.io proved especially effective at importing selectors and producing robust test files,
though it initially struggled with the complex, custom Cypress utilities our team had developed.
Since these utilities had no direct Playwright equivalents, we improved the tool’s accuracy by
providing targeted training examples and iteratively refining its output.

Convert Cypress Test to Playwright

convert this predicrtiveGoals spec from Cypress to Playwright and using
POM file structure

I'll scan the repo to locate the page object and the GraphQL mocking
fixture referenced by the new Playwright test, and verify
selectors/methods used exist. Then I'll adjust or add any missing pieces
to complete the conversion.

I'm going to open the POM file and the GraphQL utility to verify that all
locators and helper methods referenced by the Playwright spec exist
and are correct. Then I'll ensure the spec compiles against the POM and
fixtures.

Plann

Figure 2 Ex of using Cursor.io

Page 4

Notes:

e The POM PredictiveGoalsPage provides all locators used by the
spec (fullx cards, andQuerylLocator, occurrencesInput, popover,
etc.). Methods getEventText, getPurchaseEventText, getComparis
onOperator, and getTimeText line up with assertions.

o The test uses the gql fixture's mockGQL correctly with the existing
mock JSONs in playwright/mockData/predictiveGoalsData .

predictiveGoals.page.ts X

ple ight insi > predi

expect } from '@playwright/test’;

import { Page, Locator,

export class PredictiveGoalsPage {
readonly page: Page;

readonly fullSubscribeTemplateCard: Locator;
readonly fullChurnTemplateCard: Locator;
readonly fullPurchaseTemplateCard: Locator;
readonly subscribeTemplateCard: Locator;
readonly churnTemplateCard: Locator;
readonly purchaseTemplateCard: Locator;

predictiveGoals.spec.ts M X

ght > e2e > insights p
import { test, expect } from '../../fixtures/gql';
import { PredictiveGoalsPage } from '../../pages/insights/predictiveGoals.page';

3. Folder & Test Structure Improvements

Migrating frameworks gave us the perfect opportunity to eliminate technical debt and design a
cleaner, more scalable test architecture. In our Cypress implementation, selectors were often
hardcoded directly in test files, reusable commands were scattered or duplicated, and updating
a single selector could require changes across multiple files—driving up maintenance costs. For
Playwright, we adopted the Page Object Model (POM), consolidating selectors and reusable
methods into dedicated page classes. This structure centralized selectors by page or
component, encapsulated common workflows in utility functions, and maintained a clear
separation between test logic and page interaction details. As a result, duplication was
significantly reduced, maintainability improved, and scaling the test suite became far more
manageable. Now, updating a selector requires changing only one file rather than dozens,
lowering the risk of regressions and easing developer frustration.

Page 5

Page Object Model

Web Pages Page Components Page Objects Test Scripts
e

Header ——| Page Object || — —| TestCases|
! | =

Home Page Main page |—'+| Pageobject |'— £ — | TestCases 2
1 1 g
! -

Footer ——+| Page Object 1= g — | Test Cases 3
e — e IS
<

Login Page »| Page Object | — E —+| Test Cases 4
b=

Contact Page »| Page Object | — — | Test Cases 5

. 2 || .

Page + Object = Page Object Testomat.io

Figure 3 Example of Page Object Model

4. Migration Timeline & Strategy

A successful migration requires phased execution and proactive risk management. Our
Playwright migration began in Q3 2024 with over ten specs migrated—specifically those that
had been problematic in Cypress. Tackling the most challenging tests first gave us confidence
that Playwright could handle the scenarios where Cypress struggled. During this phase, we also
completed draft knowledge transfer documentation and saw the first frontend developers
contribute Playwright tests. Once a test was migrated, it was skipped in the Cypress suite to
avoid duplication, and by this point, all new end-to-end development had shifted to Playwright
with no new Cypress tests being created.

In Q4 2024, we migrated another ten-plus specs, focusing on those that were particularly flaky
in Cypress so we could compare their stability in Playwright. By Q1 2025, we had completed
migrating all specs owned by embedded teams, meaning the most complex tests were already
in Playwright and only stable Cypress tests remained to be moved. Q2 2025 was dedicated to
migrating the remaining “other” team-owned specs, but limited QE resources made it
challenging to complete the work on schedule.

With our Cypress contract ending in August 2025, we prioritized removing dependency on the
Cypress Dashboard by switching to CircleClI’s native parallel test execution. Q3 2025 focused
on final cleanup to ensure all remaining Cypress dependencies were removed, and our goal for
Q4 2025 is to fully deprecate Cypress and complete the migration.

Page 6

This phased approach allowed us to validate Playwright’'s capabilities early, maintain
momentum by starting with QE-owned tests, and collaborate effectively with frontend teams on
shared cases. Running both frameworks in the Cl pipeline throughout the process ensured
stability, and adopting CircleClI’s test-splitting functionality allowed us to move away from the
Cypress Dashboard ahead of schedule. Spanning more than a year, the migration was
completed smoothly through structured execution, close collaboration, and strategic use of
tooling—without major disruption to delivery timelines.

PLAYWRIGHT

Migrated 10+ specs
Finished draft
documentation

. First Dev add
Playwright tests

AllDevs are on Finish migrating 7/
Playwright, no embedded team’s specs ypress contact ending}
more Cypress tests in Aug 2025
being written
: Q4 :
: ; Qz Q4 Goal
Migration begins o o o
Q3 : :
Ql : Q3
Migrate 10+ more specs and ggi:,sn‘;‘géizng other Move away from Cypress
continue improve the test completely

framework infra

Figure 4 Timeline of the migration

5. Final Touch-Up and Ongoing Support

Migration completion was not the end of the journey—it marked the beginning of long-term
adoption. To ensure Playwright became an integral part of our workflow, we prioritized
enablement, stability, and continuous feedback. We created comprehensive documentation
covering syntax, best practices, advanced scenarios, and troubleshooting guides to help
engineers ramp up quickly. To improve reliability, frontend engineers were encouraged to add
data-test IDs to elements, significantly reducing test flakiness. We also developed reusable
utilities for complex actions such as file uploads, multi-tab workflows, and conditional waits,
enabling teams to write cleaner, more maintainable tests.

To demonstrate the value of the migration, we tracked key metrics including run times, flakiness
rates, Cl resource usage, and total cost savings. This data provided clear evidence of efficiency
gains and return on investment for engineering leadership. An open feedback channel allowed
us to refine utilities and documentation based on real-world usage, ensuring Playwright became
not just a replacement for Cypress, but a sustainable and scalable foundation for our test
automation strategy.

Page 7

SPEC FILES TOTAL RUNS FAILURE RATE

195 specs 61 5% |
195 specs 604 8% 11
195 specs 481 1% 0
195 specs 535 1% Il
195 specs 531 14% B
195 specs am 13% B
195 specs 603 15% B
196 specs 515 8%l
188 specs 515 21% Il
188 specs 516 16% W

Figure 5 Flaky test percentage when running only running Cypress

Page 8

O circleci

L]
e o |terable v
. © The data shown on this page is refreshed nightly. This may result in differences between the data seen here and the data shown on tt

{3 Organization Home
(@) Insights > [lterable > 6lg build_and_cypress

&) Pipelines
% build_and_cypress

[Projects

= Releases [new] 89 build_and_cypress ~ P master v 24h 7d 30d 60d 90d

E] Insights @ Data delayed up to 24 hours.

E) Self-Hosted Runners OVERVIEW JoBS TESTS

@ Organization Settings Job + Total Credits Duration (p95) Runs Success Rate

(8 Plan » cypress 15m15s 1 72 100% 11%
» package_coverage 19m 20s ¥ 12% 74 99%
» playwright 6m 47s ¥ 50 72 100% 19%

Figure 6 After migrating the flaky tests to Playwright, both jobs are running 100% success rate on the master branch

Highlight of the comparison

Cypress offers strong debugging capabilities through its interactive Test Runner, which includes
time-travel debugging and detailed DOM snapshots. The paid version also provides enhanced
customer support, making it appealing for teams that value responsive assistance. However,
Cypress can face performance bottlenecks at scale, particularly with large test suites or
memory-intensive tests. Additionally, advanced features such as test recording, parallelization,
and analytics are locked behind the paid Cypress Dashboard, adding ongoing costs.

Playwright, on the other hand, is fully open-source with no paid tiers, providing all core features,
including parallelization and reporting, at no additional cost. Its powerful API supports network
interception, native event handling, file uploads, geolocation simulation, and more, while also
delivering better performance at scale with efficient parallel execution and lower memory
overhead compared to Cypress. That said, Playwright offers fewer built-in debugging tools,
lacking Cypress’s time-travel DOM snapshots, though its trace viewer provides an alternative. It
is also less opinionated, requiring teams to make more decisions about test structure, best
practices, and configuration, which can lengthen the onboarding process for new users.

Conclusion

Our migration from Cypress to Playwright was more than a framework switch—it was a
transformation in how we approach end-to-end testing. By starting with a proof-of-concept,

Page 9

leveraging migration tooling, and refactoring our test architecture, we built a foundation that is
faster, more stable, and easier to maintain. Careful planning and phased execution allowed us
to manage risks, handle staffing changes, and avoid disruptions to delivery timelines, while
continuous documentation, enablement, and feedback ensured that Playwright adoption was
both smooth and sustainable.

The results speak for themselves: reduced flakiness, faster execution times, improved
maintainability, and tangible cost savings in Cl resources. More importantly, the migration set
the stage for long-term scalability, enabling our quality engineering team to keep pace with
product growth and evolving business needs. This initiative was not simply about replacing a
tool—it was about investing in a testing culture that prioritizes reliability, performance, and
adaptability, ensuring our organization remains well-positioned for the future.

Reference

1. Cypress Documentation — Why Cypress? htips://docs.cypress.io/app/get-started/why-cypress

2. Playwright Documentation — Getting Started with Playwright https://playwright.dev/docs/intro

3. CircleCl Documentation — Test Splitting and Parallelism https://circleci.com/docs/parallelism-
faster-jobs

4. Testomat.io — Page Object Model Pattern in JavaScript with Playwright
https://testomat.io/blog/page-object-model-pattern-javascript-with-playwright/

Page
10

