
Nimble, not Agile: Creating a
flexible quality assurance

framework for your company's
unique SDLC

Zenzi Ali

zali@clarity-innovations.com

Abstract
Many software testing lifecycle models are designed to correlate with the most popular
software development lifecycle models, like Scrum or Kanban. But, there are many ways
to build and develop software outside of these standard models. How can teams create a
workflow that is conducive to delivering high-quality software in an unorthodox
environment? My team uses Basecamp's Shape Up method to deliver software. It provides
a great deal of flexibility for developers to ship products, but it can be challenging to inject
thorough test procedures into a method that centers developer productivity above team
process. I have spent time dissecting the most popular testing methodologies in order to
craft my own flexible framework.

Bio
Agility. Advocacy. Efficiency. Affinity. Amazing things happen when engineering and
humanity come together. Zenzi understands the power of high-quality engineering
products and their significant role in driving the modern world. But she also understands
the need for clear communication when developing and implementing this technology so
that it can better serve human needs.

Before joining Clarity, Zenzi managed a community of new technologists (providing code
and assignment reviews); created, optimized, and automated unit tests; sharpened her
communication skills while working as an Executive Assistant; used Agile methodologies to
plan, iterate, and execute tasks within cross-functional teams; and implemented testing
processes with startups and large organizations alike. She even contributed to The Code
for Philly Front End Fellowship, supporting technology to help Philadelphia eliminate food
waste.

Zenzi merges her troubleshooting experience and test craftsmanship with her passion for
refining processes and collaboration, to ensure that every edtech solution Clarity creates is
as streamlined, secure, and useable as possible. It’s all part of her desire to help solve
human challenges—such as those facing education—through the latest, most efficient
means.

Nimble, Not Agile 1 Copywright 2023 Zenzi Ali

mailto:zali@clarity-innovations.com


Section 1 Introduction

When I joined Clarity Innovations in 2021, I knew that the team was extraordinary and that
I could thrive in the environment. I have a tendency to over-analyze and over-prepare and
this team was action-oriented and with the experience necessary to make adjustments on
the fly. I felt that their practical method of delivering software was the perfect pairing for
the analytical way that I have thought about quality and delivery.

The method that my team uses for building software is called Shape Up. This development
model, created by BaseCamp (a project management platform), is fast-paced and
solution-oriented. Although the method focuses on strategic scoping and thoughtful
problem-solving, there is little room or expectation for testing involved. Because of this
most of our testing was built around product validation for our customers and did not have
the depth of other testing models. There was no expectation the testing would start early or
even before a product was ready to deploy.

At the outset, Shape Up does not seem to leave space for quality. QA is shown to be nearly
unnecessary in their process and used to explore edge cases only. Box checking and
rubberstamping a finished product is not satisfying testing work, in my opinion. It is my
belief that quality can be injected into any process. I also do not believe that Shape Up is
alone in its view of the tester. Many testing professionals find themselves feeling like
second-class citizens on a team and wondering exactly where they fit in and how to
advocate for quality.

Luckily, my team is devoted to building high-quality software and has an interest in more
thorough testing and exploring techniques. This left me with a large task. How can I inject
quality and testing methodology into my engineering team’s well-oiled process? How can I
add value and assess risk without becoming a bottleneck to a high-functioning team? When
and where can I shift testing left while keeping our business objectives and procedures as
the primary focus? How can I create a process that can meet the varied needs of our
business, which both creates and maintains a variety of technical products?

These questions and discovering my own pain points with our procedures caused me to do
my own research and develop methods to aid in upholding quality throughout our
development process. After reading Shape Up and observing my team in action, I developed
my own techniques for adjusting my testing lifecycle to the project and product being
developed. I will share my journey and methodology here.

The goal of this writing is to provide testers with the tools that they need to think deeply
about testing and create a maintainable, effective testing routine. I in no way seek to
malign or discredit Shape Up, Agile, Scrum, or any other software development lifecycle
method. In my opinion, the best framework for creating quality is the one that you use
repeatedly and consistently! Removing barriers to your quality practice is equally important
to adhering to any framework.

Nimble, Not Agile 2 Copywright 2023 Zenzi Ali



This method is perfect for teams that are like mine:
● Solo testers or testers that are part of a small team.
● Testers that work with teams that use an unorthodox software development lifecycle

model.
● Teams that build and ship fast.
● Quickly expanding teams that have not had time to focus on Quality Control and

quality management.
● Testers that value flexibility in their tooling.
● Teams that manage multiple products with varied contextual needs.

Context often considers project needs, goals, and constraints, but my model also considers
organizational “appetite” [more on this later] and internal standards for quality. My method
of creating a test strategy allows me to fulfill my intrinsic need to amplify quality within any
product I touch while respecting my team's culture and norms. Business and development
needs are, of course, of high importance when one is the sole advocate for quality. My
method focuses on prioritizing business needs while fulfilling my personal need for
self-development and professional fulfillment.

In the rest of the document, I will provide insights gained by using my experience in
managing my internal test procedure. I will explain how Shape Up works, the challenges
the method produces, and how my team chooses to meet those challenges. I will outline
how I align my test activities with Shape Up’s software development lifecycle. I will also
outline some ideas on how to advocate for the team buying in your new testing
procedures. Moreover, I will include some visual aids that review phases of software
testing and how they relate to software development. Finally, I will review scenarios of
different types of teams and address how I might approach creating a maintainable,
complete, and flexible process within those structures.

Section 2 Analyse the Environment and Create Goals

A plan of action was not drafted until my team’s processes were analyzed and understood.
My company is relatively small, but engineering makes up nearly 1/3 of our employees. We
are an ed-tech firm that performs consulting work for K through 12 educators. Although our
area of expertise is specific, our products and projects range in type and scope. Some
products arrive “complete” and are in production but in need of updating or scaling. Others
are developed in-house for our clients from inception to completion. We use the technology
that suits their needs and user base. This can range from Flutter mobile development to
Drupal web applications or any tech stack that the client has used previously. This means
that our team must be highly adaptable and prepared to support a wide range of projects
that we do not necessarily own.

Testing falls within the domain of our development team. Our testing team is small; a team
of not quite two. I am the sole full-time tester with our senior quality assurance professional
of the team dividing time equally between testing and DevOps. Our project work can start
anywhere within the software development lifecycle but, no matter where we start or what

Nimble, Not Agile 3 Copywright 2023 Zenzi Ali



the status of the project may be, we use Basecamp’s product development model, Shape
Up. Shape Up is a development model that is not well known but has worked for Basecamp
for over a decade.

Basecamp’s approach features a six-week build cycle that is shaped by senior project
owners. There are no sprints, kanbans, or backlogs. The goal of this method is to speed
development by keeping requirements relatively vague and focusing on solutions to a rigidly
scoped problem. When it comes to Shape Up, the key is proper scoping and an
understanding of the problem you would like to solve. This helps engineers tame complexity
for faster development and separate concerns for better strategic planning. “Projects are
defined at the right level of abstraction: concrete enough that the teams know what to do,
yet abstract enough that they have room to work out the interesting details themselves.”
(Friedman 18)

The Shape Up model operates in three distinct phases: Shaping, Betting, and Building.
During shaping a product owner focuses on how to deliver a solution for a whole product or
feature set. The designs and ideas are rough, but the goal is to solve a problem. In this
phase, shapers and trackers cooperate to create shaping documents for a pitch (a meeting
where shaper(s) advocate for their project). The goal is to define the scope of this project,
which should last no longer than its six-week cycle. This phase should include extensive
discussions involving the project goals (what need or problem will this project address),
possible rabbit holes, clear parameters, and project constraints. The project shaping
document provides a development team with enough information to create without
constraint. Setting the project parameters and defining “done”, also known as
breadboarding, is accomplished by deciding on the size of stakeholder appetite, and how
much time, energy, and resources are we willing to invest to solve this problem.

Key staff must decide if a sufficient solution, even a rough one, is created within the time
outlined. This process is done in isolation, or with only staff with the necessary expertise for
scoping and shaping.

After shaping, the betting begins. Betting is the stage where shapers share a pitch with the
larger group–placing their “cards on the table”. They discuss the details of what they have
shaped and the team "bets" on which project they will be working on for this time. If a
shaper’s project is not chosen, there is no backlog. The theory is that an important idea will
show up again in the future. If a project needs refinement or if a solution is inadequate, the
shaper can pitch at a later time. Betting is also when additional context to the project is
added. Is this an existing project or a new one? Is research and development needed? Is
this product already in production? Has it reached a maintenance phase or is it nearing
retirement? All of these questions serve to add context to designing a project and betting on
the most impactful and necessary project for this round of development.

Finally, building, the final phase, occurs. The building phase starts with a kick-off meeting
between stakeholders and the development team, as well as any other required team
members. At that time, stakeholders hand the project to our development team with the
goal of developing slices of complete work that can be integrated into a larger system if

Nimble, Not Agile 4 Copywright 2023 Zenzi Ali



necessary. Developers are expected to be assigned projects, not tasks. There are no Kanban
boards or Issue tickets to assign. Developers should have a complete scenario or issue that
they are programming a solution for and they should be programming just enough to
complete the next building step.

During this stage, there is also scope mapping to confirm that the imagined tasks can be
replaced or updated with discovered tasks. The team can continue to evaluate if their
appetites match the size of the effort needed for the solution. Sunk costs are examined at
every turn. Developers are expected to show progress, not discuss the process. Once our
basic solution has been created, the developer stops and moves on. There is no list of future
To-Do’s. We have solved our issue and now we provide feedback to the team at the end of
the 6 weeks. Is there an additional appetite for a more complex or elegant solution? This
can be decided at that time.

After observing my company's software development lifecycle and engaging in software
testing, I began to think strategically about how we test, what can be improved, and how I
can affect software quality without substantive changes to my team's SDLC, which they
were happy with. I also felt that the SDLC was outside of my domain as a tester. Whether
my team uses an iterative model or an incremental one, my goal is to be adaptable in my
process. One tool that I used to assess our quality management ecosystem was a SWOT
analysis. A SWOT analysis is an exercise that helps organizations (or individuals) identify
their Strengths, Weaknesses, Opportunities, and Threats. It is essentially a risk assessment
exercise. SWOT helps the user differentiate what environmental elements they can control
and how to allocate team resources. I time-boxed one hour to review our procedures and
another to consider what should be placed in each SWOT section. The analysis matrix looks
like this:

Figure 1: SWOT Analysis of My Team’s Approach to Development and Quality:

Nimble, Not Agile 5 Copywright 2023 Zenzi Ali



Nimble, Not Agile 6 Copywright 2023 Zenzi Ali



Nimble, Not Agile 7 Copywright 2023 Zenzi Ali



Section 3 Reviewing the SDLC and Common Test
Activities

The software development life cycle is a methodical approach to planning, building, and
shipping software. While the life cycles that are well-known tend to focus on these things
independent of test techniques, it is our job to create quality practices that correspond to
each phase of the cycle. The most common types of models are sequential, incremental,
and iterative. See the key below with key aspects of each type of SDLC. Using an
established model increases the likelihood of a successful project by establishing phases,
activities, and opportunities for collaboration across job functions.

Our 3 most common SDLCs have corresponding software testing lifecycles (STLCs). The
software testing life cycle features test activities and test levels that correspond to the
development phases of its development model. For example, the traditional sequential
model begins with documentation and planning. One may begin by testing using static
testing techniques, reviewing documents for understanding, potential contradiction, or the
need for clarification of features/functionality. Shape Up is not a standard technique or life
cycle model. Because of this, they have their own approach and goals for QA.

For many years, Basecamp had no QA personnel. Eventually, they decided to hire a single
QA professional for their development team of 12. With the developer-to-QA ratio being so
high, the team must think differently about quality and who is responsible for it.
Traditionally at Basecamp, quality falls on the design team and the developers.

Risk assessment and analysis is the domain of Product Owners and management. In the
Basecamp context, QA is done at the end of the build to consider edge cases and approach
the project with a tester's mindset. QA is considered valuable and essential, but siloed and
separate from development. This approach has been successful for Basecamp but, through
trial and error, my team has decided to tailor their approach to allow for more thorough QA
testing in each iteration. In section 4, I will discuss how things stood at the beginning of my
SWOT analysis (see Figure 1) and the changes I have made.

Figure 2: Comparison of SDLC Models:

Sequential
(ex: Waterfall,

V)

Incremental
(ex: Unified
Process)

Iterative
(ex: Spiral,
Prototyping)

Shape Up

Model Attributes Sequential
approach.
Begins at the
system level
and progresses
through
analysis,

Used to build
large, complex
systems. Based
on the idea of
adding new
features, or
“increments,” to

Initial
development work
is carried out
based on
well-stated basic
requirements, and
successive

Solution-centered
approach focused
on building a
working product
or feature to
completion by the
end of a cycle

Nimble, Not Agile 8 Copywright 2023 Zenzi Ali



design, coding,
testing, and
support.

an existing
system instead
of a sequential
build

enhancements are
added to this base
piece of software
through iterations
until complete.

Testing Scope Full system
considered

Testing can be
performed at
each level and
increment.

During early
iterations, QA
focus is on unit
and integration
testing, while
later on, system
testing and user
acceptance
testing.

Little to no QA
expected

Test Timeline Static testing at
the beginning,
dynamic at the
end

Testing at the
end of each
increment

Testing at the end
of each iteration

Must happen
within the
cycle/scope

Documentation
Level

Heavy
documentation,
documentation
is often the
basis for testing

Light
documentation

System
requirements are
heavily
documented, but
features and
approaches may
evolve as the
iterations
continue

Documentation
after the cycle
and often handled
by other teams,
Siloed
collaboration
means few details
are captured in
writing, no
backlog means no
todo list and light
issue tracking

Test Approach 1. Examine
requirements

2. Review
Designs

3. Integration
testing

4. System
Testing

5. Acceptance
Testing

Regression and
integration-focu
sed testing, fast
feedback due to
shortened
development
cycles, focus on
experience-base
d testing
techniques

Regression-heavy
testing

Just edge case
testing for QA,
focuses on
product use and
approaching the
project with a
fresh eye

Automation Not practical as
the entire
system should
be built for
pre-release
testing

Automation
preferred for
faster
regression
testing

Automation
preferred for
faster regression
testing

NA–not practical
for this test
approach

Nimble, Not Agile 9 Copywright 2023 Zenzi Ali



Tester
Responsibilities

Requirement
reviews, test
analysis, test
design, system
maintenance

Testing
incrementally
developed
features,
providing
prompt
feedback to
developers

Collaborate on
exit criteria, test
planning, bug
tracking, test
execution, data,
and environment
prep

Edge case
testing, designers
and developers
are responsible
for quality.
QA can generate
UX tasks that can
be added to this
cycle or pitched
in a later cycle

Figure 3: Sequential SDLC with Corresponding Test Activities:

Source: https://qainsights.com/improving-the-test-process/

Section 4 Modularize the Test Cycle and Create a
Framework

Nimble, Not Agile 10 Copywright 2023 Zenzi Ali



Prior to my team’s SWOT analysis, our testing relied heavily on a checklist approach. The
key to finding defects effectively in that approach is having long-term experience with the
product. Experience-based testing can be highly subjective. When testing, I found myself
reaching out to developers often to confirm functionality because it did not meet my
personal expectations. With no test oracle or test management software, communication of
this sort happened throughout the testing process. This worked for my team when everyone
was based in Portland but, since the pandemic, we have become a remote team with
members in every US time zone. We needed test techniques that improved our
communication and made the most of what documentation we chose to maintain in the
future.

Although Shape Up does not prioritize QA, it does realize the position's importance. I did
find the Shape Up method’s testing process to feel isolated and a bit tacked on to
development. My remote East Coast position heightened this feeling. I wanted to improve
the testing process and feel more integral to the product delivery experience. This required
me to decide on my testing principles and discover how I could use those to meet testing
and business needs. This can be done via brainstorming, mind mapping, or an additional
SWOT analysis.

I decided to brainstorm current blockers and perform a solo retro to assess process failures.
This was challenging in a team that does not center metrics. How could I assess my value
and decide if incremental changes that I made in the process were impactful? I decided to
gather any data that I had access to and that could be compiled quickly. Test completion
estimates are very important to my team, so I could not increase the amount of time spent
testing by any large amount.

My professional values centered on product ownership, communication, and remote-friendly
processes. I wanted to incorporate my professional values into the framework to garner a
more personal sense of accomplishment from my work. Because I work in consulting, I’m a
few steps removed from product ownership. Owning the process increases the satisfaction
that I feel in my work. I also decided to use testing activities as a way to communicate with
stakeholders and report early and often to my team without affecting their process. I used
the tools that were available to me to complete testing that was not being performed in the
past.

After my initial SWOT, we made a series of small process changes that improved testing
needs:

● Transition from text document test cases to Test Management Software
● Remove testing discussions from Slack (where they could get lost) to their proper

merge request or to a document in a shared drive
● Implemented automation to free QA time from regression testing
● Attending product meetings to observe (understanding context)
● Create Test Plans for new projects
● Re-organize tests to shift to a user story-focused test strategy
● Ensemble testing sessions and test case reviews with Developers

Nimble, Not Agile 11 Copywright 2023 Zenzi Ali



Each activity matches a Weakness or Threat discovered during the SWOT Analysis and/or
strategically uses a team Strength to promote quality.

Figure 4: Test Activities by Development Phase:

Nimble, Not Agile 12 Copywright 2023 Zenzi Ali



Figure 5 shows the most common testing strategy that I use. I was able to shift testing
left because my team does not use the pitching and betting phases as designed by
Basecamp. We are consultants, so our clients “pitch” a problem, our client lead performs
betting activities, and then the client lead will Shape with a lead engineer.

I have chosen to display the phases linearly, but often the first 4 phases occur
concurrently. This is beneficial to my testing process. I can start testing requirements via
the documents because I do not need to wait for my team to bet on a project. Another
benefit is most of my static testing occurs with no interruption to my team’s process.
Shaping and design products are drafted as a part of our business processes. I can use
these underutilized assets to my advantage without any extra time commitment from the
team.

One area that is not given an official phase is completion. Basecamp completes its projects
on time with little ceremony. Feedback is left to review for later pitches if significant
negative feedback or product bugs are reported. For my team, there is a formal retro that
allows me to solicit feedback from the team.

This is our general process, but it also varies by project. Choosing techniques and
activities is easily done by using the ideas in Figure 4 as a starting point. Time is of the
essence, so I like to time box creating a one-page test plan. Continuously adding
techniques to my toolbox and discussing testing and product development with my
co-workers and testing communities keeps my process fluid and nimble for changes that
may occur during the building process.

Figure 5: Personalized Shape Up SDLC-STLC diagram

I had many opportunities to propose ideas and discuss changes that I would like to see on
our team. I often used weekly one-on-one meetings to discuss ideas for professional
development, a not-too-often discussed part of a good test strategy. Because of my team's

Nimble, Not Agile 13 Copywright 2023 Zenzi Ali



unorthodox approach to testing, I did not have a basis for common test strategies and
spent much of my first year reading books like Explore It! Reduce Risk and Increase
Confidence with Exploratory Testing by Elisabeth Hendrickson, Agile Testing Condensed: A
Brief Introduction by Janet Gregory and Lisa Crispin, and Foundations of Software Testing
ISTQB Certification by D. Graham, R. Black, and E. van Veenendaal. I was encouraged to
share our learnings at weekly engineering meetings. My team loves to talk theory, so it
was never difficult to gather feedback for testing ideas.

As I mentioned in Section 3, my team does not review metrics often. However, I found
them to be useful as I implemented these changes to our software testing process. What I
found was that I spent an increased amount of time on test planning and test design. Test
analysis led to a more robust risk assessment for our products. We also used the findings
of our assessment to increase test coverage of our products. Reading shaping documents,
dissecting analytics, and discussing user stories led to updates in our cross-browser and
cross-platform testing that have increased reliability for our clients that use older
hardware or browser versions.

With increased planning and design time, I noticed execution time was speeded. I was
able to provide more accurate estimates for test completion. The use of test management
software also allowed for more standardized test reporting (and gave stakeholders the
ability to see testing status). I did not see an increase in the number of bugs, but I have
noticed an increase in the finding of high-priority bugs much earlier in the testing process.
Traceability is also improved as I can more easily add software, operating systems, and
hardware versions to test runs. Overall, each step that I have taken to create this
framework has led to greater success. Because I discuss and display my work more often,
the team has a deeper understanding of the many activities involved in quality
management. Executing test cases is a small part of my process.

Section 5 Some Scenarios with Matching Frameworks

The Lone Tester Problem
“I work with a team of developers and I am the only tester on my team. The devs tend to
get excited about new ideas and testing is often an afterthought. I often only find out about
bugs or new features when they are sent to me for QA. I am super busy and I work on a
metaphorical island of testing. To top it off, my team is always asking me about the status
of their individual branches.”

The Lone Tester Proposed Strategy
The loan tester (LT) needs strategies that keep their team informed so that they can focus
on the work. If the team tends to forget to invite them to meetings or feels that their
presence is not necessary, request access to meeting minutes or recordings. If the lone
tester is commonly surprised with new testing work, a long-term strategy is not practical for
them. Daily time boxing must be a part of their framework.

Each day, the lone tester could check for new branches in the team’s version control system
so that LT could be aware of what their pipeline contains. Reviewing Merge Requests
provides the opportunity for preliminary static testing. Automation should be added to LT’s
toolbox. Setting up automation triggers using Zapier will eliminate busy work. In the
mornings, automate a Slack or Teams message that explains where you are in the testing
process for each assigned project or feature. “Zaps” can also trigger alerts to your team

Nimble, Not Agile 14 Copywright 2023 Zenzi Ali



when you update the status of QA in a Jira ticket or Trello board. If there is a way to
automate status reports via messaging, do so. LT can also set up their own testing pipeline
Trello board and create a “Zap” that creates a Trello card each time a new project branch is
created in version control.

If automation is not available, timebox this, too. I recommend starting with 30-minute
intervals for any task and adjusting to fit the day. Thirty minutes is more than enough time
to create a quick test strategy or test plan that can be shared with your team. The most
important thing that a busy tester can do is to advocate for professional development of
some sort. This can take the form of class work, joining special interest groups, ensemble
coding or testing, or meeting with product managers to learn more about your product.
Professional development and access to product information inform your testing process.
Share what you have learned, thoughts, and ideas during regular meetings, retros, or
asynchronously.

Team Just Ship It
“My team knows that perfection is the enemy of good. They are creative and aren't afraid to
build their parachutes on the way down. This means testing in production is very common.
I'll spend a lot of my time waiting for the worst.”

The Just Ship It Solution
This QA team should not wait for the worst, they should anticipate it. This means
emergency preparedness and risk assessment should be a key part of their framework.
Stress testing and forced error testing can alleviate the stress of production surprises. While
this is commonly done during the planning and control phases, a team that tests in
production must integrate system assessment into all phases of testing as part of the
team's new risk strategy.

Additionally, the QA team should be aware of the most common and critical user stories so
that, if testing time is short, these are never neglected. Because there will not be a large
time commitment to pre-release testing, regular bug bashes must be scheduled and
anticipated. This is an excellent opportunity to pair with the developers and assess the most
common problem areas. Bugs tend to cluster together, so this can also be a part of risk
analysis for future test rounds.

Conclusion
Many software teams feel that their primary goal is to ship software. Of course, that is
important. It is the keystone of their business model! But, we must remember that
software is more than that. Our development teams are solving human problems using
technical expertise. And the testing team is the bridge between customer expectations and
our business demands. Upholding quality is a challenging task! However, creating your
own system can provide you with a sense of satisfaction and a process for analyzing and
reflecting on business impact. Taking a thoughtful approach to this work allows you to
promote a culture of quality and nearly any type of team.

Nimble, Not Agile 15 Copywright 2023 Zenzi Ali



References

Shape Up Stop Running in Circles and Ship Work that Matters Singer, Ryan 2019
https://basecamp.com/shapeup

Nimble, Not Agile 16 Copywright 2023 Zenzi Ali


