
Building a Modern Quality Program from
the Ground Up

Jeff Sing
jeff.sing@iterable.com

Abstract
As startups mature, one of the biggest trends is the decision to build a Quality Program from the ground
up. However, these smaller, agile, and more DevOps-centric companies aren’t looking to hire a horde of
testing specialists who act as a safety net—waiting for code to be tossed over the proverbial wall by
developers to perform validation before a release is completed. Instead, engineering leaders are looking
for a modern Quality Program that is significantly smaller and more specialized. They want Quality
Leaders that rely on technology, push a concept of “Quality Culture,” and are Quality Program Managers
to ensure that engineering organizations successfully deliver value to their customers.

Biography
Jeff Sing is a Quality Leader who has been in the testing industry for over 15 years. During this time, he
has built test automation frameworks, tested strategies, and executed quality initiatives for fields such as
medical devices, infrastructure security, web identification, marketing tech, and experimentation and
progressive delivery.

Jeff is currently a Sr. Engineering Manager at Iterable where he has both built and leads the Quality
Engineering and Engineering Operations teams. Prior to joining Iterable, Jeff built the Quality Engineering
team at Optimizely where he was both the Software QE Manager and Chief of Staff to the CTO.

Jeff currently resides in Redwood City, California along with his wife and three children. Jeff studied
Computer Science at UCSD, and to this day is still a passionate Chargers fan.

1. Introduction
One of the more interesting trends I have noticed perusing job boards during the last five years was the
proliferation of companies looking for new QA Managers or QA Leads who would either build their
“Quality Engineering” program or significantly revamp their current ones. When talking to these
engineering leaders at these companies, they were clear that they were looking for an individual to be
some amalgamation of an Automation Architect, Testing Coach, and a Quality Agile Leader that could
“improve quality.” But the catch was none could clearly describe how they expected quality to improve
(Better test coverage? New automation framework? Quality Best Practices?), nor did they really
understand how these quality initiatives would actually impact quality improvement (eg: Does more
automation equate to fewer bugs? Does this mean you will have happier customers? What if the trade off
is slower deployment speed, how does this affect customer satisfaction now?).

mailto:jeff.sing@iterable.com

This struggle can be attributed to what software quality programs used to be like, where companies
staffed teams of testing specialists who act as a safety net, waiting for code to be tossed over the
proverbial wall by developers to perform validation before a release can happen [1]. These software
quality engineers were responsible for testing the application and finding defects.

Shift Left is about doing things earlier in the development cycle. Source: van der Cruijsen 2017.

However, modern agile stresses velocity paired with modern DevOps practices in Shift Left (an approach
to software testing in which testing is performed earlier in the development cycle) to attain validation. This
shift requires developers to bake in testing inherently into the cycle of software releases as they are built,
rather than in the end stage pre-deploy. This motion of testing earlier and often and automatically on each
code build, paired with maturity in deployment frameworks that allow you to quickly deploy bug fixes to
production, made engineering companies re-evaluate if they needed testers at all to perform validation in
the latter stages of the development cycle. “The increasing adoption of agile and DevOps is minimizing
the importance of QA for many teams because these ideologies focus on speed, and quality can become
secondary. (Mason, 2019)[2]”.

In 2015, Yahoo eliminated QA by moving to CI/CD (Continuous Integration/Continuous Delivery) and
having software engineers be responsible for code quality which forced them to develop automated
testing tools and execute tests earlier in the pipeline[3]. Many software companies followed this model,
cutting a lot of their testing team, or relegating their testing team to be pure automation groups [4]. Quality
(requirements, test scenarios, and creation of test cases to be automated) was owned by all developers
and no longer a QA team.

However, even with this change, engineering organizations were still plagued with quality issues. What
they found was the correlation between having a lot of automation tests didn’t always translate to
answering the question “Are my customers really enjoying my product and is it of high quality?” [5]

This question, in fact, has become more critical in how successful engineering organizations function. In
the World Quality Report in 2011-22, the top quote in the executive summary was “Most CIOs now value
testing more than ever before, and the onward march towards digitization is ensuring that customer
experience and quality are of utmost importance.” [6]

To address how to build a Modern Quality Program that champions the customer experience and enables
engineering to deliver with quality, the Modern Quality Program requires a leader that is able to combine
both the technical leadership needed to architect the right tooling, and a Quality Program Manager that
understands how to mature the Quality processes in that company’s Software Development Life
Cycle(SDLC). Intertwined with the above, the leader also needs to be able to build the entire operation to
ensure that the tooling and process iteratively and pragmatically scales for the engineering organization at
hand, and measure to ensure the program is not just solving the right problems, but solving them
efficiently. Lastly, this engineering leader needs management savvy to be a solid people leader in order to
scale and grow the quality organization to support the company as it expands.

2. The Four Key Roles when Building a Modern Quality
Program

The Modern Quality Program is built on the balance of enacting the right quality program and process
(Quality Program Manager) versus executing the right automation tooling (Automation Technical
Architect). To determine if either programs are fit-for-purpose requires the Quality Operations role. Lastly,
none of this is sustainable as a one-person organization if the company scales and grows. The fourth role
(Engineering Leader) is essential to properly grow the correct team to carry on forward. Below are the
definitions of each key role.

Quality Program Manager: Implements the Quality SDLC Program, driving the engineering
organization towards its Quality North Star. By building and enforcing quality guard rails, the
Quality Program Manager remediates the friction of failed orchestrations or confusions during the
design and build phase, and, instead, allows engineers to focus more on the implementation of
their features.

Technical Architect: Visionary of the technical roadmap of tools, frameworks, and QAOPS (the
integration of testing and QA with releases during CI/CD) needed for engineering to ship with high
velocity. The Technical Architect creates the partnership with engineering to ensure there is a full
spectrum of sustainable automation across the testing pyramid that guarantees high feature
coverage.

Quality Operations: Identifies what KPI/Metrics represent Quality, and reviews if the engineering
organization achieves its goals. Ensures that the tools and processes implemented are actually
efficient and effective.

Engineering Leader: Builds and grows the team to execute all of the above. Ensures that said
team works well together, and that each individual member is supported in reaching their career
goals. The Engineering Leader balances between validating that the output of your team’s current
outcome is good while setting up the team for great outcomes in the future. [7]

3. The Quality Program Manager Role

The Quality Program Manager creates and coordinates the various quality programs and processes
across the engineering organization. To accomplish this, the leader needs to establish Program Vision,
Quality Coaching, and Customer Advocacy.

3.1 Program Vision

Vision can be described as your quality North Star.

Questions I like to pose:
● What is the charter of the organization that you are trying to build? I always tie mine to the

company's vision statement. At Iterable, my Quality Charter is: To ensure our engineering team is
enabled to deliver joyful customer experiences for every organization in the world.

● What is the stack rank of things that you need to accomplish? What are the critical areas that I
see damaging the ability for us to fulfill our promise of delivery of joyful experiences? This is
important because understanding what your customer truly cares about allows you to prioritize. If
your customers rely on your product’s up-time versus utilizing the application’s user interface,
then my highest priority for quality will revolve around ensuring our product is available

● How are you going to go about achieving this vision? You’ve already established your roadmap,
now you need to define your program milestones. Defining your program milestones and
reporting on the velocity of how you are doing to your stakeholders keeps you on track.

Starting a new Quality Program is a lot like being thrown into the middle of the ocean and told to swim to
shore. On top of this you will be crashed upon with waves of requests from different stakeholders looking
for help. Having a clearly defined vision allows you to steer in one direction by determining what your
quality program needs at this time versus what doesn’t fit at this juncture.

3.2 Quality Coaching

One of the most critical roles of the Quality Program Manager is Quality Coaching. Coaching is defined by
the International Coaching Community [8] as an individual who provides guidance to a client on their
goals and helps them reach their full potential. In the same vein, Quality Coaching is helping your
engineering organization and leadership team achieve their quality goals. I divide Quality Coaching into
two categories: Quality Leadership and Thought Leadership.

3.2.1 Quality Leadership

Quality Leadership revolves around how to establish the right process and programs that will yield better
outcomes. This involves understanding the current engineering SDLC and identifying where Quality
Artifacts and Programs should fit in (eg: Who should be building a Test Plan if we have no QA engineers
at this moment? What does the Test Plan look like? How does it affect the release process?) and working
with engineering leadership and developers to officially be part of the SDLC (eg: Training teams to write a
Test Plan, Auditing that all releases have a Test Plan).

3.2.2 Thought Leadership

Thought Leadership determines the ROI of each quality process being implemented. Depending on the
maturity of the engineering organization, it may not always make sense to implement every standard QA
process. On the other hand, as an organization matures and scales, some older practices should be
sunsetted. An example of this would be an organization that didn’t have automated tests and required all
its engineers to manually validate features prior to a deployment. Once a suitable framework that gave
good feature coverage was implemented, the act of manually testing probably would not result in a good
ROI.

3.3 Customer Advocate

A lot of testing and validation is built around answering the question “Did I build the product right?” But
engineering often relies on Product Management to answer that question. This essentially becomes a
single point of failure, since engineers are relying purely on Product as a gatekeeper. One of the essential
functions of a Quality Program Manager is to act as a Customer Advocate throughout the entire SDLC.

Some examples:
● Partnering with the Product Manager to review the Acceptance Criteria and Workflow Scenarios

(which eventually will become Test Cases) through with your GTM (Go to Market) organization.
Getting feedback from Solution Engineers and Account Executives over certain features and how
customers are most likely to use them gives you insight on what to test against.

● Inviting Technical Solutions Engineers or Customer Service Managers into release Bug Bashes to
give you a customer’s perspective of how your new features will fare. This often catches usability
bugs that would become major issues later on.

● Meeting with the employees that support, sell, and manage your customers to understand their
biggest pain points or complaints with the product. This helps you determine where to harden
your testing for new features.

4. The Technical Architect Role

The Technical Architect Role revolves around partnering with engineering to drive best automation testing
practices, and partner/build/lead the charge in creating/maintaining testing frameworks across the
application and platform it’s built on. To accomplish this, the leader needs to establish Technical
Leadership and Automation Mentorship.

4.1 Technical Leadership
Technical Leadership encompasses not just the testing pyramid but the infrastructure the tests are built on
as well as the environments in which it runs. A technical leader needs to give direction on the following:

● How good is my unit testing and what should our code coverage be? (Is this important to us or
not?)

● Do my developers utilize integration testing? Do they need help in developing this? (Who should
maintain this framework?)

● Who is currently writing end to end tests? (Who maintains these? Do developers and QE both
write them, or is this the role of your QE team?)

● What environment are we testing in? (Do I have useful test data?)
● Is my current CI/CD pipeline running my tests? (Are they flakey and causing issues? If so, who

should be fixing these?)
● How do we test in production thoughtfully? (Who is managing my Feature Flags?)
● Should I build or buy tools for visual testing, AI/ML testing, crowd testing? (What is the integration

cost really to stand these up?)

4.2 Automation Mentorship
More likely than not, if you’re building your Quality Program you don’t have a team, or, if you do, it’s very
small and unsustainable for building all the automation testing. Even if you had a large Quality team,
engineers should be participating in writing automation tests. Automation mentorship revolves around
building the programs to help uplevel engineers in writing good automation. Here are some examples of
programs that really help mentor engineers in building good automation:

● Testing Guild or Testing Community of Practice: Weekly or Bi-Weekly meeting of engineers
working on testing best practices or tooling. Engineers that attend bring these lessons with them
back to their individual teams.

● Quality Champions: Identifying individual engineers who want to engage quality initiatives and
find ways to encourage or empower them. At a previous company we had a developer who built a
proof-of-concept Flakey Test Detector. His solution would have decreased the time to build in our
pipeline since we had less failures. We found time for him to take a few sprints to productionize
his tool and roll out to the rest of engineering. The end result was that we saw a 30%
improvement in failures and 60% faster deployment speeds.

5. The Quality Operations Role
Quality Operations involves identifying the indicators that we want to monitor and measure to determine
our system quality and customer satisfaction. This allows us to utilize data driven hypotheses on what
adjustments we should make to our quality programs or technical initiatives to achieve better outcomes.
Quality Operations runs in a cycle where we constantly review our KPI and plan out our next initiatives.

5.1 KPI and Metrics
I like to use a mix of KPI and metrics to measure quality. As with all metrics, it’s important to view them
collectively to understand what is happening with the system as opposed to using them individually. I also
want to introduce a caveat, the KPI and Metrics I highlight on the bottom are different than your traditional
QA Metrics (eg: escaped bugs, test coverage, test reliability, time to test, time to fix, etc) because
depending on your program you are building, these might be prioritized or targeted differently. Some
companies will absolutely care and set high SLA, while others may have other more pressing challenges
and not prioritizing these at all. Therefore I like to pick metrics that tell a more visual story of overall

engineering health and effectiveness which rises above simple quality metrics. I break these up into two
categories: KPIs that are benchmarkable across multiple engineering companies, and KPIs that link
quality with business success.

5.1.1 KPI and Metrics that are Benchmarkable
The following metrics like Change Failure Rate and Mean Time To Restore allow me to benchmark
against other companies to see how far we are faring [9].

Key Metrics of the Dora Benchmark

● Change Failure Rate: For the primary application, what percentage of changes to production
resulted in degraded services that subsequently required remediation like a hotfix or rollback? I
use this benchmark to determine how effective our system is in prevention of major issues per
deployment.

● Mean Time to Restore (MTTR): Time to restore service that causes failures. The longer the
outage the more unhappy our customers are which is an important factor. MTTR gives insights
into code quality, reliability, and stability. Proper quality processes can help improve on these all
and can reduce MTTR.

● Lead Time for Changes: How long does it take to go from code-committed to code running in
production. As our testing framework is often part of this calculation, it’s important to see if we are
negatively impacting this time or not. A low lead time can affect incident response time and will
lead to a drop in developer productivity.

5.1.2 KPI and Metrics that link Quality with Business Success
The following metrics are some that I have found measure quality in the view of business success. Every
company I have implemented these at have had different formats and values, so they aren’t
benchmarkable like the last section.

● Normalized Quality Ratio: The number of incoming customer reported bugs versus the number
of outgoing pull requests. This allows me to get context in what our bug counts mean. I could
understand if we delivered a lot of features and had a lot of incoming bugs, but I would be

concerned if we had a lot of incoming bugs and shipped no code. Generally if we had the latter,
this is symptomatic of severe technical debt and is a great indicator that the costs to just Keep the
Lights On (KTLO) is a risk factor that needs to be addressed.

● Time to Close High Severity/Mid Severity Bugs: Depending on if we had an SLA, this data is
important to collect. The business contract, either internal to customer success or external to our
customers, needs to be upheld. This data allows us to help drive prioritization over future work.

● Customer Net Promoter Score (NPS): Depending on how your Customer Support team collects
this information, I like to see how happy my customers are using our product. No matter how
many bugs you close, if your customers are miserable, then you aren’t winning. The caveat here
is NPS can be influenced by a lot of factors and not feature quality, so the signal here isn’t always
as important.

5.2 The Quality Operation Cycle
1. Data Collection: Identify what Key Performance Indicators (see section 5.1) you want to monitor

to determine the quality of your engineering output.. Identify how to collect this data and begin
collecting.

2. Visibility: How do you want to share your findings, and how do you tell the story of what the data
is showing you? I used a combination of monthly Quality Reports and a Quarterly Service
Delivery Review to go highlight our findings.

3. Implementation: Drive discussion amongst stakeholders around findings. Partner with
stakeholders to create engineering initiatives to implement action items in addressing issues
discovered.

4. Governance: Build into place a system to hold the stakeholders accountable. These could be
dashboards to show progress, or error budgets that trigger to force a code freeze.

5. Reflection and Analytics: Understand if the initiatives actually made a difference. If not, how
should we iterate to perfection? Were we looking at the wrong data? What learnings should we
take as we make changes? All of these should be applied as we start back at step one. One
example seen at Iterable was we benchmarked our PR Normalized Bug Ratio over a course of a
quarter and noticed over 30% of incoming bugs were related to one area of our code base. We
saw that the new code was breaking existing functionality, creating regression issues. The Quality
Engineering team created an initiative to increase test coverage in that area of code by 275% (8
tests specs to 22). The Quality Engineering team also required a launch checklist and combined
bug bashes before teams could release. After a quarter we saw a dramatic decrease in defects
from new code in that one area and an improvement in regression. Looking at our PR Normalized
Bug Ratio, we see that we are still shipping features at the same rate, but the incoming bugs
have improved, which ties together our initiative with real time results.

Tracking to see if our new testing initiatives improved our metrics. PR Normalized Bug Ratio is defined in
5.1.2 and the lower the value the better quality exhibited.

6. The Engineering Leader Role

While to be successful in the Engineering Leader role is not much different than being a successful
engineering manager in general, there are a few caveats that I have found to be essential to consider:

● Thoughtful Team Building: Modern Quality Programs tend to be very lean agile teams. This
means that while you may need an engineer that has Mobile testing experience, hiring a
specialized engineer may not give you the most bang for your buck. Instead, figure out what can
be trained and what skill set is the minimally viable for success.

● Security Champion: Partner closely with the security leadership to embed a lot of the security
improvements into your roadmap. As the world improves connectivity, modern “bad actors” have
become more savvy in penetrating applications. This creates a huge business requirement for
greater security and resilience. This requires earlier testing and QA which requires closer
partnerships. [6]

● Soft Power: Modern Quality Programs rely heavily on other organizations to accomplish
compliance and engineering resources. You will need to be comfortable utilizing soft power to
accomplish your goals

● Swiss Army Knife Job Roles: While building a Modern Quality Program, there will be times
when the required solution is outside your job description, but still heavily impacts quality. To be
successful, you may have to build the solutions in order to enable your own success (be
comfortable unblocking yourself). It isn’t uncommon that while in this role you may have to
become a Jira Admin, Technical Program Manager, Product Manager for certain internal tools,
Release Manager, or a Developer Experience Champion for initiatives that help enable your
engineers.

● People Manager: A lot of the above roles I mentioned end up leaning very heavily into the
Individual Contributor work sphere. It’s essential that to grow a successful Quality Program, your
program has great staff to execute your quality vision. Things to remember:

○ Empower them to execute in their role: Remember from above, you aren’t building a
program of testers. You are building a program for quality. Ensure that your engineers are

spending the right ratio of time driving the quality program, coding automation, and
measuring the success of their own actions.

○ Delegate: As your program grows, don’t be afraid to delegate responsibilities to your
engineers as you spend more time trying to scale your program. You won’t be successful
if you keep trying to do everything, eventually you will hit your breaking point.

○ Mature and Grow your engineers: Most likely going to be hiring and leading a team.
Your responsibility as a people manager means that you need to grow your individual
directs while setting them up for success. This might include ensuring they are getting the
right technical training, mentorship on career growth, understanding their impact, or just
ensuring they are motivated and satisfied in their role. Ultimately the success of your
program depends more so on the people who will execute on your behalf and less on
your pure execution alone.

7. Conclusion

As companies scale and grow, their engineering organizations need to be able to justify whether or not
their outputs are achieving effective business outcomes. Building a Modern Quality Program is meant to
help engineering define the correct outcome, put in place the right governance and guide rails to help
developers efficiently and effectively deliver, and successfully scale the whole infrastructure as the
engineering team matures and grows.

The greatest challenge isn’t necessarily implementing a certain process or building the automation
framework, it’s determining if that process or testing will actually improve the business outcomes and
growth against the tradeoffs of implementation. Using the correct data to justify the right decisions is the
crux of deciding on which tasks the program should execute.

References
1. Heusser, M. (Retrieved on 2022, June 9) The future of software testing: How to adapt and remain

relevant. Retrieved from:
https://techbeacon.com/app-dev-testing/future-software-testing-how-adapt-remain-relevant

2. Mason, R (2019, May 18) Is Agile Killing QA. Retrieved from:
https://www.forbes.com/sites/forbestechcouncil/2019/03/18/is-agile-killing-qa/?sh=40f846d734d6

3. Perry, T.S. (2015, Dec 11) Yahoo’s Engineers Move to Coding Without a Net > What happens
when you eliminate tests and QA? Fewer errors and faster development, says Yahoo’s tech
leaders. Retrieved from:
https://spectrum.ieee.org/yahoos-engineers-move-to-coding-without-a-net

4. HelpSystems Armenia (2019, Oct 10) Is QA Dying? [Blog Post] Retried from:
https://medium.com/helpsystems-armenia-writes/is-qa-dying-730b0a166c4d

5. Ghahrai, A (2020, March 11) Problems with Test Automation and Modern QA [Blog Post]
Retrieved from: https://devqa.io/problems-test-automation-modern-qa/

6. World Quality Report, 2021-22, 13th Edition. Capgemini. Retrieved from:
https://www.sogeti.com/globalassets/reports/wqr-21-22/world-quality-report-2021-22.pdf

7. Zhuo, J. “What is Management?” The Making of a Manager, 2019.

https://techbeacon.com/app-dev-testing/future-software-testing-how-adapt-remain-relevant
https://www.forbes.com/sites/forbestechcouncil/2019/03/18/is-agile-killing-qa/?sh=40f846d734d6
https://spectrum.ieee.org/yahoos-engineers-move-to-coding-without-a-net
https://medium.com/helpsystems-armenia-writes/is-qa-dying-730b0a166c4d
https://devqa.io/problems-test-automation-modern-qa/
https://www.sogeti.com/globalassets/reports/wqr-21-22/world-quality-report-2021-22.pdf

8. What is Coaching (Retrieved on 2022, June 9) Retrieved from:
https://internationalcoachingcommunity.com/what-is-coaching/

9. Accelerate State of Devops 2021. Google Cloud. Retrieved from:
https://services.google.com/fh/files/misc/state-of-devops-2021.pdf

https://internationalcoachingcommunity.com/what-is-coaching/

