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Abstract 
Conventional testing has its pros and cons. People, processes, and tools can be well-defined, 
documented, and implemented, but challenges around test data, environments, coverage, automation, 
and testing speed can arise unexpectedly. To address these challenges and shift the software testing life 
cycle (STLC) left, automating feasible steps using the novelty of generative AI agents is a great approach. 
These agents can be considered virtual peers that can help accelerate tasks not only across testing but 
the entire software development life cycle (SDLC). They generate the content for review, rather than a 
human creating it from scratch, thus giving the users a head start and significant time savings. 

In this paper we will cover topics around introducing Gen AI agents, good practices around using them 
and what benefits they bring to the table. We will also touch upon some of the challenges faced with the 
AI agentic testing approach. A case study has also been shared to demonstrate the Return On 
Investment (ROI) and the benefits of testing the AI Agentic way. 
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1.​ Introduction 
In the current technological landscape, generative artificial intelligence (AI) has gained widespread 
adoption across various domains. This paper explores its impact on the software testing lifecycle (STLC) 
from an agentic perspective. 

These AI agents are similar to virtual collaborators, facilitating the acceleration of tasks in a defined 
workflow to achieve desired outcomes. For example, agents can leverage user story inputs to build 
elaborate test cases using techniques like boundary conditions, positive and negative scenarios, 
equivalence partnering and more. These agents can bring in great efficiencies across the software 
development life cycle with individual agents or a series of orchestrated agents through workflows. 

Market leaders have introduced agents at varying maturity levels, and their interactivity has significantly 
improved through the adoption of the Model Context Protocol (MCP). [1] and Agent to Agent (A2A) 
protocols. 

2.​ What are Gen AI agents? 

Generative AI agents can be explained as software programs or systems that can independently reason, 
make decisions, perform actions, learn, and orchestrate workflows to achieve specific objectives. They 
utilize a set of prompts, application connections, Retrieval Augmented Generation (RAG), and leverage 
generative AI from Large Language Models (LLMs) to produce desired outputs.  [2] [3] [4] 

Following is a list of the typical Gen AI Agent attributes: [5] 

●​ Agents are more complex than bots and assistants. 
●​ They can automate simple tasks and provide limited decision-making capabilities. 
●​ A single agent can achieve a desired objective, or a chain of agents can work together to reach a 

goal. 
●​ Agents can interact with users or be triggered independently in the background. 
●​ They can be categorized in various ways, including simple response-based, goal-based, learning 

agents, user-triggered, and event-driven agents. [6] 

3.​ How do GenAI Agents work? 
AI agents are typically built with an interfacing layer allowing integration with tools, use memory and 
leverage techniques like RAG to harness the power of Large Language Models (LLMs), thus delivering 
desired outputs. The recent evolution of the LLMs and effective prompt engineering has further made 
outputs more predictable, usable, and with minimal hallucinations.  

Below is a simple depiction of an AL agentic system. [7] 
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4.​ Conventional Testing vs Testing the AI Agentic way 
Let’s explore the key activities in the testing life cycle, along with a brief overview of the conventional and 
agentic approaches. We’ll outline the testing activities, describe them, and highlight their similarities and 
differences. While this overview doesn’t cover everything, it provides a concise summary. 

Testing objective 

Conventional AI Agentic 

Validate the product or application under test to 
ensure it meets the requirements and functions 
efficiently. Identify any defects and report them to 
the development teams for fixing. Keep 
stakeholders informed to ensure informed 
decision-making. 

It achieves the same objective as conventional 
testing but additionally leverages agents and 
agent orchestrators to harness the generative 
capabilities of LLMs, facilitating shift-left testing 
strategies. Agents also enhance connectivity to 
various tools for test management, defect 
reporting, and code repositories. 

Requirement Gathering involves understanding the testing requirements and evaluating their 
completeness. This includes identifying the functionality that needs to be tested and determining the 
expected results. Additionally, it involves considering nonfunctional requirements such as the volume of 
users, accessibility, and security needs. 

Conventional AI Agentic 

Manually gather the requirements from epics, user 
stories and documents. Have meetings with 
business analysts to understand the functional 
and non-functional tasks. 

Perform all the activities as in the conventional 
approach but get support from single or multiple 
AI agents to connect to systems like JIRA, 
Confluence, Git, meeting transcripts and other 
docs, and bring back content to one space, 
operate on it to enhance and standardise it and 
validate completeness. These agents help with 
better documentation of requirements, early 
unearthing of gaps in requirements. 

Planning and Estimation - Create a test strategy and test plan outlining the way testing would be done? 
Where would it be done? The tools that would be used and who would do it and when? Estimate the time 
and effort needed to complete the testing activities. 

 

Conventional  AI Agentic 

Use templates, tools and experience to create a 
test strategy and a plan. 

Leverage AI agents to create test strategies and 
test plans in standard templates with good 
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Leverage historic data and human experience to 
create the time and effort estimates. 

coverage of all aspects of testing functional & non 
functional. 
Leverage Gen AI estimation agents to get a 
reliable estimate based on historic data available 
(e.g. passing it through retrieval augmented 
generation) and the knowledge of the LLMs. 

Test Case and scenario authoring - The phase of testing where the requirements are converted into test 
scenarios and cases to validate the functionality with test steps and expected results or in Given, When, 
Then Gherkin format or other similar techniques. 

 

Conventional AI Agentic 

Human-authored test cases and scenarios based 
on an understanding of the expected functionality 
in the requirements. It can be ad hoc or very 
systematic, covering boundary conditions, 
positive-negative scenarios, and other proven 
approaches and depends on the expertise of the 
tester writing the test cases and scenarios. 

Leverage AI agents that understand the 
requirements, create meticulous test cases across 
boundary conditions, positive, and negative test 
scenarios and cases with good coverage. The 
generated test cases can even be put into the test 
management tool from the agent directly. 
Predefined templates can be used to get the 
desired test case output formats. 

Test Environment Validation - The process of setting up the test environment along the path to production. 
(Functional, Integration, User and finally Prod in parallel to performance and sometimes even 
Development) 

 

Conventional AI Agentic 

The Test Environment team sets up the 
infrastructure either manually or through 
infrastructure as code. The Quality Assurance 
team verifies that the environment aligns with the 
path to production and meets usability 
requirements. 

AI agents can be used to build the infra as code. 
Environment Scanning Agents can validate the 
environment’s readiness for testing initially and 
later ensure it meets the required standards. 

Test Data Management - The process of procuring test data via TDM services like mining, creation, 
reservation, and cloning, contextual to the environment and system under test. 

 

Conventional AI Agentic 
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TDM is typically done manually or in conjunction 
with utilities and or off the shelf expensive TDM 
tools. 

Though TDM processes and tools can not easily 
be replaced, AI agents help automate a good 
portion of the manual steps in the TDM life cycle. 
(e.g., using Natural language to SQL agents, TDM 
tool config file generation agents and more) 

Test Execution - the process of executing test cases and scenarios against the system under test 
leveraging the test data created in the valid test environment to identify deviation from requirements and 
expected results by logging defects for identified anomalies. 

Conventional AI Agentic 

Manually testing the application, using test 
automation frameworks and tools are the non-AI 
way of doing testing. They are effective if well 
orchestrated and follow a streamlined process. 
Manually, CI/CD pipelines can be triggered to 
automate the execution as well. 

AI agents can also seamlessly integrate with 
CI/CD pipelines, where the test automation code 
is directly merged into the test automation 
framework using connectors from the AI agents. 
Standardization, prioritization, and optimization of 
the automation scripts are key differentiators. [8] 

Test Execution Reporting - The process of documenting and communicating the outcomes of a testing 
cycle to stakeholders. It summarizes key findings like the number of tests executed, passed, or failed, 
providing a snapshot of the software's quality helping make Go no Go decisions. 

Conventional AI Agentic 

Test reporting can be done manually with simple 
Excel sheets for manual test execution or using 
test management tools like JIRA Xray. [9] 
For test automation, tools like Allure Report [10] 
are used to generate a detailed report about the 
test execution. 

AI agents can use all the methods of reporting in 
conventional testing and also leverage AI/ML 
based reporting tools like ReportPortal [11] to 
automate some of the manual activities like 
AI-based failure reason detection and so on.  

Defect Logging - the process of documenting discrepancies or bugs identified in the system under test 
compared to the specified functional and non-functional requirements. 

Conventional AI Agentic 

Manual methods can use Excel sheets for defect 
logging but are highly inefficient. 
This is typically done in test management tools 
like JIRA or ADO  
 

AI agents can identify test execution failures and 
directly log them as defects into the test 
management tool like JIRA or ADO. Furthermore 
orchestration of AI agents can be used with the 
power of the LLM to recommend the potential 
fixes to code as well right into the defect. 
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5.​ Good Practices 

Building AI agents that are reliable and effective requires a methodical approach, particularly during 
testing. Here are some good practices that are recommended. 

Collaborative agent creation and domain expertise 

●​ Include domain experts early - Partnering with a domain expert from the beginning 
ensures the agent's development is grounded in real-world knowledge, defining accurate 
metrics, identifying edge cases, and ensuring the agent's decisions are aligned with 
industry standards and human judgment. 

●​ Establish a continuous feedback loop - Implement a robust feedback loop that enables 
the agent to learn and improve from its interactions and outcomes. This involves 
incorporating humans in the loop where humans review, correct, and provide feedback on 
the agent’s actions.  

Comprehensive testing and multiple inputs 

●​ Test with diverse and varied sets of inputs. An agent's true robustness is proven when it 
can handle a wide range of data across projects. Instead of focusing on a single input 
type, test the agent across multiple sets of data sources to identify weaknesses and 
enhance its adaptability across programs and projects. 

Avoid force fitting AI agents and Keep cost in mind 

●​ Agents should solve problems that genuinely benefit from AI. Don't try to apply an AI 
solution to a use case that can be handled more efficiently or accurately with traditional 
software. Just because you have a hammer does not mean every problem is a nail.  

●​ Please remember, the AI tokens costs can pile up soon. Use them effectively by 
pre-processing the inputs using native non-AI tools prior to shipping off the content to the 
LLMs. 

Human-Centric design and accountability 

●​ Integrating human oversight into the agent's workflow is critical for safety, trust and 
primarily ownership. This approach not only improves predictability and accuracy but also 
addresses concerns about job displacement by positioning AI as a collaborative tool 
rather than a replacement. 

Ensure transparency and explainability 

●​ For an AI agent to be truly trusted, its actions should be transparent. Focus on 
developing agents that explain the execution plan, show sources and references used. 

Control the AI Hallucinations [12] 

●​ Use Retrieval Augmented Generation (RAG) and effective prompt engineering to reduce 
the amount of Hallucinations and get desirable outputs consistently.  
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6.​ Benefits of AI Agents 
​
The generative AI automation agents can help in multiple ways. The integration of AI agents into testing 
workflows can lead to more efficient, high-quality, and cost-effective software products. 

●​ AI agents can enhance various aspects of testing processes across the STLC and even 
across steps in the SDLC. This allows people to focus on more complex and creative 
aspects of their work. 

●​ The agents can improve testing coverage and quality by systematically exploring a wider 
range of test scenarios across positive / negative / boundary conditions / accessibility / 
user friendliness and more.  

●​ The agents can help identify potential issues that might be overlooked by human testers, 
leading to more robust and reliable software products. 

●​ AI agents can help reduce production defects by detecting errors early in the 
development cycle promoting Shift Left. 

●​ Agents can lower the overall cost of testing, making it a more cost-effective solution for 
organizations with time / cost from 20 to 50% [13]. Let us note that it does need training 
and education to be effective AI agent users.  

 

7.​ Challenges 
Developing and deploying AI agents comes with several challenges too. Below are some of the key 
challenges faced while implementing the AI agentic approach for testing. 

•​The outputs are non-deterministic and can produce varying outputs for the same input due to 
factors like random initialization, stochastic processes, or model complexity. [14]. This means you 
can get different test cases and scripts every time you execute the agent. [15] 

•​There are hallucinations that are so good and feel true to a common eye and may feel like a 
really valid test case or script. Thus they may need a good factor of prompt engineering and 
feedback to improve them. 

•​ AI agents rely on high-quality, diverse datasets and RAG inputs to generate test cases or identify 
defects. So, we need to be cautious of the fact garbage in, garbage out. 

•​ Integrating AI agents into traditional software testing pipelines or legacy frameworks can be 
complex due to compatibility issues and may need improvements / enhancements on the 
framework. 

•​ AI agents can not be a replacement for the flaws in the process. The process needs to be fixed 
prior to using the AI agents effectively and people need to be trained to use the agents. 
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8.​ Case Study 

A financial company team facing a large automation backlog and seeking to reduce testing time deployed 
an AI Test Automation agent to generate test scripts in the gherkin format into an existing automation 
framework. The AI agent automated the creation of test scripts for previously manual tests, resulting in 
over ~33% savings in time. This initiative successfully addressed the backlog and significantly 
accelerated the company's test automation efforts. The success led to early defect detection and overall a 
faster and higher quality release. 

Tech Stack 

●​ Test Cases Location - JIRA 
●​ Test Automation Framework - Selenium WebDriver 
●​ Behavior Driven Development (BDD) - Gherkin 
●​ Programming Language - Java 
●​ Version Control - Git 

Savings and Benefits 

●​ The average test automation speed was reduced from ~4.5 hours to under 3 hours, resulting in a 
33% reduction in time spent on test script creation and test execution. (factoring in some agent 
development and training time). 
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