
1

Driving Quality Improvement Through

Root Cause Analysis

Amol Patil

apatil@mimecast.com

Abstract

This paper discusses the approaches used at a software company building solutions for healthcare

payers . Achieving engineering process improvements and gaining confidence in quality led to the

adoption of RCA as a primary driver for engineering best practices. This paper covers what worked

effectively to introduce a structured RCA program and also discusses the challenges encountered. Key

success factors and an overall methodology are highlighted that include;

- Scaling improvements for large, distributed engineering teams

- Customer satisfaction and its relationship with defect removals that can be used to trigger

process improvements

- Effectiveness of improvements evaluated using metrics

 Biography

Amol Patil is Director of Quality Engineering & Services at Mimecast. He is responsible for ensuring

world-wide quality standards for Mimecast products that use A.I. and Machine Learning models for threat

detection and analysis of emails and attachments. Prior to Mimecast, he held Quality Engineering

leadership positions at Healthedge and PTC. He is a Software Engineering leader with experience in

leading and scaling distributed engineering teams to deliver high quality customer focused solutions. At

PTC, he was responsible for building geographically distributed Engineering teams with strong ownership

and morale. At Healthedge, he has achieved high automation levels and shorter lead times using CI/CD,

improved productivity and ultimately improved customer confidence and building corporate value. Amol

has experience in many markets; Cyber Security, Healthcare, IoT, PLM, Mobile and cloud platforms and

has been delivering new products and platform integration's using any cloud-based DevOps

infrastructure leveraging Docker, Terraform and Kubernetes. Amol has a M.S. degree in Industrial

Engineering from University of Cincinnati.

2

1.1 Opportunity for increasing the confidence in Quality

Software development teams should have a way of understanding what is most important to the customers

and how they are doing with delivering great customer experiences. Teams unfortunately get that feedback

through post-release defects. Teams then consume more than half their software development effort by

applying it towards defect repair and testing. The CoPQ (Cost of Poor Quality) has already kicked in and a

vicious cycle of engineering rework and rising customer care costs puts the relationship between

customers, account managers and the Engineering organization into stress over the perception of quality.

Engineering adhered to all the practices that needed to be followed, like;

1. Understood the business needs

2. Brainstormed the solution

3. Implemented the solution

4. Examined the results through different levels of testing

All of this was achieved through an efficiently running software development engine that included

- Continuous integration

- Automated build and build verification

- TDD: Test Driven Development

- Automated regression testing

Engineering teams are now thinking about where it went awry.

This presents an opportunity for taking a step back and retrospect on why this happens and how the

confidence in quality can be improved going forward.

1.2 Understanding the leading factors contributing to quality

perceptions

In a typical enterprise software deliverable, there are major releases and minor releases.
The content and the date for receiving the major release are determined in advance and made available in
the product roadmap. New features and business needs are addressed in the major release. Then, the
minor releases are used to make improvements to the system that has been in production on the supported
tech platform. In the minor releases, no new functions are added to the major release, and only
improvements are made through bug fixing and software maintenance through software refactoring.

Now, when the real platform that houses the software in production has a large number of issues, the

problems are visible for everyone to see it. Things start to get unsustainable when stakeholders cannot put

a finger on why the system isn’t functioning as expected. Doing a root cause analysis will provide the

evidence and point in the direction of weak points. Engineering leaders can then drive outcomes based on

that analysis.

3

I have always felt that, if you can solve a problem by asking the right questions the improvement path kind

of makes itself visible. Let’s start applying this questioning strategy beginning with engineering perceptions

1. Understood the business needs

- What is the business routine that helps the customer generate revenue and how is it changing

with this major release

- Which systems are integrated upstream, midstream, and downstream that facilitate the

customers business

2. Brainstormed the solution

- Were all the components that constitute the system definition engineered to work together

- Does the system scale

3. Implemented the solution

- Was the software construction done consistently with best practices that consider functional

and non-functional requirements

- Was the system built with safeguards and default behavior

4. Examined the results through different levels of testing

- Do the tests provide sufficient code coverage and scenario coverage

- How effective are the tests to catch system level problems

A retrospective analysis of known defects can be applied to generate answers to all the above questions.

Those answers should lead to gaps being identified and measures to improve defect avoidance. This type

of root cause analysis and actionable improvements are being presented in this paper.

2.1 RCA Methodology

Following the principle that ‘A defect in the software is a defect in the process’, the leadership team decided

to adopt the Orthogonal Defect Classification approach to understand and solve the underlying software

problems and quality perceptions. The ODC technique was adopted as a methodology to characterize

software defects and translate into process defects.

2.2 Orthogonal Defect Classification (ODC) technique

When successfully initiated, the ODC technique can be used for categorizing defects and reducing the cost
of analysis based on predefined attributes. The main purpose of ODC is to extract semantic information
from software defects to take actions against their re-occurrence to improve the process. In this sense,
ODC can be used as a technique to realize the specific goals

Statistical KPI’s like defect flow, defect density, defect remediation rates and test coverage are measured

against test beds containing artificially created data and against a hardware footprint that is imperfectly

sized. These types of KPI’s do not set a relation to the system where defects originate and tend to fall short

in identifying the root causes. A simple defect classification scheme like the one highlighted below provided

distributions of defects against semantic data in each category.

Defect Origin → Defect Trigger → Defect → Defect Type → Fix Category

4

In this study of 200 defects reported and fixed in a span of 6 months in the 2020/2021 timeframe, the focus

was on manually capturing and analyzing of defect data. The defect categories in this scheme are explained

in the tables below

2.2.1 DEFECT TRIGGER:

No. Defect Trigger
Name

Description Example

1 3rd Party
Integration

Defect symptoms manifest when
interaction happens with any external
Integration

Repricers, groupers, Claims
editing systems

2 Component
Interoperability

Defect symptoms manifest when
interaction happens with other components
of the HE product portfolio

Platform, Care product, Custom
code

3 Specific Data
Condition

Data sources input had something unique
or unexpected. System works as designed
for majority of the input, but a certain small
% of data fails functional coverage due to
the distinctive nature of the data

-- Payment cycle not correct
-- Member links not updated after
changes
-- Validation policies not triggered
-- Showing incorrect information
in the UI interface
-- Logic retrieving incorrect claim
processing details

4 Data
Consistency

The business transaction failed to change
affected data only in allowed ways

-- Data processed differently by
Payer Engine and the
webservices
-- Data replication / streaming.
Mismatch / Missing records
between OLTP and DW
-- Mismatch in Source EDI and
the Payer engine

5 Selective
Transaction

A few handful transactions out of many
failed to complete or completed but not as
expected. High material impact

-- Items in the work basket. 1
claim, 3 members, 5 accounts
etc.
-- Items that put the HIC out of
compliance
-- penalties, interests

6 Batch
Transaction

Event driven / scheduled operational items
that are part of regular business routines
failed to complete. High % of the volume
routed from auto-processing to manual
processing.

-- Adjudication sending large # of
items to workbasket, payment
batches not completing, member
enrollment, Selective
bootstrapping.
-- Transient data clean up scripts,
custom server scripts
-- Manual re-adjudication/repair
became necessary

7 Software
Upgrade

Codebase upgraded and end user tried to
repeat a transaction that was working as
expected in the previous version

-- Job performance is not on par
with pre-upgrade performance
and is currently impacting regular
business

5

-- Claims Search is taking over 2
minutes after upgrade
-- Mapping for a field has
changed
-- Data Integrity between OLTP
and DW

8 Configuration Changes in configuration happened before
the symptoms manifested

-- Updating configurable
parameters of the product to
support new business functions

9 Design Logic Design and Data Design -- Index added to improve the
performance, but caused
contention during heavy
inserts/updates/deletes of the
attachments

10 Volume The business routines work as designed
with expected results up to a certain
threshold. Beyond the threshold,
transactions and computing fails

Search throws OOM error.

2.2.2 DEFECT ORIGIN:

No. Defect
Origin Name

Description Example

1 Customer Prod Production environment -- PROD

2 Customer Non-
Prod

Non-Production environments but in
control of the customer

-- QA, Dev, SIT, Stress, Test, Pre-
Prod

3 Internal Non-
Prod

Environments in control of the Software
Engineering group

Example:
-- Engineering or Agile Services
environments
-- Perf CI environments

6

2.2.3 DEFECT TYPE:

No. Defect Type
Name

Description Example

1 System
Integration

System integration with various
‘external’ components not native to the
product under implementation

-- Repricers, Fraud Detection
-- Upstream loaders, Downstream
replicated datastore
-- Custom code

2 Regression Business routines under use stop
working as expected after a change in
functional
configuration/customization/logic

-- Payment cycle not correct
-- Member links not updated after
changes
-- Validation policies not triggered
-- Showing incorrect information in the
client
-- Logic retrieving incorrect claim
processing details

3 Performance
Improvement

Functionality is not broken, but the
code was refactored to show
performance gains

-- ‘Out of Memory’ problems
-- Services responding slowly
-- UI results responding slowly
-- Concurrent calls to a single record
(member/account/claim)
-- Database locks and transaction locks
-- Calling many more rows than required

4 Negative
Use Case

End users transaction was not
conforming to the expected incoming
data sources leading to un-expected
outcomes

User passed 1010-10-10 in the date
range that expects date range to be
within 1800-01-01 to 3000-01-01

5 Func.
Requirement
s not
documented,
but expected
to work

Major functionality works, but specific
scenario(s) do not work as expected

These are scenarios or conditions that
end up causing major business impact.
Expected case not completely
understood or missed

6 Data
Validation

Needs adjustment to the software logic
that properly validates the data and
values before used in computational
logic or database storage

7 Instructions
Not Clear

End user followed the documentation,
but for areas where there was
ambiguity or lack of clarity, the end
user expected the functionality to be
supported as per the business use
case

7

2.2.4 FIX CATEGORY:

No. Fix Category
Name

Description Example

1 User Interface Fix addressed through UI changes Grid View changes

2 Build/Package/
Merge

Solution existed but was not included due
to procedural issues

Rebuilt the package to include
newer or missing libraries or
missing LOC of known solutions
not merged forward

3 Functional
Coverage

New functional logic introduced to handle
missing or wrong functionality

LOC that introduced logic to
process and compute newer
types that are known at time of
requirements gathering

4 Logic Coverage Addressed an inadequate (efficiency) or
wrong (correctness) algorithmic realization

LOC that introduced new
-- Service methods
-- getAction()
-- setAction()

5 Defensive
Coverage

Address poorly defined code boundaries
and data validation for unexpected data
resources

LOC that introduced handling of
-- Amounts set to 0
-- null or !null values
-- handling of terminated / missing
/ canceled / inactive / invalid
states of transactions
-- Service date mismatches
-- Exception handling: NPE,
NumberFormatException

6 Checking Affects program logic that would properly
validate data and values before they are
stored or used in computation.

-- Matching approved conditions
for Authorizations, Agreement
details, Service provisions
-- Initialization of control blocks or
data structures

7 Runtime
Resource
Handling

Addressed the code to handle proper
management of shared and real-time
resources

Free resources at runtime
-- Network connections
-- database connections
-- file streams
-- occupied memory
-- Timeouts, socket timeouts
-- Serialization/multi-threading

8 Database
Query

Queries adjusted/introduced/enhanced to
handle the case highlighted in the defect

9 Database
Design

Schema adjustments made

10 Data Migration Migration scripts modified/introduced to
upgrade to a newer software version

11 Documentation Addressed the technical documentation for
missing instructions/information

8

3.1 Data Analysis

The defect set was chosen for a product that is subject to improvement.

The data was prepared by analysis completed by a group of engineers that undertook training in the RCA

program pilot implementation. The definitions were approved through a consensus method. The defect

classifications for each category were recorded and discussions were held to clarify whether the process is

proceeding according to the modeled process.

• The Defect Origin and Defect Trigger was obtained from the incident report management tool
(Salesforce), activity information, and the person who reported the defect

• The Defect Type and Fix category was identified by analyzing the traces and explanations given
for the correction of defects in the defect management tool (Jira) and the source code management
tool (Bitbucket)

By profiling the defects using the classification scheme and analyzing the incidents, problematic areas and

underlying process gaps bubbled up to the top as the likely causes of software defects.

The figures below show the distribution of each category

9

3.1.1: The figures below show the examples of distributions of Defect Types with respect to Defect Triggers

→ Defect Type

↓ Defect Trigger

Data
Validation

Func.
Requirements
not documented,
but expected to
work

Instructions
Not clear

No
default
behavior
for
negative
use case

Performance
Improvement

Regression System
Integration

Grand
Total

3rd Party Integration 4 4 1 1

3 6 19

Batch Transaction 13 12

4 9

38

Configuration 3 14 4

3 4

28

Data Consistency 18 3 1 2

6 1 31

Design

2

1 1

4

Component
Interoperability

1 3 1 1 2 3

11

Selective Transaction 7 15 1 3 4 6

36

Software upgrade 4 7

1 1 6 1 20

Specific Data Condition

11

1

12

Volume

1

1 2

4

Grand Total 50 72 8 9 17 39 8 203

3.1.2: The figures below show the examples of distributions of Defect Types with respect to Fix category

→ Defect Type

↓ Fix Category

Data
Validatio
n

Func.
Requirements
not documented,
but expected to
work

Instructio
ns Not
clear

No default
behavior
for
negative
use case

Performanc
e
Improveme
nt

Regression System
Integratio
n

Gran
d
Total

Build/Package/Merge 2 2

Checking 1 1 2

Data Migration 2 1 1 4

Database Design 2 1 3 2 8

Database Query 1 5 2 4 12

Defensive Coverage 18 1 19

Documentation 1 1 8 2 12

Functional Coverage 9 37 1 7 8 5 67

Logic Coverage 16 20 4 2 12 2 56

Timing/Serialization 1 1 1 3

User Interface 6 3 6 1 16

Runtime Resource
Handling

 2 2

Grand Total
50 72 8 9 17 39 8 203

10

3.1.3: The figures below show the examples of distributions of Defect Triggers with respect to Fix category

→ Defect
Trigger

↓ Fix
Category

3rd
Party
Integrat
ion

Batch
Transact
ion

Configura
tion

Data
Consiste
ncy

Desi
gn

HE
Componen
t
Interopera
bility

Selectiv
e
Transact
ion

Softw
are
upgra
de

Specifi
c Data
Conditi
on

Volu
me

Gra
nd
Tota
l

Build/Package/
Merge

1

1

2

Checking

1

1

2

Data Migration

1

1 2

4

Database
Design

1

2

2 3

8

Database
Query

6

1

2 3

12

Defensive
Coverage

7

12

19

Documentation 2 1 4 1

1 1 1 1

12

Functional
Coverage

7 12 10 6

3 12 6 8 3 67

Logic Coverage 9 6 8 9 1 5 13 3 2

56

Timing/Serializ
ation

2 1

3

User Interface 1 3 3 1 1 1 3 1 1 1 16

Runtime
Resource
Handling

 2 2

Grand Total 19 38 28 31 4 11 36 20 12 4 203

3.2 Root Cause Disposition

The educated evaluation from the data analysis will help reach conclusions on the root cause or the best

fit for the root cause. Some examples;

↓ Defect Type of ‘Requirements not documented, but expected to work’ could not be discovered in

the requirements intake process and therefore reached the codebase as conditions that could not

be satisfactorily handled. This is a gap in the requirements gathering and requirements breakdown

stage. Source – 3.1.2

↓ The Fix Category of ‘Logic coverage’ not handling ‘Data validation’ type of defects indicates that
Design, and Code reviews were found inefficient. This engineering gap needs to be addressed.
Source – 3.1.2

↓ Regression type of defects were mostly triggered when running batch transactions. This could be

an area of improvement for inspection and testing as code reviews and unit tests were not sufficient.

Source – 3.1.1

↓ Defects triggered by ‘Specific Data Conditions’ needed to be adjusted for coverage – functional
and logic. Story Grooming practices were not considering all possible data conditions. Source –
3.1.3

11

During the discussion of the defect classification findings with engineers, the following evaluations and
comments were showing up in the heatmap as frequent causes with respect to the ODC attributes:

• Requirement reviews can be more effective
• Design and Code reviews can be more effective
• Grooming can be more regular and effective
• The effectiveness of system level tests can be increased
• Defects in database queries can be reduced
• The number of changes in the design due to misunderstandings in requirement stage can be reduced
• The effectiveness of unit tests can be increased to discover code-related defects in logic and

validation

Since the process outcomes were the measure of success for implementing process improvements, a root

cause disposition for each defect was created. Accountability and ownership were assigned to each

function for new process enactments and measuring their success and effectiveness. The table below

shows the final root cause dispositions that were put in use by the Engineering department.

3.2.1 ROOT CAUSE DISPOSITION:

No. Root Cause
Disposition

Behavior Change Responsibility Example

1 Engineering
Practice Gaps

Tech Leads will bring about an
actionable change & measure effect
of implemented actions

-- extend training offers and
attendance on architecture and
improve systems design skills
-- enhance or tighten the DoD
-- introduce or update the checklist
for application domain to be used in
backlog refinement

2 Lack of Business
knowledge

PO’s will bring about an actionable
change and use it to measure
outcomes
PM's take the use cases back to
customer and plug the gaps for
future PFRs

-- extend training offers and
attendance on application domain
-- Continuous and iterative
improvement in requirements in-
take
-- Update story template to provide
NFR

3 Performance not
considered

Performance refactoring team -- Non-Functional requirements
section to be added to the
requirements

4 Instructions not
clear

Tech Writers to bring about an
actionable change to remove
ambiguity and introduce clarity in
technical write ups

-- Use Defect Trigger categories to
better document the functional
usage of the features

5 Architecture Gap Architecture review Board should
take up actionable changes to bring
tech stack changes that will last the
next 10 years

-- Defects resulting from obsoleted
and deprecated libraries
-- data governance and data model
governance policies for engineers

12

From all the root cause dispositions available for selection, each defect was tagged with the root cause

3.2.1: The figures below show the examples of distributions of RCA with respect to Defect Type

Row Labels Instruct-
ions Not
clear

Negative
Use Case

Regress-
ion

Perfor-
mance
Improve-
ment

Func.
Requirements not
documented, but
expected to work

Data
Validation

System
Integration

Grand
Total

Engineering
Practice Gaps

1 8 36 7 28 39 7 126

Lack of
Business
knowledge

7

1 3 44 10 1 66

Performance not

considered

1

7

1

9

Instructions not
clear

2

2

Grand Total 8 9 39 17 72 50 8 203

3.2.2: The figures below show the distributions of RCA with respect to Fix category

This RCA was assigned using a narrative flow that can lead to simplified way of reaching the RC conclusion

• Defect Trigger in Defect Origin led to Defect Type that was addressed in this Fix category leading

to the RC Disposition

In an agile environment, it is difficult to find dedicated time and resources to perform detailed fish bone

diagram or 5 Why’s method. So, in practice an RCA can be done for each defect in a spreadsheet using

the defect characteristics. It does not take much time when institutionalized within the process.

Once RCA is assigned, the next step is to determine the concrete improvements that will lead to a change

in process.

Row
Labels

Build /
Pack-
age /
Merge

Data
Migra-
tion

DB
Design

DB
Query

Docu-
menta
-tion

Timing
 /
Serial-
ization

Logic
Cover-
age

Func.
Cover-
age

UI Def.
Cover-
age

Check
-ing

Runtime
Resource
Handling

Total

Engineering
Practice
Gaps

2 3 7 9 2 2 39 30 12 19 1

126

Lack of
Business
knowledge

1

2 8

16 34 4

1

66

Performanc
e not
considered

1 1

1 1 3

2 9

Instructions
not clear

2

2

Grand
Total

2 4 8 12 12 3 56 67 16 19 2 2 203

13

4. Measures for Defect Avoidance

The results of the analysis through this simple defect classification scheme will be used to build new

engineering improvements that can help answer and measure the questions asked previously in Section

1.2. Agile teams need to constantly decide what practices to keep and which practices to discontinue. The

RCA distributions can help to come up with a disciplined and structured approach to improvement schemes.

Engineering Practice gaps and Lack of Business knowledge are the top 2 categories covering 75% of the

defect population. (Source - 3.2.1 and 3.2.2). These 2 RCA areas can be used to come up with defect

avoidance practices and reduce defect driven rework

Each grouping will provide a correlation that can be used. For example: Defects are requiring mostly major

functional coverage changes to address the issue (Source - 3.2.2) and large portion of the defects are

stemming ‘lack of business knowledge’ (Source - 3.2.2). The defects of Fix category “Functional Coverage”

and “Logic Coverage” dominate by far all the other fix categories. 68% or more than 2/3rd of the defects

were found in Customers production environment (Source - 3.1.1), leading to believe that the defects are

insidious in nature until the customers business routines are run by customers business users. This analysis

shows that important areas to look for improvements are reviews, grooming, domain and system knowledge

and test strategies.

To address the causes, that make defects detected only by the customers end users, a quality improvement

plan was implemented and tracked. Here are some high-level examples of goals set for each department:

• Product Management Team: Requirements gaps

o Use checklist for systemic understanding of data entities in use and business needs

o Completeness of requirements should be ensured

o Confirmation of the final requirements and acceptance criteria by the customer should be

improved

o The experience of software engineers should be extended through training

• Software Engineering: Engineering Gaps

o Backlog refinement process to be more systemic and detailed using checklists

o Coding practices. Examples:

▪ Adding null checks for any method which returns a string

▪ Null check for optional attributes

▪ Transient record creation

▪ Duplicate values

▪ Checking for stale objects

o Code coverage and static analysis reports to be incorporated into the Definition of Done

▪ Green pipeline criteria introduced before approving pull requests

o Default Behavior should be introduced when coding new functional coverages

▪ Rather than throwing assert exceptions, the code should execute default behavior

o Strengthen Definition of Done to include missing technical aspects like data validation

o Adherence to review and best practices to be enforced and measured

▪ Fun and friendly audits to check adherence

14

5. Conclusion

Implementing ODC way of Root Cause Analysis is very cost-effective and applied using a simple principle

of “Take what you already know and apply it to what you think you know to produce quality software”. The

focus is on the data already collected (software defects). Defect profiling will also help the engineers to

build their standards for design, architecture, policies to be focused on prevention.

The defect classification scheme can be implemented in stages by starting with a simple scheme and then

moving on to in-process analysis. Fields can be tailored to your own organization. It can be tooled quickly

to do in-process defect profiling. It can become a part of the Definition of Done to make sure the analysis

is always complete. Fields added to data management tools like Jira and Salesforce that are completed in

real time, will make the data collection virtually free.

Many things can impact the confidence in quality. To motivate the teams to make the needed investments

in quality driven practices and defect avoidance mechanisms, the situations need to be evaluated first. The

RCA method using defect profiling will help the organization understand the motivations for continuously

building and adopting effective practice changes that will lead to greater confidence in quality.

References

http://www.chillarege.com/odc

Challenges of software process and product quality improvement: catalyzing defect root-cause
investigation by process enactment data analysis by Mehmet So¨ylemez and Ayca Tarhan, 2016

A Case Study in Root Cause Defect Analysis by Marek Leszak, Dewayne E. Perry, and Dieter Stoll

http://www.chillarege.com/odc

