Digital Blind Spots: A Field Study of
Common Website Insecurities in Small
Businesses

Lucas Zhang, Zhi Qu, Andrew Ma, Russell Xue, Nicholas Peng, Alan Kang

lucas.zhang@youthcyberdefender.org

Abstract

Small businesses are increasingly targeted by cyberattacks, yet they often lack the resources to invest in
professional security assessments, leaving them vulnerable to common yet critical threats. This paper
presents findings from student-led security evaluations guided by the Educational Cybersecurity
Assessment Framework for Small Businesses (ECAF), a streamlined process for conducting authorized,
community-driven assessments. This paper reveals four prevalent and high-impact vulnerabilities
uncovered in real-world assessments, including uncensored file uploads, improper authorization, insecure
data at rest, and SQL injections, and provides actionable remediation strategies. These case studies
illustrate the critical yet often overlooked security challenges small businesses face. This paper will help
developers to quickly identify common vulnerabilities on small business websites, improve application
quality by fixing these issues before being exploited by cyber attackers.

Biography

The authors are high school students from the Portland Metro Area and members of Youth Cyber
Defender, a 501(c)(3) non-profit organization dedicated to youth cybersecurity education and service.
They all have cybersecurity training for 3-5 years and have participated in cybersecurity competitions
such as CyberPatriot and picoCTF. In the past two years, they focused their efforts on helping secure
local businesses from cyberattacks.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 1

1 Introduction

The student authors of this paper have developed their interests in cybersecurity since 2021. During one
of the early training sessions, a small business owner concerned about his online presence approached
us and wondered if we could help him secure his environment. This sparked a mission for us—to help
small businesses vulnerable to cyberattacks with accessible testing while educating the next generation
of cybersecurity professionals. Since then, Youth Cyber Defender and its members have conducted
multiple cybersecurity assessment tests on small businesses, through which we have found common,
easily exploitable, and critical vulnerabilities across the websites of small businesses.

This paper is organized as follows: firstly, this paper will overview of the background and motivations for
our work, the framework with which we followed, and then discuss examples of four categories of
common vulnerabilities: abusable file upload, improper authorization, insecurities of data at rest, and risk
of SQL injection. Finally, the paper ends with a conclusion and future work.

2 Background and Motivation

Nowadays, cybersecurity attacks are commonplace in news headlines. Most attacks in the news are
associated with large companies or government agencies. It is daunting to read about millions of users’
data compromised from a data breach or millions of dollars lost from ransomware. Every year, large
companies and the government increase their budget and hire cybersecurity professionals to improve
their cybersecurity defenses.

However, the cybersecurity risks associated with small businesses are dangerously overlooked or
ignored. Small businesses employ nearly half of the American workforce and represent 43.5% of
America’s GDP, according to the U.S. Chamber of Commerce. They are the backbone of local economic
ecosystems. Due to the constraints of resources, small business owners often hire inexperienced
developers or support staff to build their websites with open-source software, default out-of-the-box
configurations, insufficient validation testing, and a lack of security integrated into the design.

A 2023 Business Impact Report: Small Businesses and Cyberattacks from Tripwire found 73% of small
business owners and leaders reported experiencing data breaches or cyberattacks. Studies conducted by
other organizations report other alarming facts:

- Nearly 43% of cyberattacks are targeted at small businesses (SMB).
- Only 14% of these SMBs are prepared to face such an attack.
- On average, SMBs spend between $826 and $653,587 on cybersecurity incidents.

To enhance systems’ security, the best practices in the cybersecurity industry call for a security
assessment or penetration testing with the purpose of discovering potential security vulnerabilities that
could be exploited by hackers. Both tests simulate a cyberattack designed to evaluate the security of a
system, network, or application. It involves authorized attempts to identify vulnerabilities and exploit
weaknesses, mimicking the tactics of malicious attackers, but without causing harm. However, the cost for
this type of professional service, ranging from $5,000 to hundreds of thousands of dollars, is beyond the
budget for most small businesses.

Students from Youth Cyber Defender witness this urgent need from local small businesses. We also see
this as a unique opportunity to make a real impact on our community by helping business owners avoid
potential financial disasters from cyberattacks. Equipped with the skills from years of cybersecurity
training and supervised by their mentor-coaches, students mobilized themselves, reached out to local
businesses, performed security assessments under authorization, discovered critical security
vulnerabilities that could lead to total compromise of the business websites, and helped owners to
remediate the problems.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 2

Before our assessments, we leveraged local connections with small businesses and our previous
experience in cybersecurity to obtain authorization to conduct testing. In addition, the small businesses’
awareness of the dangers of cyberattacks, combined with the lack of affordable cybersecurity evaluations,
acted as a large factor in our receiving authorization. Following our initial assessments, we presented the
methodology we used at cybersecurity conferences, leading us to connect with cybersecurity
professionals and other small businesses outside of the wider Portland area and the Pacific Northwest.

3 Methodology and Framework

All our assessments follow the Educational Cybersecurity Assessment Framework for Small Businesses
(ECAF) — a framework developed by Ethan Zhang. This framework is designed to enable students to
provide cybersecurity assessment services to small businesses.

Planning/Authorization

Reconnaissance/
Information Gathering

New Discovery

Execution
(Passive/Active Attack)

Reporting

ECAF consists of four stages:

- Authorization: The assessment team receives authorization from business owners for the
assessment scope, timeline, roles, and responsibilities. As many small businesses recognize the
need for protecting their cyber-presence but lack the means, our affordable services are a large
selling point.

- Reconnaissance: In the reconnaissance phase, the assessment team gathers site or user
information from the Internet before exploiting or validating any vulnerabilities. This phase is
critical for understanding the target's environment, identifying potential vulnerabilities, and
planning the attack strategy.

- Execution: After analyzing the results from reconnaissance, the assessment team lays out a plan
to exploit or validate the vulnerabilities and execute the plan. Some results from execution may
lead to further reconnaissance.

- Reporting: All the findings from the reconnaissance and execution phases will be documented in
a final report that will be delivered to the business owners. The report will contain details of steps
that can be used to reproduce the problems. It also includes recommendations for remediation
solutions.

In the past two years, students from YCD have performed multiple assessments for local small
businesses. We found common security issues on SMB websites that led to the compromise of data
confidentiality and integrity. By getting familiar with common methodologies, developers can quickly
discover site vulnerabilities and greatly improve site security.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 3

4 Case Studies

In this section, we will overview the most common and critical security issues discovered from our
assessment exercises. All the cases studied here are from real websites with the identifiable information
redacted for privacy purposes.

4.1 Uncensored File Upload

Many websites offer a file upload feature for users. Generally intended for form, text, or photo file uploads,
this feature, without limitations on file types and contents, can be exploited to run a shell and execute
system commands. During the assessments, we were able to access confidential files uploaded by other
users, including sensitive private information in signed forms with signatures. This vulnerability creates an
entry point that allows a malicious user to inject code and other strategies to control the website.

4.1.1 Validation of Uncensored File Upload

PHP is a very common programming language used in website development. One website we assessed
has a file upload feature for its users to upload the health and immunization forms.

Select files to upload (Press Ctrl to multiselect):

Please download, fill in the Oregon Certificate-of-Immunization Status Form and upload.

Choose Files | No file chosen
Attached Files Actions
3224_72file.php View Remove
3224_80file1.php View Remove
3224_15my.php View Remove

Save to System

The website failed to check which files were allowed for upload, so we uploaded a PHP file with a simple
one-line PHP web shell code:

<?="$_GET[0]' ?>

The website executed the code after this file was uploaded, allowing us to run Linux commands in the
system through web browser, such as listing all other uploaded files. We exploited this vulnerability further
by uploading a reverse shell PHP exploit code, which can be found on the Internet. With interactive
system shell, we were able to compromise their hosting servers. To ensure malicious actors could not
access data retrieved by us, we did not keep copies of the sensitive data itself.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 4

41.2 Recommendation

While removing the feature completely is the safest option, the business may need to have the feature for
its business function. One way to reduce the harm would be to restrict the type of file uploaded to specific
formats, such as PDF, JPG, PNG, etc. Implementing this guardrail will reduce the risk, thus preventing an
easy entry point.

4.2 Improper Authorization

Improper authorization is a vulnerability that a system fails to check the user’s permission on the
requested data, so it grants the user access to unauthorized information or functions. Improper
authorization may lead to privilege escalation that allows unauthorized modifications to the system. We
have witnessed multiple cases of improper authorization through our assessments.

On one website that provides education services for students, we explored the improper authorization and
were able to view and modify any user’s information and profile. This was achieved by simply modifying
the ID field as part of the HTTP GET request.

4.2.1 Validation of Improper Authorization

One of the easiest ways to discover improper authorization is by changing URL parameters. Many times,
the data used to query the backend database is embedded as an HTTP GET parameter and displayed on
the user’s browser. One common function of most websites with authenticated users is to show the user’s
own profile information. By changing this request to another user’s identity, the application may display
unexpected information.

The picture shown below is a user profile edit function that is designed for users to modify their own
profiles. However, by simply changing the id field in the HTTP GET request, we were able to modify
another user’s profile—a clear sign of improper authorization.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 5

o

AB T US TEACHERE ALENDAR

First Name

]
| I A Street adaress

cmal
AobDbe NO
ty P State
m «

An assessment with another website discovered the same improper authorization issue with even more
severe consequences. We were able to delete all the user accounts from the system as a regular user.
This involved using a tool called Burp Suite, which can capture all the network traffic between local
browsers and remote web servers. We were able to modify the HTTP request to delete any user we
wanted.

The picture below shows that the delete function relies on an id parameter sent through HTTP POST
request which means users will not be able to modify its value directly on their browser. By using Burp
Suite, we were able to modify the id parameter and delete any user in the system.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 6

W= " jnspector sD::®x

Request Response

Pretty Raw Hex ® a W = prefty Raw Hex Render a N = Request attributes 2 v
POST /amync_update.php HTTP/1.1 HTTP/1.1 200 OK
sost : Date: Nom, 19 Aug 2024 17:4€:)& GHT Request query paramelers 0 v
Cookie: PHPSESSID=medrorcpfidépimeiqviagughl Server: Apache

4 Content-Length: 38 4 Expires: Thu, 19 Mov 1901 00:52:00 GHT
Sec-Ch-Ua: "Chromium™;w="117*, Cache-Control: mo-store, mo-cache, Request body parametess 2 v
"Not) A: Brand®;ve"G6" must-reval idate
Content-Type: application/x-wyv-form-urlencoded Pragma: no-cache
Accept-Language: en-US Vary: Accept-Encoding Request cookies L v
Sec-Ch-Ua-Nobile: 0 Content-Length: 85
User-Agent: Nozilla/5.0 (Windows NT 10.0; Winméd: Eeep-Alive: timeout=], max=500 Request headers 18 v
xé4) AppleWebKit/517.1é (FETHL, like Gecko) Connection: Feep-Alive
Chrome/127.0.€531.100 Safari/537.3¢ 11 Content-Typs. ..
Sec-Ch-Va-Plattorm: "Vindows” Response headers 10 v

Accepr: */*
origin: heeps: N - .-
Sec-Fetch-Site: same-origin
4 Sec-Fetch-Node: cors
Sec-Fetch-Dest: empty
Reterer:
heeps S - o= account . ph
P
Aceepr-Encoding: grip, deflate, br
Priority: wu=l, i

Another example of improper authorization is closely associated with the file upload function. Files
uploaded by other users are available to anyone on the Internet. Ideally, files should only be accessible to
the user who uploaded them.

Index of /upload

a Parent Directory -
% 708-program 2023-06-13 12:14 56K
% 3763-progran 2023-06-13 12:13 70K
- 2023-06-13 12:13 92K
) 43 in 2023-06-13 12:13 59K
) 4886 g 2023-06-13 12:14 56K
o 5783 ip 2023-06-13 12:14 6.3K
2023-06-13 12:13 124K
2023-06-13 12:13 2.1M

% 28698

4.2.2 Recommendation

There are multiple steps we can take to protect systems from this attack. Applications should not trust any
data from the user’s browser, and all data from the browser should be inspected for its legitimacy before
being processed by the backend application. Furthermore, it is recommended to enforce correct
authorization controls and checks, such as role-based (RBAC), attribute-based (ABAC), or policy-based
access control.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 7

4.3 Data at Rest

Throughout our assessments, we identified several critical and easily exploitable vulnerabilities in the
websites and digital infrastructure of small websites, which can be classified as ‘data at rest’ issues, with
many related to the use of MySQL databases. ‘Data at rest'—as implied by the name—refers to data at a
state of rest, rather than when it is being transmitted or used in any manner. MySQL is a commonly used
open-source database that utilizes SQL (Structured Query Language) to manage databases. After
accessing MySQL databases, we discovered that many passwords and other sensitive pieces of
information were not encrypted properly. Two scenarios we encountered were the lack of any encryption
and the encryption of passwords in weak hash formats, such as the use of MD5.

4.3.1 Passwords at Rest

Though we find it is very common that plaintext data is stored in a MySQL database, exploiting this issue
does require direct access to file systems. It is more common for an attacker to exploit SQL Injection
vulnerability, or access the database through the MySQL command line. Once a hacker gains access to
the database, the first target normally is the user table with all the passwords. Here we see two common
missteps: the first is that passwords are stored in plaintext, and the second is that passwords are stored
in the vulnerable MD5 format. We dumped more than 7000 passwords in MD5 format and were able to
crack many of them.

The picture below shows the content of a user table with MD5-hashed passwords.

10-03 |
@ | NULL
I
NULL
219-18-06 16

2016-10-14 2023-12-11
@ | NuLL

| 1100 |

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 8

4.3.2 Recommendation

MySQL version 8.0 or later has native support for database encryption. Developers should leverage this
capability to encrypt the database at rest. More importantly, the password data field should be stored in a
more robust hash format such as SHA256 or SHA512. Validation can be easily achieved by checking the
password field through the MySQL command line.

4.4 SAQL Injection

SQL Injection (SQLi), or Structured Query Language Injection, is a technique used by attackers to gain
unauthorized access to data by inserting malicious SQL code into input fields—such as login forms—on a
website. Modern websites often contain numerous input fields, which can make them vulnerable targets.
By exploiting poorly secured inputs, an attacker can manipulate SQL queries to bypass authentication
mechanisms, potentially gaining access without a valid password. This can allow them to interact directly
with the backend database, extract sensitive information, or even alter or delete data.

4.41 Discovery of SQL Injection

The first step to exploiting SQL Injection is to identify its existence. By using open-source tools like
BurpSuite and SQLmap, which can discover data input points that are vulnerable to SQL Injection, we
were able to retrieve names, Date of Birth(DOB), emails, and passwords.

In the screenshot below, we can see Burp Suite being used to identify vulnerable input fields by entering
special characters, such as the single quotation mark, to cause system errors.

Burp Project Intruder Repeater View Help Burp Suite Professional v2024.6.5 - Temporary Project - licensed to Kaiser Pleasanton Technolo
Dashboard Target Proxy Intruder Repeater Collaborator Sequencer Decoder Comparer Logger Organizer Extensions Learn
1 = 2 x 3 x 1
Request Response
Pretty Raw Hex w0 \n = Pretty Raw Hex

GET /history-report pthITPJL 1 1 HTTP/L.0 500 Internal Server Error I
Host: Date: Wed, Z1 Aug 024 07:05:14 GHT

Cookie HPSESSID= cnmg/cogEévubrllEé3kviEl Server: Apache/I.4.54 (Ubuntu)

Sec=Ch=Ua: "Chromium";v="127", "Not)A;Brand";v="95" g BExpires: Thu, 19 Nov 1581 08:52:00 GMT
Sec-Ch-Ua-Mobile: 70 Cache-Control: no-store, no-cache, must-revalidate
Sec-Ch-Ua-Plat form: “"Windows" Pragma: no-cache

Accept-Language: en-US Connection: close

Upgrade-Insecure-Requests: 1 Content-Type: text/html; charset=UTF-8
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win€4; x€4) AppleWebKit/537.3&

(FHTHL, like Gecko) Chrome/l1Z7.0.£533.85 Safari/537.3&

Accept:

text/html, application/xhtml+xml, application/xml;q=0.9,inage/avif image/webp, i

mage/apng,*/*;q=0_8 application/signed-exchange ;v=b3:q=0.7

Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: mavigate
Sec-Fetch-User: 71
Sec-Fetch-Dest: document

Accept-Encoding: gzip, deflate, BI
Priority: w=0, i

Once the SQL Injection vulnerability is confirmed, we can use SQLmap to run SQL queries to interact with
the backend database.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 9

In the screenshots below, you can see that we used SQLmap to gain direct access to the website’s
databases.

Type: UNION query

Title: Generic UNION query (NULL) - 11 columns

Payload: id=-5383" UNION ALL SELECT NULL,NULL,NULL,CONCAT(®x7171707a71,0x
4567495178546b6a644167474b67655948546156746d4b44526F6763516d7765476970544b616
f70,0%x7162717671),NULL,NULL,NULL,NULL,NULL,NULL,NULL— -
[] [InNFO] the back-end DBMS is MySQL
web server operating system: Linux Ubuntu
web application technology: Apache 2.4.54
back-end DBMS: MySQL =2 5.0.12

[11] fetching database names

[] [WARNING] reflective value(s) found and filtering out
available databases [6]:

[*]

[*] information_schema

[*] mysqgl

[*] performance_schema

[*] phpmyadmin

[*] sys

4.4.2 Recommendation

The most effective defense against SQL Injection is to use prepared statements or parameterized
queries. This can prevent SQL code from being interpreted as part of the query structure. There are many
examples on the Internet for different programming languages.

Another effective way is to validate and sanitize user inputs, reject unexpected formats or characters from
users.

5 Conclusion

Due to resource constraints, small business applications focus more on quick delivery of business
functions, with security features often being overlooked. Though there are many potential security
vulnerabilities, the security vulnerabilities discussed in this paper are commonly found in our assessment
exercises. These four issues are typically associated with high business risks that may lead to total
compromise of the site and can be easily avoided if developers are familiar with the technology of
discovering and remediating these issues.

In the future, we aim to involve more young students in cybersecurity training and provide more
cybersecurity services to local businesses. Additionally, we plan to expand our cybersecurity service
beyond web applications to include mobile applications that are becoming more and more popular.

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 10

Acknowledgements

The authors would like to thank team captain Ethan Zhang for his leadership during cybersecurity training
and assessments. The authors would also like to thank the team coach, Yongtian Zhang, for his excellent
mentorship throughout our cybersecurity journey. Finally, the authors would like to thank the local small
business owners assessed for trusting us to help them with cybersecurity matters.

References

U.S. Chamber of Commerce, “Small Business Data Center”,
hitps://www.uschamber.com/small-business/small-business-data-center (accessed June 7, 2025)

Tripwire, December 27, 2023, “2023 Business Impact Report: Small Businesses and Cyberattacks”,
https://www.tripwire.com/state-of-security/business-impact-report-small-businesses-and-cyberattacks
(accessed June 7, 2025)

OWASP Top 10, https://owasp.org/www-project-top-ten/ (accessed June 2024)

Ethan Zhang, April 2025, “ECAF: Educational Cybersecurity Assessment Framework for Small
Businesses”, In book: Foundations of Computer Science and Frontiers in Education: Computer Science
and Computer Engineering (pp.123-136), Springer

Simple PHP Web Shell, https://github.com/bayufedra/Tiny-PHP-Webshell/blob/master/README.md
(accessed June 2024)

Fast101, Github, “PHP Reverse Shell”,
https://qithub.com/flast101/reverse-shell-cheatsheet/blob/master/php-reverse-shell.php (accessed July

2024)
Burp Suite, https://portswigger.net/burp (accessed July 2024)

SQL Injection, https://owasp.org/www-community/attacks/SQL Injection (accessed June 2024)

SQLmap, https://github.com/sglmapproject/sglmap/wiki/usage (accessed July 2024)

Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 11

https://www.uschamber.com/small-business/small-business-data-center
https://www.tripwire.com/state-of-security/business-impact-report-small-businesses-and-cyberattacks
https://owasp.org/www-project-top-ten/
https://github.com/bayufedra/Tiny-PHP-Webshell/blob/master/README.md
https://github.com/flast101/reverse-shell-cheatsheet/blob/master/php-reverse-shell.php
https://portswigger.net/burp
https://owasp.org/www-community/attacks/SQL_Injection
https://github.com/sqlmapproject/sqlmap/wiki/usage

	Digital Blind Spots: A Field Study of Common Website Insecurities in Small Businesses
	Abstract
	Biography
	1​Introduction
	2​Background and Motivation
	3​Methodology and Framework
	4​Case Studies
	4.1​Uncensored File Upload
	4.1.1​Validation of Uncensored File Upload
	4.1.2​Recommendation

	4.2​Improper Authorization
	4.2.1​Validation of Improper Authorization
	4.2.2​Recommendation

	4.3​Data at Rest
	4.3.1​Passwords at Rest
	4.3.2​Recommendation

	4.4​SQL Injection
	4.4.1​Discovery of SQL Injection
	4.4.2​Recommendation

	5​Conclusion
	Acknowledgements
	
	References

