

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 1

Building a Smart
High Quality Software Pipeline

Author(s)

Richard.Robinson@bongolearn.com

Abstract

How can we ensure quality with quick releases full of great features and changes in today’s modern
software world?

As software development, integration, and delivery processes continue to speed up with increased
demand and growth throughout the industry there is a growing need to evolve our quality assurance
approaches to ensure solid and quality code arrives in the hands of every user along with a constant flow
of new features and changes. Quick releases, stringent SLAs for uptime and service, massive and quick
scale up/down needs, accessibility, localization, and a huge array of user devices are some of the
challenges that can cause significant issues internally and for our customers without the right changes.

We are constantly evolving our own approach and have learned some good lessons along the way on
how to build in quality at each phase with automation and integration of tools and processes throughout
our CI/CD pipeline to significantly decrease our hotfixes and interruptions in production while increasing
our delivery of features to our customer base. We have gone from significant down time each release in
each supported region worldwide to zero downtime releases with better automated and manual
verification tests along the way improving efficiencies of our engineers internally and our customers in
production.

We’re still learning, but in this paper, I share some of the lessons from our journey that could help others
with practical strategies and approaches to enable quality software in a modern CI/CD pipeline world.

Biography

Richard Robinson currently leads the DevOps, QA, Infrastructure, and IT engineering groups supporting
all operations for BongoLearn, Inc. We at Bongo create video training, learning, and assessment
workflows and technologies embedded in many of the prominent Learning Management Systems in the
EdTech industry. I have a background in QA, automation, and managing QA and systems engineering
teams for large and small companies over the last 22 years. I am passionate about quality and ensuring
customers and companies can effectively use technology to solve their problems without needing to worry
about issues and problems that plague our world and get in the way of real work.

Copyright Richard Robinson 2022

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 2

1 Introduction

Much of the modern software engineering world is transforming from larger releases to smaller, more
frequent releases. So how do we support integration and release pipelines that are tailored to these
types of releases? We might start with just a series of different phases of the software development
lifecycle loosely connected like a Rube Goldberg machine sometimes getting stuck and needing a nudge
to go to the next step. Then with the right planning and perseverance this can evolve into a robust,
dependable, and fully automated smart pipeline enabling continuous integration of new/modified code
and quality delivery of that to production to delight end users.

The answer I think lies in a lot of the contributing aspects of software development partnered with
operations and modern DevOps principles applied in a quality fashion. It is also constantly evolving and
will look different for different businesses and domains. Critical software that could kill someone might
use different approaches or levels than less critical software, but I believe there is a huge overlap in the
principles, approaches, and tools that can be utilized. This is similar to differences between 99.999%
uptime and 99.9% uptime for different software for different purposes seeking “…to balance the risk of
unavailability with the goals of rapid innovation and efficient service operations, so that users’ overall
happiness—with features, service, and performance—is optimized.” The risk tolerance of failures
compared to engineering cost is continually considered and can even be measured like Google’s SRE
(Site Reliability Engineering) Error Budgets.

So much depends on what kind of pipeline we are building and all the contributing factors to what goes
into that pipeline. From the right tools for good development environments for individual software
engineers to deployment tools and processes ensuring solid delivery and execution of code in a variety of
real-world environments. In the middle we find things like a good code review process and culture, code
analysis tools, maintainable automated test suites, Infrastructure as Code (IaC), and other positively
contributing factors.

I will cover some of these areas and what we have found most helpful for evolving from a rusty old pipe,
or sections of pipe, loosely held together to get software into the hands of our end users to a pipe that
while not finished (are CI/CD pipelines ever finished?) has dramatically improved our ability to deliver
quality software applications to our customers.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 3

2 Enabling Zero Downtime Releases

Four-hour downtime maintenance windows to zero downtime releases

A few years ago, it was typical for our customers to experience three to four hours of downtime showing a
construction page or an unhelpful error for each maintenance window. With six production environments
deployed throughout the world that was becoming pretty noticeable and painful to our end customers,
partners, and the engineering team manually deploying all of those environments (4 hours x 6
environments = 24 hours for each release). Those three to four hours were often set from midnight to 3
or 4 am to minimize impact on end users which further negatively impacted the engineering team involved
in each release. Increasing the release frequency with such a situation was clearly untenable and human
errors were common.

To move from this situation took a few key initial first steps:

• First, we needed to understand all the pieces and each step involved in the deployment.

• Second, we created a checklist to ensure that the manual and brittle process could be performed
without missing key steps to keep supporting the business by releasing new features and fixes
until automation could be built.

• Third, we needed to investigate and employ techniques and tools so each step could be
performed without bringing the system down.

• Fourth (although really started after the first step), we needed representative internal
environments to test the whole process and automate against.

The first and second steps go nicely together as we documented which steps were being done and which
needed to happen in what order reviewing and discussing as we went. This laid out almost a blueprint of
sorts for all the following steps and the evolution as we prioritized which steps to optimize and automate
later. The checklists we then used to execute the deployment of a release didn’t actually need every
detail and specific piece, but rather reminders of the key steps, correct sequencing, and overall flow. The
pipeline started to take shape and we even saw the satisfaction as we turned the checklist items that
were automated a different color while retaining them in the checklist. Atul Gawande in his book “The
Checklist Manifesto: How to Get Things Right” reinforces the point that in today’s modern world of
complexity whether in surgery (he personally is a surgeon), building modern skyscrapers, flying an
airplane, or building and deploying software the volume and complexity our human brains are dealing with
needs a level of assistance to consistently get it right. “…the volume and complexity of what we know
has exceeded our individual ability to deliver its benefits correctly, safely, or reliably.”

The third step we took was to investigate all of the approaches for delivering software without any impact
to end users or need for a customer visible maintenance window. This took time to shift to use
approaches like blue/green or black/red approaches. Basically, most of the approaches deal with
delivering a set of software alongside the current running software and flipping it over to run with the
newer version either all at once or incrementally as multiple nodes within a cluster of nodes are updated
and users start hitting the new code. This can often be partnered with feature flags so the new code can
be in place with the same behavior as the old code until a flag is triggered to activate the new code.
These and various other approaches were key to shifting the mindset so there was no impact to an end
user until they just clicked on the next page/button/menu or the next API call and started using new code.
As is probably the case with most software projects we had to take each part and incrementally make
changes to accommodate that and adopt new software practices to maintain backward compatibility and
ensure each new release could also be deployed without impact to end users. Significant testing and
verification were performed on the application as a whole and on the specific areas of change to ensure
changes could be rolled out at any time. Also, I’ll admit that to begin with until we were more confident in
our processes, we still deployed in off hours in case something was missed to minimize potential impact
and now we regularly release any time and even at usage peaks in the middle of the day.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 4

The fourth and either final or ongoing step after identifying what steps need to be taken is to ensure that
there are representative internal environments that mimic production so well that the whole process can
be created and verified outside of production. This will likely require several iterations to work out the
differences between internal environments and actual production environments and ongoing work to keep
the environments ‘in sync’. The industry typically has the concept of staging environments where new
software can be staged before deploying to production or switching between production and staging and
back again as blue goes to green and then back again to blue. In whatever way it is implemented the
important principle I think is to make sure there are internal environments that are close enough to
production that steps, checklists, and automation used against those environments will perform the same
as in production. This should be considered all the way back to development environments for engineers
as much as possible.

A key item to capture and include through all these steps is adequate testing and verification steps
whether performed manually to begin with or in an automated fashion. These are key to ensuring quality
as this process evolves and in the end result. Wherever an organization is in this evolution I believe
implementing even some of these steps will start to yield the desired results and the return on investment
of these activities can fuel the engineering necessary to continue the evolutionary process. While it would
be nice to pause everything and create the whole process and then make it live I believe most
organizations are in the position where incremental progress evolving something that already exists is
what reasonably can be done. Of course, if a brand-new process is being constructed for a brand-new
application, I think these same steps can still be used enabling an orderly design and creation. Like Test
Driven Development (TDD) principles where tests are created first which all fail until the code is written
that enables the tests to pass these steps should provide a nice framework for even a green field CI/CD
pipeline for zero downtime deployments.

3 Building Confidence in Test Suites

How to build confidence in your manual and automated regression suites

The quality of the testing, validation, and verification capability of a software development organization is
key to building a pipeline you will be able to use and rely on and especially as was just mentioned with
zero downtime deployments at any time of day.

Some initial pieces to start with:

• Internal environments and a pure CI (Continuous Integration) target where each check-in of code
is put into an environment with other code and tests are run.

• Some of the most basic tests just to build out the process and build that “new muscle”. Even a
smoke test run against a build of some new code put into even the most basic integration
environment can be a great foundation to start with.

• Manual test suites alongside any sort of automated unit tests, functional tests, regression suites,
or other more specialized tests so there is always a clear view of what is being covered and what
could be the next priority to build up a solid automated suite.

• Using test suites regularly for internal environments and then injected into the correct places in
the manual, partially automated, or fully automated deployment pipeline.

As mentioned earlier, using a checklist approach of specific items to cover in the correct sequence and
configuration helps ensure quality in the short-term and a map of what needs to be created to take
humans out of the execution phase. As we take humans, and our human engineering hours, out of the
execution phase and more into the design and architecting of test approaches, deployment
considerations, etc. quality improves, and the overall engineering process can accelerate without
compromising quality. As the checklists and results are reviewed the checklist evolves to include the
items that are missed in previous iterations and there is a clearer map of the items that can and should be

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 5

automated to put the pieces of the pipeline together. One powerful interim result here is that even without
all the pieces automated together benefits are still realized as each piece itself is solidified and improved.

Risk-based testing approaches can be used to ensure the evolution of the pipeline is providing Return on
Investment (ROI) as we go, and we are hitting on the most critical items to the business or the current
user base. Whenever tests are considered for a given application or feature it can be helpful to go
through a list of potential dimensions or considerations to determine which are more, or less, significant,
or unique to that particular application, use case, or domain. Considering all the various dimensions up
front enables a team to consciously and more holistically prioritize or deprioritize and not just prioritize
what is currently in the list or top of mind and possibly miss some area that might be even more
significant.

Of course, areas of functionality for the product should also be considered and where changes are being
made in a particular release that might impact one area more than another area and warrant additional
testing. This is especially important when that testing in the short-term requires manual test effort.
Knowing whether to do a light touch of an area or a deeper regression test is important to budgeting QA
time and enable the appropriate build out of additional automated tests and complex testing
scenarios/configs.

Some potential areas to consider:

High-level Area or
Consideration

Details/Description

Accessibility Does this system properly support accessibility with low vision and
screenreader support? Also closed captioning capabilities

Performance Performance tests to ensure that the system’s response times and
throughput meet the user expectations and meet specified
performance criteria or goals.

Scale/Sizing Horizontal and Vertical scaling considerations

Stress Pushing the boundaries of performance limits or even just limits of
specific fields/types (e.g., numeric limits for integer fields or
overflowing string sizes especially when storing in DB tables with
columns of certain types)

Security & Privacy Security tests to determine how secure the system is and if specific
security requirements have been met. Could include GDPR,
FERPA, HIPAA, data residency restrictions, etc.

Upgrade and Migration Data preserved after upgrades and properly migrated to any new
formats

Stability/Reliability Tests performed to run the product in a customer-like environment
over a period of time to verify that the system remains stable and
there are no significant memory/handle/thread leaks or degradation
to the system over time.

Usability Is the system usable without intensive training or use of
workarounds? Is it suitable for the target user community? Ease of
use and standard UI behavior is good to consider here as well
including use of phones, tablets, laptops, etc.

Supportability and
Maintainability

Are there logs, debug levels, design docs, troubleshooting guides,
API specs, and other things in place so that the product can be
supported

Etc.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 6

I have found that reviewing a list of these types of considerations and discussing with others on the team
enables reasonable tradeoffs to be made and appropriate plans to automate, adjust the pipeline, and
otherwise improve the process without compromising quality or generating unacceptable risk.

In order to keep momentum during the evolution of an automated test suite and not lose ground it is
important to include as part of the standard done criteria the automated deployment capability as well as
automated unit, integration, end to end, and other tests. There are a lot of forces that can work against
that (time pressure, additional engineering cost, etc.). Practical tradeoffs/compromises sometimes
needed to keep overall solid strategy moving forward balancing business and market needs and high-
quality engineering needs. However, even if some short-term tradeoffs need to be made the overall
strategy can be protected as current automated verification capability is protected as a key priority along
with properly working features.

For example: A new feature X is needed to be delivered as quickly as possible and impacts current
functionality/behavior. At a minimum the current automated suite needs to be preserved by making it
compatible with changes for the new feature even if full testing around new functionality needs to be
manually finished first and then a follow-on sprint after release remaining automated tests fleshed out to
ensure ongoing automated coverage. Designing a test suite for maintainability and to expect changes is
of course a significant advantage for the current and continuing evolving application and pipeline.

One strategy that can assist with these short-term needs and incremental evolution is to build in
processes to allow the pipeline to support ‘augmentation’ as well as ‘fully automated’ pieces. We have
found it helpful to have automated scripts which sometimes only partially automate complex steps or even
have pauses to enable a human to interject a manual step into the process so the overall process can
flow with the nudges to the Rube Goldberg machine necessary in the short-term knowing that those will
be eliminated over time with fully automated and robust processes in the future. There are some good
approaches in the industry to even have scripts or automated pieces that are just placeholders for a
manual step until the placeholder can be ‘fleshed out’ with actual automation that performs the task. Of
course, with all of these processes good software engineering principles should be adhered to so code is
re-used properly, properly checked in, managed, and reviewed by others on the team and regularly tested
as a part of the overall solution.

4 Components of a Solid Pipeline

Important layers and aspects of a solid CI/CD pipeline

Some of the important layers that need to be formed around a CI/CD pipeline to enable the pipe to be
solid now and in the future are:

• Flexibility - need to be able to fit in a variety of tools and processes. Even manual processes that
might need to be interjected in.

• Code scanning - static code analysis for quality, security scans, licensing, etc.

• Test execution – unit tests, functional tests, integration tests, more end-to-end tests, and even
specialty tests like perf/load/scale or accessibility tests can be added in

• Monitoring of behavior as software goes through the pipeline and in production. If there is no
visibility into the pipe until it comes out the other end, then that just adds risk and surprises into a
system that needs to be robust and deterministic.

• Tools like ELK (ElasticSearch, Logstash, and Kibana), Sentry, or others to enable thorough
monitoring while things are in internal environments, traveling through the pipeline, and in
production

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 7

• Incorporating automated functional tests to explore load, scale, and performance as well as to
enhance monitoring with synthetic usage (good for regular heartbeat monitoring, exact/expected
results in production alongside real-world usage)

As instrumentation is added into a pipeline and into production environments then the overall process
becomes much more solid and reliable, and everyone benefits. It will also be easier to spot the
bottlenecks or where issues are most prevalent for proper prioritization of next steps.

5 Summary/Conclusion

In summary I would like to review a few of the key principles that can be applied regardless of business,
domain, or toolset to help with your building or enhancing of a smart, high quality, software pipeline.

• Checklists - ensure immediate quality and ‘fill in the gaps (w/ automation, tools, expertise,
whatever) and provide a map of what is needed to work on next

• Showing ROI and pipeline improvements along the way

• Risk-based testing approaches and how to build them into a pipeline

• Various aspects of a pipeline that can be overlooked as we might focus too much on just putting
code into it and it plopping out the other side into production.

The success of an engineering organization and a business reliant on good software applications rises or
falls to a significant degree with how solid the quality software pipeline is and how it is used. If great
ideas and awesome features are created without the necessary quality processes to ensure they work,
are released in a timely and reliable fashion, and continue to work well for the end users then users will
go elsewhere. This can happen either immediately or over time and every other aspect of the business
will suffer. However, with the right attention and consistent progress toward smart high quality pipelines
this will positively impact many aspects of the business. I hope that some ideas presented here will help
you and your business ensure quality with quick releases full of great features and changes in today’s
modern software world!

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 8

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 9

References

Book:

Betsy Beyer, Chris Jones, Jennifer Petoff, Niall Richard Murphy. 2016 Google Site Reliability
Engineering. O'Reilly Media, Incorporated.

Atul Gawande. 2011. The Checklist Manifesto. New York, NY: Metropolitan Books

