

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 1

The Versus framework: a file
comparison standard for software

testing

Omar Mohamed Ragi
Ahmed Sayed Ali
Reem Al-Adawi

omar_ragi@mentor.com
ahmed_ali@mentor.com

reem_eladawi@mentor.com

Abstract

In any software automated testing environment, file comparison is an essential step to determine if the
outputs of the system under test match the expected results. Improving this testing step significantly
enhances the testing flow and makes the whole process robust and reliable. For this reason, we created
Versus, a file comparison framework and standard designed to facilitate the files comparison task by
offering QA engineers a state-of-the-art internal tool to perform the comparison using the optimal
environment and settings, eliminating the need to write and maintain complex scripts.

The main concepts of the Versus framework are maintainability, and ease of use. The framework is
designed to only accept one input, a human-readable, easy to create and maintain, YAML-formatted
configuration file that contains definitions of all the comparison checks. Versus parses this YAML file,
executes the comparison checks, and generates an easy-to-analyze comparison summary report. This
report, designed with the goal of reducing test failure analysis time, directs engineers to the fastest
method for reviewing detected differences.

By standardizing file comparison, one of the most important steps in any automated testing flow, the
Versus framework is a great tool for the automated testing environment. It makes fast, accurate file
comparison accessible to all QA engineers, regardless of experience, saving time while ensuring best
practices are used for file comparison in every automated test scenario.

This paper presents the concepts of the Versus framework, and how these concepts can and should be
adopted in any QA testing automation process aiming for high efficiency and productivity.

Biography

Omar Mohammed Ragi is a SW QA manager for Siemens Digital Industries Software. He has a B.Sc.
degree in Computer Science from Arab Academy for Science, Technology & Maritime Transport, Cairo,
Egypt.

Ahmed Sayed Ali is a Senior QA Engineer for Siemens Digital Industries Software. He has a B.Sc.

degree in Electronics and Communications from Ain Shams University, Cairo, Egypt.

Reem El-adawi is Director of Quality for Siemens Digital Industries Software. She holds a B.Sc., M.Sc.,

and Ph.D. from Ain Shams University, Electronics and Communication department, Egypt.

mailto:omar_ragi@mentor.com
mailto:ahmed_ali@mentor.com
mailto:reem_eladawi@mentor.com
https://yaml.org/

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 2

1 Introduction

Any testing automation system has two main steps:

 running the tool under test after providing the correct inputs that define the scenario to be tested

 comparing the outputs of the tool under test after the run is complete to determine if they match
the expected results (the baseline or “golden” results).

The Versus framework simplifies and standardizes the comparison step, making the file comparison easy,
and accessible for any QA, regardless of their experience level, while offering a robust process based on
best practices. The Versus framework is a valuable component of ensuring the best tools, practices, and
optimization are maintained in testing flows. In this paper, we present the main components of the Versus
standard, and explain how they are synergized to achieve the described goals.

2 Principles of the Versus standard

Versus is both a framework and a file comparison standard that can be used to compare files efficiently
and easily, making it the perfect tool for testing automation comparison step. There are five principles in
in the Versus comparison standard—these principles are the pillars on which Versus is created and
designed (Fig. 1). These principles serve and underlie the ultimate goal of making fast, accurate file
comparison accessible to all QA engineers without the need for prior experience or scripting skills.

Fig. 1. The five principles of the Versus framework.

In the following sections, we define these principles and show how they are incorporated into the design
of Versus.

2.1 Usability and user experience

The first principle of the Versus framework is usability. To enhance ease of use for new or inexperienced
QA engineers, we focused on making the getting-started experience with the Versus framework easy and
fast. By default, the Versus framework only accepts one input file, which reduces potential sources of
complexity in the file comparison process.

The Versus input is a YAML format file, which is not only human-readable, but can also be parsed by
many modules and libraries in almost any scripting language. Entry names and reserved words used in
this YAML format input file are chosen carefully to be intuitive and easy to remember, to limit the need to
consult the documentation whenever users need to write a new Versus configuration file.

https://yaml.org/

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 3

To make the Versus framework easier to configure, we built a web-based UI application that enables
users to choose the type of comparison, inputs, and settings for each check. The application then
automatically generates the YAML configuration file, ready to be used with the Versus framework
(additional details are provided in section 8).

This web-based UI application is also deliberately designed to minimize any need to consult the
documentation of the Versus framework. It starts by asking users the important questions first, then
guiding them through multiple questions until it has all the information needed to create the YAML
configuration file. This approach eliminates the need for users to have prior knowledge about the syntax
of the input configuration file, or the available entries it contains (additional details provided in section 7).

2.2 Centralization and maintainability

Centralization is a very powerful concept that is essential for a successful and maintainable testing
automation process. Centralizing key components of the testing automation scripts and tools reduces the
time and cost needed to develop them, allowing many team members to use a single source of code or
tool that would otherwise have been re-invented many times in potentially different levels of quality.
Centralization also supports and simplifies system maintenance—if any part of the testing tools needs
modification or fixing, it can be done on a single location, instantly providing the resulting corrections or
enhancements to all the test cases (scenarios) in the testing automation regression suite using the
centralized testing tool or script.

The Versus framework is designed with centralization in mind to maximize its maintainability. If many test
cases use the same comparison check, they can all use the same YAML configuration file, so changing
anything in this single YAML configuration file instantly updates all of the testing suites using that check.

The Versus configuration file also supports defining file names with patterns, and even adds arrays of file
names in both the entries of the output file and the baseline data. These features mean that even if the
test cases in an automated testing suite are comparing different types of files, or files with different
names, all the test cases can share the same compare checks, and whatever output in each test matches
the file name pattern you entered will be compared just as if the full name of the file was written.

The Versus configuration file also supports conditional compare checks (i.e., those that depend on certain
conditions to trigger the comparison). If the conditions are not present, the comparison will be ignored, or
be performed with relaxed tolerances. This feature makes it easier to support a centralized configuration
file.

2.3 Failure analysis optimization

Another goal of the Versus framework is to minimize the time required to analyze the failure of an
automated test case, which includes spotting the source of the failure in the shortest time possible. The
Versus framework achieves this goal with an optimized output log containing multiple shortcuts and aids
to save analysis time.

If Versus is run from a terminal, important data in the log is color-coded so users can quickly distinguish
passing compare checks from failing checks without the need to read every line in the log (refer to section
6).

Versus generates a “transcripts” directory while executing the comparison checks that contains all the
comparison results, as well as the intermediate files used in the comparison execution. This directory is
well organized with a specific hierarchy based on the compare checks parameters (refer to section 7).

Log contents are minimized. At the end of a log, Versus prints two summary reports: a table that contains
all the compare checks and their final status, and a final count of the checks, including how many passed,
and how many failed. This gives users a quick glimpse of the general status of the automated test case
before they begin analyzing the failures and going deep into the comparison failure log (refer to section
6). However, the log doesn’t contain the results of the comparison in the summary report, but provides a

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 4

reference to its location in the transcripts directory. (refer to section 6) The log also provides the optimal
way to debug a comparison check failure—e.g., if the check type is an image comparison, the log
provides a link to an image that contains a merged version of the two compared images, with the
differences highlighted (refer to section 6).

Following these guidelines cuts down the automated test failure analysis time by a considerable amount
and saves a lot of time for the QA engineers in one of the most important roles of their jobs, which is
maintaining their automated testing suite.

2.4 Modularity

Versus code is built in a modular style, meaning each comparison mode, each extractor, and even the
part that generates the final log and the summary report, are all built into separate python code sources.
Modularity ensures that if any defect is introduced into one module, the other modules and pieces of code
are not affected, while also making it easier to find and fix errors.

Modularity also supports some “plug-ins” that can be used to extract and filter the output files (or metric
values) to be compared to the baseline version, so users can create their own python code to manipulate
the output data, making it even more modular.

2.5 Extendibility

Versus allows users to include a custom comparison mode that uses a different comparison engine,
rather than the engines supported by Versus by default (those described in section 5). This feature lets
users use their preferred engine within the Versus framework environment, providing them all the benefits
of Versus while allowing them the flexibility to use their own comparator (refer to section 5.7).

3 Versus framework components

In this section, we describe the main framework components that define the experience of using Versus
in testing automation (Fig 2).

Fig. 2. Versus framework components.

3.1 Comparison script inclusion

Each test in the automated testing suite is expected to call Versus framework from its main location
(source), using a central configuration file that contains all the needed comparison checks. This
recommended approach achieves the Versus principle of centralization.

Fig. 3 shows a typical Versus call inside the main compare script of each automated test case.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 5

Fig. 3. The recommended method for calling the Versus framework.

3.2 Configuration file

The configuration file is the only input Versus needs. It contains all the data needed to extract the files
and metrics to be compared, and all the comparison checks to be executed on the outputs against the
expected results (baseline version).

The configuration file must be written in YAML format (while Versus accepts JSON, it is not
recommended as it is not as human readable). The typical Versus configuration file contains three
sections in total (Fig. 3):

 scripts: this section is dedicated to any script or shell command users want to run inside the
automated test before running the extraction and comparison checks It is typically used to run
some code to filter unwanted data from the output files of the tool under test, or to generate an
altered version of these output files that are more suitable for comparison.

 extract_metrics: this section is dedicated to defining the extractors, which are a set of python
functions to be run with the parameters passed to them by the users. Its goal is to extract the
needed values (metrics) from the output files to be compared to the baseline version.

 compare_metrics: this section is dedicated to defining the comparison checks that Versus will
execute on the output files, the extracted metrics, or the filtered/altered versions of the output
files.

Fig. 4. Versus configuration file sections.

More details on the configuration file sections are provided in section 4.

3.3 Log and summary report

Versus is always verbose about what it is doing at any moment. The log it generates shows the current
step and the results of this step, as shown in Fig. 5. After the comparison is done, Versus generates a
summary report table that summarizes the results of all of the compare checks and gives users final
counts of passing and failed checks. More details about the log and summary report are provided in
section 6.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 6

Fig. 5. Versus log and summary.

3.4 Transcripts directory

The transcripts directory is where Versus keeps all intermediate files it generated, any filtered files, and
the results of the comparisons it made. It is organized in a specific hierarchy to be intuitive and self-
explanatory. If users know the check names they chose in the configuration file, they can easily navigate
the transcripts directory to get the files they want for failure analysis (Fig. 6). More details about the
structure of the “transcripts” directory are provided in section 7.

Fig. 6. Transcripts directory hierarchy.

4 Versus configuration file

4.1 Introduction

The configuration file is the Versus framework’s entry point, where users describe the comparison checks
for all automated tests. It is designed to meet the following criteria:

 Easy to read, understand and maintain

 Supports generic comparison checks, so that one configuration file can be used by the whole
regression suite

 Modular and re-usable (check descriptions can be re-used in other configuration files)

In the following sections, the main sections of Versus configuration file will explained in details.

4.2 Versus YAML configuration file sections

The Versus configuration file contains three main sections:

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 7

 Scripts

 Metrics extraction

 Metrics comparison

4.2.1 Scripts

The scripts section is the first to be executed by Versus. Users can use this section to define any
script/command that must be run before the comparison checks (Fig. 7). These commands/scripts are
typically used to prepare the output files for comparison (filtration, aggregation, … etc.).

Fig. 7. scripts section of configuration file.

4.2.2 Metrics extraction

The extract_metrics section is used to call pre-defined metric extractor functions for extracting and storing

the metrics to be compared in a standard format that can be easily compared (Fig. 8).

Fig. 8. extract_metrics section syntax.

4.2.3 Comparison metrics

The compare_metrics section is used to define the comparison checks that use one of the pre-defined

comparison modes (Fig. 9).

Fig. 9. compare_metrics section syntax.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 8

5 Versus comparison modes

Versus has six pre-defined comparison modes that cover most of the common output file types, as well as
a seventh custom mode that can be used to compare any special file type by incorporating another
comparison engine within the Versus framework, gaining all of the benefits of the framework without re-
inventing the wheel.

5.1 diff mode

The diff mode is the simplest comparison mode in Versus—it compares two files line by line using the
standard Linux diff command [1]. The comparison check passes only if the output file and baseline are
identical (no tolerance support in this mode). Fig. 10 shows some examples of the diff mode usage.

Fig. 10. diff mode syntax and examples.

5.2 scalar mode

The scalar mode is used to compare two singular numerical values, usually stored in files that are
generated by the extract_metrics functions. This mode supports numerical tolerance, and ignores
positive/negative differences. The comparison check passes only if the two metrics match, or if the error
is within the defined tolerance. Fig. 11 shows the syntax of the scalar mode and its available parameters.

Fig. 11, scalar mode syntax.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 9

Fig. 12 shows examples of the scalar mode.

Fig. 12. scalar mode examples.

5.3 operator mode

The operator mode is also used to compare two singular numerical values, usually stored in files that are
generated by the extract_metrics functions. This mode supports all python comparison operators (==, !=,
<=, >=, <,>). The comparison check passes only if the python operator check is true. Fig. 13 shows the
syntax of the operator mode and its available parameters.

Figure 13: operator mode syntax.

Fig. 14. operator mode examples.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 10

5.4 numdiff mode

The numdiff mode is used to compare text files that contain numbers, using the numdiff tool [3]. It
supports the comparison of these files with tolerance for the numbers within these files. It is usually used
for the CSV file comparison, as it has many options for facilitating the CSV file comparison. Fig. 15 shows
the parameters and the syntax of the numdiff mode.

Fig. 15. numdiff mode syntax.

Fig. 16 shows examples of the numdiff mode.

Fig. 16. numdiff mode examples.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 11

5.5 image mode

The image mode is used to compare images. It supports comparison with tolerance, so if the images are
close to each other within the defined tolerance, the comparison passes. The Frog-Logic engine is used
in this mode [2]. Fig. 17 shows the parameters syntax of the image mode.

Fig. 17. image mode syntax.

Fig. 18 shows some examples of the image mode.

Fig. 18. image mode examples.

5.6 xor mode

The xor mode is used to compare two physical layout files of an integrated circuit (IC) design mask that
are stored in different file formats [4]. It is common practice in Siemens to compare these types of files, as
one of our primary software solutions is focused on IC design intellectual property (IP). This mode
supports geometrical tolerance and conditional tolerance based on variables or current CPU architecture
and operating system that might give slightly different output.

Fig. 19 shows the main syntax of the xor mode.

Fig. 19. xor mode syntax.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 12

Fig. 20 shows some examples of the xor mode.

Fig. 20. xor mode examples.

5.7 Custom mode

The Versus framework can be extended to accommodate any custom comparison engine and integrate it
within the framework, enabling users to realize the framework’s benefits while using the comparison
engine that meets their functional needs. To implement this process, users employ the Versus
environment variable QA_VERSUS_CUSTOM_MODE, as shown in Fig. 21. This variable must point to
the custom comparison engine (or engines) so the framework can recognize and use them in the
comparison checks.

Fig. 21. Custom mode usage.

Once the QA_VERSUS_CUSTOM_MODE variable is defined, users can use the custom mode in the
YAML configuration file just as they do any of the pre-defined modes, getting the benefits of the
framework right out of the box. In the example shown in Fig. 22, a DRC Results Database comparison
engine (which compares Siemens EDA format databases used in the Calibre nmDRC tool) is used with
the Versus custom mode.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 13

Fig. 22. Custom mode configuration file example.

6 Versus output log and summary report

The output log of the Versus framework is designed to give users all the information they need about the
comparisons without being distracted by lengthy or unnecessary data that would add time to the test
failure analysis without adding any significant value.

Fig. 23 shows all the relevant sections in a typical Versus output log.

Fig. 23. Typical Versus output log, with each relevant section highlighted.

The following sections provide a closer look at each of the output log sections, providing more detail
about the information presented, and the options designed to shorten failure analysis time.

6.1 Configuration file source and environment variables

Fig. 24 shows file sources and environmental variables used in the configuration file:

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 14

Fig. 24. Configuration source and environment variables.

6.2 Comparison checks report

Fig. 25 shows the Versus comparison checks report. Each comparison check has its own mini check log:

 This log states the internal command used to make the comparison, and all the options and
arguments used with this command, including the output and baseline files. It also states whether
this check failed or passed, using color-coded lines to make reading the log easier and faster.

 In case of a check failure, the log directs users to the best option for checking the difference in
the shortest time.

Fig. 25. Comparison checks report showing the check log for each comparison check.

6.3 Summary table report

The summary table report summarizes all the executed checks with their results in an organized table
(Fig. 26). This report also includes the output and baseline file names, as well as comments (if possible)
to direct users to the shortest path for checking the differences.

Fig. 26: Summary table report.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 15

6.4 Final pass/fail count report

The final pass/fail count is the last report that appears in the Versus output log (Fig. 27). It provides users
with an overall view of how many checks failed and how many passed, so users can quickly determine
how many checks passed without having to read the details of every single comparison check.

Fig. 27. Final pass/fail counts report.

7 Versus configuration generator UI

Writing YAML code that contains multiple options can be challenging and time-consuming, so a web-
based graphical user interface (GUI) tool was developed to create and edit Versus YAML configuration
files (Fig. 28). This tool makes it easy to write Versus configuration files, eliminating the need to memorize
any of the configuration syntax for all of the pre-defined modes while also reminding users of all of the
available options the Versus framework offers, simplifying and speeding up configuration file creation for
both new and experienced users.

Fig. 28. Versus UI web-based tool for generating/editing configuration files.

8 Conclusion

The Versus framework is primarily designed for flexibility, maintainability, and control. It defines a
standard for files comparison within automated regression suites, enabling QA engineers to use the best
state-of-art tools for files comparison, while eliminating the need to write their own code every time a new
comparison type is needed.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 16

Acknowledgements

The authors would like to extend their gratitude to Siemens Calibre QA teams who assisted in testing the
framework in-house, and provided insightful and helpful ideas and feedback to help the framework reach
its maximum potential. We would also like to thank Shelly Stalnaker for editorial assistance in the
preparation of this manuscript.

References

M. Kerrick, “The Linux Programming Interface,” Oct. 2010. https://man7.org/linux/man-
pages/man1/diff.1.html

S. Vrkacevic, “Using command line tools for image comparisons,” froglogic, Oct 10, 2017.
https://www.froglogic.com/blog/command-line-tools-for-image-comparisons/

I. Primi, “Numdiff,” Feb. 25, 2017. https://www.nongnu.org/numdiff/

“Open Artwork System Interchange Standard,” Layout Editor. https://www.layouteditor.org/layout/file-
formats/oasis

“GDSII,” Layout Editor. https://www.layouteditor.org/layout/file-formats/gdsii

https://man7.org/linux/man-pages/man1/diff.1.html
https://man7.org/linux/man-pages/man1/diff.1.html
https://www.froglogic.com/blog/command-line-tools-for-image-comparisons/
https://www.nongnu.org/numdiff/
https://www.layouteditor.org/layout/file-formats/oasis
https://www.layouteditor.org/layout/file-formats/oasis
https://www.layouteditor.org/layout/file-formats/gdsii

