
AMOL PATIL
Orthogonal RCA

AMOL PATIL
Orthogonal RCA

RCA Goals

▪ Defect prevention

▪ Incident reduction

AMOL PATIL
Orthogonal RCA

Root Cause Analysis

> Defect prevention is a process whose purpose is to:
- identify the common causes of defects, and

- change the relevant process(es) to prevent that type of defect from recurring. (SEI)

> Take what we already know and apply it to what we think we know to produce
quality software.

Defining Defect Prevention

AMOL PATIL
Orthogonal RCA

Root Cause Analysis

> Orthogonal Defect Classification

> Developed at IBM in the 1990s by Ram Chillarege

> Methodology to characterize software defects and translate into process defects

Orthogonal Defect Classification

AMOL PATIL
Orthogonal RCA

Root Cause Analysis

> A defect in the software is a defect in the process

> Implementing ODC is very cost-effective
- Enhances data already collected (software defects)

- Adding fields that are completed real-time make data collection virtually free!

- Tooled to quickly identify process defects (mapping)

> ODC can be implemented in stages
- Start with field defects, then move to in-process analysis

- Utilize defect profiling in-process to predict quality and project status

> Fields can be tailored to your own organization

Important Points about ODC

AMOL PATIL
Orthogonal RCA

Root Cause Analysis

Defect/Incident Profiling

> Defect Origin

> Business Routine

> Defect Trigger

> Trace

> Volume

> Frequency

> Last Modification

> History

> How did the customer get to this point

> Why is this happening?

> Preliminary/Official Root cause

AMOL PATIL
Orthogonal RCA

Simple Defect Classification Scheme

Defect

Trigger

Type

Origin

Fix Category

AMOL PATIL
Orthogonal RCA

Simple Defect Classification Scheme

Defect

Trigger

Type

Origin

Fix Category

User Interface

Build/Package/Merge

Functional Coverage

Defensive Coverage

Logic Coverage

Checking

Runtime Resource Handling

Database Query

Database Design

Data Migration

Documentation

System Integration

Regression

Performance Improvement

Func. Requirements not documented,
but expected to work

Negative Use Case

Data Validation

Documentation / Instructions Not Clear

3rd Party Integration

Component Interoperability

Data Uniqueness

Data Consistency

Selective Transaction

Event Driven Transaction

Software Upgrade

Configuration

Design

Volume

Customer Prod

Customer Non-Prod

Internal Non-Prod

From Jira & Bitbucket

From Salesforce

AMOL PATIL
Orthogonal RCA

Jira: RCA Section

AMOL PATIL
Orthogonal RCA

Jira: RCA Section

AMOL PATIL
Orthogonal RCA

Guiding framework for Preventative improvements

Use the hierarchy of controls
chart to answer the question

How could these type of defects
be prevented in future ?

Most effective

Least effective

AMOL PATIL
Orthogonal RCA

Template for Preventative improvements

> Going forward as part of the <process>, the <role> will <action> the <improvement>

> This will be measured using <tool>

> Adherence will be checked using <process>

Process Action Improvement

HLR gathering Tech lead complete

HLR breakdown to stories Principal Programmer review

Story grooming Tester start

Backlog triaging Product owner close

Sprint planning / retro /demo Tech Writer

Design approach Delivery Lead / Manager

Coding / Programming Bus Analyst

Code review

Unit testing

Code compile / build / package / distribute

Tool Process

Jira report with <these> Jira fields Audit

DoD

AMOL PATIL
Orthogonal RCA

Template for Detection improvements

> Going forward as part of the <process>, the <role> will <action> the <improvement>

> This will be measured using <tool>

> Adherence will be checked using <process>

Process Action Improvement

Unit Testing Test Engineer complete Regression checklist

Integration testing Tech lead review Test design document

Test design approach Programmer/Developer start Default behavior in Acceptance criteria

Test plan writing Product owner close Non-functional requirements (Perf., Scal., Compatibility)

Manual story testing Tech Writer address

Ad-hoc/Buddy testing QA manager utilize

Data migration testing Bus Analyst add

Test review and approval with team update

System testing monitor

Quality Criteria measurement – Perf/Scal.

Tool Process

Jira report with <these> Jira fields Audit

DoD Sprint planning / Sprint retrospective

Daily bitbucket review Story acceptance demo

Requirements DoR checklist

AMOL PATIL
Orthogonal RCA

Root Cause Analysis

Orthogonal Defect Classification
> Define smart categories that defects can be classified into

> Choices for selection for each categories based on being able to objectively answer

> Did the team understand the business needs

> Did the team brainstorm the solution to the best possible fit for the business need

> Did the team implement the solution with best practices

> Did the team examine the results through different levels of effective testing

> Objectively assign RC disposition

Why ODC?

> ODC helps to create a narrative flow that can lead to simplified way of reaching the RC conclusion

- Defect Trigger in Defect Origin led to Defect Type that was addressed in this Fix category leading to RC Disposition

> Analysis over a large set of data provides hot spots and weak points

> Detailed RCA methods like 5 Why’s and Fish Bone Diagram approach are time consuming

> ODC can be incorporated into the defect tracking system

Identifying hot spots from RCA data

What Engineering and Product leaders can learn from RCA data

Orthogonal RCA

AMOL PATIL
Orthogonal RCA

Defect Origin w/ Defect Type

→ Defect Type

↓ Defect Origin

Data Validation Func. Requirements not documented,
but expected to work

Instructions Not clear No default behavior for
a Negative Use Case

Performance Improvement Regression Grand Total

Customer Non-Prod 14 18 3 3 4 8 50
Customer Prod 35 53 5 7 14 27 141

Internal Non-Prod 1 7 1 3 12

Grand Total 50 78 8 11 18 38 203

> What is happening?
1. 70% bugs found in prod environments

2. Underlying faults in the products become failures due to business routines

3. Data sources used by business users in Prod is triggering many data validation related problems in the software

> Why is this happening?
1. Bugs missed being caught by Test cycles in Engineering and in Customer UAT cycles

2. Business users use the product in ways that is not well known to customer and Engineering Dev and Test teams

3. Configuration information and applicability of the changes only known to business users

Data Source: Sample created for example purpose only

→ Defect Type

↓ Defect Trigger

Data Validation Func. Requirements not documented,
but expected to work

Instructions Not clear No default behavior for
a Negative Use Case

Performance Improvement Regression Grand Total

Configuration 1 1 1 1 4

Software upgrade 5 1 1 1 5 13

Scheduled or Automated
Transactions

38 50 1 8 11 13 121

User Initiated Transaction 4 20 3 3 5 14 49

Reporting / Data Analysis 1 6 2 9

DevOps Activity 1 3 1 5

Bulk Data Load / Conversion 2 2

Grand Total 50 78 8 11 18 38 203

AMOL PATIL
Orthogonal RCA

Defect Type w/ Defect Trigger

Data Source: Sample created for example purpose only

> What is happening?
1. Story implementation missing many boundary and edge conditions, but valid business processes from a customers POV
2. Data ingestion inconsistency
3. Data validation by design happens differently

> Why is this happening?
1. Treating each feature/defect as an individual occurrence and not using checklists with all other supported behavior
2. Highly configurable product allows creation of valid and invalid data source for ingestion
3. Connector and payor do data validation differently on certain fields by design

→ Defect Type

↓ Defect Origin

Configuration Software upgrade

Scheduled or
Automated
Transactions

User Initiated
Transaction Reporting / Data Analysis DevOps Activity

Bulk Data Load /
Conversion

Grand
Total

Customer Non-Prod 2 7 30 11 50
Customer Prod 2 5 84 36 7 5 2 141

Internal Non-Prod 1 7 2 2 12

Grand Total 4 13 121 49 9 5 2 203

AMOL PATIL
Orthogonal RCA

Defect Origin w/ Defect Type

Data Source: Sample created for example purpose only

> What is happening?
1. Scheduled & Automated transactions triggering large number of bugs

2. User Initiated transactions are the second highest category

3. DW Bootstrap issues are not reported in Non Prod

> Why is this happening?
1. Variation of Data sources and data volumes intended for processing

2. The business user intentions of is not known clearly to the dev and test teams at Customer and HE

3. Configuration information and applicability of the changes only known to business users

→ Defect Type

↓ Fix Category

Configuration Software upgrade

Scheduled or
Automated
Transactions

User Initiated
Transaction Reporting / Data Analysis DevOps Activity

Bulk Data
Load /
Conversion

Grand
Total

Build/Package/Merge 2 2
Data Migration 1 2 1 4

Database Design 4 4 8

Database Query 1 7 2 2 12
Defensive Coverage 2 39 11 3 1 56
Documentation 1 3 5 3 12
Functional Coverage 2 1 66 28 5 1 103
Runtime Resource
Handling

1 2 3 6

Grand Total 4 13 121 49 9 5 2 203

> What is happening?
1. Business users at times using the product in a way that does not make logical sense to HE
2. Event driven / scheduled operational items that are part of regular business routines getting stuck
3. Upgrades introducing regressive behavior when processing new behavior
4. User is creating or changing system configuration and encounters an error in the configuration process itself

> Why is this happening?
1. Usability of the product allows ingenuine usage
2. Default behavior on failure event(s) not allowing manual processing of stuck items
3. Real world data, configuration and process missing from dev and test cycles
4. Product does not restrict users from configuring processes/policies/categories and maintenance in unintended ways

AMOL PATIL
Orthogonal RCA

Fix category w/ Defect Trigger

Data Source: Sample created for example purpose only

→ Defect Type

↓ Fix Category

Data Validation Func. Requirements not documented,
but expected to work

Instructions Not clear No default behavior for
a Negative Use Case

Performance Improvement Regression Grand Total

Build/Package/Merge 2 2
Data Migration 2 1 1 4

Database Design 2 1 3 2 8

Database Query 1 5 2 4 12
Defensive Coverage 29 5 7 15 56
Documentation 1 1 8 2 12
Functional Coverage 15 65 4 7 12 103
Runtime Resource Handling 6 6

Grand Total 50 78 8 11 18 38 203

> What is happening?
1. Major codebase churn is around introducing new functional logic to handle missing or wrong functionality
2. Reactive changes in the codebase to Address poorly defined code boundaries and data validation for unexpected data resources
3. Traces left are Java and Oracle Errors

> Why is this happening?
1. Story implementation primarily uses representative coverage
2. Corner cases with low occurrence probability not in the primary path of operating cases, but cases can happen and do happen
3. Framework not in place to give meaningful error messages for users to take remediation steps

AMOL PATIL
Orthogonal RCA

Defect Type w/ Fix category

Data Source: Sample created for example purpose only

HEADING TWO

• Points of the speech

SPEAKER NAME
TOPIC

SPEAKER NAME
TOPIC
THANK YOU

