Invisible Intelligence: Embedding Al/ML
for Smarter, Faster Release Testing

Vidhya Ranganathan
vidhya.ranganathan@okta.com

Abstract

This paper explores a practical approach to embedding powerful Al/ML capabilities directly into
existing release management workflows. We demonstrate how Al/ML can function as seamless,
invisible extensions of your current development and testing infrastructure, unlocking significant
efficiency gains without costly overhauls. This paper explores a practical approach to
embedding powerful AlI/ML capabilities directly into existing release management workflows. We
demonstrate how AlI/ML can function as seamless, invisible extensions of your current
development and testing infrastructure, unlocking significant efficiency gains without costly
overhauls. This framework focuses on three critical areas: intelligent test redundancy
elimination, automated test strategy generation, and predictive deployment risk assessment.
Our case study details specific techniques, including NLP and clustering algorithms, that
dramatically reduced validation effort, improved efficiency, and helped maintain rigorous quality
standards within the context of existing test codebases.

Biography

Vidhya Ranganathan, with 15 years of experience in the quality domain, began her career as a
manual tester and developed a passion for automation and DevOps. Specializing in designing
frameworks, curating processes, and forming dedicated quality teams, she has significantly
contributed to several startups, helping them bootstrap and scale their quality teams. Currently a
Quality Manager at Okta, Vidhya is known for her strategic approach and hands-on expertise in
driving excellence in quality assurance.

1. Introduction

In today's fast-paced software development landscape, maintaining high-quality standards while
accelerating release velocity presents a significant challenge. Traditional release testing
workflows often struggle with manual effort, fragmented data, and a lack of formal planning,
leading to costly regressions and delayed deployments. This paper posits that Al and Machine
Learning (ML) can be "invisibly" embedded into existing release management workflows,
functioning as intelligent extensions rather than disruptive overhauls. By leveraging rich
operational data—such as build logs, test results, and release metadata—existing Al/ML tools
can be leveraged to enhance predictability, optimize resource utilization, and automate key
decisions. This paper presents a pragmatic, experience-based methodology for incrementally
integrating Al/ML, focusing on three critical areas where it can deliver immediate benefits:
predicting deployment risks, intelligently eliminating redundant tests, and automating test
strategy generation via Al agents.

2. Background and Related Work

The integration of Artificial Intelligence is fundamentally reshaping software testing, transitioning
it from a reactive, labor-intensive process to a proactive, intelligent, and highly efficient
discipline, driven by the demands of modern Agile and CI/CD methodologies. Large Language
Models (LLMs) are proving to be a versatile enabler, profoundly influencing areas such as
automatic test planning, test automation code creation, test data generation, and solving the
critical "Test Oracle Problem" by enabling Al to reliably determine test correctness. This shift is
further supported by the rise of codeless automation, self-healing tests, QAOps, and
hyperautomation, all aimed at democratizing testing, reducing maintenance burdens, and
enhancing overall productivity. Al's capabilities in defect prediction and vulnerability detection
are also enabling a strategic move towards preventing issues proactively, optimizing test suites,
and prioritizing efforts based on data-driven insights. This trajectory indicates a future where Al
is an integral partner in the entire software development ecosystem, driving continuous quality
improvement and accelerating innovation.

3. Methodology: Incremental AI/ML Embedding

The methodology for embedding AlI/ML into release testing is built on a pragmatic, data-driven,
and iterative foundation. The core idea is to tap into the rich operational data already being
generated by development and testing activities. This data serves as a valuable resource for
training models that can provide genuinely actionable insights. The focus was on two key
dimensions, each designed to address a specific pain point experienced in the release process:

3.1. Intelligent Test Redundancy Elimination

Problem: As test suites grow organically, they often accumulate redundant or overlapping test
cases. With over 1200+ system tests, this becomes incredibly resource-intensive to run and

maintain, leading to increased test execution times, higher maintenance costs, and inefficient
use of testing resources without necessarily improving quality.

Approach: ML semantic reasoning with UMAP-based clustering and classification algorithms
was applied to identify and eliminate redundant test coverage, significantly reducing validation
effort while maintaining rigorous quality standards within the existing test codebase. The
objective was to ensure that every executed test provided unique and valuable coverage.

Data Sources:

Test Case Metadata: This included test case descriptions, associated requirements,
test case type (unit, integration, E2E), and historical modification logs.

Test Execution Logs: Pass/fail status, execution time, and any associated error
messages were analyzed.

Issue Tracking System: Test cases were linked to reported bugs or features to
understand their historical impact.

A
System Embedding System Test UMAP
Tests embedding

GPT4 Turbo

Y

Similarity

documents

Techniques Employed:

Code Embedding for Test Code Analysis: Test case code was processed by a code
embedding model (specifically GPT-4 Turbo) to convert it into a numerical vector
representation. This process was critical for capturing the semantic meaning of the code,
allowing the system to understand what the code "does" beyond a simple keyword
match. Once numerical representations were obtained, cosine similarity was used to
measure the similarity between test cases.

Dimensionality Reduction and Clustering Algorithms (UMAP-based Clustering):
UMAP (Uniform Manifold Approximation and Projection) was chosen over alternatives
like t-SNE or PCA because of its ability to more effectively preserve both local and global
data structures in a lower-dimensional space, which is critical for correctly identifying
subtle semantic relationships between test cases. K-Means clustering was applied to the

feature vectors (including code embeddings and coverage metrics) to group similar
tests. Hierarchical clustering was then used to visualize the relationships between test
cases and identify natural groupings, providing a more detailed view of the cluster
structure. Tests within the same cluster became candidates for redundancy.

e Classification for Redundancy: Following clustering, a pre-trained classification
service was used to pinpoint the truly redundant tests within those clusters. This service
considered several factors:

e Overlap in test coverage (e.g., which specific parts of the system were exercised
by multiple tests).

e Semantic similarity of test code—this was particularly effective at revealing cases
where nearly identical steps with minor variations occurred across different
test procedures.

e Historical defect detection rate (tests that rarely found unique defects were strong
candidates for redundancy).

e Maintenance history (tests frequently modified together within the test
management system often indicated a relationship, or potential redundancy).

e Actionable Insights: The output from this process provided clear recommendations for
test cases that could be de-prioritized, merged, or retired. Crucially, these
recommendations included justifications based on coverage and semantic overlap,
facilitating review and action by test leads.

Redundancy Map for tests:

-
13 = = '-V,‘ kel
o Ry Nl - “®,
o o ,'_'.. ® .0 - ()
. J} ~ o - S .
12 R . . o~ B e o
S Es e e . At e e, " , .‘:
P S - L3 ® s WY e . * 80 ° Hos
11 e g - : .0’ f:l. oped >, b o™
o - G e ™ o’ & -%J Ll ‘ot
. e BN .
o0® o & .
10 :" ?.\p‘ ...\' L ¢ s
o D
. T
9 a AT . oo oW
. Pt o
-.1 e ,,;f
8 WwaRe oV

3.2. Automated Test Strategy Generation

Problem: Manually crafting targeted test plans for every new release or feature is a time-
consuming task, prone to human bias or oversight. Testers often struggle to identify the most
impactful tests to run given the specific changes in a release, leading to a noticeable lack of
formal test planning during release cycles.

Approach: An Al agent system was developed to automatically generate targeted test plans
and system test code that could adapt to the evolving scope of releases and new features.

Data Sources:

e Requirements Management System: Functional and non-functional requirements were
pulled directly from the product requirements documents.

e Test Case Repository: The existing repository of test cases was used, along with their
coverage data and historical execution information.

e Kendra-based Knowledge Base: A comprehensive knowledge base containing up-to-
date public documentation about the product, serving as a primary context source for the
Al agent.

Store
infor J— I_-\\._,
(user, 0

s on

pro relie: .
Requirements

Processing

@
.. ————| Orchestate reqg/res %
M~—relies on _
Amazon Bedrock :l

Docs - Kendra

Slack user input
. relies on

saves response in $3 (weekly
uses updates)

-
- B
¥Claude o

. bucket
CDN url (behind - Vector DB
vpn) for
downloading full
response

Techniques Employed:

e Al Agent-Powered Generation (LLM via Claude + AWS Bedrock): The specialized
system functions as an Al agent powered by Large Language Models (LLMs) via Claude
4 Sonnet + AWS Bedrock. This agent operates via prompt chaining, taking step-by-
step actions and leveraging a Kendra-based knowledge base that incorporates up-to-
date public product documentation as context. This intelligent process enables the agent
to:

e Infer mappings between features, tests, and owners by analyzing requirements
and product documentation.

e Generate test plans directly from requirements documents, feature names, or
descriptions by understanding the semantic intent of the input.

e Provide near-production-ready code snippets and guidance for writing high-
quality automated system tests, significantly lowering the barrier to entry for test
automation, speeding up test development, and promoting consistency in testing
practices within the existing methodology.

Dynamic Test Suite Selection: The ultimate output from this system is a prioritized list
of recommended test cases or test suites, which can then be automated and triggered
via Cl/CD pipeline.

4. Case Study and Implementation Details

Implementing this pragmatic framework within an existing enterprise software development
environment was a key part of the initiative. The essential aspect of "invisible intelligence" was
ensuring these Al/ML components were lightweight services that simply consumed existing data
streams and produced outputs that current tools could easily understand and use, thereby
avoiding the need for new testing tools from scratch.

Architecture:

Data Ingestion Layer: Python scripts and API integrations were built to regularly pull
data from various sources: Jenkins/TeamCity for build logs, Jira/Confluence for
requirements, issues, and release notes, and internal test management tools for test
results, test case metadata, and historical modification logs.
Data Lake/Warehouse (Snowflake): A centralized, accessible, and scalable source of
truth for all feature-test ownership data was established in Snowflake. This serves as the
data backbone, storing both raw and processed data, essential for historical analysis.
For the storage of embeddings, a dedicated vector database (VectorDB) was utilized,
integrated with this data infrastructure.
AI/ML Integration Services: Each Al/ML component (redundancy elimination and test
strategy generation) was implemented as its own microservice. These services primarily
use Python to call external LLM APIls and other Al services, exposing straightforward
REST APIs.
Integration Points:

o Slack Bot for Test Management: A Slack bot was introduced, functioning as a

central quality partner for teams. It offers a range of capabilities:
m Quickly listing tests per feature.

Helping identify test owners.
Assisting teams in writing structured test plans.
Checking for existing test coverage for any given scenario.
Proactively notifying service owners and relevant teams whenever a
system test changes its lifecycle state. This ensures immediate visibility
into test health and allows for swift action.

Release Dashboard/Planning Tools: Dashboards were developed to track key
release metrics. This includes issues detected before reaching production and
"triage" metrics for any unexpected increases in failures or regressions. These
dashboards provide real-time risk feedback during release planning and give
insights into overall coverage completeness. A dedicated Feature Coverage
Dashboard, initially populated with the system's inferred mappings, offers a clear
visual representation of feature test coverage.

"Intelligent Test Redundancy Elimination" service periodically analyzes the
entire test suite, providing recommendations to test leads for manual review and
pruning.

A Practical Example: Automated Test Strategy Generation with an Al

Agent

A new feature is being built, and the product team has finalized the requirements document.
The development team is actively iterating on the use cases. While Test-Driven Development
(TDD) is being used for unit and integration tests, we want to leverage our Al system to
accelerate the broader release cycles.

e Step 1: Requirements Ingestion: The comprehensive requirements document is fed
into the Al system.

e Step 2: Test Plan Generation: The Al system, utilizing its knowledge of the product,
analyzes the requirements document. It generates a comprehensive test plan with
detailed test priorities and mappings to specific requirements. This test plan also
includes detailed test steps and the necessary test data setup for each test.

e Step 3: Test Code Generation: A specific test from the generated plan is selected. The
system is then queried to generate the test automation code for that particular test.
Given the system's knowledge of existing test cases and the established coding
patterns, it generates a near-production-ready system test automation. This significantly
accelerates the test development phase and ensures consistency in the test codebase.

Consider the scenario of the feature: "Implemented new user authentication flow with OAuth2

support”

e Data Ingestion: The requirements document is fed to the Al system.
e NLP Processing (by the Al Agent):

O

The Al agent tokenizes the release notes and extracts key phrases: "user
authentication," "OAuth2 support", "user profile."

Crucially, the Al agent, leveraging its LLM capabilities, infers mappings between
these features and the relevant functional areas and existing test cases, drawing
from its extensive knowledge base of internal documentation.

e Output: The system then generates a prioritized list of test cases.

@)

TC_AUTH_001: Verify successful login with valid credentials.
(High priority, as it is core functionality)

o TC_AUTH_085: Test OAuth2 token refresh mechanism. (High priority,
directly related to the new feature)

o TC_SEC_@10: Authentication bypass vulnerability test. (Medium
priority, given the security implications of a new auth flow)

o TC_UI_0@3: Check the user dashboard display after login.
(Medium priority, potentially impacted by either the authentication or profile
changes)

o TC_PROFILE_007: Verify user profile fields display

correctly. (High priority, directly addressing the Ul glitch fix)

5. Results and Discussion

The incremental embedding of Al/ML capabilities, particularly through the specialized Al system,
has yielded significant positive outcomes across release testing processes.

5.1. Efficiency Gains

Reduced Test Execution Time: By intelligently eliminating redundant tests (e.g.,
identifying cases of "same steps with just one line change" across test cases) and
generating targeted test strategies, a remarkable 30-40% reduction in overall test
execution time for major releases has been observed. This translates to faster
feedback loops and earlier detection of issues.

Faster Release Cycles: The confidence gained from predictive risk assessment and
optimized testing has allowed for a 15% reduction in the average time-to-market for
new features. Teams can now release with greater certainty and less manual
gatekeeping.

Optimized Resource Utilization: Testing teams can now reallocate resources from
simply executing redundant tests to more valuable activities such as exploratory testing,
performance testing, or developing entirely new test automation. This has led to a more
strategic use of human capital.

Metric Baseline Post Al Integration | % Improvement
Test Execution Time | 3.12 hrs 1.64 hrs 47.44%

Release Cycle Time- | 2 weeks 1 day 92.86%

Test planning

Release Cycle Time - | 3 Weeks 3 days 85.71%

Test Automation

5.2. Discussion and Limitations

While the results are highly promising, it is crucial to acknowledge the limitations and ongoing
needs of the system.

Limitations:

e Dependency on Third-Party Models: The effectiveness of the system is dependent on
the performance and consistency of the external Al/ML services used. If an external
model experiences model drift, its recommendations may degrade. This necessitates a
regular review of the prompts and service configurations to ensure their continued
accuracy and effectiveness.

e Edge Cases: While the Al-generated test plans are highly effective for standard features
and bug fixes, they can occasionally fail to account for highly specific or unexpected
edge cases that a human tester with deep domain knowledge would recognize. A
feedback loop from manual exploratory testing is essential to continuously improve the
system's recommendations.

Future Work: Future enhancements to the system include integrating predictive analytics for
performance testing, expanding the Al agent's capabilities to automatically prioritize and
recommend tests based on code changes from GitHub Copilot's recommendations, and
exploring the use of reinforcement learning to further optimize the test suite over time. We also
propose creating a Model Context Protocol (MCP) to serve as a standardized, plug-and-play
tool that allows the system to seamlessly integrate with any developer ecosystem. This protocol
will manage the context and data exchange between the Al/ML services and various developer
tools, ensuring maximum velocity for new features.

6. References

e Mclnnes, L., Healy, J., & Melville, J. (2018). UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction. arXiv preprint arXiv:1802.03426.
https://arxiv.org/abs/1802.03426

e Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach. Pearson.
https://books.google.com/books/about/Artificial Intelligence.html?id=koFptAEACAAJ

e Muller, R., & Padberg, J. (2003). Automated Test Case Generation for UML Models. In
Software Engineering and Applications (SEA).
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2e23b066ff5b44ae7b
7a51c716a0fe7b5d72ae63

e Kohavi, R., & Provost, F. (1998). Glossary of Terms for Knowledge Discovery and
Machine Learning. Machine Learning, 30(2-3), 271-274.
https://www.scirp.org/(S(ny23rubfvg45z345vbrepxrl))/reference/referencespapers?refere
nceid=2264480

e Brown, T. B., Mann, B., Ryder, N., et al. (2020). Language Models are Few-Shot
Learners. arXiv preprint arXiv:2005.14165. https://arxiv.org/abs/2005.14165

