Layout Validation Using Generative Al:
A New Approach to Ensuring Ul
Consistency

Regis Bernard (Author), Shripad Deshpande (Author), Sapan Tiwari (Co-Author),
Dharmam Buch (Co-Author), Himanshu Pathak (Co-Author)
RegisRozario@gmail.com, Shripad.Deshpande18@gmail.com,

SapanSanu@agmail.com, BuchDharmam@gamail.com,
Himanshu.Pathak086@gamail.com

Abstract

In modern software development, ensuring visual alignment and layout accuracy across multiple
platforms presents significant challenges that are not fully addressed by traditional testing methods, such
as end-to-end (E2E) tests. While E2E tests focus on functional verification, they fail to identify
layout-related issues, such as misplacement of Ul elements, misalignments, or overlaps. This paper
introduces a novel approach for automated layout validation using generative Al. The proposed method
compares the rendered Ul against a baseline design system, which can be any design tool like Figma,
Sketch, or Adobe XD. The process involves capturing screenshots of the rendered page, comparing
these screenshots with the design specifications, detecting discrepancies, and generating reports for
further review. The solution is designed to work across mobile, tablet, and web platforms, ensuring
consistent design implementation and providing a more effective approach to cross-platform layout
validation.

Our experiments show that the generative Al-driven Siamese Network approach achieved a similarity
score—based detection accuracy of over 95%, outperforming baseline methods such as pixel-difference,
CLIP embeddings, and DOM-based diffs. This demonstrates its robustness against rendering noise,
responsiveness to layout shifts, and reliability in detecting Ul inconsistencies without requiring
pixel-perfect matching.

Biography

Regis Bernard is a Software Development Engineer in Test at a large social media company, focusing on
automation frameworks and Ul validation through Al.

Shripad Deshpande is a Senior QA Engineering Manager at a large social media company, leading
GenAl QA efforts. He is an Al for QA enthusiast, with a strong focus on efficiency.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 1

mailto:RegisRozario@gmail.com
mailto:Shripad.Deshpande18@gmail.com
mailto:SapanSanu@gmail.com
mailto:BuchDharmam@gmail.com
mailto:Himanshu.Pathak086@gmail.com

1. Introduction

The importance of maintaining design consistency across various platforms and screen sizes is central to
the user experience (UX) in modern software development. While traditional testing methods such as
end-to-end (E2E) tests are effective at validating the functionality of software, they often fail to address
visual design issues such as the alignment, proportion, and placement of Ul elements. As user interfaces
become more complex, it is critical to ensure that these elements display correctly on all devices mobile,
tablet, and web.

This paper presents an automated layout validation system that utilizes generative Al to compare
rendered Uls with their corresponding design systems. Unlike E2E tests, this approach focuses on
verifying the visual fidelity of the user interface. By automating the process of identifying and reporting
discrepancies, this solution aims to streamline the validation process, reducing the risk of Ul-related
issues slipping through the cracks during development.

2. Background

Ensuring Ul consistency across devices has long been a challenge in software development. Traditional
functional tests validate that components work as intended but often overlook layout-specific issues like
misalignments, inconsistent spacing, and overlapping elements. These problems, while seemingly minor,
can significantly degrade user experience and brand perception. This section first reviews prior
approaches to layout validation and their limitations, and then highlights notable real-world failures where
poor layout design had measurable negative consequences.

2.1 Related Work

Traditionally, Ul testing has been focused on ensuring the functionality of an application, verifying that
buttons, links, and forms operate as expected. However, these tests do not account for layout issues such
as misaligned elements, inconsistent padding, or elements overlapping one another. These issues, while
visually apparent, are often difficult to detect using traditional functional testing approaches.

Several solutions have been proposed to address visual testing, including image-based comparison tools.
These tools compare screenshots of the rendered page to predefined reference images, flagging any
discrepancies. However, these solutions are often limited to rigid one-to-one comparisons and may not
adequately handle dynamic content or responsive design, where layouts change depending on the device
or screen resolution.

Generative Al offers an alternative approach. By analyzing and comparing images intelligently, generative
Al can detect layout issues even when there are small variations between the rendered Ul and the
design. This enables a more flexible and accurate comparison, particularly in complex or responsive
designs.

3. Methodology: Layout Validation Using Generative Al

The approach proposed in this paper involves the use of generative Al to automate the process of layout
validation by comparing rendered Ul elements with a reference design system. The steps in this process
are as follows:

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 2

e Step 1: Page Load and Screenshot Capture
The first step involves loading the rendered page on the target device (e.g., mobile, tablet, or
web) and capturing a screenshot of the Ul. This screenshot represents the actual layout that
needs to be compared against the design system.

e Step 2: Design System Comparison
The captured screenshot is then compared to the design system, which may be a design file
from Figma, Sketch, or Adobe XD. Al-powered image recognition algorithms are employed to
identify the positions, sizes, and alignment of key Ul elements, comparing these against the

design specifications.

e Step 3: Discrepancy Detection
Any discrepancies, such as misaligned elements, incorrect button sizes, or overlapping Ul
components, are detected using our ResNet-based Siamese Neural Network model. The
model compares layout features extracted from the rendered screenshot and the reference
design, learning to recognize differences in spatial arrangement rather than relying on raw pixel
matching. When the similarity score falls below the predefined threshold, the system flags the
layout as inconsistent. These discrepancies are then highlighted, and the system generates a
marked-up version of the screenshot for review.

e Step 4: Reporting and Analysis
The marked screenshot is forwarded to tools for further analysis, such as Vision Pro or ChatGPT,
which can provide additional insights into potential issues or resolutions. This step allows
designers and developers to quickly address identified discrepancies and iterate on the design.

4. Initial Approaches and Limitations

The approaches described below were our early experiments for Step 3: Discrepancy Detection in the
methodology. At this stage, the goal was to automatically identify misalignments, overlaps, and other
layout regressions by comparing rendered Ul screenshots against baseline designs. We evaluated
several techniques ranging from pixel-level comparisons to embedding-based methods. However, each
had specific limitations that made them unsuitable for robust cross-platform layout validation, as

summarized in the table below.

Approach

What We Tried

Why It Didn’t Work Well

Pixel Difference

Used OpenCV cv2.absdiff, SSIM

Too sensitive to rendering noise and
minor shifts

CLIP + Cosine Similarity
(pre-trained)

Used CLIP embeddings with
similarity

Could not capture layout semantics
or overlaps

DINOV2 Embeddi trained)

Used timm pretrained DINOv2 ViT

Better than CLIP, but lacked layout
specificity

Excerpt from PNSQC Proceedings

Copies may not be made or distributed for commercial use

PNSQC.ORG
Page 3

https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/google/vit-base-patch16-224

DOM-based Diff Compared DOM trees and structure | Not image-based, failed on
native/canvas Uls

Pixel Difference

We first experimented with traditional image-difference techniques using OpenCV'’s cv2.absdiff and SSIM.
While these methods are straightforward, they proved far too sensitive to minor rendering noise such as
anti-aliasing, font smoothing, or small pixel-level shifts. As a result, they generated a large number of
false positives, making them unsuitable for dynamic and responsive layouts.

CLIP + Cosine Similarity

CLIP + cosine similarity is great for semantic similarity (e.g., “does this page contain a login button?”),
but not reliable for layout verification where spatial fidelity is critical. That's why we moved to
Siamese networks, which learn pairwise differences in spatial structure, making them far better for
detecting misalignments, overlaps, or missing elements.

DINOv2 Embeddings (pre-trained):

DINOv2 embeddings capture global context and object categories.Great for tasks like image retrieval or
clustering (“this is a cat, this is a dog”), but they are not trained to care about alignment or spacing. It
recognizes “what the screen is” but not “how the elements are arranged.” For layout regression, we need
models (like a Siamese network) that explicitly learn pairwise differences in spatial arrangement rather
than just global semantic similarity.

DOM-based Diff

We also explored DOM tree comparisons to detect structural differences in rendered layouts. While
effective for static, HTML-based Uls, this approach fell short in cases where rendering was handled by
native mobile views or canvas-based graphics. Furthermore, DOM-based diffs do not account for visual
alignment, spacing, or overlap issues, limiting their applicability in modern cross-platform applications.

Why CLIP & VIT based model response for layout regression doesn't work:

This figure provides a visual comparison between a baseline Ul (left) and a regressed Ul (right). In this
example, the regressed version introduces an overlap in text (“sdsds”), clearly violating the layout
consistency of the baseline design. Such discrepancies are supposed to be flagged by the CLIP & VIT
models but due to the nature of the model these discrepancies are often overlooked.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 4

https://huggingface.co/google/vit-base-patch16-224

A o Items = o Items
(o Qo o

zero —T
zero zero [
zero zero [
zero zero [

Baseline

Figure 1. Example of baseline versus regressed Ul and where CLIP & VIT based models unable to
identify the layout issues.

This figure shows an example of the structured output produced by the system after a layout comparison.
It includes the baseline and candidate screenshots, similarity score, regression detection flag, threshold
value, and additional metadata such as pixel-level differences and reasoning for the result. This
machine-readable format enables easy integration into CI/CD pipelines and automated reporting
workflows

Figure 2. JSON output of layout comparison results

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 5

5. Proposed: Siamese Neural Network

We tried a ResNet-based Siamese Network to learn visual distances between Ul image pairs.

This figure illustrates the complete workflow of the proposed system.

e Test Execution Phase: Baseline (expected) and current (test) screenshots are captured and
pre-processed through resizing, cropping, and normalization to ensure consistency before model
input.

e Siamese Neural Network: Both baseline and current screenshots pass through ResNet-based
feature extractors to generate layout features. Differences between the two feature sets are
computed, and a regression head produces a similarity score between 0 and 1.

o Apply the same resize (244 px) /normalization to the incoming current screenshot.

o Look up the cached embedding based on baseline file name and retrieve the
precomputed baseline embedding otherwise, encode the baseline image on the fly.

o Compute the current screenshot with the same backbone.
o Compute d=|fb-fc|, MLP — logit — probability p=a(logit).
o If score< Threshold, flag layout regression; else no regression.

o Emit a visual diff artifact (e.g., pixel diff or Grad-CAM/activation map overlay) to aid
debugging.

e Training Data Pipeline: Screenshots from good and broken Uls are collected and labeled, then
used to train or fine-tune the Siamese network. This enables the system to continuously improve
at detecting subtle layout regressions.

e Decision Logic: The similarity score is compared against a threshold. Layouts above the
threshold are marked as passed, while those below are flagged as failed.

e Reporting and Alerts: Results are summarized into developer-friendly reports with similarity
scores, heatmaps, and marked-up screenshots. Alerts integrate with CI/CD systems,
automatically preventing regressions from being deployed and notifying teams via established
channels.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 6

Test Execution Phase

Training data pipleine

Current screenshots ’

« Collect screenshots

‘ Baseline screenshots

(Good vs Bad)
« Historical data

Labeling through manual or
Automated review

////

Pre-processing

A4

v

‘ Train/Fine-tune Model ’

Image Normalization
(Resize, crop, standardize)

(Resize, crop

Image Normalization
, standardize)

Siamese Neural Network

A 4

V-

Feature Extractor
(ResNet18 Backbone)

Feature Extractor
(ResNet18 Backbone)

’ Decision Logic

|

|

[Layout Features] [

Layout Features

] |

Feature Difference
(baseline - current)

\

Regression Head
(MLP: 512->256->1)

!

Regression score
(0-1: similarity)

./

Score > Threshold?

R g and

A
Generate Reports with
Similarity scores, Heat map

y

Alerts
(CI\CD prevention
machanisim, Notification

Figure 3. End-to-end workflow for layout validation using a Siamese Neural Network

With Siamese Neural Network output:

This is the output image generated based on baseline and current screenshot differences. With the
Siamese Neural network model, we were able to identify the subtle layout mismatch as well.

Visual Diff - Layout Regression Detected

= @ rems

a
sasasle
Zero
Zero
Zero

ooon

Figure 4. Output for layout validation using a Siamese Neural Network

Excerpt from PNSQC Proceedings

Copies may not be made or distributed for commercial use

PNSQC.ORG
Page 7

6. Results and Observations

Using a pixel-diff baseline, 83% of flagged issues were noise/false positives from antialiasing, sub-pixel
shifts, and font smoothing. We therefore adopted a Siamese CNN that compares feature embeddings
rather than raw pixels, cutting noise to 32% (a 51-point, =61% relative reduction) while improving
robustness across devices and renderers. The model stays sensitive to true layout regressions, shifts,
missing components, overlaps and outperforms generic CLIP/ViT semantic encoders for fine-grained
layout verification, reducing false negatives. Because it requires neither pixel-perfect matching nor DOM
access, it works for native, canvas/WebGL, and responsive Uls, and it produces actionable outputs,
heatmaps, marked-up screenshots, and concise explanations that speed triage and help teams
prioritize fixes.

6.1 Limitations

Although effective, the proposed approach has certain limitations. Its accuracy depends on the quality
and variety of training data, and highly dynamic or personalized layouts may still pose challenges. The
similarity threshold requires fine-tuning to balance false positives and negatives, and the method
introduces higher computational cost compared to traditional techniques. Additionally, while large
language models (LLMs) can also be used by directly passing screenshots for analysis, this approach is
not cost-effective since LLMs charge based on tokens. In contrast, our method reduces the token usage
by approximately four times by only sending summarized results to LLMs for analysis, making it
significantly more efficient. Finally, while strong in detecting spatial inconsistencies, the system does not
fully capture higher-level design intent such as brand or accessibility guidelines.

7. Future Work and Conclusion

The approach presented in this paper offers a promising solution for automated layout validation. Future
work will focus on improving the accuracy of Al comparisons, particularly for complex and dynamic
layouts. Additionally, integrating this system into continuous integration/continuous deployment (CI/CD)
pipelines will allow for real-time validation during the development process, further enhancing its utility.

In conclusion, generative Al provides an efficient and effective solution for ensuring design consistency
across platforms. By automating layout validation, this approach allows teams to focus on other critical
tasks while ensuring that the visual integrity of the product is maintained.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 8

References

Long, M. M. J. 2013. Ford's MyFord Touch: A Case Study of Design Failures. Design
Management Review.

Morville, M. 2016. User Experience Design: Principles and Practices.
Norman, D. A. 2013. The Design of Everyday Things.

O’Reilly, K. A. 2014. “What Went Wrong with Healthcare.gov.” Harvard Business Review.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 9

	Abstract​In modern software development, ensuring visual alignment and layout accuracy across multiple platforms presents significant challenges that are not fully addressed by traditional testing methods, such as end-to-end (E2E) tests. While E2E tests focus on functional verification, they fail to identify layout-related issues, such as misplacement of UI elements, misalignments, or overlaps. This paper introduces a novel approach for automated layout validation using generative AI. The proposed method compares the rendered UI against a baseline design system, which can be any design tool like Figma, Sketch, or Adobe XD. The process involves capturing screenshots of the rendered page, comparing these screenshots with the design specifications, detecting discrepancies, and generating reports for further review. The solution is designed to work across mobile, tablet, and web platforms, ensuring consistent design implementation and providing a more effective approach to cross-platform layout validation.
	Biography
	1. Introduction
	2. Background
	2.1 Related Work

	3. Methodology: Layout Validation Using Generative AI
	4. Initial Approaches and Limitations
	5. Proposed: Siamese Neural Network
	6. Results and Observations
	6.1 Limitations

	7. Future Work and Conclusion

