
Defining data pointer for software
testing efficiency measurement

Vittalkumar Mirajkar Sneha Mirajkar Narayan Naik
VitalkumarrMirajkar@gmail.comm SMirajka@cisco.com Narayan_Naik@mcafee.com

Abstract

A well-designed software solution needs a well-designed test approach to ensure quality. Measuring

software quality has never been an easy equation to solve. When new software is in the architecture phase,

its associated test set is designed assuming certain user patterns and use cases. Relying on the test set to

cover the assumed use cases is an inadequate indicator for appropriate software test coverage

measurement. You never know when a module is over-tested or under-tested.

There are measurement techniques in place, such as Code Coverage, Unit Coverage, and conditional

coverage which help gauge the percentage of software invoked by executing the associated test cases.

However, these are not adequate to bring in confidence that post-release no production bugs will be

reported. Besides, code coverage measurement needs advanced tools and special builds and set up, to

measure them. For software that is already in production, how do we know which modules need immediate

attention? There is no simple to use measurement technique that can be used to gauge current software

testing efficiency, leading to error-prone tracking of testing effort which leads to an inconsistent effort to

outcome mapping.

In this paper, we outline the measurement technique we developed to measure Quality Volatility which

helps us gauge product stability and its anticipated performance in upcoming releases. We also propose

how an individual test case efficiency can be calculated, which helps in the timely review of test cases for

efficacy. This is based on the detection efficiency aging model we have developed.

Biography

Vittalkumar Mirajkar is a Sr Manager at Skyhigh Security, with 16+ years of testing experience ranging from
device driver testing, application testing and server testing. He specializes in testing security products. His
area of interest is performance testing, soak testing, data analysis and exploratory testing.

Sneha Mirajkar is a Software Engineer at Cisco, with 15+ years of experience in software testing and
extensive hands-on in test automation using PYTHON, Selenium, PERL, QTP, VBscript, web services
testing and functional testing. She has expertise in cloud testing (SAAS) and IAAS, AWS applications

Narayan Naik is a Software Engineer at Trellix, with 14+ years of experience in exploratory testing and
performance testing. He holds an expertise in providing consultation to enterprise customers for features
and compatibility of various security products and security solutions deployed. His areas of interest are
inter-compatibility test areas, performance testing and encryption product lines.

mailto:VitalkumarrMirajkar@gmail.comm
mailto:SMirajka@cisco.com
mailto:Narayan_Naik@mcafee.com

1. Introduction

Measuring software quality based on established measurement techniques does not assure no bugs will

be reported from production. One of the quality measurement techniques is built on the basis of breaking

the software into as small as possible testable code and then defining test cases for those units. When a

new software is released, no matter how well tested it is and how detailed test measurement used,

engineering teams spend the initial days post release, waiting in anticipation on what will be reported from

production as a bug. Every production bug reported, exposes a gap in our understanding of the end

customer’s use cases.

2. Software Measurement Techniques

Some of the popular and well-established Quality Measurement metrics are, (Pal Kienitz 2019)

• Unit test coverage (the amount of software code that is covered by unit tests)

• Path coverage (how many linearly independent paths of the program, the test covers)

• Requirements coverage

• Number of defects

• Percentage of automated test coverage (against the total test coverage which includes manual
testing)

• Percentage of broken builds, etc

There are many other measurements and test techniques (Pal Kienitz 2019) (Satyabrata Jena 2021)
(Sealights.io 2022) which are employed during a software development life cycle. All of these are followed
as release check list in anticipation to cover vast majority of software test concerns. However, despite
religiously following the quality metrics, production bugs are a living reality.

Example: The most efficient, well tested, almost production bug free software ever released is of NASA
shuttle program (Airbrake 2017) (Fishman 1996). 11 release version and only 17 errors report. This requires
eliminating almost all variables; commercial software never has this freedom. Every customer is unique and
has potential to expose an untested area.

Below figure gives the relative cost of fixing bugs at different stages of the SLDC.

Current measurements does not give real time data as to what is the impact of uncovering potential

productions bugs. To assess the cost of production bugs, the bug needs to be uncovered in production and

only after that the subsequent impact can be assessed. To measure production bugs real impact, there is

a need for post release impact measurement, which is a lagging indicator and not real time.

2.2 Why measurement is required in software testing

Primary motivation and need for measurement, specifically software bug measurement, is to have a
constant radar directing the software testing team and guide the efforts in the right direction.

Can we use the same technique for both, a new software under development and software that is under
sustenance releases?

1. New software:

For software, which is under development, a sprint over sprint measurement can be used as

baseline

• If a feature X is developed in a sprint N, sub sequent sprint (> N) treat feature X as pseudo

production release and any bug detected for feature X to be treated as production bug.

2. Software in sustenance releases:

Post a release, any customer reported bugs can directly be used as a measurement and also QA

teams uncovering bugs, post release can also be treated a production bug

4 Quality Volatility

Volatility as a trend indicator has been used extensively in Stock Trading and almost always gives the
prediction of where the stock market range exists.

In Derivative trading (Kotak Securities 2022), PUT and CALL (Downey 2022) open interests for either Index

or a specific stock determines what is Put to Call Ratio (aka PCR) (Summa 2022). PCR is widely used to

forecast market direction with Put/Call ratios. On a normal expiry week, PCR ratio between 0.10 to 10

determines the market Index range.

Taking inspiration from this well tested and established Trading strategy, we define QA Volatility which

helps determine which direction the overall quality of a product is heading. With historic data being readily

available, a clear uptrend or a down trend can be established. Despite all the improvement initiatives which

are put in place for quality improvement, if the inflow of customer bugs does not show a decline, the

initiatives are not in the right direction and Quality Volatility is the easiest approach to measure it.

4.1 Measuring Quality Volatility (QV)

In House Bugs (IHB):

Bugs uncovered during the development cycle by both Dev and QA can be called as In House Bugs (IHB).

As soon as the product releases, the window to uncover IHB is complete.

Customer Reported Bugs (CRB):

Once the product is released, any bugs reported by the customer from field is recorded under Customer

Reported Bugs (CRB)

Production / Regression bugs:

Post release, if a bug is uncovered by Dev / QA team, these are to be categorized as Regression Bugs.

These could be as a part of the code fix regression for an already reported bug by customer, and during

regression testing new bugs were uncovered. However, the reason these being uncovered is because the

In-House Testing phase did miss them.

Below figure depicts the timeline and the respective section of bugs reported.

Simple Quality Volatility can be defined as

Here, the total count of all the reported bugs is considered. Irrespective of the priority of the bug, the weight

associated with each bug is the same. A priority 5 (P5) bug is treated as same weight as priority 1 (P1) bug.

To make the Quality volatility more realistic, Weight needs to be associated with the respective priority of

the bug reported. Weights are { 𝑃1 = 5, 𝑃2 = 4 , 𝑃3 = 3 , 𝑃4 = 2, 𝑃5 = 1}, where P1 is Priority 1 bug and

so on.

With this approach, the Weighted Quality Volatility can be defined with the below equation.

Development Phase Released product

Time Line

Inhouse bugs (IHB) reported by

Dev and QA
Customer reported bugs (CRB)

Regression Bugs (RB) reported by Dev/QA

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝐵𝑢𝑔𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛 𝐻𝑜𝑢𝑠𝑒 𝐵𝑢𝑔𝑠

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 =
𝐶𝑅𝐵 {(5 ∗ 𝑃1 𝑐𝑜𝑢𝑛𝑡) + (4 ∗ 𝑃2 𝑐𝑜𝑢𝑛𝑡) + (3 ∗ 𝑃3 𝑐𝑜𝑢𝑛𝑡) + (2 ∗ 𝑃2 𝑐𝑜𝑢𝑛𝑡) + (1 ∗ 𝑃5 𝑐𝑜𝑢𝑛𝑡)}

𝐼𝐻𝐵 {(5 ∗ 𝑃1 𝑐𝑜𝑢𝑛𝑡) + (4 ∗ 𝑃2 𝑐𝑜𝑢𝑛𝑡) + (3 ∗ 𝑃3 𝑐𝑜𝑢𝑛𝑡) + (2 ∗ 𝑃2 𝑐𝑜𝑢𝑛𝑡) + (1 ∗ 𝑃5 𝑐𝑜𝑢𝑛𝑡)}

5. How to use Quality Volatility to improve quality

Quality volatility is a ratio. This ratio represents stability of the product for the specific version for which it is

measured. A series of these measurements help up build a near accurate trend of the overall quality of the

product.

Quality volatility is lagging indicator (The Investopedia Team 2021). This ratio can be found when both

data points i.e CRB and IHB numbers are available. IHB are recorded based on the bugs reported during

development phase. For CRB, product must be released and we wait for a fair amount of time before the

count of CRB is measured. As a thumb rule, we wait for the same time duration as much as the product

was in development phase (Example: If the overall development was of 6 weeks, post release to measure

CRB, ideal wait should be 6 weeks).

When we have a series of Quality Volatility ratios from multiple releases, it is possible to extrapolate the

next value in the series, which will indicate the potential customer bugs, which may get logged once the

product is released to market.

Below table helps us interpret Quality Volatility ratios and one of the possible corrective actions that could

be taken. We have presented the corrective suggestion, we started with to improve the QV ratio.

Ratio Status What does it mean Suggested recommendation

0 - 0.2 Green
Every 10 bugs found in house,
after production we can expect
2 bugs

• Add more test cases

• Increase test coverage

0.2 - 0.5 Yellow
Every 2 bugs logged in house,
1 bug was logged by
customer.

• Review existing test cases

• Add new test cases

0.5 - 1 Red
Every bug found in house;
customer is matching the
count

• Identify testing gaps

• Increase coverage

• Make customer logged bugs as part of
regression testing

• Increase manual as well as
Automation coverage

> 1 Black
Customer is logging more
bugs than in house.

• Current testing has shortcomings

• Do architecture review of the features
built and customer expectation

• Identify customer user cases and build
test scenarios for effective testing

When we applied the following model to track the Quality progress of the 5 different projects, we were able

to see clear trend on how the quality was progressing and the risk areas. This becomes highly effective

technique in simultaneous multi-product release cycles and aids Quality Leader to concentrate

improvement areas in specific troublesome products.

Below is the representation of a Simple Quality Volatility Index. In this table all bugs have same weight

Release

Product 1 Product 2 Product 3 Product 4 Product 5

IHB CRB
QA

Volatility
IHB CRB

QA
Volatility

IHB CRB
QA

Volatility
IHB CRB

QA
Volatility

IHB CRB
QA

Volatility

N+4 20 7 0.35 25 9 0.36 10 4 0.40 4 1 0.25 10 4 0.40

N+3 12 6 0.5 15 8 0.53 9 4 0.44 12 1 0.08 13 2 0.15

N+2 15 16 1.07 17 22 1.29 4 8 2.00 3 8 2.67 10 7 0.70

N+1 15 13 0.87 26 24 0.92 7 9 1.29 18 10 0.56 14 8 0.57

N 25 16 0.64 20 23 1.15 9 15 1.67 7 19 2.71 18 10 0.56

In this case, release “N+4” is the latest release. Based on this model, measuring Quality Volatility for N,

N+1, N+2, we observe there is a quality concern that needs to be addressed.

Below is the representation of a Weighted Quality Volatility Index, where bugs have weight assigned

*The weights are Blocker = 5, Critical = 4, Major = 3

** Our observation, between Simple QV and Weighted QV, there is a very minor change in Volatility

5.2 Test case effectiveness

Test case(s) are designed to execute a specific code flow. During the test case execution, if this unique

code flow is broken, the test case has uncovered a bug. The test case’s potential to uncover a bug can be

described as “Bug detection potential value factor”.

Once the code is fixed for the bug uncovered, the code has become immune to the condition introduced by

the test case and hence on subsequent execution of the test case, post fix, it is unlikely to break same code

flow. Subsequent runs of the test case are regression run to ensure the code path is unbroken.

5.2.1 Defining Test case efficiency:

Every test case has an “Bug detection potential value factor”. Over time, release over release if we do not

uncover a bug, this value reduces. Every passing release (irrespective of how many times this test has

been run within a given release, lets treat it at per release level), the value is deprecated. This follows a

half-life pattern, which is very similar to that of a radioactive decay half-life equation (Cuemath 2022).

𝑁(𝑡) = 𝑁(0) ∗ (
1

2
)

𝑡
𝑡1

2

Where:

N(0) = Potential value of test case to find a bug during test design phase, where it is not even executed even

once. The Value = “1” as each test case can find 1 bug for the code flow it is/was designed to test.

N(t) = Effectiveness retained of a test case at the end of “t” release execution.

t = Number of releases / executions that have been completed. In this case we refer to it number of releases

that this specific test case has run.

Bl Cr Ma Total Bl Cr Ma Total Bl Cr Ma Total Bl Cr Ma Total Bl Cr Ma Total Bl Cr Ma Total Bl Cr Ma Total Bl Cr Ma Total Bl Cr Ma Total Bl Cr Ma Total

N+4 5 7 8 20 2 2 3 7 0.35 1 9 15 25 3 2 4 9 0.41 2 1 7 10 1 1 2 4 0.43 1 2 1 4 0 1 0 1 0.25 2 4 4 10 1 2 1 4 0.42

N+3 5 3 4 12 1 3 2 6 0.47 2 4 9 15 1 4 3 8 0.57 2 2 5 9 1 2 1 4 0.48 0 0 12 12 0 1 0 1 0.11 5 6 2 13 0 2 0 2 0.15

N+2 2 7 6 15 3 8 5 16 1.11 0 4 13 17 2 7 13 22 1.40 2 1 1 4 2 6 0 8 2.00 0 0 3 3 2 5 1 8 3.67 4 5 1 10 2 3 2 7 0.65

N+1 4 5 6 15 2 8 3 13 0.88 3 4 19 26 5 16 3 24 1.11 1 2 4 7 1 7 1 9 1.44 0 2 16 18 1 9 0 10 0.73 2 4 8 14 1 6 1 8 0.64

N 5 11 9 25 5 6 5 16 0.67 2 3 15 20 4 17 2 23 1.40 6 1 2 9 1 13 1 15 1.50 0 3 4 7 6 12 1 19 3.38 1 1 16 18 0 4 6 10 0.60

QA

Volatility
QA Volatility

QA

Volatility

Release CRB IHB CRB IHB CRBQA

Volatility

QA

Volatility

Product 1 Product 2 Product 3 Product 4 Product 5

IHB CRB IHB CRB IHB

t(1/2) = Time taken for test case to reach half its effectiveness. In software testing this is “1” as each release

test case potential effectiveness is reduced by half.

Using the values of: N(0) = 1, t = 1 to n (where n is current release number), t(1/2) = 1 in

 𝑁(𝑡) = 𝑁(0) ∗ (
1

2
)

𝑡

𝑡1
2

*Assumption made: During maintenance release, no major code overhaul is done (under most

circumstances, existing codes remains almost similar to previous release, regression testing is done to

maintain quality status quo).

Below table shows calculated effectiveness of test case release over release when it fails to detect a bug.

On the Right-hand side, you see the plot of the trend lines for both Exponential effectiveness and Linear

Trend line of effectiveness

N(t) = Every
subsequent

release

Test case
Effective

ness

Probability
of detection

%

0 1.000000 100.000000

1 0.500000 50.000000

2 0.250000 25.000000

3 0.125000 12.500000

4 0.062500 6.250000

5 0.031250 3.125000

6 0.015625 1.562500

7 0.007813 0.781250

8 0.003906 0.390625

9 0.001953 0.195313

10 0.000977 0.097656

11 0.000488 0.048828

12 0.000244 0.024414

13 0.000122 0.012207

14 0.000061 0.006104

15 0.000031 0.003052

16 0.000015 0.001526

17 0.000008 0.000763

18 0.000004 0.000381

19 0.000002 0.000191

20 0.000001 0.000095

Observations:

• If a test case has not uncovered a bug in 10 releases, probability of it uncovering a bug is < 0.01%

• If a linear trend of effectiveness is followed, by 15 releases, a test cases which has not detected

any bug in last 15 release, its potential effectiveness has fallen to 0.

• Best time to review a test case is after 10 release cycles. After 15 release cycles its already in RED

zone.

Exception to the rule:

If a test case detects a bug in any subsequent runs, reset the value of test case equal to the number of

releases it was run, and no bug was detected

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

TE
ST

 C
A

SE
 E

FF
EC

TI
V

EN
ES

S

RELEASES OVER TIME

T E S T C A S E E F F E C T I V E N E S S V S R E L E A S E S

Effectiveness Linear

Trend line

Effectiveness

exponential Trend Line

Example: If a test case uncovers a bug in 10th release, whereas in previous 9 release it did not detect it.

Change the “test case effectiveness” value from current value 0.000977 to 10.

The late-stage detection of a bug is a strong indicator a stable piece of code has been tweaked and has

greater potential to break portions of the code which have remained stable in current / previous releases,

potential quality RED flag.

*If tracking testcase effectiveness at a test case level becomes time consuming, this could be done “test

case group”/ module level as well with same effectiveness.

5.2 How to be bring back the ratio < 0.2

Frist step in managing QA Volatility is understanding our current test approach and how to improve it.

If the ratio of QA Volatility is > 0.5, it is indicator of two major possibility what the high ratio can suggest.

• If it is a new project, high QA Volatility ratio indicates there are no adequate test cases developed
yet

• For a project in sustenance mode, high QA Volatility indicate current test cases are ineffective and
code is immune to current test set.

Following steps can be adopted to quickly introduce corrective actions in brining QA Volatility under control.

• Incorporate Exploratory testing (Softwaretestinghelp 2022) as part of regular test cycles.
Exploratory testing is one of the quickest ways to uncover bugs

• Based on the “Test case effectiveness” technique described in previous section, identify test cases

which need review

• Design review by QA: The best place to detect a bug is even before it is coded. Feature
implementation discussion between Dev and QA helps a great deal to making this happen and
helps sync Dev and QA to the same page about the feature under development

• For sustenance projects, last 3-6 release customer bugs should be integrated into regression
cycles as Priority Set

Exception to the rule:

For a project under sustenance, if a module is stable and no field / customer bugs are reported for couple
of releases. This indicates, QA teams’ current approach has already covered all possible customer use
cases. In such case, do not try to fix which is not broken.

6. Applying Quality Volatility for stabilizing projects which
were stressed.

We have effectively used Quality Volatility ratio to help us identify products where quality was a concern

and using some of the corrective methods described in the section above, we have been successful in

reducing Quality Volatility ratio.

Below table presents data of IHB and CRB of 5 products Product 1 – Product 5, where based on the past

trend of N, N+1 and N+2 release, these products were seeing an increase in customer reported bugs.

Using some of the corrective steps in the last two release i.e. N+3 and N+4 release, we have been able to

reduce Quality Volatility < 0.5.

Release

Product 1 Product 2 Product 3 Product 4 Product 5

IHB CRB
QA

Volatility
IHB CRB

QA
Volatility

IHB CRB
QA

Volatility
IHB CRB

QA
Volatility

IHB CRB
QA

Volatility

N+4 20 7 0.35 25 9 0.36 10 4 0.40 4 1 0.25 10 4 0.40

N+3 12 6 0.50 15 8 0.53 9 4 0.44 12 1 0.08 13 2 0.15

N+2 15 16 1.07 17 22 1.29 4 8 2.00 3 8 2.67 10 7 0.70

N+1 15 13 0.87 26 24 0.92 7 9 1.29 18 10 0.56 14 8 0.57

N 25 16 0.64 20 23 1.15 9 15 1.67 7 19 2.71 18 10 0.56

With the corrective steps for N+3 and N+4 release, we are seeing higher IHB and there by better quality

product delivered to customers which is directly proportional to reduced CRB, reducing the QA Volatility

ratio.

7. Learning and key takeaways

Following are our key takeaways are learning

• To measure QA effectiveness, we do not need complex measurements to track and measure

quality improvement

• Customer reported bug is the golden measurement to gauge quality of a product

• Code coverage may not be adequate to claim code is fully evaluated

• Exploratory testing and QA teams’ involvement in feature design review are most cost-effective

technique for early bug detection

• Code does become immune to testing over multiple releases

• Moving from “test to pass” to “test to break” testing mindset, is a must to uncovering the bugs which

had high probability of being reported by the customer

• There is very minimum to negligible difference between Simple QV and Weight QV. For a start, we

can begin with Simple QV to help identify concerning products

References

Airbrake. 2017. Production Defects Are Not Inevitable. June 16. Accessed April 1, 2022.

https://airbrake.io/blog/devops/production-defects-are-not-inevitable.

Cuemath. 2022. Half Life Formula. Accessed June 10, 2022. https://www.cuemath.com/half-life-

formula/.

Downey, Lucas. 2022. Essential Options Trading Guide. August. Accessed Aug 2022.

https://www.investopedia.com/options-basics-tutorial-

4583012#:~:text=Call%20and%20Put%20Options,-

Options%20are%20a&text=If%20you%20buy%20an%20options,right%20to%20sell%20a%20stoc

k.

Fishman, Charles. 1996. They Write the Right Stuff. December 12. Accessed April 5, 2022.

https://www.fastcompany.com/28121/they-write-right-stuff.

Kotak Securities. 2022. What Is Derivative Trading. Accessed April 5, 2022.

https://www.kotaksecurities.com/ksweb/Research/Investment-Knowledge-Bank/what-is-

derivative-trading.

Pal Kienitz, One Beyond. 2019. https://www.one-beyond.com/how-we-measure-software-quality/.

December 24. Accessed March 2, 2022.

Satyabrata Jena. 2021. Measuring Software Quality using Quality Metrics. August 12. Accessed March

2022, 4. https://www.geeksforgeeks.org/measuring-software-quality-using-quality-metrics/.

Sealights.io. 2022. Measuring Software Quality: A Practical Guide. Accessed March 5, 2022.

https://www.sealights.io/software-quality/measuring-software-quality-a-practical-guide/.

Softwaretestinghelp. 2022. What Is Exploratory Testing In Software Testing (A Complete Guide). August

7. Accessed Aug 10, 2022. https://www.softwaretestinghelp.com/what-is-exploratory-testing/ .

Summa, John. 2022. Forecasting Market Direction With Put/Call Ratios. May 15. Accessed April 15, 2022.

https://www.investopedia.com/trading/forecasting-market-direction-with-put-call-ratios/.

