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Abstract 

Test matrix explosions are a growing challenge in modern software testing, especially when using 
parameterized tests in machine learning pipelines. This paper presents a hybrid approach combining 
Python’s Abstract Syntax Tree (AST) analysis and the Pytest framework to map test parameterizations 
and reveal hidden redundancies. By applying this static analysis approach, testers can better understand 
test-model relationships and selectively reduce test coverage where appropriate. While this paper does 
not provide formal quantitative benchmarks, early usage of the technique suggested meaningful 
reductions in CI/CD execution time. The technique is lightweight, adaptable, and can support smarter test 
suite management in high-scale environments. 
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1 Introduction 

Python-based testing frameworks like Pytest are widely used for unit, integration, and system-level 
testing. As testers, we strive to maximize coverage across diverse workflows, from simple user 
interactions to complex developer pipelines. This results in several tests being identified and authored 
easily but becomes exponentially more difficult to manage and audit for efficiency or overlap. 

As a result, test matrices tend to grow exponentially as features evolve, especially when leveraging 
parameterized testing. 

 

 

2 The Challenge: When Parameterization Becomes 
Unmanageable 

Parameterization enhances coverage but it can silently grow to an unmanageable scale. This is 
particularly common in machine learning (ML) environments, where tests involve varying model 
parameters. For a medium size project, unit tests could range from about 300-1000+ tests spanning over 
different hardware. And for much larger projects/products spanning across teams and devices, there 
could be thousands of tests in the suite somewhere from 2000 – 10000+.  

2.1 Problems Observed 

• Longer test execution times delaying feedback loops 

• Redundant testing without improving code coverage 

• Increased maintenance overhead, making test suite management harder 

• Scaling challenges when running tests across multiple devices and platforms 

To maintain efficient testing without sacrificing coverage, I aimed to analyze and optimize the test matrix 
strategically. 

3 Analyzing and Optimizing the Test Matrix 

Writing tests for machine learning models by converting them from one format to another format for 
optimization, tuning or other purposes, can follow the following sequence: 
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1. Parameterize the test function. 

2. Fetch a source machine learning model and/or accompanying data. 

3. Convert the fetched original model to a different format. 

4. Execute the updated model under various test parameters. 

Because such tests worked with some open-source models, I hypothesized that certain source models 
were over-represented across multiple test cases. Therefore, I needed a way to bridge information 
between these models and the test cases. (Step 2 and Step 4 above). 

To achieve this, I used a hybrid approach combining: 

• Pytest’s --collect-only option to list all parameterized test cases 

• Python's Abstract Syntax Tree (AST) for static analysis of test files 

Let’s first talk about using Pytest and see how it provides an insight into our test variants created with 
parameterized testing 

4 Analyzing Test Files to Extract Parameterized Test 
Information 

Over half of Python developers today use Pytest, making it the most popular unit-testing framework, 
compared to unittest which comes in second at about 24% 

Consider the following parameterized test sample: 
 

class TestModels():  
   @parameterized.expand(itertools.product(PARAM, DEPLOYMENT_TARGETS))  
   def test_modelexported_platform(param, precision):         
   # Test implementation here 

 
 
Assuming: 
 

PARAM = param1, param2 
DEPLOYMENT_TARGETS = target1 

 
To observe how this expands, install the Pytest Python package and execute from the terminal looking 
only at the test file 
 

> (python environment) pytest --collect-only test_* 
 
The output looks like this: 
 

Test session starts   
collecting ...   
<Package ABC> 
  <Module M> 
    <UnitTestCase TestModels> 
        <TestCaseFunction test_modelexported_platform_param1_target1> 
        <TestCaseFunction test_modelexported_platform_param2_target1> 
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This provides visibility into the expanded test matrix. However, it doesn’t yet reveal which input models 
are used (Step 2 of Identifying Common Patterns in Tests above), which was critical for identifying 
redundancies in this case. 

Let’s now explore the concept of Abstract Syntax Trees in general and how you can effectively use them 
in Python towards the goal 

5 Using AST 

An Abstract Syntax Tree (AST) is a tree representation of the structure of source code. It does not require 
the execution of the script, but instead, Python can parse it into an AST, which allows developers to 
analyze code statically. AST is a technique used widely in code analysis in compilers, linters, parsers, etc. 
for code inspection. 

Python’s ast module comes built-in, so there is no need to install it separately. All that’s needed is the 
simple import of the module 

import ast 

5.1 Parsing Python Code with AST 

Consider a simple example greeting.py: 

def greet(name): 
    message = f"Hello, {name}!" 
    print(message) 
 
greet("Sam") 

 

Now, to parse this file with AST: 

import ast 
# Read and parse the file 
with open("greeting.py", "r") as f: 
    tree = ast.parse(f.read()) 
# Print the AST structure 
print(ast.dump(tree, indent=4)) 

 

You can see the output from this file. The output displays a structured code representation revealing 
function definitions, variable assignments, and function calls 

Module( 
  body=[ 
    FunctionDef( 
      name='greet', 
      args=arguments( 
        posonlyargs=[], 
        args=[ 
          arg(arg='name') 
        ], 
        vararg=None, 
        kwonlyargs=[], 
        kw_defaults=[], 
        kwarg=None, 
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        defaults=[] 
      ), 
      body=[ 
        Assign( 
          targets=[ 
            Name(id='message', ctx=Store()) 
          ], 
          value=JoinedStr( 
            values=[ 
              Str(s='Hello, '), 
              FormattedValue( 
                value=Name(id='name', ctx=Load()), 
                conversion=-1 
              ), 
              Str(s='!') 
            ] 
          ) 
        ), 
        Expr( 
          value=Call( 
            func=Name(id='print', ctx=Load()), 
            args=[ 
              Name(id='message', ctx=Load()) 
            ], 
            keywords=[] 
          ) 
        ) 
      ], 
      decorator_list=[] 
    ), 
    Expr( 
      value=Call( 
        func=Name(id='greet', ctx=Load()), 
        args=[ 
          Constant(value='Sam') 
        ], 
        keywords=[] 
      ) 
    ) 
  ], 
  type_ignores=[] 
) 

 

5.2 Python’s ast.NodeVisitor Class to traverse and extract information 

ast.NodeVisitor is a base class provided by Python's ast module that helps you walk (or traverse) an 
Abstract Syntax Tree (AST) in a structured way. 

visit_* methods handle a specific node type in the Python AST. When you traverse the tree with 
NodeVisitor.visit(node), Python automatically dispatches to the appropriate method based on the node 
type. 

● visit_FunctionDef: called when a function definition node (i.e., a function definition like def 
my_func():) is encountered. 
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● visit_Assign: called when an assignment node (i.e., a variable assignment like x = 1) is 
encountered. 

● visit_ClassDef: called when a class is defined (i.e., a class definition like class MyClass:) is 
encountered. 

Each visit_* method is automatically invoked when the visitor walks over a corresponding node 
type in the AST. 

5.3 Extracting Specific Information from the AST 

Let us say that you want to inspect the function defined in the greeting script earlier. You can walk 
through the AST like this with a class defined to override the function visitor method: 

class FunctionVisitor(ast.NodeVisitor): 
    def visit_FunctionDef(self, node): 
        print(f"Function name found: {node.name}") 
        self.generic_visit(node) 
 
# Parse and analyze the script 
tree = ast.parse(open("greeting.py").read()) 
visitor = FunctionVisitor() 
visitor.visit(tree) 

 

This will output: 

Function name found: greet 
 

Now that you have a basic understanding of an AST and how to hook into the code, we can apply 
these concepts to our original problem. 

5.4 Extracting Source Models/Data Using AST Analysis 

Consider the test suite which loads the source models using a function <my_model_loading_function> 

class TestTorchBasicModels(unittest.TestCase):  
 @pytest.mark.parametrize( 
 "quantize_fp16, deployment_target",  
  itertools.product(  
   [True, False],  
   ["ios15", "ios16"],  
  ), 
  )  
 def test_demo_net_from_file1(self, quantize_fp16, deployment_target):  
  original_model=<my_model_loading_function>("torch_models/DemoNet.pt")  
           self.convert_and_compare(original_model, (1, 1, 28, 28), 
quantize_fp16=quantize_fp16, minimum_deployment_target=deployment_target) 

 

A simple AST-based analysis simply walks over the code and searches for such function usages. We can 
define our visitor class with visitor methods overridden 

def extract_model_data_calls(file_path): 
 tree = ast.parse(f.read(), filename=file_path) 
       class GetFileVisitor(ast.NodeVisitor): 
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      def __init__(): 
          self.current_class = None 
          self.current_function = None 
               . . . 
 
      def visit_ClassDef(self, node): 
                self.current_class = node.name 
          self.generic_visit(node) 
               . . . 
 
      def visit_FunctionDef(self, node): 
          self.current_function = node.name 
          self.generic_visit(node) 
               . . . 
 
      def visit_Call(self, node): 
           if isinstance(node.func,  ast.Name) and \ 
                      node.func.id == 'my_model_loading_function'): 
                   package_name = os.path.dirname(file_path) 
                   module_name = os.path.basename(file_path) 
 
                   results.append({'package_name': package_name, 
                                   'module_name': module_name, 
                                   'file_name': node.args[0].value,  
                                   'class_name': self.current_class,  
                                   'test_name': self.current_function}) 
             
                   self.generic_visit(node) 

 

This process pulls out torch_models/DemoNet.pt, allowing you to proceed to map model strings to the 
actual expanded test cases, thereby enabling redundancy analysis.  
 
The entry for this case, in the results list would look like this for the above case 
 

{ 
     'package_name': 'packageA', 
     'module_name': 'moduleA', 
     'file_name': 'torch_models/DemoNet.pt' 
     'class_name': 'TestTorchBasicModels', 
     'test_name': 'test_demo_net_from_file1' 
} 

 

The results can be collected across the different test files in the suite  

ast_results = [] 
for file_path in test_files: 
    ast_results.extend(extract_model_data_calls(file_path)) 

6 Analyzing and Optimizing the Test Matrix 

After extracting test parameterizations (pytest --collect-only) and the input models from the AST 
analysis, the two datasets were combined to identify model-test relationships. 
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Assume the Pytest results were further parsed and were collected in the format of: 
 

package::module::classname::expandedtestname 
 
The elements in the ast_results obtained from the extract_model_data_calls can also be serialized 
to a similar fashion as a string representation. 
 
The final mapping is then obtained by the merge of the two results based on the common prefix hierarchy 
of package name, module name, class name and test name present in the two updated representations: 
 

mapping = combine_results(ast_results, pytest_results) 
 
The following code snippet below shows the final obtained mapping that could possibly be obtained for 
one case: 
 

{ 
  "torch_models/DemoNet.pt": [ 
    "packageA::moduleA::classnameA::test_demo_net_from_file1", 
    "packageA::moduleA::classnameA::test_demo_net_quantized_from_file1", 
    "packageM::moduleB::classnameF::testnameX", 
    "packageM::moduleB::classnameF::testnameY" 
  ] 
} 

 
From this mapping, you can observe that it's not just test_demo_net_from_file1()that references 
torch_models/DemoNet.pt, but also other test cases like testnameX and testnameY located in 
different packages/modules. This comprehensive overview of model-to-test relationships reveals the 
extent of model reuse across the test suite. 
 
By identifying these overlaps, you can focus on over-tested models, guiding targeted optimizations to 
reduce redundancy and improve CI/CD efficiency. 
 
By analyzing the mapping of models/data to expanded parameterized test name, a smaller test matrix 
was selectively applied in areas where faster turnaround was needed. The following optimizations were 
observed during initial usage: 
 
• Reduced redundant tests where multiple cases used the same model to validate similar 
behaviors 
• This has a lot of potential in narrowing a wide set of tests to a core set of smoke tests even if the 
overall test matrix is required to maintain a matrix with known scenario overlap (such as specific 
regulatory or other legal requirements). 
• Improved CI/CD feedback cycles by reducing execution time without a noticeable loss in test 
coverage 
 
While these results are anecdotal, they demonstrate the potential of this technique to streamline test 
strategy in complex environments. 

6.1 Challenges/Limitations 

There are some limitations with the approach as it depends on how the tests are structured: 
 
• AST Limitations: Custom handling is needed when tree parsing involves nested function calls, 
indirect model loading, or dynamic data generation. The examples shown assume static, analyzable code 
structures.  
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• Dynamic Model/Data Selection: If models are loaded dynamically at runtime or fetched via 
indirect references (e.g., dictionaries, config files), static AST analysis may not reveal the full set of 
dependencies. 
• No Quantitative Benchmarking (Yet): This paper does not include formal measurements such 
as time saved or test count reduced, as the focus was on building a scalable analysis framework. 
 • Because we're using AST, this is limited solely to Python unit testing. But there are other AST-
type libraries for other languages. So, this concept could be extended to other languages and test 
frameworks. 
 
However, informal applications of the technique showed promising outcomes in reducing redundant tests 
and improving test feedback cycles. Systematic measurement is planned as future work. 

7 Conclusion and Adaptability 

 
By combining AST-based static analysis with Pytest’s parameter collection capabilities, this approach 
helps testers visualize test redundancy and reduce combinatorial explosion in large test suites. It provides 
a way to assess which models or datasets are over-tested, enabling smarter decisions about test 
trimming or scheduling, leading to faster and more maintainable CI/CD pipelines. 
 
Although this paper does not present formal performance metrics, the methodology has already been 
applied internally in targeted cases, yielding faster turnaround during CI/CD cycles. Future work includes 
integrating this analysis into continuous pipelines and collecting quantitative metrics on test reduction and 
efficiency gains. 
This methodology can be adapted for broader testing scenarios, making it a powerful tool for modern test 
engineers.  
It can be adapted as needed where there are repeatable static patterns in code that help visualize the 
source of various tests being used. 
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