

Testing the AI Agentic Way
Praveen Bagare

bagare@gmail.com

Abstract
Conventional testing has its pros and cons. People, processes, and tools can be well-defined,
documented, and implemented, but challenges around test data, environments, coverage, automation,
and testing speed can arise unexpectedly. To address these challenges and shift the software testing life
cycle (STLC) left, automating feasible steps using the novelty of generative AI agents is a great approach.
These agents can be considered virtual peers that can help accelerate tasks not only across testing but
the entire software development life cycle (SDLC). They generate the content for review, rather than a
human creating it from scratch, thus giving the users a head start and significant time savings.

In this paper we will cover topics around introducing Gen AI agents, good practices around using them
and what benefits they bring to the table. We will also touch upon some of the challenges faced with the
AI agentic testing approach. A case study has also been shared to demonstrate the Return On
Investment (ROI) and the benefits of testing the AI Agentic way.

Biography
Praveen Bagare is a seasoned IT leader with over 21 years of experience in delivering innovative
AI-powered solutions. His expertise encompasses Program Management, Artificial Intelligence solutions,
and Quality Assurance, with a specialization in Test Data Management (TDM). Passionate about solving
complex challenges, Praveen drives excellence and innovation.

Currently, he leads EPAM’s North American TDM Competency Center, overseeing implementations that
leverage generative AI and other TDM tools. He has architected, implemented, and managed TDM
solutions for Fortune 500 companies globally.

Praveen is an eminent expert in the field, having authored a white paper on TDM in the Software Testing
Life Cycle and another on AI and ML in TDM in PNSQC. An active senior IEEE member, TREWS fellow
member, and presenter at AI Con USA 2025, he is committed to advancing industry standards. He is also
ISTQB-certified and advanced certified in multiple TDM and AI tools. When not leading teams or driving
innovation, Praveen enjoys spending time outdoors with his family in Wisconsin.

Excerpt from PNSQC Proceedings​ ​ PNSQC.ORG
Copies may not be made or distributed for commercial use​ ​ Page 1

1.​ Introduction
In the current technological landscape, generative artificial intelligence (AI) has gained widespread
adoption across various domains. This paper explores its impact on the software testing lifecycle (STLC)
from an agentic perspective.

These AI agents are similar to virtual collaborators, facilitating the acceleration of tasks in a defined
workflow to achieve desired outcomes. For example, agents can leverage user story inputs to build
elaborate test cases using techniques like boundary conditions, positive and negative scenarios,
equivalence partnering and more. These agents can bring in great efficiencies across the software
development life cycle with individual agents or a series of orchestrated agents through workflows.

Market leaders have introduced agents at varying maturity levels, and their interactivity has significantly
improved through the adoption of the Model Context Protocol (MCP). [1] and Agent to Agent (A2A)
protocols.

2.​ What are Gen AI agents?

Generative AI agents can be explained as software programs or systems that can independently reason,
make decisions, perform actions, learn, and orchestrate workflows to achieve specific objectives. They
utilize a set of prompts, application connections, Retrieval Augmented Generation (RAG), and leverage
generative AI from Large Language Models (LLMs) to produce desired outputs. [2] [3] [4]

Following is a list of the typical Gen AI Agent attributes: [5]

●​ Agents are more complex than bots and assistants.
●​ They can automate simple tasks and provide limited decision-making capabilities.
●​ A single agent can achieve a desired objective, or a chain of agents can work together to reach a

goal.
●​ Agents can interact with users or be triggered independently in the background.
●​ They can be categorized in various ways, including simple response-based, goal-based, learning

agents, user-triggered, and event-driven agents. [6]

3.​ How do GenAI Agents work?
AI agents are typically built with an interfacing layer allowing integration with tools, use memory and
leverage techniques like RAG to harness the power of Large Language Models (LLMs), thus delivering
desired outputs. The recent evolution of the LLMs and effective prompt engineering has further made
outputs more predictable, usable, and with minimal hallucinations.

Below is a simple depiction of an AL agentic system. [7]

Excerpt from PNSQC Proceedings​ ​ PNSQC.ORG
Copies may not be made or distributed for commercial use​ ​ Page 2

4.​ Conventional Testing vs Testing the AI Agentic way
Let’s explore the key activities in the testing life cycle, along with a brief overview of the conventional and
agentic approaches. We’ll outline the testing activities, describe them, and highlight their similarities and
differences. While this overview doesn’t cover everything, it provides a concise summary.

Testing objective

Conventional AI Agentic

Validate the product or application under test to
ensure it meets the requirements and functions
efficiently. Identify any defects and report them to
the development teams for fixing. Keep
stakeholders informed to ensure informed
decision-making.

It achieves the same objective as conventional
testing but additionally leverages agents and
agent orchestrators to harness the generative
capabilities of LLMs, facilitating shift-left testing
strategies. Agents also enhance connectivity to
various tools for test management, defect
reporting, and code repositories.

Requirement Gathering involves understanding the testing requirements and evaluating their
completeness. This includes identifying the functionality that needs to be tested and determining the
expected results. Additionally, it involves considering nonfunctional requirements such as the volume of
users, accessibility, and security needs.

Conventional AI Agentic

Manually gather the requirements from epics, user
stories and documents. Have meetings with
business analysts to understand the functional
and non-functional tasks.

Perform all the activities as in the conventional
approach but get support from single or multiple
AI agents to connect to systems like JIRA,
Confluence, Git, meeting transcripts and other
docs, and bring back content to one space,
operate on it to enhance and standardise it and
validate completeness. These agents help with
better documentation of requirements, early
unearthing of gaps in requirements.

Planning and Estimation - Create a test strategy and test plan outlining the way testing would be done?
Where would it be done? The tools that would be used and who would do it and when? Estimate the time
and effort needed to complete the testing activities.

Conventional AI Agentic

Use templates, tools and experience to create a
test strategy and a plan.

Leverage AI agents to create test strategies and
test plans in standard templates with good

Excerpt from PNSQC Proceedings​ ​ PNSQC.ORG
Copies may not be made or distributed for commercial use​ ​ Page 3

Leverage historic data and human experience to
create the time and effort estimates.

coverage of all aspects of testing functional & non
functional.
Leverage Gen AI estimation agents to get a
reliable estimate based on historic data available
(e.g. passing it through retrieval augmented
generation) and the knowledge of the LLMs.

Test Case and scenario authoring - The phase of testing where the requirements are converted into test
scenarios and cases to validate the functionality with test steps and expected results or in Given, When,
Then Gherkin format or other similar techniques.

Conventional AI Agentic

Human-authored test cases and scenarios based
on an understanding of the expected functionality
in the requirements. It can be ad hoc or very
systematic, covering boundary conditions,
positive-negative scenarios, and other proven
approaches and depends on the expertise of the
tester writing the test cases and scenarios.

Leverage AI agents that understand the
requirements, create meticulous test cases across
boundary conditions, positive, and negative test
scenarios and cases with good coverage. The
generated test cases can even be put into the test
management tool from the agent directly.
Predefined templates can be used to get the
desired test case output formats.

Test Environment Validation - The process of setting up the test environment along the path to production.
(Functional, Integration, User and finally Prod in parallel to performance and sometimes even
Development)

Conventional AI Agentic

The Test Environment team sets up the
infrastructure either manually or through
infrastructure as code. The Quality Assurance
team verifies that the environment aligns with the
path to production and meets usability
requirements.

AI agents can be used to build the infra as code.
Environment Scanning Agents can validate the
environment’s readiness for testing initially and
later ensure it meets the required standards.

Test Data Management - The process of procuring test data via TDM services like mining, creation,
reservation, and cloning, contextual to the environment and system under test.

Conventional AI Agentic

Excerpt from PNSQC Proceedings​ ​ PNSQC.ORG
Copies may not be made or distributed for commercial use​ ​ Page 4

TDM is typically done manually or in conjunction
with utilities and or off the shelf expensive TDM
tools.

Though TDM processes and tools can not easily
be replaced, AI agents help automate a good
portion of the manual steps in the TDM life cycle.
(e.g., using Natural language to SQL agents, TDM
tool config file generation agents and more)

Test Execution - the process of executing test cases and scenarios against the system under test
leveraging the test data created in the valid test environment to identify deviation from requirements and
expected results by logging defects for identified anomalies.

Conventional AI Agentic

Manually testing the application, using test
automation frameworks and tools are the non-AI
way of doing testing. They are effective if well
orchestrated and follow a streamlined process.
Manually, CI/CD pipelines can be triggered to
automate the execution as well.

AI agents can also seamlessly integrate with
CI/CD pipelines, where the test automation code
is directly merged into the test automation
framework using connectors from the AI agents.
Standardization, prioritization, and optimization of
the automation scripts are key differentiators. [8]

Test Execution Reporting - The process of documenting and communicating the outcomes of a testing
cycle to stakeholders. It summarizes key findings like the number of tests executed, passed, or failed,
providing a snapshot of the software's quality helping make Go no Go decisions.

Conventional AI Agentic

Test reporting can be done manually with simple
Excel sheets for manual test execution or using
test management tools like JIRA Xray. [9]
For test automation, tools like Allure Report [10]
are used to generate a detailed report about the
test execution.

AI agents can use all the methods of reporting in
conventional testing and also leverage AI/ML
based reporting tools like ReportPortal [11] to
automate some of the manual activities like
AI-based failure reason detection and so on.

Defect Logging - the process of documenting discrepancies or bugs identified in the system under test
compared to the specified functional and non-functional requirements.

Conventional AI Agentic

Manual methods can use Excel sheets for defect
logging but are highly inefficient.
This is typically done in test management tools
like JIRA or ADO

AI agents can identify test execution failures and
directly log them as defects into the test
management tool like JIRA or ADO. Furthermore
orchestration of AI agents can be used with the
power of the LLM to recommend the potential
fixes to code as well right into the defect.

Excerpt from PNSQC Proceedings​ ​ PNSQC.ORG
Copies may not be made or distributed for commercial use​ ​ Page 5

https://www.atlassian.com/software/jira
https://learn.microsoft.com/en-us/azure/devops/boards/backlogs/manage-bugs?view=azure-devops

5.​ Good Practices

Building AI agents that are reliable and effective requires a methodical approach, particularly during
testing. Here are some good practices that are recommended.

Collaborative agent creation and domain expertise

●​ Include domain experts early - Partnering with a domain expert from the beginning
ensures the agent's development is grounded in real-world knowledge, defining accurate
metrics, identifying edge cases, and ensuring the agent's decisions are aligned with
industry standards and human judgment.

●​ Establish a continuous feedback loop - Implement a robust feedback loop that enables
the agent to learn and improve from its interactions and outcomes. This involves
incorporating humans in the loop where humans review, correct, and provide feedback on
the agent’s actions.

Comprehensive testing and multiple inputs

●​ Test with diverse and varied sets of inputs. An agent's true robustness is proven when it
can handle a wide range of data across projects. Instead of focusing on a single input
type, test the agent across multiple sets of data sources to identify weaknesses and
enhance its adaptability across programs and projects.

Avoid force fitting AI agents and Keep cost in mind

●​ Agents should solve problems that genuinely benefit from AI. Don't try to apply an AI
solution to a use case that can be handled more efficiently or accurately with traditional
software. Just because you have a hammer does not mean every problem is a nail.

●​ Please remember, the AI tokens costs can pile up soon. Use them effectively by
pre-processing the inputs using native non-AI tools prior to shipping off the content to the
LLMs.

Human-Centric design and accountability

●​ Integrating human oversight into the agent's workflow is critical for safety, trust and
primarily ownership. This approach not only improves predictability and accuracy but also
addresses concerns about job displacement by positioning AI as a collaborative tool
rather than a replacement.

Ensure transparency and explainability

●​ For an AI agent to be truly trusted, its actions should be transparent. Focus on
developing agents that explain the execution plan, show sources and references used.

Control the AI Hallucinations [12]

●​ Use Retrieval Augmented Generation (RAG) and effective prompt engineering to reduce
the amount of Hallucinations and get desirable outputs consistently.

Excerpt from PNSQC Proceedings​ ​ PNSQC.ORG
Copies may not be made or distributed for commercial use​ ​ Page 6

6.​ Benefits of AI Agents
​
The generative AI automation agents can help in multiple ways. The integration of AI agents into testing
workflows can lead to more efficient, high-quality, and cost-effective software products.

●​ AI agents can enhance various aspects of testing processes across the STLC and even
across steps in the SDLC. This allows people to focus on more complex and creative
aspects of their work.

●​ The agents can improve testing coverage and quality by systematically exploring a wider
range of test scenarios across positive / negative / boundary conditions / accessibility /
user friendliness and more.

●​ The agents can help identify potential issues that might be overlooked by human testers,
leading to more robust and reliable software products.

●​ AI agents can help reduce production defects by detecting errors early in the
development cycle promoting Shift Left.

●​ Agents can lower the overall cost of testing, making it a more cost-effective solution for
organizations with time / cost from 20 to 50% [13]. Let us note that it does need training
and education to be effective AI agent users.

7.​ Challenges
Developing and deploying AI agents comes with several challenges too. Below are some of the key
challenges faced while implementing the AI agentic approach for testing.

•​The outputs are non-deterministic and can produce varying outputs for the same input due to
factors like random initialization, stochastic processes, or model complexity. [14]. This means you
can get different test cases and scripts every time you execute the agent. [15]

•​There are hallucinations that are so good and feel true to a common eye and may feel like a
really valid test case or script. Thus they may need a good factor of prompt engineering and
feedback to improve them.

•​ AI agents rely on high-quality, diverse datasets and RAG inputs to generate test cases or identify
defects. So, we need to be cautious of the fact garbage in, garbage out.

•​ Integrating AI agents into traditional software testing pipelines or legacy frameworks can be
complex due to compatibility issues and may need improvements / enhancements on the
framework.

•​ AI agents can not be a replacement for the flaws in the process. The process needs to be fixed
prior to using the AI agents effectively and people need to be trained to use the agents.

Excerpt from PNSQC Proceedings​ ​ PNSQC.ORG
Copies may not be made or distributed for commercial use​ ​ Page 7

8.​ Case Study

A financial company team facing a large automation backlog and seeking to reduce testing time deployed
an AI Test Automation agent to generate test scripts in the gherkin format into an existing automation
framework. The AI agent automated the creation of test scripts for previously manual tests, resulting in
over ~33% savings in time. This initiative successfully addressed the backlog and significantly
accelerated the company's test automation efforts. The success led to early defect detection and overall a
faster and higher quality release.

Tech Stack

●​ Test Cases Location - JIRA
●​ Test Automation Framework - Selenium WebDriver
●​ Behavior Driven Development (BDD) - Gherkin
●​ Programming Language - Java
●​ Version Control - Git

Savings and Benefits

●​ The average test automation speed was reduced from ~4.5 hours to under 3 hours, resulting in a
33% reduction in time spent on test script creation and test execution. (factoring in some agent
development and training time).

Excerpt from PNSQC Proceedings​ ​ PNSQC.ORG
Copies may not be made or distributed for commercial use​ ​ Page 8

9.​ References

1.​ “Model Context Protocol (MCP)”, https://modelcontextprotocol.io/introduction (accessed 01 Jul
2025)

2.​ “What are AI agents?”, https://www.ibm.com/think/topics/ai-agents (accessed 03 Jul 2025)
3.​ “What is an AI agent?”, https://cloud.google.com/discover/what-are-ai-agents (accessed 06 Jul

2025)
4.​ “Agentic AI”, https://youtu.be/kJLiOGle3Lw (accessed 03 Jul 2025)
5.​ “Building Agents”, https://platform.openai.com/docs/guides/agents (accessed Jul 2025)
6.​ “Types of AI Agents”, https://www.ibm.com/think/topics/ai-agent-types (accessed 05 Jul 2025)
7.​ “The Landscape of Emerging AI Agent Architectures for Reasoning, Planning, and Tool Calling: A

Survey”, https://arxiv.org/abs/2404.11584 (accessed 05 Jul 2025)
8.​ “AI Agents in Software Testing”,https://testrigor.com/ai-agents-in-software-testing (accessed Sep

2025)
9.​ “How to create and manage test cases with Xray and Jira“,

https://www.atlassian.com/devops/testing-tutorials/jira-xray-integration-manage-test-cases
(accessed 06 Sep 2025)

10.​ “Allure Report”, https://allurereport.org/ (accessed Sep 2025)
11.​ “Report Portal”, https://reportportal.io/ (accessed Jul 2025)
12.​ “AI Agents Best Practices and Ethical Considerations: Implementing AI in Business”,

https://writesonic.com/blog/ai-agents-best-practices, (accessed Sep 2025)
13.​ “Reshaping Software Engineering at Edward Jones”,

https://partners.wsj.com/epam/ai-driven-software-engineering/reshaping-software-engineering-at-
edward-jones/ , (accessed Sep 2025)

14.​ “Machine Learning Basics”, https://www.deeplearningbook.org/contents/regularization.html,
author={Ian Goodfellow and Yoshua Bengio and Aaron Courville}, (accessed Sep 2025)

15.​ “Regularization for Deep Learning”, https://www.deeplearningbook.org/contents/ml.html,
author={Ian Goodfellow and Yoshua Bengio and Aaron Courville}, (accessed Sep 2025)

Excerpt from PNSQC Proceedings​ ​ PNSQC.ORG
Copies may not be made or distributed for commercial use​ ​ Page 9

https://modelcontextprotocol.io/introduction
https://www.ibm.com/think/topics/ai-agents
https://cloud.google.com/discover/what-are-ai-agents
https://youtu.be/kJLiOGle3Lw
https://platform.openai.com/docs/guides/agents
https://www.ibm.com/think/topics/ai-agent-types
https://arxiv.org/abs/2404.11584
https://testrigor.com/ai-agents-in-software-testing
https://www.atlassian.com/devops/testing-tutorials/jira-xray-integration-manage-test-cases
https://allurereport.org/
https://reportportal.io/
https://writesonic.com/blog/ai-agents-best-practices
https://partners.wsj.com/epam/ai-driven-software-engineering/reshaping-software-engineering-at-edward-jones/
https://partners.wsj.com/epam/ai-driven-software-engineering/reshaping-software-engineering-at-edward-jones/
https://www.deeplearningbook.org/contents/ml.html
https://www.deeplearningbook.org/contents/regularization.html
https://www.deeplearningbook.org/contents/regularization.html
https://www.deeplearningbook.org/contents/ml.html

	Testing the AI Agentic Way
	Tech Stack

