
Integrating Generative AI for Quality Engineering 
into the Software Lifecycle 

 
Rozumenko, A., Udovychenko, A., King, T. M. 

 
{ Artem_Rozumenko, Anastasiia_Udovychenko, Tariq_King } @epam.com 

 

Abstract 

Software practitioners and development teams are using generative AI and large language 
models like GPT-4, LLaMA, and PaLM for quality engineering and testing use cases. These 
include but are not limited to software requirements and design validation, test case and 
test script generation, and test result and coverage analysis. But how effective is generative 
AI in practice when it comes to delivering software faster without compromising quality? In 
other words, how do teams effectively apply this emerging technology in practical 
scenarios? In this paper, we describe an approach for integrating generative AI into the 
software development lifecycle. Our approach provides a holistic methodology that keeps 
the human-in-the-loop, while incorporating generative AI tools into communication 
channels, software hubs, integrated development environments, and test execution and 
reporting platforms. To keep our discussion grounded in practice, we present industrial case 
studies in which global teams have used an enterprise-ready generative AI collaboration 
platform for realizing software quality and productivity gains. 
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1   Introduction 

A future where AI automates software engineering tasks is upon us.  Generative AI (GenAI) 
and large language models (LLMs) are enabling higher degrees of software automation when 
it comes to requirements engineering, planning, project management, development, 
testing, and deployment.  AI-assisted engineering tools are becoming more ubiquitous, 
easier to use, interact with, and incorporate into our everyday lives as software 
professionals.  Many software practitioners, product owners, and researchers have been 
investigating ways to integrate GenAI into the software development lifecycle.   
 
An area that continues to receive much attention when it comes to GenAI is quality 
engineering.  Can we employ GenAI to accelerate software development? If so, would this 
result in better software?  Or would any early productivity gains be short-lived due to rising 
defect rates?  Speaking of quality, this technology also has a dark side.  One in which AI 
infused applications, models, and assistants hallucinate.  The non-deterministic nature of 
LLMs raises legitimate concerns around trustworthiness, reliability, security, and privacy, 
while the method by which these models give pause associated with intellectual property 
rights and ownership. 
 
Although these technologies are still in their infancy, it is never too early to formalize 
approaches, tools, and techniques that promote the safe and responsible use and 
integration of AI. This paper presents a holistic approach for integrating GenAI into the 
software lifecycle, starting first with quality engineering activities.  Quality engineering has 
been specifically selected as a means of aligning it with another important and related 
subject – that of productivity.   
 
The remainder of this paper is organized as follows: the next chapter explores the 
relationship between productivity and quality.  Section 3 discusses generative AI for quality 
engineering.  Section 4 presents our proposed approach.  Section 5 contains a case study 
that applies the approach in the context of a client-facing engagement.  Finally, in Section 6 
we conclude the paper and discuss future directions. 



 

2   Productivity Versus Quality 

Individuals, organizations and businesses are excited about the potential for AI to transform 
the world as we know it. Many believe that AI will revolutionize our personal and work lives 
by automating routine tasks and acting as a force multiplier in several industries.  In the 
software industry, researchers and practitioners have been experimenting with the use of 
generative AI (GenAI) for software productivity [REF].  GenAI is being integrated into tools, 
processes and practices as a means of enhancing software engineering and other lifecycle 
activities.  However, it is important to acknowledge that productivity in the context of the 
software lifecycle is not easy to define and can be extremely difficult to measure.   
 
This section starts by describing general aspects of productivity and then focuses on the 
foundational principles necessary to quantify productivity during the software lifecycle. The 
main idea is that such a foundation is necessary to integrate generative AI for engineering 
into the software lifecycle. Furthermore, to ensure that quality is not compromised for speed 
when leveraging generative AI, we wrap up the section by emphasizing the direct 
relationship between quality and productivity due to the important role that validation plays 
in our proposed approach.  
 
2.1   Defining Productivity 
 

There are three general concepts that intersect to define productivity: quantity, quality and 
efficiency. When we think of being more productive, we tend to think about an increase in 
number or quantity of tasks being completed, typically over some unit of time. However, 
getting more things done faster only results in true productivity gains if those things are 
completed well. In other words, the finished work must meet a certain quality standard. 
Lastly, the effort of operating at this new level of output or throughput should not be 
wasteful, but instead should be cost efficient. 
 

 



2.2   Quantifying Productivity in the Software Lifecycle 

Although it may start with delivery, quantifying productivity during the software lifecycle 
goes beyond just output or flow.  For example, traditional metrics like lines of code or 
number of commits can provide a basic measure of output, but do not capture quality or 
long-term maintainability. Process metrics like cycle time, which tracks the time from when 
work starts to when it is completed, can indicate a productive flow but are not the only 
factors. Other factors beyond the measurement of output and flow include: 

• Engineering Culture. A culture where engineers feel safe to take risks, ask questions 
and report issues without fear of negative consequences promotes productivity. 

• Work-Life Balance. Software productivity measures must account for sustainable 
work patterns, ensuring engineers are not overworked as this can lead to burnout and 
decrease long-term productivity. 

• Team Dynamics.  Effective collaboration within and across the team is key to 
productivity.  Metrics like pull request turnaround times, number of cross team 
meetings, and feedback loops can provide such insights. 

• Quality and User Satisfaction.  Monitoring the number of bugs per unit of work can 
help gauge the quality of output. Collecting and analyzing user feedback and 
satisfaction metrics ensures that the team’s productivity aligns with delivering value. 

• Automation and Tooling.   Automated testing and continuous integration and 
deployment (CI/CD) pipelines can significantly improve software productivity by 
reducing manual tasks and allowing the team to focus on higher-value activities. 

Due to the complexity of software engineering, it is important to take a multi-tiered view of 
measuring productivity that includes measuring at the individual, team, and value stream 
levels. Tables 1 and 2 provide an example of such multi-tiered measurement for software 
testing.  In the context of leveraging generative AI for software productivity, measuring at 
multiple levels within a given activity such as testing, and across different activities like 
requirements engineering or design, lends itself to creating a more holistic and accurate 
view of the positive or negative impacts on productivity when applying AI/ML technologies.  
 

 

Table 1. Individual Metrics for Measuring Productivity During Software Testing Activities 

 



 
 

Table 2. Team Metrics for Measuring Productivity During Software Testing Activities 

 
2.3   Quality Equals Productivity  

As software teams attempt to move faster during the lifecycle, a common mistake is to cut 
corners on quality.  However, time-savings from paying less attention to quality early in the 
lifecycle is generally short lived as bugs and other issues appear, resulting in costly rework. 
It may be tempting to think that since generative AI can produce lots of content quickly, we 
can just use that content “as-is” to get the job done. This a significant risk which can be 
mitigated in practice if teams assume a direct relationship between quality and productivity. 
For example, formulating the equation Q = P as a testing mnemonic or mantra for the team 
can signify that time spent improving quality also increases productivity and vice-versa.  This 
can help avoid some major pitfalls related some the key challenges associated with 
leveraging generative AI for software lifecycle activities. 

3   Generative AI for Quality Engineering 

This section presents our approach to integrating generative AI (GenAI) for quality 
engineering into the software lifecycle. It starts by identifying some of the key challenges 
organizations face when using generative AI for engineering, and then describes use cases 
that apply generative AI to quality engineering and software testing tasks. 

3.1   Challenges  

Integrating GenAI into the software development lifecycle presents a range of challenges 
that organizations must navigate to fully realize the full potential of these technologies. 



• Security and Intellectual Property Ownership.  A primary concern with LLMs is the 
uncertainty surrounding security and intellectual property ownership. Using LLMs 
increases the risk of data breaches and unauthorized access to sensitive 
information, while the origin of the generated content raises questions about who 
holds the rights to LLM outputs. These issues create legal and operational problems 
that can deter organizations from adopting AI-driven solutions. 

• Workforce Upskilling.  Another significant challenge is the need for upskilling within 
the workforce. As GenAI tools become more integrated into development workflows, 
it is essential for developers and other stakeholders to learn how to interact with 
these tools effectively. This involves not only gaining technical proficiency but also 
developing an understanding of AI processes, interpreting outputs accurately, and 
leveraging AI capabilities to drive innovation. Without upskilling, companies risk 
underutilizing these tools and failing to achieve the desired productivity gains. 

• Content Management.  Compounding these issues is the potential for GenAI tools 
to produce large quantities of software artifacts that may appear correct to the 
untrained eye. This can create a false sense of security as subtle errors or 
inefficiencies may go unnoticed until later stages of development, where they can 
become costly to address. The sheer volume of AI-generated artifacts can 
overwhelm traditional processes, making it essential for companies to have 
adequate tool support and streamlined review practices in place. 

• Validation and Verification.  The accuracy of AI-generated outputs remains a critical 
concern. Incorrect or poorly structured inputs can lead to flawed results, but even 
correct inputs do not guarantee optimal outcomes. The inherent unpredictability of 
generative AI necessitates careful monitoring and validation of outputs, adding 
complexity to the development process and requiring robust testing practices. 

• Productivity Measurement.  Measuring the productivity gains from using GenAI is a 
non-trivial task. While GenAI tools can accelerate the production of software 
artifacts, faster output does not necessarily mean better results. The quality, 
maintainability, and alignment of AI-generated outputs with the project goals must 
be carefully evaluated. Companies must develop nuanced metrics that account for 
both the efficiency and effectiveness of GenAI, ensuring that it genuinely enhances 
the development process rather than merely increasing the pace of production. 

3.2   Use Cases  

Upon the release of ChatGPT and other popular large language models and assistants, we 
surveyed over 300 practitioners and collected more than 1200 use cases on how they were 
using this technology for software development. Over 30% of the use cases collected were 
related to quality engineering or software testing activities.  Table 3 is a summary of the 
categories of the collected use cases, coupled with supporting examples. 



 

 
 

Table 3. A Summary of Practitioner-Based GenAI for Quality Engineering Use Cases 

By automating and optimizing critical quality engineering and testing processes—from test 
case design to defect management—AI not only has the potential to enhance software 
productivity but may also promote more thorough and reliable software testing. It is because 
of this high potential for transformation that we have formulated an approach and 
implemented supporting tools and platforms.  Some of the supporting tools and platforms 
are freely available as part of our many contributions to open-source software, while others 
are integrated into EPAM service offerings. Regardless of their software licensing model, it 
is the hope of the authors that sharing the details of these projects will encourage others to 
innovate in this rapidly growing area of emerging technology. 



4   Proposed Approach  

Integrating the use of GenAI for quality engineering into software lifecycle requires careful 
planning, coupled with a robust infrastructure and focus on both technical and human-
centric elements. To ensure a successful and sustainable integration, it is essential to follow 
a structured approach that incorporates secure access to AI models, solid engineering 
practices, seamless user experience, content management, and collaborative tooling.  This 
section presents our proposed approach to integration which has evolved from our 
experience applying generative AI to QE tasks on a variety of client-facing projects. To keep 
our description rooted in practice, where applicable we provide references to products, 
platforms, frameworks, and accelerators that can be used to support the approach. 
 
4.1   Secure Access to Enterprise-Ready Generative AI Models 

Safeguarding corporate data and assets is paramount and therefore one of the first steps in 
our approach seeks to address concerns around security and data privacy when using 
GenAI in the software lifecycle.  To ensure a high level of security, businesses need access 
to enterprise-ready AI models and infrastructure that offer full and exclusive control to the 
organization. This includes the ability to host these solutions privately, providing an added 
layer of safety and customization. This provides key assurances in the setup including 
making sure that prompts, completions, embeddings, and training data are completely 
isolated and secure. These assets are not shared with or accessible by other clients, nor are 
they available to model providers like OpenAI. The goal is that your proprietary data remains 
entirely within your control, safeguarded from external access or usage. 
 
4.1.1   Proxy Implementation 

One method for achieving this in practice is to implement a proxy that allows secure access 
a diverse array of AI models. This proxy serves as a centralized gateway, ensuring that teams 
can access and leverage the most suitable AI models for their specific testing needs without 
compromising security.  Such a setup should allow for dynamic selection and switching 
between different models, depending on the task at hand. For example, open-source 
models might be preferred for certain types of analysis due to their transparency, 
adaptability and data security, commercially available public models have a huge 
knowledgebase and can be used to solve majority of the tasks where data privacy is less of 
a concern, proprietary models could be leveraged for their advanced capabilities and fine-
tuned accuracy. The proxy ensures that all interactions with these models are secure, 
compliant with regulatory standards, and auditable. 
 
4.1.2   AI DIAL 

Merging the power of LLMs with deterministic code can facilitate the development of a 
unified interface for empowering businesses to leverage a spectrum of   models, assistants, 
and more.  This is exactly the philosophy behind the AI-powered Deterministic Integrator of 
Applications and LLMs (AI DIAL).  



 
 

 
 

Figure 1. User Interface of Open-Source Chat-Based Accelerator Built for AI DIAL  
 
Figure 1 is a screen capture of a chat-based accelerator built on AI DIAL. It allows the user 
to select which model or models they want to interact with and even provides a feature for 
sending the same prompt to two different models so that the results can be compared in 
real-time. Custom models, assistants or other applications can also be accessed via this 
interface, which is backed by a secure proxy.  The type of integration and unified access 
provided by AI DIAL promotes the development of novel, AI-based, enterprise assets that 
co-exist seamlessly with an organization's existing workflows.  In keeping with our long-
standing commitment to open source, EPAM has released this chat-based accelerator 
under the Apache 2.0 licensing scheme. AI DIAL encourages responsible use, community 
innovation, and adoption of responsible AI standards within the industry. 
 
4.2   Building on A Foundation of Engineering Excellence 

Our approach recommends that the integration of GenAI into the software lifecycle be built 
on a foundation of engineering excellence.  Engineering Excellence refers to the pursuit of 
the highest standards in engineering practices, encompassing the consistent delivery of 
high-quality, reliable, and innovative solutions that meet or exceed user and business 
expectations. It involves a commitment to continuous improvement, adherence to best 
practices, and the application of rigorous methodologies that ensure the optimal 
performance, scalability, and security of products and systems. Engineering excellence 
embodies a culture of transparency, accountability, collaboration, and ethical 
responsibility, driving teams to not only achieve technical precision but also to contribute 
meaningfully to the advancement of the engineering discipline and organizational success.   



 
 

 
Figure 2. Engineering Excellence Key Performance Indicator (KPI) Pyramid  

  
A key benefit of leveraging engineering excellence within our approach is that it promotes a 
strong, KPI-driven culture of engineering best practices.  Figure 2 illustrates the various 
kinds and levels of Key Performance Indicators (KPIs) that a focus on engineering excellence 
can provide.  Leveraging such a framework is particularly useful during the integration of 
GenAI as it supports conducting observations, measurements, baseline assessments and 
evaluating the impact of AI on quality and productivity at multiple levels. For example, before 
introducing AI into testing activities, it may be essential to capture baseline measurements 
on test execution times, defect rates, and test coverage. These baselines provide a point of 
comparison to directly measure the impact of AI integration on testing but can also be 
extended up to higher levels of the pyramid to gain insights into the overall value.   
 
In cases where capturing baselines is not feasible, running concurrent experiments—where 
one set of testing activities is assisted by GenAI, and the other does not—can help assess 
the overall benefits and challenges. This may require the implementation of observability 
tools that monitor AI-driven processes in real time, ensuring that any deviations from 
expected behavior are promptly identified and addressed. Measurability, coupled with 
these observability practices, provides the data needed to refine AI models and 
continuously improve their performance in the software development lifecycle.   
 
4.3   Seamless Integration into Existing Tools and Workflows 

One of the most critical aspects of integrating GenAI into the software lifecycle is ensuring 
that it fits seamlessly into existing tools and workflows. Rather than requiring teams to adopt 



entirely new tools or platforms, AI should be embedded within the products and systems 
they are already using. This approach minimizes disruption and reduces the likelihood of 
resistance from teams who may be hesitant to learn new technologies.  For example, AI-
powered test case generation, automation, and analysis should be integrated into the same 
IDEs, test management systems, and reporting tools that teams are already comfortable 
with. This integration allows AI to enhance the existing workflows without imposing 
additional cognitive load on the users, thereby increasing the adoption rate and ensuring 
that AI becomes a natural extension of their daily work.   The remainder of this subsection 
provides concrete examples of such integrations in the context of quality engineering. 
 
4.3.1. AI Jeannie (JIRA Plugin) 

JIRA users currently experience inefficiencies and inconsistencies in their workflows, 
negatively impacting the quality of their sprints and issues. These inefficiencies often result 
in increased manual effort. Furthermore, there is a lack of seamless collaboration between 
Business Analysts and other JIRA users due to inconsistencies in language and terminology 
used for JIRA issues.   
 
AI Jeannie is a freely available, open-source, plugin for JIRA that helps Business Analysts to 
create quick epic descriptions, user story descriptions, and acceptance criteria based on 
Project Definition configured. As illustrated in Figure 3, it works by allowing you to bring your 
own AI or LLM provider and helps users to quickly generate high-quality, accurate, and 
relevant requirements directly within JIRA.  Sequence diagrams can also be automatically 
generated to allow stakeholders to validate them as part of their agile process and workflow. 
 
 

 
 

 

Figure 3. AI Jeannie JIRA plugin supports requirements-based quality engineering  
 
 



4.3.2. Alita Code (IDE Plugin) 
 
Software and test automation engineers often encounter challenges during development when 
implementing program-based tests. Generative AI and large language models perform quite well 
at code generation tasks, including creating automated test scripts.  However, ultimately this 
code will live in a repository and be updated and maintained using an integrated development 
environment (IDE).  Therefore, it makes sense that these types of tools be provided as extensions 
to the IDE, rather than outside of the programming environment. 
 
Alita Code is an IDE extension seeks to improve the way that software engineers and testers 
develop, test, and maintain program code. It leverages AI to generate automated unit, integration, 
and system-level tests. It can also automatically add comments to code to make it more 
understandable and maintainable for engineering teams and provide AI-powered code 
suggestions.  At the time of writing, the Alita Code plugin is available for multiple IDEs including 
Visual Studio Code and IntelliJ and can be configured for public or private LLMs.  Figure 4 shows 
the Visual Studio Code variant, which exposes the following extension commands: 

• Init – Initializes the plugin and creates a local prompt library folder in the open workspace. 
• Create Prompt – Adds a new prompt to the local prompt library. 
• Extend Context – Facilitates expanding the context of a given prompt in the local library. 
• Predict – Presents user with a list of prompts for performing GenAI engineering tasks.  
• Similarity – Presents user with a list of embeddings to run similarity search against. 
• Sync External Prompts – Allows users to sync prompts to and from a shared backend. 

 

Figure 4. Alita Code Plugin for Integrated Development Environments 
 



4.4   Supporting Content Management and Validation 

AI-generated content, such as test cases, scripts, and reports, must undergo review and 
validation processes to ensure accuracy, relevance, and compliance with organizational 
standards. This involves setting up review pipelines where AI-generated outputs are 
automatically routed to human reviewers for approval.   
 
Building connectors to existing test management systems and reporting tools is also 
essential. These connectors facilitate the seamless flow of AI-generated content into 
established systems, enabling teams to track, manage, and validate AI outputs alongside 
traditional testing artifacts. By making content management and validation an integral part 
of the AI integration process, organizations can maintain high standards of quality and 
reliability in their testing practices. 

4.5   Facilitating Collaboration and Experimentation 

Collaboration is a key ingredient for harnessing the full potential of GenAI.  Mechanisms that 
enable teams to share prompts, refine models, and collectively improve engineering 
processes must be put into place. Such tools should support real-time collaboration, such 
as sharing environments or communicating via integrated chat and feedback systems. The 
proposed approach therefore emphasizes that beyond the technological elements, 
organizations must invest in practices aimed at helping teams work together more 
effectively with each other, and with AI.   
 
In addition to a collaborative space for sharing, there should be private spaces for 
conducting localized experiments so that teams can explore new ideas with GenAI in a 
controlled environment. For example, in the early stages of experimentation it may be 
necessary to set up an isolated test environments where AI can be trialed without impacting 
the broader development or testing effort. Such experimentation fosters innovation and 
ultimately contributes to building a culture of continuous improvement.  
 

4.6    Bringing it All Together 

At EPAM and Test IO, we have applied the various elements of the proposed approach 
successfully and have used the content described here as guiding principles in developing 
our own AI collaboration platform. Our platform sits behind a secure proxy which provides 
access to a plethora of LLMs, and we have been using it to seamlessly integrate GenAI into 
testing and software engineering tasks.  Wherever possible, ELITEA is used to help augment 
existing tools, frameworks, and process workflows with AI capabilities.  Figure 5 contains a 
visual of the approach and illustrates the kind of bridge ELITEA provides to teams as an AI 
collaboration platform.  
 



 
 

Figure 5. Seamlessly Integrating GenAI for Software and Quality Engineering with ELITEA 

 

5   Case Study 

The anonymized case study presented in this section is taken from a past client-facing, 
industry engagement that used the proposed approach to accelerate quality engineering 
and testing activities.  It includes a description of the client, the problem motivation, key 
highlights of the engagement, and any results, findings or conclusions. 

Reducing Testing Debt in Library Services with Gen AI 

Client is a co-creator and key contributor of a cloud-based, open-source, library services 
platform.  Although the platform uses a modular architecture that lends itself to test 
automation, the rapid pace and community-driven nature of the project has led to gaps in 
test automation. The growing reliance on manual testing motivated the client to reach out 
to us for guidance on leveraging GenAI for UI test automation to tackle the accumulated 
software testing debt.   



Project Goals 

The goal set for the project was to successfully integrate GenAI into the test script 
development workflow of the team members and automate a large number of end-to-end, 
manual UI tests within a 4-month period. Achieving this should in turn accelerate the release 
cycle due to the increased test automation.  

Highlights 

Some key highlights of the engagement included the use of crowd-sourced test automation 
contributors; a template generator; IDE plugin’ and CLI tool all as GenAI usage enablers.  In 
addition, there were dedicated engineers to conduct GenAI experiments using different 
prompts, models and approaches, and the Alita Code extension enabled team members to 
build and execute prompts within the IDE. 
 
Results 

Within the 4-month period, 1000+ end-to-end UI tests were automated.  After a short ramp-
up period, a subset of team members was onboarded with the GenAI skills and tools 
necessary. Figure 6 provides a snapshot of some of the project results.  There was 
approximately a 15% increase in the test development velocity when using GenAI, and an 
estimated 20% time savings and close to 40% reduction in implementation costs. Another 
finding worth noting was that the seniority index of GenAI assisted engineering group was a 
few points lower than the non-AI group.  In other words,  a group with less senior engineers 
using AI, outperformed a group of more seasoned engineers without AI assistance. 

 

Figure 6. Snapshot of the Case Study Results 



6   Conclusion 

As demands on time to market for high-quality software grow, it is becoming necessary to 
accelerate the software pipeline. Consequently, the integration of generative AI into the 
software development lifecycle is changing how software is designed, tested, and 
delivered. This paper has explored the challenges and opportunities of embedding 
generative AI within software engineering processes, particularly focusing on quality 
engineering and testing.   The integration of generative AI brings forth challenges such as 
security concerns, intellectual property issues, and the need to upskill the workforce. The 
temptation to prioritize speed over quality, especially with the rapid output capabilities of 
generative AI, is a common pitfall. However, the presented approach and associated case 
study are providing early indicators that such an integration provides a net benefit to the 
software development cycle.   Still there is much more work and practical studies that are 
needed before we can draw any firm conclusions around the transformative potential of 
this technology. 
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