

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 1

Software Quality Assurance
Methodology for Hybrid

 Waterfall & Agile Development

Liu Keping, Eu Felix, Ooi Mei Chen & Peh Wei Wooi

keping.liu@intel.com, felix.eu@intel.com, mei.chen.ooi@intel.com,
wei.wooi.peh@intel.com

Abstract

Software releases to customers are required to fulfill defined software release criteria to ensure software
quality. The software development lifecycle evolves from Waterfall methodology to Agile methodology,
which is designed to eliminate various limitations such as scalability and adaptability, while meanwhile
enhancing early customer engagement, faster go-to-market, resource optimization, and cost-saving. The
incremental turnaround and flexibility of Agile development brings benefits but in parallel brings
challenges in project execution. Currently it is not difficult to find that Hybrid Waterfall & Agile
methodology are already introduced and frequently used, especially in big platform development.

The software quality assurance methodology for Hybrid Waterfall and Agile Development (HWAM) is
used in a situation where multiple software development lifecycles and different quality release
acceptance criteria are used in the same program for the same milestone release by different software
components. It is intended to assist the team in a large organization to predict issues in ahead, streamline
release process workflow, clarify roles and responsibilities, and get team aligned on release criteria. In
contrast to traditional software quality assurance approaches which fit for Waterfall methodology, it
provides a more agile method to meet the needs of hybrid development methodology and eliminate
issues. This paper will identify several challenges that projects often face when adopting the hybrid
development methodology and provides workaround solutions based on lessons learnt and best practices
in the software industry.

Biography

Liu Keping is a Technical Leader in Software Quality Assurance at Intel Corporation based in Shanghai,
China. She is a certified CMMI assessor, ISO internal assessor, ASPICE internal assessor, CSQE, and
gained 6 Sigma Orange Belt and CPMP certification since 2009. She holds a master’s degree in
Computer Science and Technology from Central South University in China.

Eu Felix is a Software Quality Engineer at Intel Corporation based in Penang, Malaysia. He has held the
Lean Six Sigma Green Badge since 2019, certified Software Quality Engineer (CSQE) from ASQ and
holds a Degree in Computer Science from University of Bolton in the UK.

Ooi Mei Chen is a Software Quality Engineer at Intel Corporation based in Penang, Malaysia. She holds a
Degree in Computer Science from University Tunku Abdul Rahman

Peh Wei Wooi is a Platform Validation Lead at Intel Corporation based in Penang, Malaysia. He certified
as the ISTQB tester and holds a Degree in Information Science from UKM, Malaysia.

Copyright Liu Keping, Eu Felix, Ooi Mei Chen, Peh Wei Wooi 2022

mailto:keping.liu@intel.com
mailto:felix.eu@intel.com
mailto:mei.chen.ooi@intel.com
mailto:wei.wooi.peh@intel.com

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 2

1 Introduction

In this introduction, we will discuss what software release and software quality assurance are. We will
outline the high-level overview of the software development life cycle, describe the Waterfall and Agile
software development lifecycles, introduce the Hybrid Waterfall & Agile Development (HWAD) and
Software Quality Assurance Methodology for Hybrid Waterfall and Agile Development (HWAM). HWAD
and HWAM will be used in the paper to simplify the description.

In Section 2, we will discuss the potential challenges in HWAD, and how those can be rectified. Section 3
is built upon Section 2 and provides the HWAM solution details for HWAD.

Section 4 describes our experiments and implementation results obtained for HWAM. Section 5 covers
the gap analysis and continuous improvement by fine-tuning a better way to improve the efficiency of the
HWAM. Finally, in Section 6, we summarize and provide directions for future work and areas to research.

1.1 Software Release and Software Quality Assurance

A software release is the distribution of the newest or latest version of software to the end-users publicly
or privately. Alpha, Beta, PV, engineering release (ER), and Hotfix (HF) are the common terms used for
release milestones, covering major, minor, or specific emergency defect fixing releases, depending on
business needs.

Software quality assurance is a systematic software practice used to monitor and control the processes
and work products to comply with defined standards and meet software release quality targets.

Software quality assurance includes process qualification and product qualification as shown in Figure-4.
It supports the delivery of high-quality products and services by providing the project stakeholders at all
levels with objective insight into the processes and associated work product quality throughout the
product development lifecycle.

Software quality assurance is done via evaluation against predefined criteria by an independent
organization. Software quality assurance should begin in the early phase of a project to establish plans,
processes, standards, and checklists.

1.2 Software Development Lifecycle

The software development life cycles (SDLC) and their process models are high-level representations of
the software development process. These models define the stages (phases) through which software
development moves and the activities performed in each of those stages. Each SDLC model represents
one software project, iteration, or increment, from conception until that version of the product is completed
and/or released.

Waterfall and Agile are the 2 typical software development lifecycles used in industry.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 3

1.2.1 Waterfall Software Development Lifecycle

The Waterfall Model is the first model to define a disciplined approach to software development as shown
in Figure-1. It is a breakdown of project activities into linear sequential phases, where each subsequent
phase depends on the deliverables of the previous phase. The work products produced in one phase in
the waterfall model are typically the inputs into the subsequent phases. The premise of the Waterfall
Model is that a project can be planned before it is started and that it will progress in an orderly manner
throughout its development. In general, some parts of our industry have interpreted the waterfall model as
being a purely sequential lifecycle model, with no feedback loops or iterations, but Winston Royce’s [4]
original recommendations on the waterfall model are that it includes iteration and feedback loops between
life cycle phases.

The V-model is a variation on the Waterfall Model as shown in Figure-2. It highlights the relationship
between the testing phases and the products produced in the early life cycle phases. For example, once
a sizable number of product requirements are defined, system test planning and design can be started.

1.2.2 Agile Software Development Lifecycle

The Agile software development lifecycle is a feature-driven development methodology. It is a software
development model where steps or activities are repeated multiple times as shown in Figure-3. This may
be done to add increased details to the requirements, design, code, or tests, or it may be done to
implement small pieces of new functionality, one after another.

Agile is about being responsive quickly to the market/customer’s needs and demands and being able to
change direction as the situation demands. Agile methodology is a method to manage a project by
splitting it up into several SDLC phases. It requires continual collaboration with stakeholders and constant
refinement at each stage. Once the work begins, the team runs through a process of planning, executing,
and evaluating. Instead of betting everything on a “big bang” launch, Agile delivers work in small
increments. Requirements, plans, and results are evaluated continuously.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 4

2 Hybrid Waterfall & Agile Development (HWAD)

In many large product development, Waterfall and Agile software development life cycles are used at the
same time in different software components within a big platform project, which is called Hybrid Waterfall
& Agile Development (HWAD). It is fit for those programs that cannot be satisfied by either Waterfall or
Agile development lifecycle alone. For example, a software development that has a silicon dependency
on ongoing hardware development plus many feature requests that require customer confirmation or are
still in the Proof of Concept (POC) stage.

There are two specific terms used in this paper that requires attention: Platform and software
components. “a platform” mentioned in the paper is equal to “the integrated system of a big project”.
“software components” mentioned in this paper equals “the software components, services, or
middleware running on the platform”.

A platform has multiple software components within it, while a platform could turn into a software
component for another platform when it becomes a base for others, as shown in Figure-5.

The HWAD consolidates the finest of both methods and provides the opportunity to apply different
software development life cycles in the same project. Undeniably HWAD contains the advantages of both
Waterfall and Agile development methodology and overcomes many of the limitations of the individual
models, however, it also creates new challenges in parallel.

Challenge Description

CH1: Schedule
Alignment

One significant issue encountered in HWAD is the schedule misalignment
between different parts. Typically, the schedule between software components
and software platform, and the plan between hardware and software.

Misalignment on hardware and software development schedule could lead to
release delay. On the other hand, not having working software available for
system testing until late in the hardware life cycle can lead to hardware defects
that are not detected or resolved until late of the life cycle, increasing cost.

Misalignment on platform and software component development schedule could
lead to release delay as well. Sometimes the misalignment is caused by the
software component schedule changed and the platform is not aware of that.

See Section 3.1 and 3.4 for solution details.

CH2: Software
release
acceptance
criteria alignment
between platform
and software
components

Another significant issue encountered in HWAD is the release acceptance criteria
misalignment between platform and software components.

One significant issue that often happens in big platform execution is that: multiple
software development lifecycles and different quality release acceptance criteria
are used in the same program for the same milestone release by different

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 5

software components. It will cause the problem that platform criteria could not
meet at the release readiness review.

In HWAD, Waterfall and Agile development methodology are hybrids used by
different software components in the same project. In parallel, different software
component teams are coming from different organizations. This means different
teams could have different quality assurance plans/release criteria working
alongside with software quality assurance engineer of that team (tailored to suit
their needs). As Waterfall software release criteria are not 100% fit for Agile
software release, how to accomplish software release criteria compliance in
HWAD? Are we going to use the same criteria to qualify all software components
including the one using Agile? Anything could be optimized and what can be
reused?

See Section 3.2 and 3.3 for solution details.

CH3: Resistance
to change and
role clarification

Both Waterfall and Agile model are used in HWAD. For the teams that using
Waterfall model before, they are asked to transform from the Waterfall model to
HWAD model in a short time. People will feel uncomfortable with the sudden
change when they are not well trained in the Agile process and are not familiar
with the new user roles in the Agile model. They tend to resist the change.

Also because of the fast adoption from the Waterfall model to the Agile model
without proper training provided, it causes Agile related activities not to run in an
efficient way, like the product backlog and sprint backlog prioritization, sprint
planning, daily scrum, sprint demostration and sprint retrospective.

See Section 3.4.1 (the key action: Refine Project Management Plan to fit for
HWAD) on how to eliminate this in general.

CH4: Big feature
evaluation and
planning

Feature size is too big to be planned and finished within one sprint so as could not
get valid customer or validation feedback for each sprint.

See Section3.4.1 (the key action: Refine Project Management Plan to fit for
HWAD) on how to eliminate this in general.

Table-1 Challenges in HWAD

3 Software Quality Assurance Methodology for Hybrid
Waterfall and Agile Development (HWAM)

The HWAM is specially dedicated to HWAD to ease the situation for a program when:

• There are multiple software development life cycles.

• There are different quality release acceptance criteria with different software components.

The HWAM helps to align the project schedule, software release acceptance criteria and leveraging the
art of Agile to do software release qualification.

3.1 Align on Schedule

In most projects, software and hardware have their own dedicated implementation schedules.
Considering hardware dependency as a key factor when making project software development plans can
help to prevent scheduling issues.

Best Practices:

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 6

• Establish formal communication channels to synchronize hardware and software on schedule,

scope, and resource, with which to identify the ideal point at which hardware and software can be

integrated.

• Perform risk analysis and mitigation plans to narrow down the impact of hardware.

• Align hardware testing to Agile ‘Iterations’ as close as possible to get hardware function to be

tested in a timely manner.

• Create a dependency matrix to align platform and software component release schedule. Make

sure software component release can meet platform release target. Get software components

team representative commitment to the release schedule. See Figure -6 for example.

3.2 Align on Software Release Acceptance Criteria

A good software quality assurance plan is to ensure process and work product quality assurance is
performed at the project level independently and objectively, perform the quality assurance activities
according to quality assurance strategy and project schedule to meet defined requirements and goals.
Aligning a software quality assurance plan at an earlier stage can help to eliminate the challenges
mentioned in section 2.1 and section 2.2.

Best Practices:

• Strategically decompose and redefine the software release criteria, so that they can meet the

needs of both agile and waterfall methodologies. See section 3.3 for details.

• Involve software component quality representative to review platform software quality assurance

plan. Make sure the software component quality assurance plan is aligned with the platform

software quality assurance plan without conflict.

3.3 HWAD Software Release Acceptance Criteria

Software releases to customers are required to fulfill defined software release criteria to ensure software
quality.

Traditional Waterfall methodology is based on the belief that the future is predictable.

Agile is with a light process and fewer documents. Product real-time demonstration and retrospective
meetings are used to get customers’ earlier engagement, improve customer satisfaction, and achieve
high quality targets. Software release compliance qualification done by an independent software quality

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 7

team is not as important as Waterfall. The most popular used Scrum is a typical Agile process framework
for managing Agile projects. Scrum is based on the idea that people can manage themselves and the
future is unpredictable. The best we can do is to make the most intelligent adaptations to it.

Using Agile methodology brings the ability to develop high-value and high-priority software more quickly
and increase return on investment. However Agile is more suitable for small or medium programs that
have less than 50 people. How to set the software release compliance criteria for the big projects using
HWAD?

Best Practices:

• Map a certain number of sprints to Waterfall milestones and released it as a major version. Others will

be treated as intermediate releases like engineering releases. A major version can be triggered once

a big feature is complete or several big features are integrated. See Figure 7:

• Create 2 sets of release qualification criteria packages: one for Major Version Release and another

for Intermediate Sprint Release.

• For each Major Version Release, apply standard Waterfall software release qualification criteria.

Typical software release qualification checkpoints covered in a standard Waterfall development is

shown in Figure-8:

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 8

• For each Intermediate Sprint Release, strategically decompose and reform software release criteria

to meet Agile methodology needs. Typical software release qualification checkpoints are covered in

Intermediate Sprint Release as shown in Figure 9.

Requirement: Requirements in waterfall projects are often expected to be essentially complete before
design commences, whereas, in Agile methodologies, requirement readiness typically increases
sprint by sprint. It will always be noncompliant if sticking to Waterfall’s 100% requirement complete.
Shifting the idea of requirement complete at the entire project requirement base to sprint requirement
base will resolve this issue.

Architecture: Low-level design specification is required, as Intermediate Sprint Releases focus more
on software component release - apply the same rule as Requirement. Others like system
architecture, software architecture specification, high-level design specification, and architecture
baseline could be skipped as they have already been covered in Major Version Release.

Project Planning, Monitoring & Control: The feature roll-out plan should be mapped to the sprint
backlog. Resource/Capacity should be mapped to sprint capacity. Others like project milestone
schedule, risk management plan, configuration plan, and planning baseline will be skipped and
checked in Major Version Release only.

Implementation: Same as Waterfall.

System Integration and Validation: Checkpoint is same as Waterfall but uses pre-production targets
like Alpha or Beta. Project team could determine themselves based on business needs.

Compliance: Checkpoint is same as Waterfall but will not be gating – as they have been covered in
Major Version Release. The idea that still checking them in Intermediate Sprint Release is trying to
mitigate the risk that a big gap found in Major Version Release.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 9

3.4 HWAM Process Workflow, Roles and Responsibilities

As mentioned in section1.1, process qualification and product qualification are the 2 key important factors
of Software Quality Assurance. The sections above talked about the best practices that can be taken into
consideration when applying HWAD.

Here we would like to talk more on how to integrate those things together and form a process, identify
clear roles and responsibilities, with which we could achieve a repeatable result. See Figure-10 below for
details.

3.4.1 HWAM Process Workflow

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 10

INPUT PROCESS OUTPUT RESPONSIBILITY

Figure-10 HWAM Process Workflow, Roles and Responsibilities

3.4.2 Process Activity Structure

Besides the process flow, it is suggested to describe each process step in detail, which helps on guiding
the engineering team on process execution. It is suggested to include the following elements: Purpose,
start criteria, input work products, responsible people, detail action list, output work products, exit criteria,
and work instructions.

As Step1 is a very important activity within the HWAM process flow, which addresses the major
challenges of HWAD, details are shown below as an example:

Activity Refine Project Management Plan to fit for HWAD

Purpose The purpose of this activity is to refine the Project Management Plan to fit for HWAD.

Create/Renew Platform

Software QA Plan

Platform Software Quality
Engineer, Project Manager:
Refine project management
plan to fit for HWAD.

Platform Software Quality
Engineer: Create platform
Software QA plan based on
input.

Platform Software Quality
Engineer, Software
Component Software
Quality Engineer, Platform
engineering leads, Software
Component engineering
leads: Review platform
Software QA Plan and sign
off.

Software Component
Software Quality Engineer:
Create software component
Software QA plan based on
input.

Platform Software Quality
Engineer, Software
Component Software
Quality Engineer, Software
Component engineering
leads: Review software
component Software QA plan
and sign off.

Platform/Software
Component Software
Quality Engineer: Analyse
project change impact to
platform Software QA plan

Project Schedule, customer

quality target, internal

quality target

Refine Project Management

Plan to fit for HWAD

Platform Software QA

Plan

Step1

Platform Software QA Plan

Step2

Platform Software QA
plan Sign Off Record

Review Platform Software QA

Plan

 Step3

Software Component

Software QA Plan

Software Component

Software QA Plan

Platform Software QA Plan,

project schedule, customer

quality target, internal

quality target

Create/Renew Software

Component Software QA Plan

Step4

Project Change Request

Software Component

Software QA Plan Sign

Off Record

Review Software Component

Software QA Plan

Impact analysis result

Step5

Review Project Change Request

Step6

Project Management Plan Refined Project

Management Plan

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 11

Activity Refine Project Management Plan to fit for HWAD

Start criteria Project Management Plan in place

Input
work products

• Project Management Plan

Responsible • Platform Software Quality Engineer, Project Manager

Action list

• Add a formal evaluation task in Microsoft Project Planning (MPP) at the beginning
of a project to see if the Agile development methodology was fit for the current
project. (CH3)

• Add Agile development methodology (E.g., Scrum Master, Product Owner, etc.)
training to the project training plan. (CH3)

• Add big feature evaluation and planning training to the project training plan. (CH4)

• Create software component and platform dependence matrix to align software
release schedule. (CH1)

• Create hardware and software dependence matrix to align hardware and software
release schedules. (CH1)

• Create a formal communication channel to synchronize hardware and software on
schedule, scope, and resources. (CH1)

• Perform risk analysis and mitigation plans to narrow down the impact of hardware.
(CH1)

• Add retrospective meetings for each major milestone in MPP (CH2).

Output
work products

Refined Project Management Plan; Refined Microsoft Project Planning

Exit criteria Refined Project Management Plan; Refined Microsoft Project Planning in place

Work
Instruction

Hybrid Waterfall and Agile Execution Checklist

Table-2 Key Action: Refine Project Management Plan to fit for HWAD

4 Implementation Results

We applied this methodology and found that the hardware and software delivery schedule trend
converged by the 8th sprint, shown in Figure 11.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 12

Figure-11 HW-SW Deliver Trending Chart

In parallel, the release cycle decreased, the human resource spent on the entire project reduced
accordingly, and customer satisfaction increased. For instance, given a platform with 25 software
components program as an example shown in Table 3:

Implementation Result (Before) Result (After) Improvement

Release cycle and
Human resource

SW 26 platform releases
within 1 year

HW 6 releases within 1
year

12 platform releases with
both working HW and SW

within 1 year

The release cycle and human
resource usage is decreased by

62% respectively

Customer
evaluation

On average, customer
validation feedback was
received twice, and
feedback is collected
late in the delivery
lifecycle.

Customer validation

feedback was collected ≥ 6

times throughout the product
lifecycle (because of the
aligned HW and SW
schedule), including early,
mid, and end of the delivery

period.

Customer feedback received

improved ≥300%

Table-3 Implementation Result Evaluation

5 Gap Analysis and Continuous Improvement

Applying the software quality assurance methodology for Hybrid Waterfall and Agile execution proves
beneficial as mentioned above. Table 4 shows the areas which could be further improved.

Gap Analysis Continuous Improvement

Sometimes it is hard to map
HW and SW features to get a
good schedule alignment.

Use a unified tool to track both HW and SW features in the same
location.

E.g., Using Jira which has the burndown chart report embedded.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 13

Sometimes HW schedule
cannot fit for SW schedule.

Plan additional SW releases to fit for HW release schedule.

E.g., the HW B0 release has aligned the SW Alpha release, but the
next HW B1 release does not have a corresponding SW release with
it.

Process KPIs (key
performance indicators, KPI)
are not formally defined and
measured.

Define formal process KPIs to monitor and control efficiency and
quality, identify process gaps, and improve the process.

E.g., considering execution velocity, feature completion, customer
evaluation, effective communication…etc.

Table-4 Gap Analysis and Continuous Improvement

6 Conclusion

In this paper, we analyzed various challenges that often exist in Hybrid Waterfall and Agile Development
(HWAD) delivery and proposed recommendations to resolve a variety of challenges, including hardware
and software schedule alignment impediments, platform & software component schedule alignment,
change resistance and lack of clarity around roles, big feature evaluation and planning…etc.

We introduced the software quality assurance methodology for Hybrid Waterfall and Agile development
(HWAM) by aligning on project schedule and software quality assurance plan, leveraging the art of Agile
to do software release qualification, defining process workflow with detailed role and responsibility to
integrate all best practices together to achieve a repeatable result, and describing how to well define an
action within a process.

One of the important factors is to refine the project management plan to fit for HWAD, which is extremely
important to ensure program success. Strategically decomposing and reforming software release criteria
to meet Agile methodology needs is another key factor to make the program successful.

Hybrid Waterfall and Agile execution has evolved with the evolution of software development life cycles.
How to leverage the benefits of both models and how to deal with the complex issues encountered in the
execution is a long-term topic. With continuous lessons learned and best practices summarized and
shared, we will be confident to predict and prevent issues ahead, reduce risks and meet customer
delivery needs.

References

1. The Certified Software Quality Engineer Handbook, Second Edition, Linda Westfall

2. CMMI, Guidelines for Process Integration and Product Improvement, Mary Beth Chrissies, Mike

Konrad, Sandy Shrum

3. Agile Software Development with Scrum, Scrum FAQ by Ken Schwabe

4. Managing The Development of Large Software Systems, Winston W. Royce,

http://agileconsortium.pbworks.com/w/fsile/fetch/52184636/waterfall.pdf

