
Optimize Your Testing Performance by
Using Cypress.io

Ryan Song

ryan.song@iterable.com

Abstract
Automation testing is one of the essential components in the software development life cycle, yet it can be
very time consuming and resource demanding to maintain. Quality Engineers constantly face the need to
trade off or prioritize among test speed, test coverage, and test stability, as achieving all three
simultaneously is challenging. This article will discuss the approach using Cypress.io to improve test
speed, test coverage and test stability at the same time. Additionally, it includes some techniques and
processes that leverage Cypress to optimize end-of-end (E2E) tests.

Biography
Ryan is a Staff Test Engineer at Iterable who has been working in the quality industry for 8 years. He has
experience working on projects of varying sizes, such as startups, federal/defense and Fortune 50-level
companies. He is passionate about Automation Testing and CI/CD process and specializes in system
optimization and operation research. Ryan is located in Los Angeles and graduated from Texas A&M
University with a degree in Industrial and System engineering.

Page 1



Introduction
In automation testing, Quality Engineers often find it challenging to balance test speed, test coverage, and
test stability with competing priorities. For example, an increase in test speed might lead to a decrease in
test stability, and expanding test coverage could result in a corresponding decrease in test speed.
Balancing these three aspects requires a significant amount of work experience and technical knowledge.
This article will discuss the value of upholding these three pillars of automation testing and share
techniques to achieve this.

1. The importance of test speed in test automation

The speed of the test automation is one of the most important factors in agile principles,
especially when companies implement continuous integration and continuous
deployment/delivery (CI/CD). Running automation tests quickly enables developers to iterate
faster, therefore they can promptly review test results and make necessary adjustments in a
timely manner. One common issue many developers face is when test suites grow too large,
resulting in significantly extended completion times for all the tests. Many companies are running
all their tests during night time and only able to run one batch of tests per night. This is not ideal
for teams that want to be more agile and efficient. Cypress solves this test speed problem by
using the built-in feature to automatically split up test suites. This technique will empower
developers to run tests in parallel and significantly reduce test run time.

Picture 1: Cypress official site for tests split

As you can see in the picture above, If all the tests are executed on a single machine, it will take
about 12.5 mins to get the test results. However, when distributing tests across in three different
virtual machines, the total testing times can be reduced to five mins.

Page 2



Picture 2: CircleCI project page

Currently at Iterable, we run almost 300 Cypress E2E tests in 20 parallel machines within CircleCI
(continue integration tool), and each round test run can be finished in less than 15 mins. Many of
our developers run many pull requests on a daily basis, frequently validating their alterations by
executing E2E tests multiple times throughout the day. This strategy offers much faster feedback
to the developers, a crucial aspect of our CI/CD pipeline, given the frequency of multiple
deployments we conduct each day.

2. The importance of test coverage in test automation

Another important factor for software testing is test coverage. Without appropriate test coverage,
many bugs will leak to production. Many companies are using percentage of code coverage as a
baseline to track developer’s code quality. For example, at Iterable, we use CodeClimate to check
the current code test coverage. The problem with this approach is that it is very difficult to have
100% test coverage and challenging to update and maintain all the tests. There are two solutions
to solve this issue. The first solution is to build E2E tests by using business scenarios to test the
application. Many companies are using tools such as Segment to track customer usage and their
QE team can utilize the data from those tools to design the E2E test scenarios. The table below
shows the example for one team’s feature usage.
The the Feature % Click is calculated based on the (number of clicks/total number of clicks)* 100.
The Cumulative % is calculated based on the (current Feature % Click + previous Feature %
Click).

Page 3



Picture 3: Mocked test data

As you can see in the chart above, if all actions in this chart are included in the Cypress E2E,
then we can assume that 98.13% of the business scenarios are covered. This strategy will
optimize the Cypress test suite and reduce the redundant tests while maintaining high levels of
test converge.

Page 4



Picture 4: Example of Cypress test suite setup

The first solution is to group the test suites based on the business usage. Each team can have its
own test folder and test files. The test scenarios can be broken down to feature leave and all the
actions related to that feature can be grouped together based on business logic. This will provide
a clear structure in the Cypress tests and easy to manage test coverages when a new feature is
added to the system or existing feature is updated.

3. The importance of test stability in test automation

The third important factor for automation testing is the test stability. Many developers are facing
issues of flaky tests failing on the pull request. Those flaky tests significantly impact the developer
productivity and cost company time and money. There are many reasons that cause flaky tests,
such as web page rendering too fast, race conditions when spins up servers, test setup
depended on timezones, and etc. Cypress has many built in features that address some of those
issues. There are few features or techniques that helped my team to make the test more stable.
The first one is the Test Retries feature, which is able to retry the failed tests a few times before
failing the test. The extra retry will improve the passing rates and save developer time and
resources. This is a built-in feature and can be configured in the cypress.config.js file as shown
below.

Page 5



Picture 6: Cypress retries feature

The second feature is the wait mechanism, Cypress has a built-in feature to wait for network calls
to complete before continuing the next step. When running the tests, developers can interpret the
network calls and let Cypress wait for a specific request to respond before executing the next test
step. This feature significantly reduces the race condition that happens within test runs.

Picture 7: Cypress intercept requests and wait

The third technique is to utilize Cypress API commands to do data preparation test steps. Setting
up test data in a browser and running through all the preparation steps will increase the risk of
flaky tests. Moreover, test run time will increase significantly when there is a substantial amount
of test data that needs to be set up. For example, the picture below shows the significant time
difference between running a test through a web browser compared to using API calls to
configure the test data.Therefore, directly making API calls to set up test data is a better
approach. API calls are usually more stable and fast to complete.

Page 6



Picture 8: Test preparation steps between API call vs browser

Picture 9: Login via API call

Picture 9: Turning on/off feature flags via API call

Page 7



Conclusion
This paper highlighted the importance of test speed, test coverage and test stability. There is no question
that using Cypress.io with the correct strategy will help your organization to improve all three areas
simultaneously. The results shown in this paper should encourage you and your team to explore and
adopt Cypress.io and improve your current test framework and strategies. Utility leaving to a more robust
efficient testing program. As we continue to enhance our understanding of proactive automation testing,
we can drive innovation for new techniques and cultivate a culture of continuous improvement.

References
Cypress official documentation:
https://docs.cypress.io/guides/cloud/smart-orchestration/parallelization
https://docs.cypress.io/api/commands/wait
https://docs.cypress.io/api/commands/request

Page 8

https://docs.cypress.io/guides/cloud/smart-orchestration/parallelization
https://docs.cypress.io/api/commands/request

