Breaking the Model-Based Testing
Barrier: How Al & BP Can Transform
Software Testing

Michael Bar-Sinai, Gera Weiss

michael@provengo.tech, geraw@cs.bgu.ac.il

Abstract

Model-Based Testing (MBT) promises rigorous, automated quality assurance but remains underutilized
due to the complexity of creating and maintaining the formal models on which it is based. We argue that
combining Behavioral Programming (BP) with Generative Al, specifically Large Language Models (LLMs),
breaks this barrier. BP enables modular, accessible, scenario-based formal modeling, while LLMs help
translate informal descriptions into formal behavior fragments. Through case studies, we show how this
combination empowers QA teams to adopt MBT practices without the traditional — and prohibitive -
learning curve.
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1 Introduction

Software testing and quality assurance (QA) stands at a pivotal crossroads. Traditional test methods—
dominated by manual testing and brittle script-based automation—are increasingly insufficient as
software systems grow more complex and agile release cycles become shorter. Automated tests
frequently become tightly coupled with system implementations, resulting in fragile test suites that break
easily with Ul or API changes. This makes QA predominantly reactive, labor-intensive, and costly to
maintain.

Model-Based Testing (MBT) promises a principled alternative. By abstracting system behaviors into
formal models, MBT allows systematic test generation, quantifiable coverage metrics, and robust
validation of requirements. However, despite MBT’s theoretical strengths, it has seen limited adoption due
to practical barriers. Most MBT frameworks—such as Microsoft's Spec Explorer and GraphWalker'—rely
heavily on manually defined finite-state machines, or on complex statecharts, which testers often find
unintuitive and burdensome to scale or maintain (Jacky et al. 2007).

Common limitations of traditional MBT tools include:

e Complex Model Creation: Tools like Spec Explorer require significant expertise to create
accurate and comprehensive state-machine models, limiting adoption and usability among QA
teams (Jacky et al. 2007).

e State Explosion and Scalability Issues: Tools such as GraphWalker or finite-state machine-
based frameworks often struggle as system complexity increases, encountering severe
performance degradation or outright failure when faced with large state spaces (Utting and
Legeard 2006).

e Coverage Blind Spots: Automatically generated test cases from traditional MBT tools frequently
miss critical edge cases or system states that the model creators haven't explicitly modeled. This
leaves significant gaps in testing coverage (Utting and Legeard 2006).

e High Maintenance Overhead: Evolving requirements and iterative design processes demand
continuous updates to test models. Traditional MBT tools typically fail to provide easy
maintenance capabilities, resulting in high overhead and reduced agility.

This paper argues that Behavioral Programming (BP), combined with Generative Al, specifically Large
Language Models (LLMs), effectively addresses these limitations. BP introduces a modular approach to
modeling, where system behaviors, requirements, and constraints are represented as independent
modules known as "b-threads." Each b-thread defines specific behaviors and synchronizes with others
through a straightforward event-based protocol: threads request events, wait for events, or block events
from occurring. This modular structure inherently simplifies model creation, maintenance, and scalability —
alleviating the above-listed limitations. Furthermore, it maintains the descriptive power of state machines,
while using modeling idioms that are more concise and intuitive for humans.

Using Generative Al tools to generate and maintain the model further lowers MBT’s entry barrier?. Al-
driven generation of b-threads from informal user stories or high-level requirements greatly reduces
manual modeling effort, enabling QA professionals to contribute directly to model creation even if they
lack coding expertise. Additionally, Al-assisted MBT dynamically adapts, identifies coverage gaps, and
generates richer, more comprehensive test suites.

! https://graphwalker.github.io/

2 The authors have successfully used various GPT-4 and Claude Sonnet versions for generation and
maintenance of BP models from natural language requirements and user stories.
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Through practical case studies, including modeling and testing REST APIs and e-commerce workflows,
this paper demonstrates how BP and Al-driven MBT can:

e Transition QA/test team’s role in the SLDC from reactive, late-stage involvement to proactive
engagement.

e Transform testing models into central artifacts for specification, communication, and design
validation.

e Generate comprehensive, scalable, and easily maintainable test suites.

The remainder of the paper explores these benefits in detail, advocating for a significant shift in how QA
is integrated into the software development lifecycle.

2 The Problem: Testing Today Is Still Manual and Brittle

Despite significant investment in test automation tools such as Selenium, Postman, and Cypress, the
industry continues to suffer from testing practices that are largely manual or semi-automated. Common
challenges include:

e Fragile Scripts: Automated test scripts often mirror implementation details too closely. For
example, Ul-level automation tests created using Selenium frequently break when minor Ul
changes occur, leading to extensive maintenance overhead (Leotta et al. 2013).

e Delayed QA Involvement: QA teams are frequently involved only in the late stages of
development, limiting their influence on architectural or design decisions. This often results in
fundamental quality issues being discovered late in the development cycle (Garousi and Felderer
2017).

e Unclear Coverage: Without explicit behavioral models, organizations lack systematic ways to
quantify test coverage, assess readiness, or guarantee robustness. Consequently, testing
remains incomplete and often fails to cover critical system behaviors (Utting and Legeard 2006).

e Ad-hoc Requirements Traceability: Test cases are typically written based on documents or
tickets that rapidly become outdated or ambiguous, resulting in weak requirements traceability
and uncertainty about test effectiveness (Garousi and Mantyla 2016).

Traditional MBT approaches attempt to solve these issues but fall short because they require manually
building and maintaining large state machines or transition systems. These data structures are
cumbersome and unintuitive for many testers (Edvardsson 2016; Jacky et al. 2007).

This paper proposes that integrating Behavioral Programming (BP) with Generative Al significantly
improves upon these limitations. BP’s modular approach, combined with Al-assisted modeling, provides a
practical, scalable, and intuitive solution for creating and maintaining large transition systems, and
ensuring they are correct by construction. This empowers QA teams to create and manage
comprehensive test models efficiently and effectively.

3 The Opportunity: What BP+Al Testing Offers

Behavioral Programming (BP) is an innovative scenario-based modeling approach where individual
behaviors, requirements, or rules are encapsulated into independent modules called "b-threads" (Harel et
al. 2012). These threads communicate and synchronize via a clear and simple protocol:

e Request: A b-thread signals it wants an event to occur.
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e Wait For: A b-thread pauses its execution until a specified event occurs.
e Block: A b-thread explicitly forbids events from occurring.

The combined effect of active b-threads forms a comprehensive model reflecting a complete system
behavior. This modular approach fundamentally transforms MBT by enabling:

o Incremental Model Development: Test models can be progressively enhanced, adding new
scenarios without disrupting existing behaviors.

e Independent Behavioral Specification: User stories, business rules, and constraints are clearly
and separately articulated, facilitating parallel and collaborative model building.

e Concurrent and Interleaved Behavior Modeling: B-threads naturally handle concurrent
behaviors and interleaved scenarios without intricate manual synchronization.
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Fig 1. BP models composed of various b-threads. Note that adding more b-threads may reduce test
scenario count, due to BP’s b1ock concept (rightmost model)

Leveraging Generative Al, particularly Large Language Models (LLMs), significantly enhances this
process. Because each b-thread encapsulates a small, clearly defined behavior or requirement, LLMs
can readily translate user stories or informal requirements into formal b-threads with minimal guidance.
This significantly reduces entry barriers for testers and stakeholders who may not possess programming
expertise (Brown et al. 2020), empowering non-technical team members to effectively draft, refine, and
maintain complex behavioral models.

BP models define extensive system behavior spaces, allowing tools like Provengo to efficiently generate
optimized test suites through automated scenario-space exploration. Behavioral Programming supports
embedding custom coverage metrics directly within models, enabling precise and detailed coverage
measurement and analysis of generated test suites. Visual representations of BP models offer intuitive,
real-time documentation of system behavior, significantly improving communication among diverse
stakeholders. The modularity of BP facilitates agile maintenance by allowing teams to manage
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requirement changes easily through simple adjustments, additions, or removals of individual b-threads,
leaving the broader model source code unaffected. Modular b-threads can be readily reused across
different projects and systems, enhancing productivity and ensuring consistency. BP models can be
integrated with widely used testing tools such as Selenium, Playwright, or HTTP clients, enabling full
automation of web and API testing scenarios. Furthermore, the BP framework supports predictive
analytics and readiness assessments by proactively identifying coverage gaps, systematically analyzing
failure patterns, and providing robust evaluations of system readiness. Lastly, BP models serve effectively
in test-driven design, acting as executable specifications and reliable test oracles guiding development
from the initial stages (Beck 2003).
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Fig. 2: Comparison of approaches for test suite creation. Traditional testing (top) creates and maintains
individual test scenarios manually. Traditional Model-Based Testing approaches require manual creation
and maintenance of state machines or similar formal models, but the test scenario generation itself is
automated. The proposed BP+Al approach further extends automation, as test teams only need to create
and maintain a BP model. The intermediate transition system model allows for an early feedback loop,
which enables “human in the loop” model validation (e.g. by visualizations or sample scenario generation)
as well as formal verification.

The integration of Al-enhanced Behavioral Programming (BP) models offers several advantages for
software quality assurance, transforming how test suites are generated and maintained, and how system
readiness is assessed. These benefits include:

v' Automated Test Suite Generation: Al-enhanced BP models inherently define extensive behaviour
spaces, allowing tools like Provengo to efficiently generate optimised test suites through automated
exploration.

v' Traceability and Custom Coverage Metrics: BP supports embedding custom coverage metrics
directly within models, enabling precise and detailed coverage measurement and analysis. This
mechanism can be used for implementing traceability — e.g. by embedding “this test scenario covers
requirement 3.6.34” markers on relevant paths within the model.

v" Improved Communication and Documentation: Visual representations of BP models offer
intuitive, real-time documentation of intended system behavior, significantly improving
communication among diverse stakeholders.

v' Agile Maintenance: The modularity of BP facilitates agile maintenance by allowing teams to
manage requirement changes easily through simple adjustments, additions, or removals of individual
b-threads, without affecting the broader model.

v"  Reusability: Modular b-threads can be readily reused across different projects and systems,
enhancing productivity and ensuring consistency.
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v" Accessibility for Non-Technical Teams: Generative Al, particularly Large Language Models
(LLMs), empowers non-technical team members to effectively draft, refine, and maintain complex
behavioural models.

v' Automation Tools Integration: BP models can integrate with widely used testing tools such as
Selenium, Playwright, or HTTP clients, enabling realistic web and API testing scenarios.

v" Predictive Analytics and Readiness Assessments: The BP framework supports predictive
analytics and readiness assessments by proactively identifying coverage gaps, systematically
analysing failure patterns, and providing robust evaluations of system readiness.

v' Support for Test-Driven Design: BP models serve effectively in E2E test-driven design, acting as
executable specifications and reliable test oracles guiding development from the initial stages.

In the next three sections we discuss some case studies we ran with the proposed BP+Al approach. We
then demonstrate how these case studies lead us to the list of advantages of the approach given above.

4 Case Study: Using BP and LLMs for MBT

We explore a hybrid strategy that combines ChatGPT, a large language model (LLM), with Provengo, a
scenario-based MBT tool grounded in BP. ChatGPT is used to rapidly draft modular behavioral models
from informal descriptions, while Provengo systematically expands these models into extensive test suites
that exercise both typical user behaviors and hard-to-detect edge cases.

This methodology addresses the current limitations of using ChatGPT alone for test generation. While
LLMs excel at generating focused unit tests in response to specific prompts (e.g., writing a Python test for
a function add(a, b)), they struggle to design coherent, exhaustive test suites that explore the full state
space of an application. Critical corner cases, interaction interleaving, and system-wide constraints are
often underrepresented or missed entirely. While prompt engineering and “deep-thinking” models may
improve generated results, they cannot provide probable comprehensive coverage. In essence, they can
generate tests suites, but these suites needs to be tested for scenario correctness and case coverage.

Provengo complements this by creating a computer-actionable formal and deterministic model of the
overall system/feature behavior. This is done by combining independently authored b-threads, each of
which represents a particular behavioral aspect of the system or feature being tested. By feeding Al-
generated b-threads into Provengo, engineers can transform intuitive user stories into executable
behavior models that yield broad test coverage.

We evaluated this approach on a mid-sized e-commerce web application supporting login, product
search, cart operations, and checkout. Testers first provided informal descriptions of both "happy path”
scenarios (e.g., successful login and checkout) and "rainy day" scenarios (e.g., invalid credentials,
inventory conflicts, or checkout errors). ChatGPT was then prompted to translate these into Provengo b-
threads. For example, the prompt:

“Generate Provengo b-threads for login, add-to-cart (looped), and admin inventory
actions, including error cases.”

resulted in well-structured behavior modules within 2—3 iterations per scenario.

Once loaded into Provengo, the composed behavior model was executed to automatically generate a rich
set of interleaved test sequences. This process uncovered numerous edge cases, such as a user
attempting checkout after a failed login or a cart being locked following payment rejection. Provengo
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produced approximately 150 unique test scenarios, 31 of which revealed edge behaviors missed by
standard scripted tests.

Key technical benefits emerged from this integration:

e Rapid Modeling: ChatGPT significantly reduced the time required to draft initial models, allowing
testers and analysts to quickly iterate on scenarios without deep familiarity with BP syntax.

e Systematic Exploration: Provengo’s execution engine explored complex interleavings, enabling
automatic detection of undesirable state transitions and deadlocks.

e Model-Driven Metrics: Provengo yielded actionable artifacts such as state coverage maps, error
frequency histograms, and behavioral traces—valuable for assessing readiness and guiding
debugging.

Compared to related work, such as Bar-Sinai et al. (2023), which demonstrated Provengo’s utility in
manually modeling user stories, our study introduces automation into the modeling stage, further
enhancing scalability. Similarly, our findings reinforce observations by Yaacov et al. (2024) on the
modularity benefits of BP and extend them by demonstrating LLM-augmented model authoring.

Nevertheless, limitations remain. ChatGPT occasionally generated incorrect or inconsistent syntax (e.g.,
non-existent event names or missing synchronization logic), necessitating human review. These issues
are consistent with prior findings on LLM hallucination and reinforce the importance of integrating model
validation tools in the workflow.

Despite these caveats, the synergy between ChatGPT and Provengo represents a promising evolution in
MBT practices. It enables development teams to move beyond reactive test script maintenance toward
proactive modeling of intended behavior, enhancing not only testing efficacy but also communication and
alignment across roles. As software systems grow in complexity, such Al-assisted, model-centric
strategies will become increasingly essential.

5 Case Study: Testing a REST endpoint

In this case study, we used Provengo to test the REST API of a Library Management System. Our goal
was to explore how behavioral programming can serve as a practical Model-Based Testing (MBT)
approach that integrates smoothly with existing testing workflows, rather than requiring a complete
change in mindset or tooling.

The process began with the creation of an interface module, interface. js, which defines a set of
JavaScript functions that wrap REST calls using Provengo’s RESTSession. Each function—such as
createBook, getBook, updateBook, and deleteBook - encapsulates the relevant endpoint call,
specifies the expected response status, and includes optional post-processing logic. For example, the
createBook function not only sends a POST request to add a book but also extracts and stores the
returned book ID for later use. This layer of abstraction makes the testing code clean and readable, while
also making the test logic reusable and parameterized.

Using these interface functions, we built two different models. The first, found in a_linear_test.js,
reflects a traditional linear test. It executes a single scenario in a fixed sequence: creating a book,
retrieving it, updating its information, and then deleting it. This kind of test is very close to current industry
practices, where test engineers write predefined test scripts that correspond to common user interactions.
It is familiar and deterministic but limited in coverage and variability.

To move beyond this limitation, we developed a second model in a_testing_model. js. This version
uses Provengo’s behavioral programming framework to describe the test model as a set of independently
defined behavioral threads, or b-threads. Some b-threads test valid sequences, such as a user adding
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and viewing a book. Others describe negative test cases, such as attempting to create a book with a
duplicate ISBN or trying to update a deleted book. The result is a much richer and more comprehensive
test suite, automatically generated by composing the individual behavior threads.

Fig. 3: State machines for the linear test scenario (top) and test model (bottom). The test model is
composed of two b-threads, one describing a librarian scenario, and the other describing a book
borrowing scenario. Both diagrams were automatically generated using Provengo, and represent the
HTTP call sequences for the library’s API.

This approach contrasts sharply with most existing REST testing tools, which typically focus on validating
individual endpoints in isolation. These tools are well-suited for testing single-step interactions, such as
verifying that a POST request returns a 281 Created response, but they do not aid testers in composing
multi-step, stateful workflows that involve sequences of operations with intermediate data dependencies.
In practice, however, many important bugs and integration issues only emerge when such sequences are
tested holistically. Provengo directly addresses this gap by supporting the modeling and execution of
multi-step scenarios, enabling realistic and thorough exploration of system behavior over time.

The transition from the linear script to the behavior model illustrates one of Provengo’s key advantages: it
allows teams to evolve their testing practices incrementally. The same interface layer is used in both
models, and the same REST testing infrastructure supports them. This continuity stands in contrast to
many other MBT tools, which often require adopting new modeling languages, building explicit state
machines, or learning specialized DSLs. For instance, tools like Microsoft Spec Explorer require C#-
based model programs and explicit exploration strategies, while tools based on formal specification
languages (e.g., Alloy, TLA+) demand a steep learning curve. In comparison, Provengo’s approach is
lightweight and accessible, letting developers and testers use plain JavaScript to describe system
behaviors in terms they already understand.

By combining a familiar programming environment with powerful model-based capabilities, Provengo
makes it easy to enhance test coverage and robustness without abandoning existing workflows. This
case study illustrates how real-world teams begin with conventional tests and gradually evolve them into
expressive, scenario-rich models, reaping the benefits of MBT without the usual barriers to adoption.

All the code referenced in this case study is available in the open-source Provengo REST Tutorial
repository: https://github.com/Provengo/REST-Tutorial.

6 Case Study: Applying Generalized Coverage Criteria in
a Behavioral Programming Context

To demonstrate the practical benefits of integrating generalized coverage criteria with behavioral
programming (BP), we conducted case studies on two representative systems: the Alternating-Bit
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Protocol (ABP) and the Moodle Learning Management System (LMS). These studies illustrate how
system-specific behaviors can be modeled using BP and tested using automata-based coverage criteria,
as proposed in the generalized sequence testing framework of (Elyasaf etal., 2023).

In our approach, the test model is represented as a set P € X*, where each element in P is a sequence of
events the system might experience (such as a login, entity creation, or an API call). We defined
coverage criteria as an indexed set C(i) for i in I, with each C(i) € X* specifying a class of event
sequences that should be represented in the test suite. This formalism allowed us to explore different
strategies for defining what it means for a test suite to be “adequate.”

We explored two types of criteria. The first, based t-way sequence coverage (Kuhn et. al., 2012)3, defines
each C(i) as a regular language accepting any sequence containing a given t-length subsequence (e.g.,
X*0,2" 0,). The second, which we refer to as generalized consecutive coverage, is stricter: each C (i)
requires that a specific subsequence w appear in the test contiguously (i.e., Z*wZ*). This distinction is
critical in cases where event order and proximity are semantically meaningful, such as in transaction
protocols or interactive user sessions.

Our evaluation methodology combined BP-based model execution with evolutionary optimization. We
constructed modular behavioral models using b-threads and used random exploration to generate a pool
of 50,000 test cases. Coverage criteria were encoded as ranking functions, and we employed a genetic
algorithm* (GA) to generate optimized test suites that maximized the chosen criterion.

We opted to use GA here, as it provides measurably good results, and is easily generalizable, since
users can define their own coverage criteria by providing their own fitness function. Additionally, while the
GA algorithm involves a lot of randomness, its final result is explainable, a desired property in systems
that involve Al. Note that the problem of creating a “best” test suite for general criterion, being a general
combinatorial optimization problem, is computationally hard (basically an instance of the Knapsack
problem).

In the ABP case study, we introduced faults into the implementation and measured how different
coverage criteria affected bug discovery. For example, the bug triggered by the sequence ‘sNak,
sNak, rAck’—in which the receiver fails to send an acknowledgment after two negative
acknowledgments—was detected in 6.7% of random test suites and 9.1% of suites generated to
maximize t-way coverage, but was found in 21.6% of those optimized for the consecutive coverage
criterion (Z*wZX*). Similarly, the bug triggered by ‘send, send, sAck’ was detected in 82.1% of
random suites, 80.6% of t-way suites, and 97.8% of suites generated using the generalized consecutive
coverage criterion. These results support the claim that the ability to precisely define and target
meaningful sequences in the behavior space substantially improves test effectiveness.

In the Moodle LMS case study, we applied our method to model user roles and actions, such as a teacher
adding quiz questions and a student submitting answers. Our behavioral model included three b-threads
representing administrator setup, teacher quiz management, and student quiz interaction. Using this
model, we uncovered a bug that allowed a teacher to submit a new question to a quiz while a student was
mid-submission, a behavior that contradicts Moodle’s intended access control. This error was reliably
detected using the Kuhn and Higdon 3-way sequence coverage criterion, achieving a detection rate of

3 T-way sequence coverage is a method for composing test suites for interactive systems that may
receive multiple events, where event order matters (such as communication devices). Given a set
containing T events, this method will generate a test suite testing all ordering of these events. For T=2,
this method is similar to pairwise testing.

4 The “organism” used in this algorithm is a test suite, and the “genes” are test scenarios. The fitness
function reflects the coverage criterion, and is calculated over the test suites, based on the content and
properties of the test scenarios they contain. We used 3000 generations with crossover probability of 0.7
and mutation probability of 0.05. Population size in each generation is 50.
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98.6%. Generalized criteria also detected it, albeit with slightly lower rates, depending on how the
sequence definition aligned with the fault condition.

These studies highlight the advantages of using generalized coverage criteria in conjunction with BP.
Testers can express domain-specific concerns, such as ordering constraints, safety conditions, or
concurrency patterns, as regular languages, and tools can then optimize test suites to cover them.
Moreover, BP’s modularity allows these behaviors to be added incrementally, without requiring global
restructuring of the model. When test resources are limited, coverage criteria can be relaxed, grouping
similar behaviors to reduce effort while still ensuring meaningful exploration. Finally, the Bayesian
estimation method proposed in the generalized framework can quantify residual risk, guiding further test
generation based on remaining uncertainty.

Together, these capabilities create a powerful testing strategy that is precise, scalable, and adaptable. The
integration of generalized sequence coverage criteria, behavioral modeling, and evolutionary search
supports rigorous testing in complex domains without the overhead of traditional Model-Based Testing
frameworks. This approach enables testing teams to maintain process and automated test agility without
sacrificing software quality.

7 Conclusion

Combining behavioral programming and LLMs makes model-based testing accessible, scalable, and
deeply integrated into real-world testing practices. This approach shifts QA team role from reactive test
case maintenance to proactive behavioral modeling—unlocking the full promise of MBT.
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