

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 1

Risk-based testing reduces time to
market of dynamic EDA tools

Mohamed Bahnasawi

Siemens EDA
Siemens

Cairo, Egypt
Mohamed.bahnasawi@siemens.com

Ahmed Khater

Siemens EDA
Siemens

Cairo, Egypt
Ahmed.khater@siemens.com

Reem ElAdawi

Siemens EDA
Siemens

Cairo, Egypt
reem.eladawi@siemens.com

Abstract

The integrated circuit (IC) industry uses electronic design automation (EDA) tools in its iterative cycle of
analyzing, designing, and verifying ICs. Industry growth creates a need for improved and expanded
functionality that performs processes with fewer resources in a shorter timeline with a very low risk of
failures. The functional complexity of EDA tools continually increases as we strive to provide the most
efficient and most accurate utilities.

When tool quality is critical, the risk of failure must be minimized. Risk-based testing (RBT) reevaluates
the risks to steer test efforts in relation to customer priorities. With limited resources and time constraints,
prioritizing test efforts is a must to catch critical bugs in early stages to fix them. Risk identification and
analysis are critical components of targeted effort allocation.

In this paper, RBT is applied to “Create Random Array” (CRA) and “VIA Random Placement” (VRP),
which are highly dynamic tools. We demonstrate that applying the RBT technique reveals critical bugs as
early as possible, which can significantly reduce time to market while ensuring tool quality. The results
include metrics for measuring and controlling the progress, efforts, and cost of test activities. We also
show that RBT is applicable to any tool operating in a dynamic environment with limited resources.

Biography

Mohamed Bahnasawi is a Senior Software QA Engineer at Siemens EDA with 5 years of experience in
automation and testing.

Ahmed Khater is a QA Team Lead at Siemens EDA with 12+ years of experience in Software
Developments and Testing Process.

Reem ElAdawi is a Test Engineer Director at Siemens EDA with 25+ years of experience in Software
Development and Testing Process.

mailto:Mohamed.bahnasawi@siemens.com
mailto:Ahmed.khater@siemens.com
mailto:reem.eladawi@siemens.com

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 2

1 Introduction

Electronic design automation (EDA) tools have a long history of vigorous innovation, driven by the
exponential expansion of the integrated circuit (IC) industry, which relies heavily on EDA tools during its
long cycle of designing, analyzing, and validating results. To satisfy realistic design schedules and
budgets, bigger designs require significantly higher designer productivity, creating a constantly evolving
role for EDA tools. As a result of the increased functional complexity of EDA tools, particularly commercial
ones, the necessity of quality process rises.

EDA development teams must find a balance between supporting new technology nodes and expanding
the tools' capabilities when introducing new and expanded features to meet the expectations of EDA
customers. Because of the intense competition among customers to support new technology nodes, EDA
development teams aim for aggressive deadlines while maintaining staff skill levels. As new capabilities
are introduced, the tools become more dynamic in dealing with more complex scenarios. At the same
time, the customer's primary need is zero defects in the fabricated chips, which cannot be met without
EDA tools with zero bugs. Even a few bugs in an EDA tool might result in irreparable and costly hardware
defects. Some hardware defects cost hundreds of millions of dollars in the replacement process of
defected chips (Thomas 2011).

Thus, high quality is not an option in EDA tools, as customers need qualified tools with almost zero bugs,
within tight time restrictions. However, EDA tools have frequent upgrades. EDA software quality is also
particularly difficult to evaluate because of its long runtimes, and the fact that the tools' outputs often
contain tough iterated and numerical issues that are not always instantly verifiable. The quality process
has also become more difficult because it must be completed, and results evaluated under time
restrictions. However, regression testing is a must for each tool. Regression runs are standard for both
hardware designs and EDA tools. Because very few modifications may occur in a single day, several
bugs were discovered by using these runs. (Ng 2005)

Testing should unveil software defects that risk the product's mission-critical operations. However,
software testing takes a significant amount of time. Testing can cost up to 40 percent of the overall of the
total original cost of software development (Pressman 1995). Especially for EDA, due to its demanding
time schedule, the testing process is done under extreme time pressure. In this environment, it is
necessary to develop a strategy for prioritizing efforts and allocating resources to the software
components that must be extensively tested to ensure that the software requirements are met.

Risk-based testing (RBT) uses risk assessment to drive all phases of testing process while reducing
testing costs, such as time and resources, without affecting the quality of the tested tools. By focusing
testing activities according to the risk assessment of the tool, which assumes that new, unclear, or
undiscovered scenarios, and complex flows are more likely to fail (Felderer 2014). By identifying the risk
factors in the tool's functional specifications and prioritizing the requirements based on these identified
risks, the design and execution of tests become more efficient at covering critical situations in early
stages, giving the development team time to fix detected defects without delaying the tool's delivery to
customers.

This paper discusses the application of RBT in testing two EDA dynamic tools that have many testing
scenarios to be covered due to their randomized flows. The paper will show the effect of using RBT in
covering important flows and report their defects in early stages. The paper is organized as follows:
Section 2 describes the approach of RBT and its main concepts and activities. Section 3 is a brief for the
EDA tools that were tested using RBT approach. Section 4 presents the results and outcomes of the
experiment. And finally, Section 5 summarizes the conclusions.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 3

2 Risk-Based Testing Approach

Risk-based testing (RBT) is a testing technique that uses the risks of the software product as a guiding
element to assist choices throughout the testing process. The tool’s stakeholders should first identify the
risks that will most probably impact the quality of the tested tool. And to be aligned with the concept of
risk, the risk is a failure which hasn’t occurred yet, but it may or may not occur in the future (Allam 2013).

The identified risks will be assessed, prioritized, and used in the guidance of the testing activities to be
more powerful in reporting bugs and taking decisions early on, giving the development team enough time
to fix any reported issues and then stakeholders reevaluate the risk of the tool to reassess used testing
approaches and so on.

As shown in Figure 1 (Amland 1999), the RBT process has five key activities which are bounded in
rectangles and they will be explained in this section.

2.1 Risk Identification

Risk identification is the activity used to detect any risks that can affect the project’s ability to achieve its
objective. This activity is a very early one as it is for reviewing the functional specification and product
requirement documents. QA team performs this activity in parallel with the code implementation phase
performed by the development team.

In this activity, it is necessary to review the functional specifications as developed by the development
team to assess technical risks, detect any flaws, or unclear functionality, and to check whether there are
any illogically supported flows.

Simultaneously, the product requirement documents should be evaluated to detect requirement risks
such as illogical requirements, flows that conflict with the supported feature in the tool, and whether the
functional specifications fulfill all the requirements.

Functional
Specification

&
Requirements

Likelihood
&

Impact

Risk
Identification

Risk
Strategy

Risk
Assessment

Test Plan

Risk
Mitigation

Risk
Monitoring

&
Reporting

Figure 1: Risk Management Process

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 4

T
e
c
h
n
ic

a
l
R

is
k
s

(l
ik

e
lih

o
o
d
 o

f
d

e
fe

c
ts

)

3
3

Med
6

High
9

Critical

2
2

Low
4

Med
6

High

1
1

Low
2

Low
3

Med

1 2 3

 Business Risk
(impact of defects)

Figure 2: Risk Assessment by using grid 3x3

2.2 Risk Strategy

Before software testing begins, it is essential to think strategically about risks and understand what risk
strategies are most likely to be successful, given the project context. Strategizing risks is used to develop
testing procedures and alternatives for any contingent event. These plans will be used to guide risk
management throughout software testing operations. During testing operations, four key risk strategies
are employed: (i) Risk Avoidance is a technique of avoiding engaging in a feature or product because of
the significant risk associated with it. It is also possible to disable or protect the code of this feature until
all testing operations are completed. (ii) Risk Reduction which means taking steps to mitigate risks. This
is accomplished by implementing tests provided in the test plan to expand the covered scenarios for the
tested functionality. (iii) Risk Transfer, which is accomplished by outsourcing testing to a third party. This
is because there is a lack of experience or resources. (iv) Risk Acceptance entails deciding not to deal
with the risk or taking no action in response to it.

2.3 Risk Assessment

The identified risks will be assessed by the stakeholders of the tool in a brainstorming meeting. The
testing team should describe the identified risks in detail with exampled scenarios. In this activity, the
team provides a score for each risk from the perspective of (i) Likelihood of occurrence “Probability” (ii)
the impact upon this occurrence “Consequence”.

The likelihood or the probability of the existence of a risk is focused on the technical risks. It comprises
assessing the risk based on criteria such as software complexity, frequency of usage, potential defect
locations and integration between legacy and new features.

The impact or severity of the risk is emphasized on business risk. As a result, the impact score is
determined based on the criticality of the risk to the customer, the absence of solutions, and the
customer's reliance on such a flow.

The levels or available scores for Likelihood and Impact differ from one study to another but in this case
study, the grid of 3x3 (Figure 2) is employed to represent 3 levels for each of the two factors. By
multiplying the two scores, the identified risks will be analyzed for prioritization.

2.4 Risk Mitigation

The testing team will define the testing strategy, the number of testing cycles for each risk level, the
scenarios that will be tested for each risk, and the number of tests for each scenario at this phase. These

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 5

judgments are made depending on the available time frame and testing resources. The testing team will
then begin the design and implementation phase.

2.5 Risk Monitoring and Reporting

These activities are for tracking and evaluating the tested risk levels with the stakeholders. Because the
risk process has become an integral element of the development process, it is critical to assess its
effectiveness. If there is any vulnerability because of the risk management process that is not monitored
and corrected, it will serve as a risk. The results of risk monitoring methods can be utilized in the
development of new tactics and update current techniques that have proven unproductive (Blancher
2013).

3 Case Study

The tools examined using the RBT technique will be presented in this section. "Create Random Array"
(CRA) and "VIA Random Placement" (VRP) are highly dynamic tools. Each of them has its own
functionality but both are generating random output and have a high level of complexity

C1 C2 C1 C2 C1

C6

C1

C6

C3

 C2 C1

C5 C5

C3

C4

 C1

C6

C1

C5

C4

C1

C6 C1

C6

C5

C6

 C1 C2

C5 C5

C3 C4 C3

C1

C3

 C1 C2

Input Standard Cells Generated output by CRA

Figure 3: Example of input standard cells and generated output by CRA

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 6

3.1 Create Random Array (CRA)

For developing new technology nodes, it is necessary to have several layouts for process calibration.
Specially for standard cell development teams as they need to make sure that any legal placement of
their cells, with any combination of nearby placement or abutments, should produce a robust layout.
Hence, they need to test a large variety of possible placements.

However, no realistic designs are accessible in the early stages. This highlights the significance of having
synthetic layout generators. CRA is one generator that generates random arrays from provided cells.
Where the user provides a tool list of standard cells and the quantity of random arrays to be created.

So as shown in Figure 3, CRA is a utility that creates random placements of standard cells. By tackling
the difficulty of multi-height standard cell placement, this tool aids quality assurance of standard cell
libraries including hundreds or thousands of cells. The CRA utility may be used by library developers to
confirm that all placement possibilities of surrounding abutted cells are allowed.

CRA takes an input layout with certain standard cells to randomly place the multi‑height standard cells
into arrays. The adjacent standard cell arrays are "Design Rule Check" (DRC) compatible. This
application generates a layout file for each standard cell array placed, which may be used to design a
placement solution to enhance the standard cell library.

3.2 VIA Random Placement (VRP)

The “VIA Random Placement” VRP flow generates and places vias in the design layout at random using
a set of input criteria. Using the VRP flow allows "computer-aided design" CAD engineers and designers
to do early pattern analysis for "lithographic" LITHO simulation on designs with metal and through layers
to identify probable sources of LITHO hotspots.

Running VRP flow necessitates the application of DRC criteria, such as minimum enclosure and spacing
requirements, as well as specifications for the types and size of the created vias. The flow randomly
inserts and positions vias based on the input, while adhering to the rule checks and via requirements.
According to the regulations, through placement happens at places of overlap and intersections between
two layers.

The VRP requires an input layout database along with files for the via spacing and enclosure rules. The
output is a layout database with the generated random vias with respect to the spacing and enclosure
rules. This layout can be merged with the original one which is used as input to VRP and then it will be
used in LITHO simulation activities.

4 Results

In this section, the metrics of applying RBT on each of CRA and VRP will be shown in detail. The metrics
includes the time spent for each activity in the RBT process, the number of identified risks, the type of
testing for each risk and the result of prioritizing them.

4.1 Create Random Array (CRA)

By studying the CRA feature under test, the testing team identified 36 risks and Table 1 shows the results
of Risk Assessment activity.

Table 2 shows the planned time for the testing activities of CRA and as indicated in the table, the
overhead of using RBT in testing the feature is roughly 90 minutes, with the balance of the time planned
for regular testing activities that will be used in RBT method or various approaches. So, the overhead
time is less than 4% of total time.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 7

Risk
Assessment

Testing Categories
Total

Functional Integration Performance Negative

Critical 4 5 3 3 15

High 5 0 1 0 6

Med 7 1 0 3 11

Low 3 0 0 1 4

Total 19 6 4 7 36

Table 1: CRA Metrics | Risk Assessment

Testing Activity Time in mins

Risk Identification ~60

Risk Assessment ~30

Prepare the testing environment & input data ~480 (1 working day)

Testing scenarios for each risk including automation ~53-70 (Depending on scenario’s complexity)

Total ~2370 (5 working days)

Table 2: CRA Metrics | Time planning of testing activities

RBT produced a priority ranking of potential bugs having the greatest impact to customers During the
Critical Risks testing, 5 bugs were discovered, all of them are found through testing the tool with the data
provided by the customer and interrupt the main flow for customer scenarios. As a result of the early
detection of these bugs, the development team had more time to fix them to meet the release cycle and
improve the tool's quality for all usage scenarios that the customer had specified. Thus, during the critical
risk testing phase, stakeholders desired to continue with the Risk Reduction Strategy as it was very
essential to deliver these flows with high quality to the customer.

Due to time constraints, some lower priority features received only partial testing as some scenarios were
broken by the discovered bugs. Since these were of lower importance and there was insufficient time to
fully testing them, the stakeholders preferred not to delay the release and to change the testing strategy
for them from Risk Reduction Strategy to Risk Avoidance Strategy by protecting these flows under beta
variable until all testing operations were completed.

Finally, in most testing approaches, performance testing is conducted in the latter stages of the testing
process after functional testing is completed. Because performance was critical to the customer in this
feature, there are some risks which are categorized under performance testing ranked as critical or high
in Risk Assessment. So, these scenarios were tested before some scenarios under functional testing.

4.2 VIA Random Placement (VRP)

Regarding VRP feature under test, the testing team identified 28 risks and the same as CRA, Table 3
shows the results of Risk Assessment activity.

Table 4 shows the planned time for the testing activities of VRP and as indicated in the table, the
overhead of using RBT in testing the feature is around 80 minutes which is less than 6% of total time.

During the Risk Identification process, there is a scenario that is not well stated in the requirements
documents and functional specifications. This case revealed a discrepancy between the intended output
of the code in implementation and the expected result by the customer. As a result, this is considered a
bug, and it is detected at a very early stage of testing. As a result, the development team was given the
opportunity to resolve this problem as soon as feasible.

There were no further bugs introduced throughout the testing scenarios for this functionality. As a result,
the testing strategy utilized to test this feature is the Risk Reduction Strategy. This is accomplished by
testing prioritized scenarios that have been validated through the Risk Assessment process to increase
the tool's coverage and satisfaction.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 8

Risk
Assessment

Testing Categories
Total

Functional Integration Performance Negative

Critical 6 5 0 2 13

High 3 0 0 6 9

Med 0 1 0 0 1

Low 1 0 2 2 5

Total 10 6 2 10 28

Table 3: VRP Metrics | Risk Assessment

Testing Activity Time in mins

Risk Identification ~60

Risk Assessment ~20

Prepare the testing environment & input data ~240 (0.5 working day)

Testing scenarios for each risk including automation ~20-60 (Depending on scenario’s complexity)

Total ~1440 (3 working days)

Table 4: VRP Metrics | Time planning of testing activities

It appears that RBT did not introduce any advantages over traditional testing techniques as the
discrepancy between functional specifications and requirements documents is always detected in a very
early stage in the traditional testing techniques, but in fact, the goal of testing is to increase the quality
and satisfaction with the tool, not just to catch bugs. RBT was reporting at an early stage the satisfaction
of the testing team with the tool quality, and it can be used in reallocating resources for testing other low-
quality tools.

5 Conclusion

Using the RBT approach in these case studies demonstrated that the technique focuses on flows that are
more likely to fail or are more vital to the customers. Consequently, it allows stakeholders to make early
decisions to lower the risk of the delivered feature or product, hence shortening their time to market.

These case studies illustrate two distinct situations. A low-quality feature that RBT highlights concerns
early on, and it gave the development team the chance to fix them and regarding some lower scenarios
which there is not enough time to test them, the stakeholders preferred to use a different Risk Strategy
since these scenarios are not important to the customer and not fully qualified. The second situation had
only one issue in the provided documents and it was of good quality, thus the Risk Strategy adopted was
to lower the risk by making early fixes to detected bugs and increasing satisfaction with the feature before
going live.

The overhead in adding RBT to the testing process is around 4-6% of the total time planned for the full
testing process. By applying RBT technique, major defects were usually reported at an early stage. Also,
instead of blindly following traditional testing process, such as applying performance testing at the end,
RBT raised awareness of the critical need for high performance over other features in this release and the
order of testing became dependent on the customer's needs and the risky flows.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 9

References

Nicely, Thomas. 2011. "Pentium FDIV flaw FAQ". trnicely.net. Archived from the original on June 18,

2019. Retrieved June 18, 2019. http://www.trnicely.net/pentbug/pentbug.html (Internet archive)

Ng A, Markov IL. 2005. “Toward quality EDA tools and tool flows through high-performance

computing”. Sixth international symposium on quality electronic design (isqed'05) 2005 Mar 21 (pp. 22-27).

Redmill, Felix. 2004. “Exploring Risk-based Testing and Its Implications” Software Testing, Verification and

Reliability, Vol. 14, No. 1, March 2004

Pressman, R. 1995, Engenharia de Software. 1st ed. Makron Books, São Paulo, Brazil.

Felderer, M. and Schieferdecker, I., 2014. “A taxonomy of risk-based testing”. International Journal on

Software Tools for Technology Transfer, 16(5), pp.559-568

Alam, Md. Mottahir. 2013. “Risk-based Testing Techniques: A Perspective Study” International Journal of

Computer Applications (0975 – 8887) Volume 65– No.1, 2013

Amland, Stale. 1999. “Risk Analysis Fundamentals and Metrics for software testing including a Financial

Application case study” 5th International Conference EuroSTAR '99, November 8 - 12, 1999, Barcelona, Spain

Blancher, Nicolas. 2013. “Systemic Risk Monitoring (―SysMo‖) Toolkit— A User Guide” IMF Working

Paper (International Monetary Fund).

http://www.trnicely.net/pentbug/pentbug.html

