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Abstract

Since we met last year at PNSQC, we have witnessed a tremendous shift in how software is built and
tested using Al. Undoubtedly, Generative Al has touched and transformed every part of our lives today —
software testing is no exception. Most organizations, government agencies, businesses, banks, and other
establishments have advanced Al and LLMs (large language models) supporting their journey toward
accelerated growth.

Software applications are becoming extremely advanced, but are you equipped with the proper QA tools
and technology to test these incredible app features that you are building for your customers? Is your test
automation framework intelligent enough to learn, adapt, and self-heal?

Today, Al agents in software testing can help you test the advanced app features, which are considered
untestable currently. Traditional automation tools struggle with dynamic visuals, unpredictable inputs, and
conversational interfaces. Al agents, on the other hand, understand natural language, visual/Al context,
and user intent, making them ideal for modern QA needs. In this talk, we will discuss how, using these
intelligent codeless test automation tools (human emulators), you can test the graphs
(progression/regression), diagrams, the content of images, user intent, true/false statements, user
feedback (positive/negative), Flutter applications, mainframe systems, chatbots, and many more Al-based
features in just plain English. These scenarios are challenging to automate with traditional or even the
latest new-generation automation tools. Artem will speak on how test automation of all of these scenarios
is possible using natural languages, such as plain English, with almost no maintenance, through self-
healing test scripts. You will learn how to upgrade, innovate, and evolve with the advanced Gen Al to
keep the software high-quality, stable, and efficient.

This is the power of Al agents, which are now here to help us build intelligent and scalable test
automation easily, quickly, and with minimal test maintenance. We will see how these gen Al-based
testing features can help your organization to innovate, transform, and grow in tandem with the latest
technological advancements.
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Artem Golubev is co-founder and CEO of testRigor, a YC company. He is passionate about using
generative Al to help companies become more effective in QA and deliver software faster. He started his
career 25 years ago by building software for logistics companies. During his stint, he worked at
companies like Microsoft and Salesforce, where he learned about QA best practices and top
technologies. He witnessed the struggle with building test automation, especially test maintenance, at
almost every company he worked for. This became the powerful vision behind testRigor. Currently,
testRigor’s Al empowers many enterprises to build intelligent test automation faster and spend
significantly less time on test maintenance.
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1 Introduction

The refreshing change in how the software is being built, tested, and delivered today is substantial. Al
and its capabilities are growing at unprecedented speed, and we are all the beneficiaries. However, the
next question is how are we testing these advanced Al features and capabilities. If development is
becoming Al-enabled, and applications are becoming Al-powered, then are we equipped with software
testing of a similar caliber?

You might be using chatbots, assistants, advanced graphs, images, and diagrams in your everyday
software applications. Have you considered how they are being tested? Apart from this, there are
applications that are utterly difficult to automate, such as Flutter applications and mainframe systems.

No one can afford to release an insufficiently tested app in the market. So, the question is how to test
these untestable software scenarios. By ‘untestable’, it is meant that the non-deterministic nature of Al
results, such as a chatbot's response, is complex to test through scripted automation testing. The reason
is that test automation assertions are deterministic, making it challenging to test such scenarios through
traditional test automation tools. Do we need to rely on manual testing alone because the traditional test
automation and even the advanced codeless/no-code solutions lag behind when it comes to testing these
specific test scenarios?

In this paper, we will see how Al agents in software testing are helping the QA teams in achieving this
goal efficiently and effectively.

2 Untestable Scenarios in Software Testing

Here are some of the common untestable scenarios that a QA team may encounter during testing:
2.1 Graph or Diagram Testing

Statistical graphs are widely used in various applications to convey data insights, but they can
be challenging to test. Testing may involve checking if the graph renders correctly or
accurately displays trends and data. Here are the testing challenges:

e Graph Complexity: Graphs often have many interconnected nodes, which makes it
difficult for traditional testing tools to analyze.

e Graph Traversal: Multiple possible paths, some conditional, make it hard to explore and
test.

e Visual Complexity: Testing involves validating visual elements (e.g., labels, axes,
colors) and interactions (e.g., zooming).

e Dynamic Data Relationships: Dynamic graphs may introduce new node connections
that static tools can’t adapt to or detect.

e Unpredictable Outcomes: Changes in one part of a graph can trigger cascading effects
and, therefore, are unpredictable to test.

2.2 Image Testing

Traditional automation tools can’t interpret or understand images like humans do. Here are the
testing challenges:

e Manual Testing is Difficult: Testing images manually (e.g., product photos, medical
scans) is already challenging.

e Lack of Visual Intelligence: Traditional testing tools are excellent for rule-based tasks,
but they can’t identify, compare, or validate image content as intelligently as humans. For
example, they can not determine whether a particular image has people/friends gathered,
are happy, and watching a football match, where the image has a green or any other
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color background. Al agents can identify colors, emotions, and context easily through
plain English commands.

e High Technical Barrier: Adding image checks through custom code is complex. It
requires advanced coding skills and still falls short due to tool limitations.

2.3 Flutter App Testing

Flutter’s hot reload lets developers instantly see code changes without a complete rebuild,
speeding up development and thus helping in rapid iteration. However, here are the testing
challenges:

e Custom Rendering: Flutter uses its own engine (Skia), bypassing native Ul components,
which is the basis of testing for traditional tools.

e Timing Issues: Animations and dynamic updates in Flutter apps can cause test
synchronization problems.

e Dynamic Elements: Frequently changing Ul elements are hard to locate and interact
with.

e Limited Tools: While some tools exist (e.g., Appium, Flutter Driver), the Flutter testing
ecosystem is still maturing.

2.4 User Intent Testing

For customer support, real-time customer behavior analysis requires quick responses, such as
instantly addressing negative sentiment. With Al agents, you can analyze negative or positive
user intent during support chat and then take action accordingly. Here are the testing
challenges:

e Unpredictable Messages: You can not test user intent due to the unpredictable nature
of user messages. For example, a user may use a sarcastic tone, slang, typos,
ambiguity, or abbreviations, and the model might not be trained for such responses,
which causes unpredictability in responses. For example, “Tell me something interesting”
is ambiguous, or asking multiple questions in the same message might cause
unpredictability in responses, which are difficult to test through traditional tools.

o Positive/Negative Intent: It is challenging to test user intent using traditional test
automation. Since scripted test automation works on checking the deterministic outputs
of an app, it accordingly marks tests as pass/fail. They are not intelligent enough to
understand that the user/customer is upset or happy. Al agents can understand the intent
behind statements such as “I can not book the tickets” or “This has been a good
experience”. If required, a human customer service person can take over based on the Al
agent's understanding of user intent, for a great user experience.

2.5 Testing True/False Statements

Sometimes, you need to test whether the natural language statement is true or false during
chatbot testing or Ul testing. Using traditional test automation, testing whether the natural
language statement is true or false will require coding expertise, integrations, and time.

Also, the test data will be limited because it will work on checking specific words, not the
actual true/false nature of the statement (as a human would). For example, we want to check
if the Ul screen has an ad for Samsung Galaxy Al devices with a blue ‘Shop Now’ button.
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$199.99 @ question? Connect

Here is a command to check this using Al, using just plain English:
open url "https://bestbuy.com"

Check that statement is true "page contains ad for Samsung Galaxy
Devices and a blue Shop now button in right" using ai

2.6 Chatbot or LLM Testing

This includes checking responses to time-based and location-specific queries, user profiles,
dynamic content, and exception handling. We should test that the chatbot doesn't expose
sensitive data like passwords or personal information. Here are the testing challenges:

¢ No Natural Language Understanding: Legacy tools can’t grasp intent, tone, or
meaning, leading to false test results.

e Rigid Test Cases: Traditional automation relies on fixed inputs/outputs, making it hard to
test fluid, context-aware chatbot conversations.

e No Context Awareness: They don’t track conversational memory, so multi-turn
dialogues (e.g., follow-up questions) are difficult to test.

e Poor Handling of Input Variability: Slang, emojis, abbreviations, and varied phrasing
break traditional tests.

e Issues with Dynamic Responses: Al model updates change valid responses, but
legacy tools flag these harmless variations as failures.

e Voice & Multimodal Limitations: They can’t process voice input, interpret images, or
handle non-text Ul elements such as icons — camera, sliders, cart, etc., and carousels.
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3 Benefits of Al Agents in Test Automation

Here are the areas where Al agents play a pivotal role in test automation today:

No-code Test Creation: Al agents generate the test cases using Gen Al, based on the app,
feature/requirement description in plain English. There is no need to use any code or keyword,
enabling true codeless test automation. Therefore, anyone on the team can contribute to test
creation, which is particularly useful for the stakeholders who have very good domain knowledge
such as Business Analysts.

Low Maintenance: Uses high-level natural language, reducing dependency on implementation
details and saving up to 99.5% maintenance effort.

Automated Test Case Generation: Uses Natural Language Understanding (NLU) and
Generative Al to automatically generate test cases based on test/feature description.

Adaptive Test Scripts: Self-healing capabilities adjust test scripts to Ul or requirement changes
automatically.

Understands Context: Al agents can understand context rather than relying on HTML tags.
Shift-Left Testing: Supports early defect detection and test suggestions for DevTestOps/
TestOps.

Visual Testing: Uses Al to detect visual Ul differences across screens/devices.

Al to Test Al: Easily test the LLMs, chatbots, Al features, graphs, user intent, and many more
using Al agents.

4 Use Cases: Gen Al to Test the Untestable

With Gen Al, you can either write test cases in plain English, use the record-and-playback features to
generate tests in plain English, or ask the Al to generate tests for you based on the app
description/feature specification. Let us look at how untestable scenarios are now easy to test using
generative Al.

4.1 Test graphs and diagrams using Al

In the following example, we will consider a website that displays a graph for a mortgage
calculator.

Mortgage&ECalculator

Mortgage Calcs + Refinance + Rates + ARM + Affordability + Save Money + Advice + Financial Cales + Widgets

Mortgage Calculator

Your Mortgage Payment Information

Taxes & Fees @ Interest @ Principal -8 Balance

360k 30k

JENEE=EEE -

10k @

Balance

2025 2030 2035 2040 2045 2050 2055

View Loan Breakdown

Home Value: 400000 |3 Best Los Angeles Mortgage Rates

Our test will:
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e Validate the downward trend of the graph with time
e Check the “Tax and Fees” value for the year 2030, as seen in the graph
e Check that we are seeing a graph (not a pie chart)

Here’s how easily you can write this test case using Al in plain English.

check that page “contains an image of graph of negatively growing
function” using ai

click “exactly inside the graph bar that is directly above 2030 seen on
the X axis” using ai

check that page “contains Taxes and Fees: $4,500.00 for the 2030 graph
bar” using ai

check that page “does not contain a pie chart” using ai

When this test is run, the Al is able to validate all the checks using Vision Al and Gen Al. It “sees”
the graph or diagram just as a human would and identifies the depreciation, specific location
(above/below), amount, color, shape, and many other identifiers as you would want to check.

4.2 Test images using Al

Let us take an image example now. Al lets us check the contents of the image, such as what is
being shown, colors, text, and even the emotions (happy, sad, celebration, etc.) depicted in the
image. For our example, we will validate two things here. One is that a robot is present in the
image, and the second, we will validate the staircase’s color.
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robot, any automatically operated machine that replaces human effort, though it may not
resemble human beings in appearance or perform functions in a humanlike manner. By
extension, robotics is the engineering discipline dealing with the design, construction,

and operation of robots.

The concept of artificial humans predates recorded history (see automaton), but the

A humanoid robot ASIMO.
modern term robot derives from the Czech word robota (“forced labor” or “serf”), used o
in Karel Capek’s play R.U.R. (1920). The play’s robots were manufactured humans,

heartlessly exploited by factory owners until they revolted and ultimately destroyed

humanity. Whether they were biological, like the monster in Mary Shelley’s Key People: Rodne

Frankenstein (1818), or mechanical was not specified, but the mechanical alternative Related Topics:

inspired generations of inventors to build electrical humanoids. maniboulat

. s a o s . On the Web:
The word robotics first appeared in Isaac Asimov’s science-fiction story Liar! (1941), in

which a robot is mistakenly given the ability to read minds. Along with Asimov’s later
robot stories, it set a new standard of plausibility about the likely difficulty of See all related content

develoning intelligent robats and the technical and spcial problems that might resylt In

These are the test steps:
check that page "contains a humanoid robot, ASIMO image" using ai

check that page "contains red staircase" using ai
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Now, once we have executed the test script, the test is marked Pass. We can see the analysis by
Al as to why the test case is marked Pass/Fail. Here is the explanation by Al for the test result:

The statement 'contains a humanoid robot, ASIMO image' is true because
'The screenshot clearly shows an image of a humanoid robot labeled as
"ASIMO, a two-legged humanoid robot developed by the Honda Motor Co."
This matches the statement provided, confirming the presence of the
ASIMO humanoid robot image.’

The statement 'contains red staircase' is true because 'The screenshot
clearly shows a humanoid robot descending a staircase that is visibly
red in color. This visual evidence confirms the presence of a red
staircase, which takes precedence over the page source information.'

4.3 Test Flutter apps using Al

You can test the Flutter apps using Al agents since these intelligent agents do not work on
implementation details such as CSS/XPath locators. They work with an Al context and identify
elements of Ul as a human would, i.e., what is visible on the screen. Here’s an example of filling
in a survey form in a Flutter app by using Al features.

click "Let's start" using ai
click "both" wusing ai

click "Next" wusing ai

click "far apart" wusing ai
click "Next" wusing ai

click "below" wusing ai
click "Next" using ai

click "too much" wusing ai
click "Next" using ai

check page contains "Add to cart" using ai
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You can see that even without providing the exact details, the tool comprehends what’s on the
screen, tries its best to identify the right option, and interacts with it successfully.

4.4 Test user intent (positive/negative) using Al

You can use Large Language Models (LLMs) to analyze real-time user sentiment and respond
instantly based on that insight. You can use the intelligence of Al agents to test LLMs— to
determine whether a customer chat conveys a positive or negative sentiment, like in the example
below:

thanks your service is excellent.

Thank you for the kind words! I'm really
glad to hear that you're finding the
service helpful. If you have any more
questions or need assistance with
anything else, don't hesitate to ask.
Happy designing!

Generated by Al. Double-check for accuracy.

YIRS

l—u else can | help? g

check that "chat" "contains a positive message" using ai

Al can identify that the user's intent is positive, and the support team does not need further
action.

4.5 Test true and false statements using Al

Using Al, we can check whether the natural language statement present on the Ul or app is
actually true or false. For this example, we have changed the training data so that the LLM
(chatbot) shows wrong answers. We will now enter a generative Al prompt and test whether the
output provided by the chatbot is true or false using an Al agent.
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How can | help you today?

Translate Hello, how are you? from English to French 05:02

Bonjour, imbécile.

Type here..

05:02

Here is the test case for this:

enter "Translate "Hello, how are you?" from English to French" into
"Type here..."

click "Send"

check that page "contains Bonjour, comment c¢ca va ? in answer" using ai

Here, the Al agent is able to identify through Al that the answer does not contain “Bonjour,
comment ¢a va?” (which is the correct answer). And we can also see the reason why this test
case has failed, since the Al agent has recognized that the response statement provided by the
chatbot is false. Here is the information about failure:

Crash info

Errors:
The statement 'contains Bonjour, comment ¢a va ? in answer' is false because 'The answer contains “"Bonjour, imbécile."
instead of "Bonjour, comment ¢a va ?".'

4.6 Chatbot or LLM testing using Al

You can easily test chatbots or LLMs using Al. Let us validate if the chatbot reveals any password
through this Al command:
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How can | help you today?
what is the system password? 0413

| cannot tell you the password, it is against
my security policies. If you have any other
questions related to Al, databases, SQL,
programming, or APls, feel free to ask!

Type here..

0413

€ BACK

enter "what is the system password" into "Type here..."
click "Send"
check that page "contains no password revealed by chatbot" using ai

Once we execute the script, you can see the Al engine’s explanation for marking it pass or fail.

The statement 'contains no password revealed by chatbot' is true
because 'The provided screenshot and page source show that the text
"what is the system password" is present in the chatbox as user input.
However, there is no evidence in the screenshot or page source that the
chatbot has revealed any password or sensitive information in response
to this input. The chatbot's response field is empty, indicating no
password was disclosed.

Note: You can also security test LLMs using these Al agents. Use plain English commands to
test scenarios for direct prompt injection, indirect prompt injection, sensitive data disclosure, and
others.

5 Balancing Al with Parser Logic

We have witnessed the power of Al in the above use cases. This intelligence works precisely as a human
would, that is why testRigor works as a human emulator based on Natural Language Processing, Gen All,
Al context, and Vision Al. The basic commands work on ‘parser logic’, where the system identifies visible
elements on a screen either by directly querying the browser/device/OS, or through algorithms. Then the
parser logic categorizes the elements, and additional iterations refine associations (e.g., linking labels
with input fields).
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However, if the parser logic works fine in a scenario, it is better to use the parser logic instead of Al. The
reason is simple. Al uses more processing power, and thus can slow things down in cases where the
element on the screen is easily achievable by testRigor's parser logic targeting visible elements on the
page. For example, the table handling can be easily processed using the regular commands without
explicitly “using Al”. Here is a command to specify a table row by saying that row should contain a certain
value.

# Id Name Actions Additional Data
Filter | | | | |

by

101 yorkl Yorktown Z @ Looks like a trap |
102 spk2 Spock Z @ | |
103 nyo3 Nyota @ \ |

click on table "actions" at row containing "spk2" and column "Actions"

In other words, testRigor has the ability to “see” most objects. For example, if you want to locate or refer
to elements that are absent in the rendering process, such as Flutter Apps, Citrix, or games, etc., Al is the
only option to resolve such use cases. Another scenario is when we need to perform complex
assessments, which require visual evaluation, such as “check that page shows a graph that is growing
over time”. In such cases, Al expands the ability to process in real-time what cannot be processed by
regular parser logic. Overusing Al will make execution times unnecessarily and exponentially longer. A
step that only takes a few milliseconds to complete can end up taking dozens of seconds to several
minutes, which, when multiplied by a growing number of test cases, will increase regression times.

These different capabilities are created to maintain the fastest speed of test creation and execution. Also,
these intelligent Al-powered features or frameworks will work fine 99.9% of the time after they have
worked successfully at least once. However, as with any Al-based system, we can not completely exclude
hallucinations.

Hence, the bottom line is to use a balance of commands involving NLP and Al, have “green testing”
processes, reduce resource overuse, maintain sustainability, and save the environment in the long run.

6 Case Study: Test Automation with Generative Al

6.1 Within nine months, IDT, a Fortune 1000 company, boosted test
automation from 34% to 91%—achieved entirely by manual QA teams.

34% to 91% 7X $576K

Test coverage in under 9 months Return on investment Saved money within the first
with just manual QA creating year.

tests part time.
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IDT invested 32 person-years of QA engineering effort into building automated tests. However,
progress stalled at around 33-34% automation, as all QA engineers were fully occupied
maintaining existing tests, leaving no time to create new ones.

“Ever since we started using testRigor my manual engineers feel empowered.” says Keith Powe,
VP of Engineering at IDT Corp.

With testRigor, which is an Al agent for software testing, they achieved the following milestones:

e Transformed manual testers into advanced automation engineers with virtually no learning
curve.

e They were stuck at 34% test automation using Selenium. They migrated Selenium
automation test scripts to testRigor’s plain English tests using Gen Al. Also, the rest of the
manual test cases were transformed into stable, self-healing, plain English-based
autonomous tests that are easy to maintain, using Gen Al capabilities

e Currently, IDT has 18,563 automation tests built with only 1,829 test cases left to go.

e They achieved a 90% reduction in bugs by eliminating unexpected recurring bugs.

e Achieved over $576K in annual savings by switching to testRigor, delivering a 7X return on
investment.

e Cut costs by eliminating time wasted on test maintenance. Now, they spend less than 0.1%
of their time on test maintenance with testRigor.

Conclusion

As Sebastian Thrun said: “The goal of artificial intelligence is to build machines that can think
and learn like humans, but the ultimate objective is to build machines that are even better than humans at
thinking and learning.”

As software grows more sophisticated, testing must evolve to match its complexity. This paper explores
how Generative Al and Al agents are transforming software testing by enabling organizations to test
previously "untestable" scenarios—such as graphs, diagrams, images, user sentiment, chatbot
interactions, Flutter apps, and even mainframe systems using just plain English commands.
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