
Integrating Generative AI for Quality Engineering
into the Software Lifecycle

Rozumenko, A., Udovychenko, A., King, T. M.

{ Artem_Rozumenko, Anastasiia_Udovychenko, Tariq_King } @epam.com

Abstract

Software practitioners and development teams are using generative AI and large language
models like GPT-4, LLaMA, and PaLM for quality engineering and testing use cases. These
include but are not limited to software requirements and design validation, test case and
test script generation, and test result and coverage analysis. But how effective is generative
AI in practice when it comes to delivering software faster without compromising quality? In
other words, how do teams effectively apply this emerging technology in practical
scenarios? In this paper, we describe an approach for integrating generative AI into the
software development lifecycle. Our approach provides a holistic methodology that keeps
the human-in-the-loop, while incorporating generative AI tools into communication
channels, software hubs, integrated development environments, and test execution and
reporting platforms. To keep our discussion grounded in practice, we present industrial case
studies in which global teams have used an enterprise-ready generative AI collaboration
platform for realizing software quality and productivity gains.

Biographies

Artem Rozumenko is a highly experienced technology leader and Director of Technology
Solutions at EPAM Systems. With a strong foundation in software engineering and a deep
passion for Performance Optimization, Security, and DevOps, Artem has built a
distinguished career over the past decade. He began his professional journey as a manual
tester and quickly advanced through roles in test automation, software development, and
cloud operations. In his current role, Artem is heading up various Generative AI
transformation initiatives within EPAM. He is based in Ukraine and continues to be an
influential figure in the IT services and consulting industry.

Anastasiia Udovychenko is the Lead Software Testing Engineer with more than 10 years of
experience in software quality assurance. Anastasiia is a technical leader with a customer-
first mindset for achieving delivery excellence through lean governance, open
communication, and agile thinking. She has extensive experience in QA across various
domains, including e-commerce, financial services, e-resource management systems and
laboratory information management systems. At EPAM, has been conducting demos,
assessments and helping to educate others on AI for quality engineering. Her academic

background in Applied Mathematics, combined with industry experience, enables her to
approach QA challenges with a unique analytical and problem-solving mindset.

Tariq King is a recognized thought-leader in software testing, engineering, DevOps, and
AI/ML. He is currently the CEO and Head of Test IO, an EPAM company, and has formerly
held positions such as VP of Product-Services, Chief Scientist, Head of Quality, Quality
Engineering Director, Software Engineering Manager, and Principal Architect. Tariq has
published over 50 research articles in peer-reviewed IEEE and ACM journals, conferences,
and workshops. He has served as an international keynote speaker and trainer at leading
software conferences in industry and academia and is co-creator of the Artificial Intelligence
United’s (AIU)) certification in Gen-AI Assisted Test Engineering.

1 Introduction

A future where AI automates software engineering tasks is upon us. Generative AI (GenAI)
and large language models (LLMs) are enabling higher degrees of software automation when
it comes to requirements engineering, planning, project management, development,
testing, and deployment. AI-assisted engineering tools are becoming more ubiquitous,
easier to use, interact with, and incorporate into our everyday lives as software
professionals. Many software practitioners, product owners, and researchers have been
investigating ways to integrate GenAI into the software development lifecycle.

An area that continues to receive much attention when it comes to GenAI is quality
engineering. Can we employ GenAI to accelerate software development? If so, would this
result in better software? Or would any early productivity gains be short-lived due to rising
defect rates? Speaking of quality, this technology also has a dark side. One in which AI
infused applications, models, and assistants hallucinate. The non-deterministic nature of
LLMs raises legitimate concerns around trustworthiness, reliability, security, and privacy,
while the method by which these models give pause associated with intellectual property
rights and ownership.

Although these technologies are still in their infancy, it is never too early to formalize
approaches, tools, and techniques that promote the safe and responsible use and
integration of AI. This paper presents a holistic approach for integrating GenAI into the
software lifecycle, starting first with quality engineering activities. Quality engineering has
been specifically selected as a means of aligning it with another important and related
subject – that of productivity.

The remainder of this paper is organized as follows: the next chapter explores the
relationship between productivity and quality. Section 3 discusses generative AI for quality
engineering. Section 4 presents our proposed approach. Section 5 contains a case study
that applies the approach in the context of a client-facing engagement. Finally, in Section 6
we conclude the paper and discuss future directions.

2 Productivity Versus Quality

Individuals, organizations and businesses are excited about the potential for AI to transform
the world as we know it. Many believe that AI will revolutionize our personal and work lives
by automating routine tasks and acting as a force multiplier in several industries. In the
software industry, researchers and practitioners have been experimenting with the use of
generative AI (GenAI) for software productivity [REF]. GenAI is being integrated into tools,
processes and practices as a means of enhancing software engineering and other lifecycle
activities. However, it is important to acknowledge that productivity in the context of the
software lifecycle is not easy to define and can be extremely difficult to measure.

This section starts by describing general aspects of productivity and then focuses on the
foundational principles necessary to quantify productivity during the software lifecycle. The
main idea is that such a foundation is necessary to integrate generative AI for engineering
into the software lifecycle. Furthermore, to ensure that quality is not compromised for speed
when leveraging generative AI, we wrap up the section by emphasizing the direct
relationship between quality and productivity due to the important role that validation plays
in our proposed approach.

2.1 Defining Productivity

There are three general concepts that intersect to define productivity: quantity, quality and
efficiency. When we think of being more productive, we tend to think about an increase in
number or quantity of tasks being completed, typically over some unit of time. However,
getting more things done faster only results in true productivity gains if those things are
completed well. In other words, the finished work must meet a certain quality standard.
Lastly, the effort of operating at this new level of output or throughput should not be
wasteful, but instead should be cost efficient.

2.2 Quantifying Productivity in the Software Lifecycle

Although it may start with delivery, quantifying productivity during the software lifecycle
goes beyond just output or flow. For example, traditional metrics like lines of code or
number of commits can provide a basic measure of output, but do not capture quality or
long-term maintainability. Process metrics like cycle time, which tracks the time from when
work starts to when it is completed, can indicate a productive flow but are not the only
factors. Other factors beyond the measurement of output and flow include:

• Engineering Culture. A culture where engineers feel safe to take risks, ask questions
and report issues without fear of negative consequences promotes productivity.

• Work-Life Balance. Software productivity measures must account for sustainable
work patterns, ensuring engineers are not overworked as this can lead to burnout and
decrease long-term productivity.

• Team Dynamics. Effective collaboration within and across the team is key to
productivity. Metrics like pull request turnaround times, number of cross team
meetings, and feedback loops can provide such insights.

• Quality and User Satisfaction. Monitoring the number of bugs per unit of work can
help gauge the quality of output. Collecting and analyzing user feedback and
satisfaction metrics ensures that the team’s productivity aligns with delivering value.

• Automation and Tooling. Automated testing and continuous integration and
deployment (CI/CD) pipelines can significantly improve software productivity by
reducing manual tasks and allowing the team to focus on higher-value activities.

Due to the complexity of software engineering, it is important to take a multi-tiered view of
measuring productivity that includes measuring at the individual, team, and value stream
levels. Tables 1 and 2 provide an example of such multi-tiered measurement for software
testing. In the context of leveraging generative AI for software productivity, measuring at
multiple levels within a given activity such as testing, and across different activities like
requirements engineering or design, lends itself to creating a more holistic and accurate
view of the positive or negative impacts on productivity when applying AI/ML technologies.

Table 1. Individual Metrics for Measuring Productivity During Software Testing Activities

Table 2. Team Metrics for Measuring Productivity During Software Testing Activities

2.3 Quality Equals Productivity

As software teams attempt to move faster during the lifecycle, a common mistake is to cut
corners on quality. However, time-savings from paying less attention to quality early in the
lifecycle is generally short lived as bugs and other issues appear, resulting in costly rework.
It may be tempting to think that since generative AI can produce lots of content quickly, we
can just use that content “as-is” to get the job done. This a significant risk which can be
mitigated in practice if teams assume a direct relationship between quality and productivity.
For example, formulating the equation Q = P as a testing mnemonic or mantra for the team
can signify that time spent improving quality also increases productivity and vice-versa. This
can help avoid some major pitfalls related some the key challenges associated with
leveraging generative AI for software lifecycle activities.

3 Generative AI for Quality Engineering

This section presents our approach to integrating generative AI (GenAI) for quality
engineering into the software lifecycle. It starts by identifying some of the key challenges
organizations face when using generative AI for engineering, and then describes use cases
that apply generative AI to quality engineering and software testing tasks.

3.1 Challenges

Integrating GenAI into the software development lifecycle presents a range of challenges
that organizations must navigate to fully realize the full potential of these technologies.

• Security and Intellectual Property Ownership. A primary concern with LLMs is the
uncertainty surrounding security and intellectual property ownership. Using LLMs
increases the risk of data breaches and unauthorized access to sensitive
information, while the origin of the generated content raises questions about who
holds the rights to LLM outputs. These issues create legal and operational problems
that can deter organizations from adopting AI-driven solutions.

• Workforce Upskilling. Another significant challenge is the need for upskilling within
the workforce. As GenAI tools become more integrated into development workflows,
it is essential for developers and other stakeholders to learn how to interact with
these tools effectively. This involves not only gaining technical proficiency but also
developing an understanding of AI processes, interpreting outputs accurately, and
leveraging AI capabilities to drive innovation. Without upskilling, companies risk
underutilizing these tools and failing to achieve the desired productivity gains.

• Content Management. Compounding these issues is the potential for GenAI tools
to produce large quantities of software artifacts that may appear correct to the
untrained eye. This can create a false sense of security as subtle errors or
inefficiencies may go unnoticed until later stages of development, where they can
become costly to address. The sheer volume of AI-generated artifacts can
overwhelm traditional processes, making it essential for companies to have
adequate tool support and streamlined review practices in place.

• Validation and Verification. The accuracy of AI-generated outputs remains a critical
concern. Incorrect or poorly structured inputs can lead to flawed results, but even
correct inputs do not guarantee optimal outcomes. The inherent unpredictability of
generative AI necessitates careful monitoring and validation of outputs, adding
complexity to the development process and requiring robust testing practices.

• Productivity Measurement. Measuring the productivity gains from using GenAI is a
non-trivial task. While GenAI tools can accelerate the production of software
artifacts, faster output does not necessarily mean better results. The quality,
maintainability, and alignment of AI-generated outputs with the project goals must
be carefully evaluated. Companies must develop nuanced metrics that account for
both the efficiency and effectiveness of GenAI, ensuring that it genuinely enhances
the development process rather than merely increasing the pace of production.

3.2 Use Cases

Upon the release of ChatGPT and other popular large language models and assistants, we
surveyed over 300 practitioners and collected more than 1200 use cases on how they were
using this technology for software development. Over 30% of the use cases collected were
related to quality engineering or software testing activities. Table 3 is a summary of the
categories of the collected use cases, coupled with supporting examples.

Table 3. A Summary of Practitioner-Based GenAI for Quality Engineering Use Cases

By automating and optimizing critical quality engineering and testing processes—from test
case design to defect management—AI not only has the potential to enhance software
productivity but may also promote more thorough and reliable software testing. It is because
of this high potential for transformation that we have formulated an approach and
implemented supporting tools and platforms. Some of the supporting tools and platforms
are freely available as part of our many contributions to open-source software, while others
are integrated into EPAM service offerings. Regardless of their software licensing model, it
is the hope of the authors that sharing the details of these projects will encourage others to
innovate in this rapidly growing area of emerging technology.

4 Proposed Approach

Integrating the use of GenAI for quality engineering into software lifecycle requires careful
planning, coupled with a robust infrastructure and focus on both technical and human-
centric elements. To ensure a successful and sustainable integration, it is essential to follow
a structured approach that incorporates secure access to AI models, solid engineering
practices, seamless user experience, content management, and collaborative tooling. This
section presents our proposed approach to integration which has evolved from our
experience applying generative AI to QE tasks on a variety of client-facing projects. To keep
our description rooted in practice, where applicable we provide references to products,
platforms, frameworks, and accelerators that can be used to support the approach.

4.1 Secure Access to Enterprise-Ready Generative AI Models

Safeguarding corporate data and assets is paramount and therefore one of the first steps in
our approach seeks to address concerns around security and data privacy when using
GenAI in the software lifecycle. To ensure a high level of security, businesses need access
to enterprise-ready AI models and infrastructure that offer full and exclusive control to the
organization. This includes the ability to host these solutions privately, providing an added
layer of safety and customization. This provides key assurances in the setup including
making sure that prompts, completions, embeddings, and training data are completely
isolated and secure. These assets are not shared with or accessible by other clients, nor are
they available to model providers like OpenAI. The goal is that your proprietary data remains
entirely within your control, safeguarded from external access or usage.

4.1.1 Proxy Implementation

One method for achieving this in practice is to implement a proxy that allows secure access
a diverse array of AI models. This proxy serves as a centralized gateway, ensuring that teams
can access and leverage the most suitable AI models for their specific testing needs without
compromising security. Such a setup should allow for dynamic selection and switching
between different models, depending on the task at hand. For example, open-source
models might be preferred for certain types of analysis due to their transparency,
adaptability and data security, commercially available public models have a huge
knowledgebase and can be used to solve majority of the tasks where data privacy is less of
a concern, proprietary models could be leveraged for their advanced capabilities and fine-
tuned accuracy. The proxy ensures that all interactions with these models are secure,
compliant with regulatory standards, and auditable.

4.1.2 AI DIAL

Merging the power of LLMs with deterministic code can facilitate the development of a
unified interface for empowering businesses to leverage a spectrum of models, assistants,
and more. This is exactly the philosophy behind the AI-powered Deterministic Integrator of
Applications and LLMs (AI DIAL).

Figure 1. User Interface of Open-Source Chat-Based Accelerator Built for AI DIAL

Figure 1 is a screen capture of a chat-based accelerator built on AI DIAL. It allows the user
to select which model or models they want to interact with and even provides a feature for
sending the same prompt to two different models so that the results can be compared in
real-time. Custom models, assistants or other applications can also be accessed via this
interface, which is backed by a secure proxy. The type of integration and unified access
provided by AI DIAL promotes the development of novel, AI-based, enterprise assets that
co-exist seamlessly with an organization's existing workflows. In keeping with our long-
standing commitment to open source, EPAM has released this chat-based accelerator
under the Apache 2.0 licensing scheme. AI DIAL encourages responsible use, community
innovation, and adoption of responsible AI standards within the industry.

4.2 Building on A Foundation of Engineering Excellence

Our approach recommends that the integration of GenAI into the software lifecycle be built
on a foundation of engineering excellence. Engineering Excellence refers to the pursuit of
the highest standards in engineering practices, encompassing the consistent delivery of
high-quality, reliable, and innovative solutions that meet or exceed user and business
expectations. It involves a commitment to continuous improvement, adherence to best
practices, and the application of rigorous methodologies that ensure the optimal
performance, scalability, and security of products and systems. Engineering excellence
embodies a culture of transparency, accountability, collaboration, and ethical
responsibility, driving teams to not only achieve technical precision but also to contribute
meaningfully to the advancement of the engineering discipline and organizational success.

Figure 2. Engineering Excellence Key Performance Indicator (KPI) Pyramid

A key benefit of leveraging engineering excellence within our approach is that it promotes a
strong, KPI-driven culture of engineering best practices. Figure 2 illustrates the various
kinds and levels of Key Performance Indicators (KPIs) that a focus on engineering excellence
can provide. Leveraging such a framework is particularly useful during the integration of
GenAI as it supports conducting observations, measurements, baseline assessments and
evaluating the impact of AI on quality and productivity at multiple levels. For example, before
introducing AI into testing activities, it may be essential to capture baseline measurements
on test execution times, defect rates, and test coverage. These baselines provide a point of
comparison to directly measure the impact of AI integration on testing but can also be
extended up to higher levels of the pyramid to gain insights into the overall value.

In cases where capturing baselines is not feasible, running concurrent experiments—where
one set of testing activities is assisted by GenAI, and the other does not—can help assess
the overall benefits and challenges. This may require the implementation of observability
tools that monitor AI-driven processes in real time, ensuring that any deviations from
expected behavior are promptly identified and addressed. Measurability, coupled with
these observability practices, provides the data needed to refine AI models and
continuously improve their performance in the software development lifecycle.

4.3 Seamless Integration into Existing Tools and Workflows

One of the most critical aspects of integrating GenAI into the software lifecycle is ensuring
that it fits seamlessly into existing tools and workflows. Rather than requiring teams to adopt

entirely new tools or platforms, AI should be embedded within the products and systems
they are already using. This approach minimizes disruption and reduces the likelihood of
resistance from teams who may be hesitant to learn new technologies. For example, AI-
powered test case generation, automation, and analysis should be integrated into the same
IDEs, test management systems, and reporting tools that teams are already comfortable
with. This integration allows AI to enhance the existing workflows without imposing
additional cognitive load on the users, thereby increasing the adoption rate and ensuring
that AI becomes a natural extension of their daily work. The remainder of this subsection
provides concrete examples of such integrations in the context of quality engineering.

4.3.1. AI Jeannie (JIRA Plugin)

JIRA users currently experience inefficiencies and inconsistencies in their workflows,
negatively impacting the quality of their sprints and issues. These inefficiencies often result
in increased manual effort. Furthermore, there is a lack of seamless collaboration between
Business Analysts and other JIRA users due to inconsistencies in language and terminology
used for JIRA issues.

AI Jeannie is a freely available, open-source, plugin for JIRA that helps Business Analysts to
create quick epic descriptions, user story descriptions, and acceptance criteria based on
Project Definition configured. As illustrated in Figure 3, it works by allowing you to bring your
own AI or LLM provider and helps users to quickly generate high-quality, accurate, and
relevant requirements directly within JIRA. Sequence diagrams can also be automatically
generated to allow stakeholders to validate them as part of their agile process and workflow.

Figure 3. AI Jeannie JIRA plugin supports requirements-based quality engineering

4.3.2. Alita Code (IDE Plugin)

Software and test automation engineers often encounter challenges during development when
implementing program-based tests. Generative AI and large language models perform quite well
at code generation tasks, including creating automated test scripts. However, ultimately this
code will live in a repository and be updated and maintained using an integrated development
environment (IDE). Therefore, it makes sense that these types of tools be provided as extensions
to the IDE, rather than outside of the programming environment.

Alita Code is an IDE extension seeks to improve the way that software engineers and testers
develop, test, and maintain program code. It leverages AI to generate automated unit, integration,
and system-level tests. It can also automatically add comments to code to make it more
understandable and maintainable for engineering teams and provide AI-powered code
suggestions. At the time of writing, the Alita Code plugin is available for multiple IDEs including
Visual Studio Code and IntelliJ and can be configured for public or private LLMs. Figure 4 shows
the Visual Studio Code variant, which exposes the following extension commands:

• Init – Initializes the plugin and creates a local prompt library folder in the open workspace.
• Create Prompt – Adds a new prompt to the local prompt library.
• Extend Context – Facilitates expanding the context of a given prompt in the local library.
• Predict – Presents user with a list of prompts for performing GenAI engineering tasks.
• Similarity – Presents user with a list of embeddings to run similarity search against.
• Sync External Prompts – Allows users to sync prompts to and from a shared backend.

Figure 4. Alita Code Plugin for Integrated Development Environments

4.4 Supporting Content Management and Validation

AI-generated content, such as test cases, scripts, and reports, must undergo review and
validation processes to ensure accuracy, relevance, and compliance with organizational
standards. This involves setting up review pipelines where AI-generated outputs are
automatically routed to human reviewers for approval.

Building connectors to existing test management systems and reporting tools is also
essential. These connectors facilitate the seamless flow of AI-generated content into
established systems, enabling teams to track, manage, and validate AI outputs alongside
traditional testing artifacts. By making content management and validation an integral part
of the AI integration process, organizations can maintain high standards of quality and
reliability in their testing practices.

4.5 Facilitating Collaboration and Experimentation

Collaboration is a key ingredient for harnessing the full potential of GenAI. Mechanisms that
enable teams to share prompts, refine models, and collectively improve engineering
processes must be put into place. Such tools should support real-time collaboration, such
as sharing environments or communicating via integrated chat and feedback systems. The
proposed approach therefore emphasizes that beyond the technological elements,
organizations must invest in practices aimed at helping teams work together more
effectively with each other, and with AI.

In addition to a collaborative space for sharing, there should be private spaces for
conducting localized experiments so that teams can explore new ideas with GenAI in a
controlled environment. For example, in the early stages of experimentation it may be
necessary to set up an isolated test environments where AI can be trialed without impacting
the broader development or testing effort. Such experimentation fosters innovation and
ultimately contributes to building a culture of continuous improvement.

4.6 Bringing it All Together

At EPAM and Test IO, we have applied the various elements of the proposed approach
successfully and have used the content described here as guiding principles in developing
our own AI collaboration platform. Our platform sits behind a secure proxy which provides
access to a plethora of LLMs, and we have been using it to seamlessly integrate GenAI into
testing and software engineering tasks. Wherever possible, ELITEA is used to help augment
existing tools, frameworks, and process workflows with AI capabilities. Figure 5 contains a
visual of the approach and illustrates the kind of bridge ELITEA provides to teams as an AI
collaboration platform.

Figure 5. Seamlessly Integrating GenAI for Software and Quality Engineering with ELITEA

5 Case Study

The anonymized case study presented in this section is taken from a past client-facing,
industry engagement that used the proposed approach to accelerate quality engineering
and testing activities. It includes a description of the client, the problem motivation, key
highlights of the engagement, and any results, findings or conclusions.

Reducing Testing Debt in Library Services with Gen AI

Client is a co-creator and key contributor of a cloud-based, open-source, library services
platform. Although the platform uses a modular architecture that lends itself to test
automation, the rapid pace and community-driven nature of the project has led to gaps in
test automation. The growing reliance on manual testing motivated the client to reach out
to us for guidance on leveraging GenAI for UI test automation to tackle the accumulated
software testing debt.

Project Goals

The goal set for the project was to successfully integrate GenAI into the test script
development workflow of the team members and automate a large number of end-to-end,
manual UI tests within a 4-month period. Achieving this should in turn accelerate the release
cycle due to the increased test automation.

Highlights

Some key highlights of the engagement included the use of crowd-sourced test automation
contributors; a template generator; IDE plugin’ and CLI tool all as GenAI usage enablers. In
addition, there were dedicated engineers to conduct GenAI experiments using different
prompts, models and approaches, and the Alita Code extension enabled team members to
build and execute prompts within the IDE.

Results

Within the 4-month period, 1000+ end-to-end UI tests were automated. After a short ramp-
up period, a subset of team members was onboarded with the GenAI skills and tools
necessary. Figure 6 provides a snapshot of some of the project results. There was
approximately a 15% increase in the test development velocity when using GenAI, and an
estimated 20% time savings and close to 40% reduction in implementation costs. Another
finding worth noting was that the seniority index of GenAI assisted engineering group was a
few points lower than the non-AI group. In other words, a group with less senior engineers
using AI, outperformed a group of more seasoned engineers without AI assistance.

Figure 6. Snapshot of the Case Study Results

6 Conclusion

As demands on time to market for high-quality software grow, it is becoming necessary to
accelerate the software pipeline. Consequently, the integration of generative AI into the
software development lifecycle is changing how software is designed, tested, and
delivered. This paper has explored the challenges and opportunities of embedding
generative AI within software engineering processes, particularly focusing on quality
engineering and testing. The integration of generative AI brings forth challenges such as
security concerns, intellectual property issues, and the need to upskill the workforce. The
temptation to prioritize speed over quality, especially with the rapid output capabilities of
generative AI, is a common pitfall. However, the presented approach and associated case
study are providing early indicators that such an integration provides a net benefit to the
software development cycle. Still there is much more work and practical studies that are
needed before we can draw any firm conclusions around the transformative potential of
this technology.

Acknowledgements

The authors would like to thank the following people and the members of EPAM’s Testing
Competency Center for their contributions to this work: Ihar Bylitski, Adam Auerbach, Pavel
Seviaryn, Matthew Gorelik, Viktoryia Valakh and Dmitry Tovpeko. We would also like to
express our sincere appreciation to the entire EPAM and Test IO community. Their collective
wisdom, experience, and collaborative spirit have enriched this work in countless ways,
ensuring its relevance and impact on the industry.

References

"Continuous Testing and Quality Gates: A Practical Guide." Journal of Software Testing, Vol.

14, 2019.

Amershi, S., Cakmak, M., Knox, W. B., & Kulesza, T. "Power to the People: The Role of

Humans in Interactive Machine Learning." AI Magazine, Vol. 35, No. 4, 2014.

Mitchell, M. Artificial Intelligence: A Guide for Thinking Humans. Farrar, Straus and Giroux,

2019.

Russell, S., & Norvig, P. Artificial Intelligence: A Modern Approach. 4th ed., Pearson, 2021.

"ReportPortal: An Open-Source Reporting Platform with Machine Learning Capabilities."

Official Documentation, 2022. https://reportportal.io/docs/

"ELITEA: Platform designed to streamline the management, development, and collaboration of

LLM assets." Official Documentation, 2024. https://projectalita.ai

https://reportportal.io/docs/
https://projectalita.ai/

"Alita Code: AI-powered IDE extension for developing, testing, and code maintenance." 2024.

https://marketplace.visualstudio.com/items?itemName=ProjectAlita.alitacode

"AI Jeannie: Jira extension to create Epics and User Stories using Generative AI." 2022.

https://marketplace.atlassian.com/apps/1232950/ai-jeannie

"AI DIAL: An Open-Source AI Orchestration Platform and Development Studio" 2024.

https://dialx.ai/

Whittaker, J. A., Arbon, J., & Carollo, J. How Google Tests Software. Addison-Wesley

Professional, 2012.

Gumeniuk, D., & King. T. Improving Enterprise Scale Test Automation with ML-Based

Predictive Analytics. In the Proceedings of the 2023 Pacific Northwest Software Quality

Conference, October 2023.

One Hundred Year Study on Artificial Intelligence (AI100). 2016 Report, 13.

ai100.stanford.edu/2016-report

Kelly, K. "The Three Breakthroughs That Have Finally Unleashed AI on the World." Wired, Oct.

27, 2014.

Li, W., & Zhang, X. "Using Large Language Models for Automated Test Case Generation."

Journal of Software Testing and Verification, 2022.

Maxwell, P. AI for Quality Assurance: Leveraging Artificial Intelligence in Testing. TechPress,

2021.

Johnson, J. The AI-Driven Enterprise: How AI Can Transform Quality Assurance and Testing.

FutureTech Publishing, 2022.

Khair, M. A., Mallipeddi, S. R., & Varghese, A. "Software Testing in the Era of AI: Leveraging

Machine Learning and Automation for Efficient Quality Assurance." Asian Journal of Applied

Science and Engineering, Vol. 10, No. 4, December 2021, pp. 45-60.

https://marketplace.visualstudio.com/items?itemName=ProjectAlita.alitacode
https://marketplace.atlassian.com/apps/1232950/ai-jeannie
https://dialx.ai/

