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Abstract

Artificial intelligence (Al) and machine-learning (ML) technologies have advanced rapidly and are now deeply
embedded across nearly every sector, particularly healthcare. From diagnostic tools and patient-risk assessments to
operational decision-making, Al systems influence outcomes that directly affect people’s lives. Yet the same data
and design choices that give these systems power can also embed hidden, unintentional biases—statistical artifact,
historical inequities, or context-blind assumptions that remain invisible until they manifest as unfair or unsafe
results.

This paper explores the sources of bias in Al systems and the harm it can cause, particularly in critical fields like
healthcare. Using real-world medical examples, it highlights the impact of biased Al and explains the vital role of Al
System Verification and Validation (V&V) engineers in detecting, evaluating, and reducing this bias. The paper also
presents practical strategies for Al professionals—including Al System V&V engineers—to help ensure that future
Al systems are not only powerful, but also fair, trustworthy, and beneficial at both local and global levels.
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1 Introduction

Al systems are now widely used in critical areas like finance, healthcare, law enforcement, and education.
As Al makes more decisions that affect people's lives, concerns about fairness, accountability, and bias

have become urgent. These issues aren’t just theoretical—they cause real harm when Al performs

unfairly across different groups.

In healthcare, biased Al can have serious, even life-threatening consequences. Al tools help with
diagnosis, risk prediction, treatment, and resource allocation. But many Al models are trained on

incomplete or biased data, often missing diverse patient groups, especially from low- and middle-income
groups. Bias can also come from the Al algorithms themselves, leading to worse outcomes for minorities,

women, older adults, and underserved populations.

Ensuring fairness in Al requires more than good intentions—it demands structured, evidence-based

methods. Al System Verification and Validation (V&V) engineers play a key role in detecting and reducing

bias throughout the Al lifecycle.

To create fair Al, we must combine ethics with technical rigor—defining fairness clearly, testing across
diverse groups, improving transparency, and ensuring accountability. This demands collaboration across

disciplines and a strong commitment to inclusive data and global cooperation.
This paper primarily focuses on the medical and healthcare industry and is organized as follows.

e Section 2: Understanding Bias in Al

Discussion of different types of bias including unintentional, with real-world case studies illustrating their

consequences.
e Section 3: Al System Verification and Validation (V&YV) as a Framework for Fair Al
o How does Al V&YV fit into the Al Lifecycle
o  Why Al Verification and Validation are Essential for Al
o Applying V&V techniques to bias mitigation and model evaluation
e Section 4: Limitations and Challenges

Technical, ethical, and organizational barriers to building fair Al, including issues with data access,

measurement of fairness, and accountability.
e Section 5: The Future of AI: Toward Bias-Resilient Systems
o Establishing a global definition of bias and fairness
o Standardizing and diversifying data
o Building AI systems both locally and globally

2 Understanding Bias in Al

Bias can arise at various stages of developing Al models and systems. There are several types of bias to

consider:

w—28Data bias: underrepresentation, historical prejudice, sampling bias
Example: A diagnostic model trained and tested mostly on data from urban hospitals may

underperform in rural settings where patients present with different conditions or progression

patterns. Underrepresentation of minority groups can lead to misdiagnosis or delayed care.

Algorithmic bias: model behaviors that amplify unfair patterns.
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Example: A model used to predict who is likely to benefit from follow-up care may favor patients with
more documented history—unintentionally favoring wealthier or insured patients who visit clinics
more frequently, even if others have greater need.

ﬂUser/System bias: interface designs or operational contexts that skew outcomes.
Example: A clinical decision support tool might prioritize alerts in a way that assumes all clinicians
respond the same, ignoring differences in role or workload. This can lead to critical alerts being

missed, especially in busy emergency settings.

ﬂUser-Pleasing bias: Al systems are designed to align with user expectations rather than objective
outcomes, potentially reinforcing incorrect decisions.
Example: A symptom checker might offer “likely” diagnoses that match patient concerns or search
history—even when those aren’t medically accurate—because doing so increases user engagement.

“Unintentional bias: Refers to bias that arises inadvertently, often due to unexamined assumptions in

model design or deployment.
Example: A triage tool that uses zip code as a proxy for health risk might unintentionally
discriminate against communities with poor access to healthcare—Ilabeling them low priority
due to historical under-utilization.

3 Al Verification and Validation as a Framework for Fair Al
3.1 Al Verification and Validation as a Framework for Fair Al

e  Definitions:

o Verification: Ensuring the Al system was built right—that is, it conforms to its design
specifications and implementation requirements.

o Validation: Ensuring the right Al system was built, meaning it meets the intended purpose,
operates effectively in real-world contexts, and delivers outcomes that are accurate, fair, and
trustworthy.
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3.2 Why AI Verification and Validation are Essential for Al

Al systems differ fundamentally from traditional software in that they are data-driven, probabilistic, and
adaptive. These characteristics make traditional debugging and inspection insufficient. Instead, Al System
Verification and Validation (V&V) practices are essential for ensuring that Al systems meet fairness, safety,
and accountability requirements and go beyond accuracy: Validating Fairness and Ethics.

Traditional metrics like accuracy or F1 score are not enough. While these metrics help evaluate
overall performance, they often mask disparities across different groups or fail to capture ethical
and societal risks. For Al systems to be truly fair, especially in sensitive domains like healthcare,
they must be validated across multiple dimensions:

Dimension || Description H Example |
. Al should perform equally well A diagnostic Al tool must not
Demographic ; : ;
across demographic groups have higher false negative
Performance o
. (race, gender, age, language, rates for women or minority
Parity \ .
income). patients.
Al decisions should align with An Al system prioritizing
Outcome ethical principles, legal organ transplants should not
Fairness standards, and societal favor patients based on
expectations. income or location.
Assess fairness not just A triage Al that consistently
Long-Term immediately, but over time— deprioritizes underserved
Impact especially for systemic or groups could worsen long-
repeated use. term health disparities.
. Bias in training data (e.g., from An Al model trained only on
Data Bias C i L
historical inequities or narrow high-income country data
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Dimension

Description

I

Example

datasets) directly affects model
fairness.

may not generalize well to
low- or middle-income

populations.

Patient Bias

Variability in how different
groups interact with healthcare
(e.g., care-seeking,
communication) can introduce
bias into data and Al
outcomes.

Underreporting of symptoms
by certain cultural groups

may lead to

misrepresentation in

predictive models.

3.3 Applying V&V to Al Bias

Applying Verification and Validation (V&V) to Al bias means treating fairness and bias mitigation as
testable, trackable, and auditable requirements. It involves systematically checking whether the Al system
behaves equitably across different subgroups and whether it meets fairness criteria defined for its context.
And applying V&V to Al bias in this context ensures that the model's clinical behavior is both safe and fair

across diverse patient groups.

3.3.1 Verify Data Diversity and Quality

e Audit datasets [3]:

Representation Across Key Demographics
Evaluate whether the dataset adequately represents diverse patient populations, including variations in:

O O O O O

Race and ethnicity
Sex and gender
Age groups
Comorbidities and health conditions

Geographic locations (urban, rural, regional diversity)

o Socioeconomic status
e Variations in Data Quality Across Institutions
Assess the consistency and reliability of data collected from different hospitals, clinics, or regions:

o Differences in imaging quality (e.g. older vs newer equipment)

o Variability in electronic health record (EHR) systems
o  Gaps or inconsistencies in documentation

3.3.2 Validation for Fairness:

Validating Al systems for fairness requires more than just measuring traditional performance metrics. It
demands targeted methods that account for social impact, contextual equity, and hidden vulnerabilities. The
following strategies support a comprehensive fairness validation process, particularly in high-stakes domains

like healthcare:

Excerpt from PNSQC Proceedings

Copies may not be made or distributed for commercial use

PNSQC.ORG5
Page 5




« Involve domain experts,
clinicians, patients,
ethicists, and community
representatives in the
validation process. This
helps align the Al system’s
objectives with clinical
relevance, public health
values, and ethical
priorities.

Scenario Testing

E

* Simulate how the Al will
behave in real-world
contexts across various
clinical settings. Use case-
specific workflows, patient
types, and institutional
constraints to detect
disparities in performance
and outcome.

* Example: When
validaeting a readmission
prediction tool, test it
across different hospital

» Assess how well the model
performs when exposed to
edge cases, noisy or
incomplete data, or shifts
in the underlying
population distribution.
Fair models should not
degrade disproportionately
for specific subgroups
when conditions change.

+ Example: In validating an
Al tool for diabetic
retinopathy detection,

test whether the model
remains accurate on low-
resolution images from
under-resourced clinics,
or when applied to
populations with different
dietary risk factors.

types (e.g., urban vs.
rural), payer mixes
finsured vs. uninsuredy},
and patient backgrounds
to see if it unfairly
penalizes certain
populations.

Robustness Checks

Human-in-the-Loop Validation

3.3.3Stress Test on Edge Cases and Rare Conditions

Validate the model’s performance on underrepresented or high-risk cases, such as:

¢ Rare Disease Patients
Validating against rare disease cohorts ensures that predictions remain accurate even when sample sizes are
small.
e Pregnant Patients
Pregnancy introduces unique physiological changes that can affect disease presentation, treatment plans,
and lab result interpretation.
Example: A cardiovascular risk model should be validated to ensure it doesn’t overestimate or
underestimate risk in pregnant women, whose baseline metrics (e.g., heart rate, blood pressure) differ from
the general population.
e  Patients with Multimorbidity (Multiple Chronic Conditions)
Many real-world patients have two or more chronic conditions—Ilike diabetes, hypertension, and heart
failure—yet many models are trained and validated assuming single-disease cases.
e Demographically Sparse or Structurally Vulnerable Groups
Validate performance on groups that may be underrepresented in training data due to systemic or structural
barriers, such as:
o Non-English speakers
o Homeless patients
o Elderly in long-term care
o Lowe-literacy or low-health-literacy populations
e Scenario-Based Testing with Realistic Edge Cases
Beyond metrics, simulate testing scenarios using real-world case examples that challenge the system. This
includes:
o Low-resource settings (e.g., limited EHR data or delayed lab results)
o Noisy or incomplete records
o Atypical symptom presentations
o Non-standard clinical pathways (e.g., urgent care instead of ER)
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3.3.4Validating Behavior in Real-World Contexts

e Al systems must be validated not only in training environments but also under real-world operational
conditions. Key steps include:
o Simulated Feedback Loops: Test how the Al behaves over time with iterative user feedback to

observe potential bias amplification.
o Behavioral Monitoring: Deploy continuous validation tools to monitor shifts in model behavior
that may arise from pleasing or aligning with specific groups.
o Ethical Alignment Testing: Go beyond technical performance to ask: Is the model’s behavior
consistent with ethical, social, and cultural norms—particularly for marginalized groups?
e Al systems must be validated not only locally but also globally.

B tox]

Understand Local and Collect Diverse Perform Localized Model Test for Global

Global Contexts: Representative Data: Testing: Generalization:

+  Identify the specific - Gather high-quality data . Validate model + EBvaluate whether the
populations, cultural from multiple regions performance separately Al model maintains
norms, languages, that reflect local on local datasets to accuracy and faimess
healthcare practices, demographics including identify regional biases across all pooled global
regulations, and those developing or failures. data.
infrastructure in each CDU“FT}GS and . Al . «  Identify where trade-
target region. conditions. nalyze SUbgroup offs exist between

performance within ’

- Recognize how » Address data gaps or each locale (e.q., age global consistency and
these factors affect biases unique to each groups, ethnicit e,s local performance.
data distributions, location. socioeconomic status)
model inputs, and

+ Ensure compliance with
local data privacy laws
and ethical standards.

acceptable
outcomes.

4 Limitations and Challenges

Despite the strong efforts of Al practitioners to build fair systems with minimal or no bias, there are still
significant challenges and limitations that make this goal difficult to fully achieve. These challenges are
spanning technical design, data quality, ethical trade-offs, and systemic inequities that make it clear that
building fair Al is not a single-step task, but a continuous, collaborative, and multidisciplinary process.

4.1 Technical Challenges

e Biased or Incomplete Data
Historical data often reflects existing social or medical inequalities, and some groups are underrepresented
or misrepresented (e.g., minority populations, people with rare diseases).
e Black-box Models
Many modern Al systems, especially deep learning models, large language models (LLMs)
Example: In LLM-based symptom checkers, subtle language patterns in patient inputs (e.g., describing
pain differently across cultures or genders) can lead to biased or inconsistent advice.
e Lack of Diverse Testing and Validation
o Al is often tested on data similar as what it was trained on.
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o Systems may perform well in controlled environments but fail in the real world, especially in
under-resourced or global settings.

4.2 Domain-Specific (e.g., Healthcare) Challenges

e Limited Diverse Clinical Data
Many medical Al tools are trained using data from high-income countries or large urban hospitals, leading
to bias against rural, low-income, or global populations.

e Ethical and Legal Constraints on Data Access
Collecting sensitive or demographic data (e.g., race, income, sexual orientation) needed for fairness
auditing is often restricted by law or privacy concerns (e.g., HIPAA, GDPR).

e Bias Hidden in Proxy Variables
In healthcare, AI models often use proxies like insurance claims or treatment cost—these can reflect
systemic inequality rather than actual medical need.

4.3 Social & Institutional Challenges

e Lack of Standardized Fairness Guidelines
There are few universally adopted standards or regulations for measuring or ensuring fairness in Al
systems. This leads to inconsistent approaches across organizations and industries.
e Bias in Human Decision-Making
Al systems are trained in human decisions—if those decisions were biased (consciously or not), the model
will learn and replicate them.
e Priority and Resource Constraints
o Al development is often driven by speed and performance goals, not fairness.
o Fairness testing and mitigation require extra time, expertise, and resources, which are often
deprioritized.

4.4 Post-Deployment Challenges

e Fairness Drift Over Time
Al models can become biased after deployment as data distributions shift, user behaviors change, or
feedback loops reinforce bias (e.g., if underserved patients avoid biased tools, data gets more skewed).
e Lack of Ongoing Monitoring and Accountability
o Fairness is often treated as a one-time evaluation, not a continuous responsibility.
o  Without proper monitoring, biased outcomes can go unnoticed or unaddressed.

4.5 Challenges Introduced by Al Itself

Challenge Description Healthcare Examples

Small data imbalances can be
magnified by Al especially in deep
learning. Models may overlearn
patterns that reflect harmful societal
biases.

Al associates certain diseases
with race/gender due to
biased training data.

Bias
Amplification

. Al trained on biased historical If past fioctors
Reinforcement of . . underdiagnosed women for
decisions reproduces and amplifies

Existing . : . heart attacks, Al might learn
. s unfair practices, creating feedback .
Inequities ) and repeat the same behavior.
00ps.
Overfitting to the Al models prioritize common Rare diseases or symptoms in
Majority patterns and neglect outliers or minority populations are
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Challenge

Description

Healthcare Examples

minorities, risking poor outcomes
for underrepresented groups.

misclassified due to lack of
training examples.

Optimization Bias

Al often optimizes for accuracy or
efficiency—without fairness
constraints, models favor majority
outcomes over equitable ones.

A diagnostic tool sacrifices
fairness to improve
performance on the most
common patient
demographic.

User
Reinforcement
Bias

Al systems echo user inputs or

behavior, reinforcing biased views,
skewed interactions, and short-term
preferences over accuracy or ethics.

* Reinforcing User
Beliefs

Al aligns with user biases or assumptions
rather than correcting them.

A health chatbot downplays
symptoms to avoid user anxiety.

* Rewarding Biased
Feedback

Al adapts to user interactions (likes/clicks),
which may reflect social bias rather than
clinical value.

Triage systems prioritize fast,
popular responses over accurate,
equitable care.

¢ Over-Personalization

Al tailoring too much to individual behavior
may maintain or worsen existing disparities.

A personalized treatment plan may
reinforce unhealthy behaviors or
systemic care gaps.

¢ Ethical Blind Spots

Al avoids unpleasant but necessary
information to maintain user comfort or
satisfaction.

Systems may avoid telling users
about serious conditions due to fear
of low satisfaction scores.

5 Future Al: Toward Bias-Resilient Systems

5.1 Establishing a global definition of bias and fairness [1]

As artificial intelligence systems become increasingly embedded in decision-making processes around the world, the
need for a unified, global understanding of bias and fairness becomes imperative. Despite the shared goals of
promoting equity, transparency, and accountability, existing definitions of these concepts vary significantly across
disciplines, cultures, legal systems, and application domains.
Efforts to establish a global definition must account for:

e  Cultural pluralism: Different societies have distinct norms and historical experiences with marginalization
and inequality. What is considered biased in one region may be accepted or even expected in another.

e Regulatory harmonization: There is currently a patchwork of regulations (e.g., GDPR in Europe,
algorithmic accountability laws in the U.S., ethical Al principles in Asia) that reflect regional values and
priorities. Aligning these frameworks will be challenging but necessary for multinational Al systems.

e Cross-disciplinary input: Developing a global definition of bias and fairness requires collaboration among
ethicists, legal scholars, computer scientists, social scientists, and impacted communities. No single
discipline can capture the full complexity of fairness in Al.
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5.2 Standardizing and diversifying data

Standardization refers to the development and adoption of consistent protocols for data collection, labeling,
annotation, storage, and documentation. Lack of standardization can lead to inconsistencies across datasets, making
it difficult to assess fairness, compare model performance, or replicate results.

However, standardization alone is not sufficient. There is also an urgent need to diversify data—to ensure that Al
models are trained and evaluated on data that reflects the heterogeneity of the real world. This includes not only
demographic diversity (e.g., race, gender, age, ability, geography) but also behavioral, contextual, and linguistic
variation. Key strategies include:

Inclusive data
source:

Proactively seek data
from
underrepresented or
marginalized groups,
rather than relying on
convenience samples
or historical records
that may encode
systemic bias.

Bias audits and gap
analysis:

Use tools and
methodologies to
identify over- or
under-representation
of subgroups and
prioritize data
augmentation where
needed.

Community
involvement:

Engage impacted
communities in the
data collection and
labeling process to
ensure their values
and lived experiences
are accurately
captured and
respected

Localization:

Adapt data collection
strategies to local
languages, cultures,
and norms, especially
for Al systems
deployed globally or
in non-Western
contexts.

5.3 Developing Governance for Global Deployment

Developing governance for global Al deployment is critical to ensure accountability, safety, and fairness as Al
systems are used across different countries, populations, and legal systems.

e Create policies and processes that oversee Al validation, deployment, and updates across all target regions.
o  Ensure accountability and ethical standards are upheld globally and locally

5.4 Building AI Locally and Globally [2]

To create fair, trustworthy, and impactful Al systems, it’s essential to strike a balance between local relevance and
global scalability. This dual approach ensures that Al systems are both:

e Responsive to community-specific needs, and
¢ Robust and interoperable across diverse populations, settings, and infrastructures.

Al systems built solely for global deployment may overlook cultural, economic, and structural differences.
Conversely, locally focused systems may lack the scalability and interoperability required for widespread impact.
Building Al both locally and globally allows us to maximize equity, efficiency, and inclusiveness.

5.4.1 Engage Local Experts and Stakeholders

e Collaborate with end users and experts like clinicians, regulators, administrators, patients and users in each
region, especially people from groups that are often biased against reviewing results and validate relevance
and fairness.

e Incorporate their feedback into iterative improvements.

Example: Mayo Coalition for Heath Al (CHAI), A nonprofit coalition promoting responsible, equitable, and

transparent Al in healthcare, with membership across hospitals, regulators, patients, academia, technology

vendors, and advocacy groups founding contributions from major health systems and innovators, including

Mayo Clinic, Stanford, Johns Hopkins, Microsofi, Google, and others
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CHAI focuses on:
o Establishing best practices for AI development, deployment, and oversight
o  Creating shared testing and validation frameworks
e Promoting ethical technology adoption that benefits patients and providers

5.4.2Document and Report Regional Differences [4]

e Maintain transparency about how the Al performs in different locales.
o Share findings with regulators, users, and development teams to inform updates and governance.

Example: In addition to many organizations in the U.S., the Mayo Clinic Center for Digital Health (CDH) has
initiated close collaborations with Asian countries—including Singapore and the Philippines—to share best
practices, processes, and standards for Al development and implementation.

5.4.3 Building the world-wide platform for Al

Building a worldwide Al platform is not just a technical challenge, it is a political, ethical, and humanitarian
endeavor. Such a platform can help mitigate disparities in access, address global harm before they occur, and
foster inclusive innovation that serves all of humanity, not just the most technologically advanced. By
emphasizing shared values, coordinated governance, and open collaboration, a global Al platform lays the
groundwork for more just and accountable Al systems worldwide.

Example: A coalition of nations, led by the UNESCO Al for Good initiative, in collaboration with OECD,
IEEE, African Union, EU, and leading universities and nonprofits, launches a project called the Global Al
Commons. This platform serves as a collaborative hub for:

o  Shared Al policy and ethics standards,

o Open-source fairness testing tools, and

o Cross-border data partnerships to promote transparency and equity.

6 Conclusion

Al systems hold transformative potential, but they also risk introducing or deepening biases—especially when
models seek to align with user preferences or societal norms without sufficient oversight. These risks become
especially salient in global, real-time deployments where emergent behaviors can reinforce inequality. Robust
verification and validation practices, rooted in diverse data, ethical oversight, and global perspectives, are essential
to guide the development of Al that is not only powerful and effective, but fundamentally fair.

Bias in Al is not only a technical issue, but a reflection of societal structures and design choices. As Al systems
become more powerful and widespread, they must be held to higher standards of fairness, accountability, and trust.
Verification and Validation (V&V) offer a rigorous framework to assess these dimensions. By embedding V&V
throughout the Al lifecycle—from design and data collection to deployment and monitoring—we can move toward
systems that are not only intelligent but also just. The future of Al fairness depends on whether we take V&V
seriously today.
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