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1 Abstract 
Exhaustive testing and coverage are not effective methods to perform the validation in manual execution, 
automation, and continuous integration and development environment. In the current mode of work, we 
encountered a backlog of execution tasks for up to three weeks instead of the planned one-week duration 
for completion. Therefore, this research will prioritize test case prioritization which allows the validation 
engineer and automation framework to execute the validation operatively. 

To ensure the validation effectiveness of reducing redundancy of the test cases, a deep learning method 
and greedy approach to selecting the best combination of test cases that have complete validation 
coverage will be proposed. The reduction will impact significantly the project cost in terms of resources 
catered.  

These results suggested that using a hybrid approach will expedite the progress by approximately 20%. 
From the organization's point of view, this proficiency results in cost savings and quality products for the 
consumer to use. 
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3 Introduction 
 

Exhaustive testing and validation on a broad market IoT (Internet of Things) product are not effective from 
coverage and time to market perspective what-more when this is performed in manual test configuration 
where development work and continuous integrations are continuously evolved in regular cadence. In the 
current mode of operation, we encounter a backlog of validation tasks up to as much as three weeks 
while it was all supposed to be completed in a week. Hence, this paper focuses on research work to 
develop a smart algorithm to prioritize test cases according to the incoming changes. It allows validation 
engineers and the automation community to stage the execution more operatively and predictably. 

To deliver an effective, lean, and agile approach to validation coverage, a deep learning methodology, 
recurrent neural network along with the approach named “greedy” approach is being deployed. This is 
done to reduce the number of test cases and in doing so, selectively pick and choose the best possible 
combination of test cases that should suffice the incoming requirements. In IoT test qualification, it's 
critical that the validation encompasses all possible usage scenarios and in that mimicking the customers' 
end applications for the intended use cases model. In this scenario, running an NVR (network video 
recorder) application would demand execution of over 𝑛 possible combinations of different pipelines and 
workloads to accommodate the utilization of a digitized surveillance system coupled with secured in-band 
manageability features. The deployment of deep learning helps to predetermine the selection of test 
cases based on a set of inputs corresponding to the intended validation coverage. This in turn 
significantly improves the execution duration, reduces cost in resource allocation, and shortens the 
overall product qualification cycles. 

The outcomes of such a hybrid approach have broken the traditional approach of validation and broken 
the norm of constant and repetitive execution by introducing smarter solutions in determining the right set 
of test cases according to the defined requirement. This has expedited the completion by approximately 
60% by fully utilizing the software-defined "greedy" approach while delivering top-quality focused 
validation according to the customer's requirement and use case model.  

The hybrid approach comprises deep learning on self-learning on the git log from the repository. We will 
perform data acquisition and pre-processing of the commit id, author name, and commit date. On the 
training dataset side, we will put a label on the commit messages for numerous sizes of input. When we 
are working on the live action, after we obtained the predicted output, we have a query out from the 
database, and we need to filter out the relevant test cases. To optimize the test coverage, a greedy 
approach will implement to prioritize the test cases for the full test coverage. The greedy approach is the 
method that seeks the minimum test cases which will cover several requirements. Hence, with the hybrid 
approach, we can reach the objective of test case prioritization. 

 

4 Literature Review 
 

This literature review will be divided into a few subcategories, which are test case prioritization, test 
coverage, and deep learning on software validation-related works.  

 

4.1 Test Case Prioritization 
 

Yanshan et al [1] mentioned that the behavior pattern of the test will influence the prioritization of test 
cases in the group of test cases in the pool. Other than that, they realized that the additional effort by 
applying the greedy method to eliminate the duplication of the test cases, indirectly will augment the 



 

execution process in the manual execution, continuous integration, and content development (CICD), 
furthermore with software quality gating process.  

Besides that, they are using deep neural network models which include a maximum of ten hidden layers 
and four different types of adversarial attacks, examples are FGSM, JSMA, decision-based Gaussian 
Noise, and Uniform Noise to generate different sets of the test case pools. In the set of neurons 𝑁 = {𝑛1,
𝑛2, … , 𝑛𝑝} and the test set 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑞}. Given the number of neurons of 𝑛𝑖 ∈ 𝑁 and the number of 

the test set of 𝑡𝑖 ∈ 𝑇, the activation function will fall into the Boolean state and its function will be 

𝑎𝑓(𝑛𝑖 ,  𝑡𝑖).  Here is the state for the activation function, where t is the limit to determine the states 

𝑎𝑓(𝑛𝑖 , 𝑡𝑖) = {
1 ,  𝑖𝑓 𝑎𝑓(𝑛𝑖, 𝑡𝑖)  > 𝑡
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The neurons' attitude for the test 𝑡𝑗  ∈ 𝑇 is the array. Following is the expression of the definition, where 𝑝 

is the Boolean state of the 𝑝th neuron.  

𝐵(𝑡𝑖) = [𝑎𝑓(𝑛1, 𝑡𝑖), 𝑎𝑓(𝑛2, 𝑡𝑖), … , 𝑎𝑓(𝑛𝑝, 𝑡𝑖)] 

From the test set 𝑇, the behavior pattern, 𝐵𝑃 can conclude as a mean array: 

𝐵𝑃(𝑇) =  
∑ 𝐵(𝑡𝑖)𝑡𝑖 ∈ 𝑇

|𝑇|
 

To calculate the distance between each test data, for example, 𝑇1 and  𝑇2, it is measured by L1 norm 

distance:  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  ∑|𝑏𝑝𝑖(𝑇1) −  𝑏𝑝𝑖(𝑇2) |

𝑝

𝑖=𝑖

 

From the result outcomes in terms of the distance in their experiments, we can observe that the test set 
with the closest distance will form a cluster but some of it will fall in the intersection area between clusters. 
The combination of the Greedy approach will further enhance the test case prioritization from the cluster.  

Aizaz et al. [2] discussed that previous researchers had coded one test case prioritization using an 
automatic history-based approach where it was able to detect as many regression faults as possible and 
fit it into the execution phase for a specific duration.  

In the test suite with the given test cases 𝑇𝑆 = {𝑡1, 𝑡2, … , 𝑡𝑛} and ExecutionStatus(ES) of a test case 𝑡𝑖: 

𝐸𝑆(𝑖,𝑗) =  {
1
0

−1
    

𝑖𝑓 𝑡𝑖 𝑓𝑎𝑖𝑙𝑒𝑑 𝑐𝑦𝑐𝑙𝑒 𝑗
𝑖𝑓 𝑡𝑖 𝑝𝑎𝑠𝑠𝑒𝑑 𝑐𝑦𝑐𝑙𝑒 𝑗

𝑖𝑓 𝑡𝑖 𝑛𝑜𝑡 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 𝑎𝑡 𝑐𝑦𝑐𝑙𝑒 𝑗
 

The historical test case execution result for previous 𝑚 cycles, 𝑝 is the calculated test priority for the 

upcoming  𝑚 + 1 cycle, d will be the average execution time during the 𝑚 cycle.  

𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝑇𝑒𝑠𝑡𝐷𝑎𝑡𝑎 =  ∑
𝑑(𝑡(𝑖,𝑗))

𝑚
𝑗 ∈ 1..𝑚

  

In the Deep Order approach, the test prioritization uses history test data execution status and test 
duration as the baseline. To optimize the priority, Deep Order implements a dual-objective function:  

𝑔(max(𝑓) , max (|𝑇|)) 

The main aim is to make the best use of the fault detection ability of the test suite, and the subsequent 
aim is to fully utilize the number of executed tests in the given timeframe.  



 

To reflect the higher impact of most failures, a particular test case priority value 𝑝(𝑡𝑖) is gauged as 

follows: 

𝑝(𝑡𝑖) =  ∑ 𝑤𝑗  × max (𝐸𝑆(𝑖,𝑗), 0

𝑗 ∈ 1..𝑚

) 

The annotation of this equation is 

 𝑤𝑗 is allocated weight in the range of Boolean value to every cycle 𝑗, for instance, ∑ 𝑤𝑗𝑗 = 1.  

 𝑚 is the number of past cycles, 𝑝(𝑡𝑖) ∈ (0, 1) 

 max (𝐸𝑆(𝑖,𝑗), 0) used to eliminate no-run test where 𝐸𝑆(𝑖,𝑗) =  −1. 

In the deep neural network (DNN), the activation function is using Mish's activation function in the hidden 
layers of the neural network instead of a normal activation function like ReLU, and this new activation 
function is intended to overcome its flaws of it. 

𝑓(𝑥) = 𝑥 × tanh(𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥)) = 𝑥 × tanh(ln (1 +  𝑒𝑥)) 

In Reinforcement Learning for Test Case Prioritisation paper [3], we are clearly understanding that test 
prioritization depends on the number of cycles, feature records, and the optimal ranking. Aizaz et al. [2] 
shared the same thought that the elements above have the closest relationship to the test case 
prioritization. At the optimum ranking, they derive the ranking function of 𝑛! distinct sequences are given 𝑛 

test cases,  

∀𝑡1, 𝑡2  ∈ 𝑇,

𝑖𝑑𝑥(𝑠0, 𝑡1) <  𝑖𝑑𝑥(𝑠0, 𝑡2)  ↔  𝑡1∙𝑣 >  𝑡2∙𝑣 𝑜𝑟
(𝑡1∙𝑣 =  𝑡2∙𝑣 𝑎𝑛𝑑 𝑡1∙𝑒 ≤  𝑡2∙𝑒)

 

 

4.2 Test Coverage 
 

There are a few solutions to solve the test coverage issue, the most efficient way is by maximizing the 
requirement coverage [4] when we are performing our test plan. In the validation world, individual test 
cases would be able to cover more requirements and if it does cover the critical requirement, that test 
case will be shortlisted and marked as the golden test case.  

𝑓𝑖𝑡𝑟𝑒𝑞(𝑇𝑆) =  ∑|{ 𝑅𝑒𝑞(𝑡𝑐𝑖) | 𝑡𝑐𝑖  ∈ 𝑇𝑆 }|

|𝑇𝑆|

𝑖=1

 

Pairwise testing or t-way testing [5] is the method where we specified at least a pair of test requirements 
as our exhaustive pair and other associated test requirements are free to match with it and duplicate pairs 
will be eliminated from the table. With the implementation of the greedy approach and t-way testing, we 
are ensuring that combinational testing will have complete coverages with the most minimal test cases. 

 

4.3 Related Works  
 

In the year 2021 at IEEE International Conference on Software Testing, Verification and Validation 
Workshop (ICSTW), Eran et. al. [6] proposed the QUADRANT approach. With their designed system 
architecture as shown below, this approach helps for automated test case generation erstwhile the whole 
kit and caboodle perfectly at software fault prediction. 



 

 

Figure 1: System Architecture with QUADRANT approach 

Software test validation does involve manual execution and continuous integration (CI). Test cases will be 
residing in various repositories including Git, and Tortoise SVN. With incorporation into the bug sighting 
database, deep learning will take these as input so that they will be fed into the component scoring 
process. The outcome will be in the form of the test suite.   

There are few heuristic ways to contrivance it. The component scoring process will list as follows:  

a. Scoring with Fault Prediction (FP) 

b. Scoring with Lines of Codes (LOC) 

c. Scoring combination in FP and LOC. The formula for this combination is below. 

  

𝐹𝑃𝛼(𝐶) =  𝛼 ∙ 𝐹𝑃(𝐶) + (1 −  𝛼) ∙ 𝐿𝑂𝐶(𝐶) 

Indicates that 𝛼 is the parameter in [0, 1], component scoring function, 𝐶 of score 𝐹𝑃𝛼(𝐶). 

In the research carried out by Kai et. al., [7] they are using a deep neural network (DNN) as the tool for 
performing the test case prioritization. Generally, in the concept used by YanShen et. al. [1], the key 
difference between them is the percentage of fault detected.  

𝐴𝑃𝐹𝐷 = 1 −  
∑ 𝑤𝑖

𝑚
𝑖=1

𝑛 × 𝑚
+  

1

2𝑛
 

Given that the test suite denoted by 𝑇 with 𝑛 number of test cases, 𝑚 errors can be detected in the error 

set of 𝐹. Assumed that 𝑤𝑖 be the number of test cases required to execute for 𝑖-th of errors found. The 
range of metrics will be in the range of 0 to 1. 

 

4.4 Deep Learning Related Works in Software Test Validation 
In the past section, we performed the analysis of fellow researchers with their published papers. Some 
benefits which can be adopted from it. On the other hand, they are a few points that have room for 
improvement, just that we are not planning for implementation in this research. There will be the pros and 
cons discussion as follows: - 

With the combination of recurrent neural network (RNN) and deep neural network (DNN) methods, RNN 
will aid in text classification obtained from the git repository and provides the category that the git commit 
belongs to. Through this method, DNN plays an important role in test case selection and prioritization.  



 

The greedy approach implemented in DeepOrder [2] helps in test case redundancy. With the redundancy 
and yet maximize the requirement coverage takes place, for example, 1000 test cases in the pool, with 
this approach we can reduce and consolidate up to 70% to 85% reduction. Test case prioritization 
incorporated with the greedy approach will rank the closely related and the highest coverage test cases to 
be recommended for the automation framework and validation engineers in software quality gating and 
test case execution. 

In combinational t-way testing, we know that we are capable to perform exhaustive testing with lesser pair 
of test cases and selective pair of test cases in the test case pool. Besides that, by combining a few test 
redundancies methods, we can suggest to the validation engineer or the automation framework to 
execute their test suite and the time taken will be greatly reduced. 

 

5 Proposed Test Case Prioritization Model 
 

This section will explain the structure of the overview of the proposed test case prioritization model.  

Figure 2 demonstrates the proposed design and the methodology of this research to solve our issues in 
our software test validation at Intel Malaysia. Fundamentally, this methodology will divide into three 
portions, proposed recurrent neural network (RNN) on extracting features from git log, data acquisition 
and pre-processing, and test case prioritization based on the type of test case.  

In addition, this model design is divided into two phases, the training phase, and the testing phase. In the 
training phase, we will ensure that our design model can suggest a list of the test cases with high 
similarities to our expected list of test cases by analyzing manually. After several iterations of model 
training, we will have a certain level of confidentiality to proceed to the testing phase. In the testing phase, 
we will obtain a live log from the git repository and an updated test case from the database. The 
outcomes will pass to validation engineers and automation framework via email and triggers execution 
respectively. Figure 3 will provide the context of the flow for the proposed approach in Software Validation 
in Intel Malaysia. 



 

 

Figure 2: Proposed Approach for Software Test Validation in Intel Malaysia 

 

 

Figure 3: Pseudocode for Proposed Approach 



 

5.1 Proposed RNN on Extracting Feature from Git Log 
 

In this sub-section, we will discuss in deep about the processes involved with the recurrent neural 
network as shown in Figure 4, the main reason that we planned to implement this neural network due to 
our input data in text format. 

 

Figure 4: Proposed RNN Framework 

 

5.1.1 Data Acquisition Phase 
 

Our data is coming from the git repository. The git log consists of the commit hash of the commit, branch 
header, branch tag information, author of the commit, date, and the commit messages.  

The prerequisite is we need to clone a branch from a repository. Inside the git folder, we collected the log 
and exported it into the text file. An example of the log will present in Figure 5. In a real-case scenario, 
every commit will trigger the process. Next, we will proceed to the data pre-processing phase.    



 

 

Figure 5: Sample Log File from Git 

 

5.1.2 Data Pre-processing Phase 
 

In this section, after we obtained the log file, it will parse over to this phase. At this phase, we will perform 
the metadata removal, like commit hash, author name and email, header tag and branch name as well as 
the date of the commit.  

Once this process had been completed, we will acquire the string of the commit message, we need to 
consume the string into the sentence filtering process where in this case, we just filtered out the 
punctuations if any. Thus, after filtration is completed, we must serialize every word into an array as an 
input neuron for the input layer. 

 

5.1.3 Feature Extraction Phase and Classification Phase 
 

In this section, we will apply the recurrent neural network (RNN) to extract the features of the sentence 
array. 

The RNN formula is formulated as follows where ℎ𝑡 represents the current state at period 𝑡, 𝑓𝑤 

represents the function with the parameter 𝑤, ℎ𝑡−1 shows the previous state of the RNN, and 𝑥𝑡 

represents the input vector at 𝑡 timestamp.  

ℎ𝑡 = 𝑓𝑤(ℎ𝑡−1, 𝑥𝑡) 

At the end of this phase, we will proceed to the next phase, the classification phase. In this phase, we 
need to undergo a dense approach to produce the correct classification.  

In a conclusion, Figure 6 illustrates the overall structure of the RNN from the input phase to the 
classification phase with examples.  



 

 

Figure 6: Overall Example Structure of the RNN in detail 

 

5.2 Data Merging Phase 
 

After querying all test cases from the database, we performed the data merging. In this phase, we will 
filter out the test case pool based on the necessary category. Once this process is completed, we 
recommended proceeding to the next phase. The equation below shows the notation on the method that 
we used to filter out the test cases pool.  

𝐹𝑇𝐶𝑖 = 𝑇𝐶𝑃𝑖  ∩  𝐶𝑖 

In this equation, 𝐹𝑇𝐶 represents filtered test cases and 𝑇𝐶𝑃 represents the test case pool, 𝐶 represents the 
category label we obtained and 𝑖 represents the iteration in the for a loop. 

 



 

5.3 Test Case Prioritization 
 

In this section, we will reduce and prioritize the test cases based on the required coverage. At the end of 
this section, suggested test cases based on the required coverage will be presented and forwarded to the 
automation framework and validation engineers kickstart their execution.  

For the test case prioritization, we will implement the test case reduction method, which is a Greedy 
algorithm to remove the redundancy of the test cases and prioritize the test cases by maximizing the 
coverage of the requirement. From the pseudocode in Figure 3, we are going to drill down the process 
that we will implement. Equation following is the method that is going to execute.  

𝑇𝐶𝑖 =  ∑ (∑ 𝑅𝐸𝑄(𝑖,𝑗)

𝑝

𝑗=0

≥ 1 )

𝑛

𝑖=0

≤  
1

2
𝑛 

From this equation, 𝑇𝐶 shows that the test cases, given that 𝑇𝐶 = {𝑇𝐶0, 𝑇𝐶1, … , 𝑇𝐶𝑛−2, 𝑇𝐶𝑛−1}, 𝑅𝐸𝑄 

represent the requirement row, given that 𝑅𝐸𝑄 = {𝑅𝐸𝑄0, 𝑅𝐸𝑄1, … , 𝑅𝐸𝑄𝑝−2, 𝑅𝐸𝑄𝑝−1}, 𝑖 and 𝑗 are the 

coordinates of the test cases versus to the requirements and 𝑛 and 𝑝 are the total row and column 

numbers in the test requirement matrix. 

 

6 Result and Discussion 
 

This section will focus on evaluating the performance of the developed algorithm in the software 
validation process. In the dataset preparation due to the company's private and confidential data in the git 
log, the test case requirement and the respective test cases definition in the portal, an open-source 
dataset from Kaggle, which is the customer complaints spreadsheet, and the sample draft of the test 
requirements versus to the test cases in the CSV format. 

 

6.1 Text Analysis Experiment 
 

The customer complaints spreadsheet illustrated in Figure 7, contains 1,324,194 complaints, and here is 
the sample data snapshot captured from the CSV file. From the screenshot, the product column is the 
final decision of the complaints that the customer had made. 

 

Figure 7: Sample Snapshot from Customer Complaint Spreadsheet 

 

In the list of customer complaints, there are eighteen categories, and the test program will query out the 
statements of the complaint and remove the stop words and punctuation. After that, it will get padding and 
populated into the matrix for the LSTM algorithm to consume the matrix. The LSTM algorithms will 
analyze the customer complaints and it will move to the dense layer which will decide the predicted 
output. 



 

Once the predicted output is obtained, the result will be parsed to the database for querying out the 
necessary test cases and tabulated in the form of the list. 

6.2 Test Case Experiment 
 

When section 6.1 is completed and the test case list had been exported in the text form, it concluded as a 
requirement test matrix. 

In the requirement test matrix (RTM) as shown in Figure 8, a few sets of matrices had been prepared with 
numerous requirements and test cases listed in there. It does represent the actual test cases that going to 
execute by the validation engineers in Intel Malaysia. Due to the company's private and confidential 
information, this research is unable to use the real data for validation, and hence, draft copies of the RTM 
have been used for demonstration purposes. 

 

Figure 8: Test Case in The Form of List 

 

6.3 Result Presentation 
 

This section will present the result obtained from the text analysis from section 6.1 and the accuracy with 
the respective time taken from section 6.2. Therefore, these results will separate into two sub-categories, 
text analysis, and test case prioritization respectively. 

 

6.3.1 Text Analysis Portion 
 

From the outcome in section 6.1, the ideal accuracy for the test data is approximately 88% as the 
overfitting scale had set to 0.2 meanwhile the ideal loss accuracy for the test data falls at about 32%. 
Time taken for the training process is about 40 minutes as the epochs are set to 8 and the batch_size of 
the LSTM algorithms is set to 128 as the default recommended value needs 7 minutes and 30 seconds 



 

for each epoch. The overall train and test data had been plotted in the form of the graph as shown in 
Figure 9 and Figure 10. 

 

Figure 9: Loss Between Train and Test Data Training 

 

E  

Figure 10: Accuracy Between Train and Test Data Training 

 

 



 

 

6.3.2 Test Case Prioritisation Portion 
 

From the output in section 4.3, two sets of requirement test matrix (RTM) which comprises the 30 test 
cases and 51 test cases respectively with the fixed number of the requirements, from 

𝑅𝐸𝑄0, 𝑅𝐸𝑄1, 𝑅𝐸𝑄2, … , 𝑅𝐸𝑄𝑛−1 where 𝑛 = 16. Detailed information will tabulate in Table 1. 

 

Table 1: Detailed Information of the Test Case Reduction 

Requirement Test Matrix (RTM) Number RTM #1 RTM #2 

Original Test Case Number 30 51 

Reduced Test Case Number 12 9 

The total reduction of test cases in percentage (%) 60.000 82.353 

Time Taken (seconds) 0.00081 0.00087 

 

6.4 Discussion 
 

This section will perform the discussion and findings that the result collected from section 6.3. The 
discussion will separate into two sub-sections which encompass the text analysis and the test case 
prioritization. 

 

6.4.1 Text Analysis 
 

In this sub-section, a detailed discussion will be held on the computing efficiency, algorithm, and the 
result comparison with the previous researchers that had completed the Literature Review section.  

In this research, python is used as the programming language compared to C programming which can 
execute the code by fully utilizing the threads in the compute processing unit (CPU). Besides that, the 
LSTM algorithm in the recurrent neural network (RNN) will consume more computing power from the 
multithreading mechanism. Due to the limitation of python programming, each epoch is taking about 5 
minutes and 20 seconds with the batch size set to 128. Meanwhile, the default value for the batch size is 
64 where it will take about 7 minutes to run per epoch.  

From the algorithm perspective, this research uses the Long Short-Term Memory (LSTM), an advanced 
version of the prevailing Recurrent Neural Network (RNN) with the formula mentioned  

 

ℎ𝑡 = 𝑓𝑤(ℎ𝑡−1, 𝑥𝑡) 

In LSTM, it is easier to memorize the past input in the memory. Overall, LSTM is well-suited for 
cataloging, dealing out, and envisaging time series in the provided time lags with the unforeseen 
timeframe. In the context of results obtained in Figure 9 and Figure 10, it clearly shows that when the 



 

relationship between the loss and the accuracy is reverse proportional to each other. Due to the limitation 
mentioned in section 6.1, the graph presented was not as ideal as expected.   

From the result comparison perspective, the loss and accuracy are highly dependent on the dropout and 
the recurrent dropout value, which falls between 0 to 1 in the LSTM. The purpose of the dropout and the 
recurrent dropout is to prevent the overfitting situation from happening. In the current research prototype, 
the value used is 0.2 respectively for both variables. This value is the most suitable value to overcome 
this situation. For the training data, we are using the categorical cross-entropy loss function and the 
activation function wise, SoftMax activation energy was chosen to have a clear graph that consists of the 
value from value 0 to 1. 

 

6.4.2 Text Analysis 
 

This subsection will converse about the result obtained and compare it with the method used by the 
researchers deliberated in Literature Review section. 

In this research for test case prioritization, by using the formula stated as follows,  

 

𝑇𝐶𝑖 =  ∑ (∑ 𝑅𝐸𝑄(𝑖,𝑗)

𝑝

𝑗=0

≥ 1 )

𝑛

𝑖=0

≤  
1

2
𝑛 

 

and the result obtained in sub-section 6.3.1, the test case prioritized is based on the coverage of the 
requirement for the specific test case. In the greedy approach, the last occurrence of the requirement 
being covered will be prioritized. Thus, the redundant test cases for the overlapped requirement will be 
consolidated by the test case which covers the greatest number of requirements. As JPCT performed 
better than the SPCT [6] carried out by the researchers from Japan and compared the result with the 
JPCT and the proposed enhanced Greedy algorithm proposed in this research, JPCT can cover 73% of 
the coverage while the proposed enhanced version of Greedy algorithm covers 100% of the requirements 
listed with the minimum test cases needed.  

 

7 Conclusion 
 

The key objective of this chapter is to epitomize the verdicts of the recurrent neural network (RNN) on the 
text analysis of the log file in the form of the CSV format and the enriched Greedy algorithm whereby this 
approach does help the performance of the execution at the end of the day to accomplish the goals and 
get to the bottom of problems avowed in the problem statements. 

Moreover, this research work also provides a detailed analysis of the efficiency of the algorithm that 
impacted the validation execution progress. The advanced stratagem is aided to ensure the robustness of 
the set of rules implemented towards the validation coverage and LSTM model training. The objectives 
and problem statements of this research can be achieved and solved. This project had contented the 
purposes as follows: 

1. To evaluate and determine a deep learning algorithm that is suitable for the software validation 
process in Intel Malaysia. 



 

2. To develop the determined deep learning algorithm for the software validation process in Intel 
Malaysia. 

3. To evaluate the performance of the developed algorithm in the software validation process. 

 

7.1 Research Contribution 
 

7.1.1 Long Short-Term Memory (LSTM) 
 

Long Short-Term Memory (LSTM) is part of the recurrent neural network (RNN) for the text and character 
analysis for the result prediction. This technique can learn the knowledge provided from the input and if 
the previous input is not relevant to it, the algorithm will not memorize it and vice versa.  

By denoting to Deep Learning Model article [8], they will be pre-processing their plain input and removing 
the stop words plus punctuation, data vectorization, building models from the training sets, predicting the 
test data then populating the accuracy. Aside from that, researchers presented the data or results 
obtained using long and short sentences as input are very close to the results obtained in this research 
with the limited number of epochs. 

 

7.1.2 Enhanced Greedy Algorithm 
 

Typical Greedy algorithm help in optimizing the coverage but the efficiency wise is not optimum. With the 
enhanced Greedy algorithm implemented in the previous chapter, it does speed up the execution speed 
yet had full coverage of the test cases concerning the requirements. 

 

7.2 Limitations 
 

This research has some limitations which will be jot down in the following points.  

1. LSTM has will drag the performance of the CPU and GPU and it will affect the epoch cycle. 
2. Greedy algorithm unable to perform the mix-and-match test cases prioritization while maximizing 

the requirement coverage. 
3. Company’s private and confidential git log and test requirement for the internal project is 

prohibited to use in this research. Hence, an open-source database, named customer complaints 
had been used in this research.\ 
 

7.3 Future Works 
 

Several perfections can be suggested for the Validation Test Case Prioritisation Using Hybrid Approach 
for the future to boost the functionalities. The suggested enhancement is shown below:  

1. LSTM can train with multiple epochs with better hardware and software requirements. 
2. Advanced Greedy algorithm able to incorporate with the pairwise testing which will help in 

removing the test case redundancy that happened either from Greedy algorithm or pairwise 
testing. 
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